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Abstract

A mobile agent is an autonomous program that can migrate under its own control

from machine to machine in a heterogeneous network. In other words, the program

can suspend its execution at an arbitrary point, transport itself to another machine,

and then resume execution from the point of suspension. Mobile agents have the

potential to provide a single, general framework in which a wide range of distributed

applications can be implemented e�ciently and easily. Several challenges must be

faced, however, most notably reducing migration overhead, protecting a machine

from malicious agents (and an agent from malicious machines), and insulating the

agent against network and machine failures. Agent Tcl is a mobile-agent system

under development at Dartmouth College that has evolved from a Tcl-only system

into a multiple-language system that currently supports Tcl, Java, and Scheme. In

this thesis, we examine the motivation behind mobile agents, describe the base Agent

Tcl system and its security mechanisms for protecting a machine against malicious

agents, and analyze the system's current performance. Finally, we discuss the security,

fault-tolerance and performance enhancements that will be necessary for Agent Tcl

and mobile agents in general to realize their full potential.
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Chapter 1

Introduction

A mobile agent is an autonomous program that can migrate under its own control

from machine to machine in a heterogeneous network. In other words, the program

can suspend its execution at an arbitrary point, transport itself to another machine,

and resume execution on the new machine from the point at which it left o�. On

each machine, it interacts with service agents and other resources to accomplish its

task. In Figure 1.1, for example, an agent has migrated to interact with a search

engine and will migrate again to interact with additional search engines. Once the

agent has the desired information, it will migrate one last time to return to its home

site so that it can present the information to its owner.

Mobile agents have several advantages. By migrating to the location of a needed

resource, such as the search engine in Figure 1.1, an agent can interact with the re-

source without transmitting any intermediate data across the network, signi�cantly

reducing bandwidth consumption in many applications. Similarly, by migrating to

the location of a user, an agent can respond to user actions rapidly. In either case, the

agent can continue its interaction with the resource or user even if the network con-

nection goes down, making mobile agents particularly attractive in mobile-computing

applications. Mobile agents also allow traditional clients and servers to o�oad work

1



Agent

Machine A Machine B

Agent

Searcher

Figure 1.1: The basic idea of migration. Here an agent has migrated so that it

can interact locally with a search engine. It will migrate again to �nd additional

information and bring the results back to its owner.

to each other, and to change who o�oads to whom according to machine capabili-

ties and current loads. Similarly, mobile agents allow an application to dynamically

deploy its components to arbitrary network sites, and to redeploy those components

in response to changing network conditions. Finally, most distributed applications �t

naturally into the mobile-agent model, since mobile agents can migrate sequentially

through a set of machines, send out a wave of child agents that will visit multiple

machines in parallel, remain stationary and interact with resources remotely, or any

combination of these three extremes. Complex, e�cient and robust behaviors can

be realized with surprisingly little code, and, in fact, our own experience with un-

dergraduate programmers at Dartmouth suggests that mobile agents are easier to

understand than other distributed computing paradigms.

Although each of these advantages is a reasonable argument for mobile agents,

any speci�c application can be implemented just as e�ciently and robustly with more

traditional techniques, such as queued RPC [JTK97], higher-level server operations,

2



application-speci�c query languages, application-speci�c proxies within the perma-

nent network, automated installation facilities, and active web pages that contain

Java applets. Mobile agents eliminate the need for these other techniques, however,

combining their strengths into a single, general, convenient framework. Distributed

applications can be implemented e�ciently and easily even if they must exhibit ex-

tremely exible behavior in the face of changing network conditions. For example, a

search application can migrate to a dynamically selected proxy site and do its merg-

ing and �ltering there, while a server can continually migrate to new machines to

minimize the average latency between itself and its clients [RASS97].

In short, the true strength of mobile agents is that they are a uniform paradigm for

distributed applications, allowing both data and code to move from machine to ma-

chine. Several key research problems must be solved, however, before a mobile-agent

system can realize the full potential of the mobile-agent paradigm. Such problems

include reducing migration and communication overhead, protecting a machine from

malicious agents (and an agent from malicious machines), limiting an agent's total

resource consumption, insulating an agent against network and machine failures, and

developing the resource discovery, network sensing, navigation, and planning services

that will allow an agent to identify and reach the desired services.

Agent Tcl [Gra97, GKCR97, Gra96, Gra95] is a mobile-agent system that is un-

der development at Dartmouth College to address some of these research problems.

Agent Tcl focuses on �ve research areas: (1) performance, (2) support for multiple

languages, (3) cryptographic authentication and restricted execution environments

to protect a machine from malicious agents, (4) economic-based models to limit an

agent's total resource consumption across multiple machines, and (5) networking sens-

ing, navigation and planning services so that an agent can determine the best path

3



through the network according to its task and current network conditions. In this

thesis, we are concerned with the base Agent Tcl system, speci�cally its support for

multiple languages, its mechanisms for protecting an agent from malicious machines,

and its performance relative to traditional distributed systems.

Agent Tcl has two main components: (1) a server that runs on each machine, and

(2) an execution environment for each supported agent language. The server accepts

incoming agents, authenticates the identity of the owner, and passes the authenticated

agent to the appropriate execution environment. The server also keeps tracks of the

agents running on its machines and answers queries about their status, allows an

authorized user to suspend, resume and terminate a running agent, and allows agents

to communicate with each other through message passing and direct connections. In

a future version of Agent Tcl, the server will also provide a nonvolatile store for agents

so that an agent can be restarted after a machine failure. As in the Tacoma system

[JvRS95], all other services are provided by agents. Such services include resource

directories, network-sensing tools, higher-level communication protocols such as RPC,

and resource managers. Resource managers guard access to critical system resources

such as the screen, network and disk; speci�cally, the resource managers decide which

actions an agent can perform based on the authenticated identity of the agent's owner.

Each execution environment includes the interpreter that actually executes the

agent, a state-capture module that captures the complete state of the agent when the

agent decides to migrate to a new machine, and a security-enforcement module that

enforces the security policy from the resource managers. In addition, each execution

environment includes a package of stub routines that the agent uses to interact with

the servers and obtain the available agent services, such as migration, communication,

and status queries.

4



Agent Tcl is similar to other mobile-agent systems, such as Tacoma [JvRS95],

Ara [PS97], and Telescript [Whi94], but distinguishes itself with (1) its combination

of multiple languages, a simple migration mechanism, and both low- and high-level

communication protocols, (2) its simple but e�ective security model, and (3) its ex-

tensive support services and tools.

� Multiple languages (Chapter 5). Agent Tcl supports multiple, o�-the-shelf

languages, Tcl, Java and Scheme, and allows the straightforward addition of

new languages. The agent programmer can select the language that is most

appropriate for her task.

� Migration (Chapter 5). Agent Tcl reduces migration to a single instruction,

jump, which automatically capture the complete state of the agent and sends the

state image to the new machine. The agent continues from the point of the jump

on the new machine. Although the system programmer must implement the

jump instruction for each supported language, once the instruction is available,

the agent programmers do not need to explicitly collect state information before

migration.

� Communication (Chapter 5). The base Agent Tcl system provides two low-

level communication mechanisms, messaging passing and direct connections (for

bulk data transfer), which work the same regardless of whether the communicat-

ing agents are on the same or di�erent machines. Higher-level communication

mechanisms, such as a Remote Procedure Call (RPC) mechanism [NCK96], are

implemented at the agent level on top of the two low-level services. With this

approach, the agent programmer can choose from a range of communication

mechanisms, but the base system remains lightweight.

5



� Security (Chapter 6). Agent Tcl protects an individual machine against mali-

cious agents with a simple but powerful security model that cleanly separates

policy and enforcement. Agents are digitally signed during migration so that

their owner can be identi�ed. Resource manager agents use the identity of the

agent's owner to decide which screen, network, disk, etc., accesses are allowed

for that agent. The resource managers use traditional access-control lists to

make their decisions. These lists are read from a con�guration �le on startup;

then the machine administrator can change the lists interactively at any time

through a graphical management tool. A lightweight enforcement module for

each supported language enforces the decisions of the resource managers. These

enforcement modules ask the resource manager to make a decision when the

agent attempts a resource access for the �rst time, and then cache the decision

so that they do not have to keep asking the resource manager. In addition to

these existing mechanisms for protecting an individual machine from malicious

agents, another student is working on economic-based models for limiting an

agent's total resource consumption across multiple machines.

� Support services (Chapter 9). Agent Tcl provides numerous support services,

most notably (1) a debugger that tracks an agent as it moves through the net-

work, monitors its communication with other agents, and provides traditional

debugger features such as breakpoints, watch conditions and line-at-a-time ex-

ecution [HK97], (2) a docking system that allows an agent to transparently

migrate to or from a mobile computer, even if the mobile computer is not cur-

rently connected to the network [GKN+97], (3) hierarchical yellow pages that

provide a keyword-indexed directory of available services [GKN+97], (4) several

network sensing and planning modules that allow an agent to examine the cur-
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rent state of the network and construct an optimal route [GKN+97, Car97], and

(5) a simple Mobile Agent Construct Environment (MACE) that allows a non-

programmer to graphically construct an agent [Sha97]. These services represent

the research of several other students. Although they are discussed further in

Chapter 9, they are not an integral part of this thesis.

A sample Agent Tcl agent is shown in Figure 1.2. This agent, which is written

in Tcl, migrates through a sequence of machines and uses the Unix who command

to �nd out which users are logged onto each one. Once it has migrated through all

the machines, it migrates one more time to return to its home machine and present

the user list to its owner. The agent �rst uses the agent begin command to register

with the Agent Tcl server on its current machine. The agent then steps through the

list of machines and uses the agent jump command to migrate to each one in turn.

On each machine, the agent's execution continues from the point of the agent jump,

and the agent invokes the Unix who command to get the user list. Once the agent

has migrated through all of the machines, it invokes agent jump one last time to

migrate back to its home machine where it presents the user list to its owner (the

code to display the user list on the screen is not shown in the �gure). Finally, the

agent invokes agent end to tell the Agent Tcl server that it has �nished. Although

the \who" agent is not the most useful agent, it illustrates the general form of any

agent that migrates sequentially through a set of machines. The exec who can be

replaced with any desired processing. The most important thing to note about the

agent is that it was extremely easy to write; it is just a traditional single-machine

program with an agent jump command at two key points.

Agent Tcl has been used primarily in distributed information-retrieval applica-

tions, including retrieval of technical reports [RGK96], product descriptions and
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      agent_jump $machine              # jump to each machine
      append output [exec who]        # any local processing
}

agent_jump $agent(home)              # jump back home

# display output window

agent_end                                        # unregister

agent_begin           # register with the local agent server

set output {}
set machineList {muir tenaya ...}

    

A

foreach machine $machineList {

Home (bald)

A

Tenaya

Muir

A ...

Figure 1.2: The \who" agent migrates through a set of machines and �gures out who

is logged onto each one. Although the \who" agent is not the most useful agent, it

illustrates the general form of any agent that migrates sequentially through a set of

machines. The exec who can be replaced with any desired processing.
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prices [RGK96], medical records [Wu95], and three-dimensional drawings of mechan-

ical parts [CBC96] (Chapter 8). Mobile agents have two advantages in these appli-

cations: (1) the search agent can migrate to the location of the relevant database,

eliminating all intermediate data transfer; (2) the search agent can migrate to a dy-

namically selected proxy site and do its searches, merging and �ltering from that

proxy site, allowing it to continue even if the network link to the home machine goes

down and minimizing the amount of data that it brings back to the home machine.

The second advantage is particularly critical if the search is launched from a mobile

computer, which typically has an unreliable, low-bandwidth connection into the net-

work. Agent Tcl has also been used to track purchase orders in a workow application

[CGN96] and in several network management and information-retrieval applications

at non-Dartmouth sites.

Agent Tcl agents allow these applications to minimize their bandwidth consump-

tion and to proceed with their task even if network links go down. On the other

hand, when compared with traditional client/server implementations, the total task

completion time is longer except in low-performance networks. The primary cause is

the high migration overhead in the current Agent Tcl system. This migration over-

head can be reduced signi�cantly, however, and in combination with several other

straightforward optimizations, this reduction should allow Agent Tcl agents to per-

form just as well as client/server solutions in high-performance networks and much

better in low-performance networks (Chapter 7). Of course, there will always be net-

work conditions under which it is better for an agent to remain stationary and act

like a traditional client, so we have begun to develop some simple formulas that will

help an agent decide when and where to migrate (Chapter 7).

In rest of this thesis, we present the Agent Tcl system in detail. Chapter 2
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discusses the motivation for mobile agents, Chapters 3 and 4 examine other mobile-

agent systems, and Chapters 5 and 6 describe the base Agent Tcl system and its

security mechanisms for protecting a machine from malicious agents. Chapter 6

also includes possible approaches for protecting an agent from malicious machines.

Then, Chapter 7 analyzes the system's current performance and develops some simple

formulas that an agent can use when deciding whether to migrate or remain stationary.

Finally, Chapter 8 looks at several existing and potential applications for Agent Tcl,

Chapter 9 presents the Agent Tcl components that other students are developing

as part of their research, and Chapter 10 considers the security, fault-tolerance and

performance enhancements that will be necessary for Agent Tcl and other mobile-

agent systems to realize their full potential.
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Chapter 2

Motivation

Mobile agents have several performance advantages where performance can be a mat-

ter of bandwidth, latency, robustness, or simply ease of development.

Bandwidth. In the traditional client/server model [Lew95], the server provides a

�xed set of operations that a client invokes from a remote machine. If the server

does not provide an operation that matches the client task exactly, either the client

must make a series of cross-network calls to lower-level operations, or the server

developer must add a new operation to the server. The �rst option brings intermediate

data across the network on every call, potentially wasting a signi�cant amount of

network bandwidth, especially if the intermediate data is not useful beyond the end

of the client task. The second option is an intractable programming task as the

number of distinct clients increases. In addition, it discourages modern software

engineering since the server becomes a collection of complex, specialized routines

rather than simple, general primitives. Mobile agents, on the other hand, do not

waste bandwidth even if the server provides only low-level operations, simply because

an agent can migrate to the server where it performs any desired processing before

returning just the �nal result to the client [Whi94]. Agents that do more work avoid

more intermediate messages and conserve more bandwidth.
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Despite this advantage, there are several tradeo�s that must be considered. First,

although a mobile agent eliminates the transmission of intermediate data, the agent

itself must �rst be sent to the server. If the agent is larger than the intermediate data,

it will obviously consume more bandwidth than a traditional client/server implemen-

tation. Second, if the network between the client and server has high bandwidth and

low latency, the amount of intermediate data must be quite large for the mobile agent

to have a shorter completion time, especially when one considers the time needed for

the server to start up the necessary execution environment for the incoming agent.

Finally, the mobile agent uses less processing time at the client but more time at the

server, since the agent performs all intermediate computations at the server and is

typically written in an interpreted language. If the server is low-powered or heavily

loaded, a CPU-intensive agent can easily take longer than the corresponding cross-

network calls. Taken together, these tradeo�s mean that mobile agents display a

much greater performance advantage as network bandwidth decreases, network load

increases, the amount of intermediate data increases, and server power increases.

Conversely, mobile agents can display a severe performance disadvantage as condi-

tions move in the other direction. Any mobile-agent system must allow an agent to

examine current network and machine conditions and then decide whether to migrate

to a remote resource or remain at the current site and access the resource using the

equivalent of message passing [SS94] or remote procedure call (RPC) [BN84].

Latency. By migrating to the location of a resource, an agent can interact with

the resource much faster than from across the network. Such faster interaction is one

of the main motivations for Java-enabled web browsers. Latency between the user

(i.e., the screen, keyboard and mouse) and a web-based application is much lower if
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part or all of the application is downloaded to the client's machine in the form of a

Java applet, allowing the application to respond much more rapidly to user actions

[CH97]. Mobile agents can be used for the same purpose. Of course, whether latency

is actually important depends entirely on the application, and whether mobile agents

actually reduce the latency depends on the current server load, the network latency,

and the time needed for agent migration relative to the number of operations that

the agent invokes. Clearly a migrating agent that invokes only a single operation will

always have a larger end-to-end latency than the corresponding cross-network call.

Thus, as with bandwidth, the mobile-agent system must allow the agent to examine

current network and machine conditions so that it can decide whether to migrate or

remain stationary.

Mobile computing. A migrating agent does not require a permanent connection

with its home site and can proceed with its task even if the home site is unreachable.

Thus mobile agents are ideally suited for mobile computing in which computers can

be disconnected from the network for long periods of time [Whi94]. For example, a

laptop or other mobile device can send an agent out into the network. The agent will

continue with its work even if the laptop disconnects and will be ready with a result

when the laptop reconnects. Similarly, a service can send an agent onto a laptop to

continue interacting with the user [TLKC95]. In addition to periods of disconnection,

the networks involved in mobile computing (or more precisely the links at the edge of

these networks) are often characterized by low bandwidth and high latency, making

mobile agents even more attractive. By migrating to or from the laptop, the agent

can minimize use of the low-bandwidth, high-latency link.
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O�oading. Mobile agents allow a low-powered client to o�oad work to a high-

powered proxy or an overloaded server to o�oad work to clients. In the latter case, a

server would send back both data and an agent that performs additional processing

on the data. One example is a server that sends back a data set along with an agent

that can present the data in various ways; the user can view and manipulate the data

without any further contact with the server, reducing server load and allowing much

faster response times to user actions [Kna96]. In such an application, the agent serves

the same purpose as a Java applet, which is downloaded into a Java-enabled browser

so that a Web-based application can present a complex graphical interface without

annoying delays [CH97]. Of course, the same e�ect can be achieved if the user installs

special client software on their machine. The need for a separate installation step,

however, makes it much more unlikely that a user will try a new Internet service or

use a service that she only needs once [Kna96]. Both mobile agents and Java applets

eliminate the installation step and allow a user to try a service with minimal e�ort.

Dynamic deployment. Mobile agents allow rapid development, testing and in-

stallation of distributed applications since application components can be deployed

\on-the-y" to arbitrary network sites. In addition, even after it starts execution, the

application can redeploy its components in response to changing network conditions.

Such dynamic redeployment is used in [RASS97] to ensure that an Internet \chat"

server is always located at the network position that minimizes the average latency

between it and its current clients.

Intelligent data [Kna96]. Intelligent (or active) data can be viewed as a special

form of dynamic deployment. Here the messages in some arbitrary messaging system

contain both data and the code that is needed to handle that data on the destination
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machine. Such code might be a viewer for a multimedia data type or a decompression

routine to uncompress compressed data [Kna96]. Including code in the messages

allows the destination machine to handle new data types without user e�ort and

makes it trivial to introduce better viewers and decompression algorithms. Two

existing systems with such active messages are (1) Safe-Tcl/MIME in which Tcl

scripts are embedded inside MIME-enabled mail messages and executed (inside a

safe execution environment) when the message is received or read [LO95] and (2)

active networks in which packets contain small code fragments that are executed on

each router [TSS+97].

Convenient paradigm. Mobile agents are a convenient paradigm for distributed

applications. First, application components can dynamically deploy themselves

throughout the network as described above. Second, mobile agents hide the communi-

cation channels but not the location of the computation [Whi94]. This makes mobile

agents easier to use than low-level facilities in which the programmer must explicitly

handle communication details, but more exible and powerful than schemes such as

process migration in which the system decides when to move a program based on a

small set of �xed criteria. Third, a migrating agent needs to worry about network

failures only during migration; all resource operations are invoked locally to the re-

source. Fourth, many tasks, such as network management, information retrieval and

workow, �t naturally into the jump-act-jump model of mobile agents. The agent

migrates to a machine, performs a task, migrates to a second machine, performs a

task that might be dependent on the outcome of the �rst task, and so on. Finally, our

own experience with undergraduate programmers at Dartmouth suggests that mobile

agents are easier to understand than many other distributed computing paradigms. It
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has also been suggested that mobile agents move the programmer away from the rigid

client-server model to the more exible peer-peer model in which programs commu-

nicate as peers and act as either clients or servers depending on their current needs

[Coe94]. Although this is perhaps true conceptually, it does not appear to be an

inherent characteristic of mobile agents, but rather a matter of whether the program-

mer chooses to have her agents act as peers. Currently, in most of the mobile-agent

applications of which we are aware, there are clearly identi�able client and server

agents, with the client agents migrating to obtain the services of the server agents.

At the same time, most mobile-agent systems provide exible, high-level communi-

cation primitives, making it relatively straightforward to implement peer-peer agents

if desired.

Summary. Although each of the advantages above is a reasonable argument for

mobile agents, it is essential to realize that for any speci�c application, the same

performance can be realized with other techniques [HCK95]. Such techniques in-

clude queued RPC [JTK97], higher-level server operations, application-speci�c query

languages, application-speci�c proxies within the permanent network, automated in-

stallation facilities, and active web pages that contain Java applets. Mobile agents

eliminate the need for these other techniques, however, and allow a wide range of dis-

tributed applications to be implemented easily within the same, general framework

and to exhibit extremely exible behavior in the face of changing network conditions.

For example, consider the technical report agent shown in Figure 2.1. The agent's

task is to search a distributed collection of technical reports for information relevant

to the user's query. The agent �rsts asks the user to enter a free-text query. Then,

if the connection between the home machine and the network is reliable and of high-
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Child Agent

Messages

Tuolomne

Stationary IR agent

Child Agent

Messages

Muir

...

Spawn child / get result Spawn child / get result

3

2

Agent

2

1

Stationary IR agent

Jump

Jump

smaller final result

Dynamically selected
proxy site where agent

to return only a much
merges partial results

on mobile device
Application front-end

Figure 2.1: An example application. Here a mobile agent is searching a distributed

collection of technical reports. The agent �rst decides whether to move to a dynam-

ically selected proxy site. Then it decides whether to spawn child agents or simply

interact with the individual document collections from across the network.

17



bandwidth, the agent will stay on the home machine. If the connection is unreliable

or of low bandwidth, such as if the home machine is a mobile device, the agent will

jump to a proxy site within the network. This initial jump reduces the use of the

poor-quality link to just the transmission of the agent and the transmission of the

complete result, allowing the agent to proceed with its task even if the link goes down.

The proxy site is dynamically selected according to the current location of the home

machine and the document collections.

Once the agent has migrated to a proxy site if desired, it must interact with the

stationary agents that serve as an interface to the technical report collections. If

these stationary agents provide high-level operations, the agent simply makes RPC-

style calls across the network (using the agent-communication mechanisms). If the

stationary agents provide only low-level operations, the agent sends out child agents

that travel to the document collections and perform the query there, avoiding the

transfer of large amounts of intermediate data. Information about the available search

operations is obtained from the same directory services that provide the location of

the document collections.1 Once the agent has the results from each child agent, it

merges and �lters these results, returns to the home machine if necessary, and presents

the results to the user. Although the behavior exhibited by this agent is complex, it is

actually quite easy to implement; the decisions whether to jump and create children

involve little more than two if statements that check the information returned from

the network monitor on the home machine and the directory services. It is hard

to imagine any other technique that would allow us to provide an equally exible

implementation with the same small amount of work. More importantly, as long

as migration and the agent language are both fast enough, the agent's performance

1Chapter 9 discusses the directory services that are used in Agent Tcl.
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should be comparable to or better than that of any other technique, regardless of

the network conditions and without any application-speci�c support from the search

engines or proxy sites.

It is the \as long as" in the previous sentence that brings us to one of the key

challenges facing a mobile-agent system. Although migration does not need to be as

fast as a single RPC call, it must be a low-latency operation. In addition, to support

compute-intensive agents, the mobile-agent system must include languages that are

nearly as fast as compiled C. As we will see in the performance analysis section,

although Agent Tcl does not meet these performance goals yet, there is reason to

hope that it can. In other words, there is reason to hope that Agent Tcl and mobile

agents in general can realize their full potential and serve as an e�cient, general

framework for most distributed applications.
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Chapter 3

Related work

The popular de�nition of an agent is an intelligent software servant that either (1)

relieves the user of a routine, burdensome task such as appointment scheduling or (2)

�lters the overwhelming amount of online information so that the user sees only the

information that is relevant to her current needs [Haf95, Rog95]. This de�nition|

due to its broadness and its ability to capture the imagination|has made \agent" a

buzzword within both the academic and commercial worlds. Applications are often

described as \agent-based" solely to draw attention or increase sales. For example,

No Hands Software once described its MagnetTM program as the \�rst intelligent

agent for the Macintosh" even though it was essentially a �le-�nder [Fon93]. This

inappropriate use of the term makes it more di�cult to separate hype from actual

research, but there appear to be �ve legitimate research areas in which the term

\agent" is used|arti�cial intelligence and robotics, personal assistants, distributed

information retrieval, software interoperation and mobile agents.

First, we briey consider the other kinds of agents to underscore the di�erences

between non-mobile and mobile agents and to illustrate potential applications for

mobile agents.
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3.1 Other kinds of agents

3.1.1 Arti�cial intelligence and robotics

Here an agent is an entity that perceives its environment with sensors and acts on

its environment with e�ectors [RN95]. Such an agent can be either hardware with

physical sensors and e�ectors or software with simulated sensors and e�ectors. This

de�nition of an agent is used to provide a uni�ed framework for arti�cial intelligence,

to discuss software artifacts from a robotics viewpoint, and of course to discuss phys-

ical robots. This de�nition is not considered further except to note that it subsumes

the de�nitions below.

3.1.2 Personal assistants

Here an agent is a program that relieves the user of a routine, burdensome task such

as appointment scheduling or e-mail disposition. These agents are distinguished from

traditional utilities by (1) their use of machine learning so that they can adapt to

user habits and preferences [Mae94] or (2) their use of automated reasoning so that

they can make complex inferences about the work environment [Rie94].

Maes presents a series of agents that start with a minimum amount of domain

knowledge and learn how to perform the task by observing and interacting with the

user and other agents [Mae94]. The mail agent, for example, uses memory-based

reasoning to �lter electronic mail. It remembers every situation-action pair that

occurs when the user �lters her mail manually. When a new situation occurs, the

agent predicts what action should be taken by comparing the new situation with

the nearest memorized neighbors. Depending on its con�dence in the prediction, the

agent will perform the action itself, suggest the action to the user, or do nothing.
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In addition to learning from example, the agent accepts directives from the user and

solicits suggestions from other mail agents.

Riecken has developed a more complex system called M that uses �ve inference

engines1 to automatically group the documents that are presented during the course

of a virtual multimedia conference [Rie94]. The inference engines infer relationships

among the documents based on the actions that the users apply to them. For example,

if two documents are placed close together within the virtual conference room, the

spatial engine might conclude that the documents deal with the same subject. The

engines post their conclusions to a dynamic set of blackboards and use the conclusions

of the other engines to continue the reasoning process. Eventually one theory about

document relationships emerges as the most likely.

A mobile-agent system should be able to support these applications in a dis-

tributed setting. At a minimum this means that mobile agents should be able to

easily access external resources that provide learning and reasoning capabilities.

3.1.3 Distributed information retrieval

Here an agent is a program that searches multiple information resources for the an-

swer to a user query. Typically the resources contain large volumes of data and are

distributed across a network of heterogeneous machines. In addition, the agents are

characterized by (1) the use of knowledge-intensive techniques to avoid manual in-

tervention or brute-force search and, in some cases, (2) the concurrent execution of

multiple subsearches and communication of partial results from one subsearch to the

others. The partial results from one subsearch are used to narrow the scope of other

subsearches.

1functional, structural, causal, spatial and temporal
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Etzioni and Weld present a softbot that accepts a request and then develops a

plan that satis�es the request using available Internet resources [EW94]. Softbot

stands for \software robot" and arises from the arti�cial intelligence de�nition above.

In this case, the sensors are Internet resources such as archie, gopher and net�nd,

and the e�ectors are resources such as ftp, telnet and mail. The softbot encodes its

knowledge of these resources as declarative logic. It accepts requests expressed in

a subset of �rst-order logic and performs a standard backtracking search to develop

an appropriate plan. The example softbot in [EW94] uses a combination of Internet

resources to resolve underspeci�ed e-mail addresses when sending messages.

Vesser has written a succession of papers that develop a model for distributed

searching. One of the more recent is [OPL94], which recasts the model in terms of

agents. In the model a search involving multiple distributed resources is performed

by a collection of cooperating agents. Each agent is responsible for searching one

resource and communicating partial search results to the other agents so that the

other agents can refocus their search. The standard example is a vacation planner that

searches multiple databases| weather, car rental, hotel and \places of interest"|to

plan an appropriate vacation for the user. Each agent searches its assigned resource

independently but uses partial results from the other agents to adjust its search

criteria when needed. For example, the place agent might assume good weather

initially, but then redo portions of its search when the weather agent tells it that bad

weather is forecast for a particular area. Eventually the agents arrive at a consistent

vacation plan.

These examples do not demand a particular implementation. Indeed the search

could run entirely at a single site and simply invoke the necessary remote services.

Mobile agents allow a straightforward and e�cient implementation, however; mobile
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agents could be dispatched to each resource site and then could communicate partial

results and redo their searches without the involvement of the home site (and the

corresponding network tra�c).

3.1.4 Software interoperation

Here an agent is a program that communicates correctly in a universal communi-

cation language. Since all agents use the same communication language, an agent

can interoperate with any other agent, regardless of their underlying implementation.

This de�nition of an agent is closely related to agent-based software engineering in

which applications are implemented as a collection of autonomous, cooperating peers.

There are two approaches to agent-based interoperation|procedural and declarative.

In the procedural approach, agents exchange procedural directives. The recipient

agent executes the directives to perform some task on behalf of the sender. Most ex-

isting systems that use the procedural approach are based around high-level scripting

languages. An application is sent a script that guides the application through the de-

sired task. Notable examples of the script-based approach include Tcl, AppleScript,

Hewlett-Packard's NewWave environment and the Autonomous Knowledge Agents

(AKA) project [GK94, Joh93].

Genesereth [GK94] points out several disadvantages of the procedural approach.

Writing procedures might require information about the recipient that is not available

to the sender; procedures only compute in one direction; and procedures are di�cult

to merge. Instead Genesereth argues for the declarative approach in which agents

exchange declarative statements. The recipient performs an inference process to de-

rive results from the sender's declarative statements. These declarative statements are

written in the Agent Communication Language (ACL). ACL has three components|
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a vocabulary, an inner language called the Knowledge Interchange Format (KIF), and

an outer language called the Knowledge Query and Manipulation Language (KQML)

[GK94]. The vocabulary is a dictionary of words speci�c to the application area.

Each word has an English de�nition and a set of formal annotations written in KIF.

KIF is a pre�x version of �rst-order predicate calculus that can express data, proce-

dures, and relationships among the data. The atoms of KIF are the words from the

vocabulary. A KQML expression consists of a directive followed by one or more KIF

expressions. Directives include telling an agent that a KIF expression is true, asking

an agent if a KIF expression is true, and so on.

Agents that use KQML can communicate with each other directly, but this places

the burden of interoperation squarely on the programmer. Instead Genesereth pro-

poses a federated architecture in which facilitators handle interoperation [GSS94].

Essentially each agent is assigned a facilitator. An agent communicates only with

its facilitator, but facilitators communicate with each other. Each agent posts its

capabilities and application-speci�c facts to its facilitator. When an agent needs in-

formation, it sends a request to its facilitator. The facilitator uses backward inference

to �nd an answer to the request; typically the facilitator will invoke the services of

other agents during this process. The advantage of the facilitator approach is that

each agent communicates with single system agent that appears to handle all requests

itself. The main concern with the facilitator approach is scalability, i.e. the size of the

shared vocabulary, the cost of the inference process, and the size of the facilitator's

knowledge base. The �rst problem is addressed by allowing agents to use di�erent

vocabularies and providing translation features; the second and third problems are

addressed by limiting the amount and kind of information that each facilitator stores

internally.
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The federated approach is similar to directory assistance, distributed object man-

agers and automatic brokers. Directory assistance allows a program to �nd a desired

service. Distributed object managers provide transparent access to a distributed col-

lection of objects; messages are automatically routed to the destination object even if

the sender does not know the object's network location. Automatic brokers provide

both functions by �rst identifying an appropriate recipient for a message and then

forwarding the message. An example of directory assistance is the X.500 protocol; dis-

tributed object managers include CORBA, DSOM, OLE and OpenDoc; automatic

brokers include ToolTalk and the Publish and Subscribe Service on the Macintosh

[GK94]. The federated approach is distinguished by the amount of processing done

in the facilitator; each facilitator performs backward inference rather than simple

pattern matching. [GK94].

It is unclear whether the procedural or declarative approach is better. The pro-

cedural approach is suggested when the sender is requesting a task that the recipient

does not know how to perform in its entirety. The declarative approach is suggested

for knowledge-intensive applications in which planning and inference are required.

Mobile agents represent a hybrid approach. The mobile agents are procedures that

migrate to a remote machine so that they can execute at the location of the data, but

they do not have to communicate with procedural directives. The communication

facilities in most mobile-agent systems are exible enough to support any communi-

cation protocol, including the exchange of declarative statements. In addition, agents

can make use of external services that provide planning and inference capabilities.

There is no need to build declarative logic into the agent language.

One of these services|directory assistance, distributed object managers, auto-

matic brokers or federated inference engines|will be essential in a mobile agent
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system so that an agent can (1) �nd agents that perform a needed task and (2)

communicate with agents without knowing their current network location. Since mo-

bile agents are mobile, keeping track of recipient locations without system support

would be a nearly intractable programming challenge even if all the agents came

from the same application and communicated only among themselves. Whichever

solution is adopted, it must be extended so that it performs e�ectively in a highly

dynamic environment. Mobile agents come into existence, change network location

and terminate continuously. These changes must be visible to other agents.

3.2 Mobile agents

A mobile agent is an autonomous program that can migrate under its own control

from machine to machine in a heterogeneous network. The history of mobile agents is

complex. Here we examine the clear forerunners to mobile agents and discuss existing

mobile-agent systems.

3.2.1 Message passing

The message-passing model provides two communication primitives: send, which

sends a message to a destination process, and receive, which receives the message.

In client/server computing, the client sends a request message to the server; the

server receives the message, handles the request and sends back a response. The

send and receive primitives can be blocking or nonblocking and synchronous or

asynchronous. Blocking means that the primitives do not return control to the caller

until the message has been successfully sent or received; nonblocking means that the

primitives return immediately. Synchronous means that the send primitive does not

return until the recipient issues a corresponding receive; asynchronous means that
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the send primitive returns as soon as the message arrives on the destination machine.

Message passing is powerful and exible, but requires the programmer to handle

low-level details, such as keeping track of which response goes with which request,

converting data between client and server formats, determining the address of the

server, and handling communication and system errors [SS94].

3.2.2 Remote procedure call (RPC)

Remote procedure call (RPC) [BN84] relieves the programmer of these details. RPC

allows a program on the client to invoke a procedure on the server using the standard

procedure call mechanism. Most RPC implementations use stub procedures [BN84,

SS94]. A client that makes a remote procedure call is actually calling a local stub.

This client stub puts the procedure name and parameters into a message and sends

the message to the remote machine. A server stub on the remote machine receives the

message, extracts the procedure name and parameters, and invokes the appropriate

procedure. The server stub waits for the procedure to �nish and then sends a message

containing the result to the client stub. The client stub returns the result to the client.

The original RPC implementations blocked the client until the server returned the

result. Current RPC extensions either allow concurrent invocation of procedures on

multiple servers or make RPC asynchronous [SS94]. These variations are more exible

but make programming more di�cult.

Other disadvantages of traditional RPC were described in [GG88]. It is di�cult to

send incremental results from the server to the client; implementations are commonly

optimized for short results rather than bulk data transfer; and there is no way to

pass pointers or procedure references to the server. This last limitation obviates

any protocol that requires the server to invoke a client-speci�ed procedure on the
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client machine. [GG88] addresses these problems by allowing procedure references to

be passed as arguments and introducing the pipe abstraction. A pipe is a connection

between the client and the remote procedure that exists for the duration of the remote

procedure call; incremental results and bulk data are transferred along the pipe.

3.2.3 Remote evaluation

The main problem with RPC is that the client is limited to the operations provided

at the server. Since the server often does not provide an operation that meets the

client's needs exactly, the client must make several remote procedure calls, bringing

intermediate data across the network on every call. If the intermediate data is not

useful beyond the end of the client's task, a signi�cant amount of network bandwidth

has been wasted. To address this problem, researchers have turned to remote eval-

uation in which a subprogram is sent from the client to the server. The subprogram

executes on the server and returns its result to the client.

Falcone [Fal87] describes a system in which clients and servers program each other

using a variant of Lisp called the Network Command Language (NCL). Each server

provides a library of NCL functions. A client that requires a service sends an NCL

expression to the appropriate server. The expression can use any functions provided

at the server or sent as part of the expression. The server evaluates the expression and

returns the result to the client. The result is an NCL expression itself and can perform

arbitrarily complex processing on the client. The NCL expression can invoke multiple

functions on either the client or server and thus avoid the overhead of multiple remote

procedure calls.

Remote evaluation (REV) is similar to NCL in that a procedure can be sent to a

remote server for evaluation [SG90]. REV, however, uses client and server stubs in
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much the same way as RPC and can be used with any language. All that is needed

for a new language is stub generators and linking facilities so that the procedure can

invoke the operations provided at the server. The procedure can be transmitted as

source, intermediate or compiled code. The choice of transmission format depends on

the language, the desired level of security and the heterogeneity of the network. Sta-

mos and Gi�ord identify four security concerns|authentication, availability, secrecy

and integrity. Authentication and availability consist of verifying the identity of the

client and preventing denial of service attacks and can be addressed with standard

techniques [SG90]. Secrecy and integrity consist of preventing unauthorized access

to and destruction of server information and require more complex solutions. Sta-

mos and Gi�ord present three solutions|separate address spaces for each procedure,

careful interpretation in a single address space, and digital signatures with a single

address space. The �rst and third solutions support compiled code while the second

and third avoid the overhead of multiple address spaces. Digital signatures are an

open research area in which a program is compiled by a trusted third party. The third

party checks the program for security violations and applies a cryptographic signa-

ture to the compiled code if no security violations are present. The server knows that

certain security checks have been performed already if it receives a digitally signed

procedure. The advantage of REV over NCL is that REV can be incorporated into

any programming language, allowing the programmer to use the most appropriate

language for the application. On the other hand, NCL is symmetric since procedures

can be sent from the client to the server and from the server to the client.

The procedures in NCL and REV must be self-contained. All functions and vari-

ables referenced in the procedure must be provided at the server or included in the

procedure, making the semantics of a passed procedure di�erent than that of a lo-
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cal procedure. Speci�cally, the passed procedure cannot access functions and global

variables de�ned in the caller. The developers of REV and NCL were primarily con-

cerned with moving computation to a remote machine and imposed this limitation

to simplify the implementation. SUPRA-RPC (SUbprogram PaRAmeters in Remote

Procedure Calls), on the other hand, seeks to allow normal procedure call seman-

tics for both local and passed procedures [Sto94]. Essentially SUPRA-RPC extends

REV with additional stubs that are invoked whenever the procedure references an

out-of-scope variable or function. The server makes a callback to the client to handle

the out-of-scope reference. SUPRA-RPC implementations exist for C, C++ and Lisp,

but the C and C++ implementations work only in a homogeneous environment, since

compiled code is passed from machine to machine.

There are several schemes that can be viewed as a domain-speci�c form of re-

mote evaluation. Postscript programs are often sent to remote printers and displays.

Scripting systems such as Apple Script allow scripts to be sent from one applica-

tion to another [Joh93]. MIME/Safe-Tcl allows Tcl scripts to be embedded in e-mail

messages; the scripts are executed automatically when the message is received or

viewed [LO95]. The IBM Intelligent Communications Network uses Intelligent Ob-

jects that contain both data and procedures and can be sent from one application

to another; the recipient application can execute the embedded procedures [Rei94].

The Decode-Encode language (DEL) allowed an emulator for one terminal type to be

transparently downloaded into a di�erent terminal type [Rul69]. The Wit and Wit

2 systems send interface code from a Unix server onto a palmtop device to minimize

use of a poor-quality wireless link [Wat95]. Some database systems allow a user to

de�ne complex SQL commands and store these commands on a server; the stored

commands are executed at the server end during a user transaction [BP88]. The
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Bayou �lesystem allows a mobile computer to cache �les and then continue access-

ing these cached �les while disconnected; when the laptop reconnects, it sends a code

fragment to the �lesystem server to reconcile its �le changes with the permanent copy

of the �le [TTP+95].

3.2.4 Java applets, Java servlets, Java RMI and JavaOS

Java applets are Java programs that are associated with a World Wide Web (WWW)

page [CW97]. When a user views the page with a Java-enabled browser, the program

is downloaded automatically and executed on the user's machine. By executing on

the browser's machine, the program can present a complex, graphical interface and

react rapidly to user actions, since there are no network delays. Untrusted applets are

executed in a secure Java interpreter so that they can not access or destroy sensitive

information. The Metis thin-client framework can be viewed as a generalization of

Java applets; here an arbitrary client downloads an application front-end written in

Java, which then �nds and interacts with one or more network services to realize the

complete application [ZPMD97]. Other systems support applets that are written in

other languages. The Grail web browser2 from CNRI, for example, executes applets

written in Python, while the Tcl plugin3 from Sun Microsystems executes applets

written in Tcl/Tk.

Java servlets are Java programs that can be dynamically loaded into an executing

Java-enabled web server, such as Sun Microsystem's Web Java Server 1.0 [Cha96].

Java servlets allow rapid introduction of new server functionality and are more e�cient

than CGI scripts, since there is no startup overhead on each access. Like untrusted

applets, untrusted servlets are executed in a secure Java interpreter so that they can

2http://grail.cnri.reston.va.us/grail/
3http://www.sunscript.com/products
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not access or destroy sensitive information.

The Java Remote Method Invocation (RMI) subsystem allows Java objects on dif-

ferent machines to invoke each other's methods [WRW96, RWWB96]. It also provides

state serialization and unserialization facilities for transferring a Java object from one

machine to another. Most Java-based distributed systems, including mobile-agent

systems in which the agents are written in Java, use RMI for communication.

Finally, JavaOS is a lightweight operating system that executes Java programs

directly [Mad96]. It is targeted towards mass-market devices such as set-top boxes,

telephones and network computers, which have limited storage facilities and need to

download applications from the network as needed.

3.2.5 Inferno

Inferno is a lightweight, networked operating system from Lucent Technologies that

is also targeted towards mass-market devices such as set-top boxes, telephones and

network computers [Luc96]. Inferno is Lucent's answer to Java and JavaOS.4 An

Inferno application consists of a set of modules written in a C-like language called

Limbo; the modules are compiled into the bytecodes for a RISC-like virtual machine

and then downloaded on demand to an Inferno platform. Once downloaded, the

modules are compiled \on-the-y" into native code; execution speed is within a factor

of two of natively compiled code. Limbo is not a safe language so modules are digitally

signed by trusted authorities. Like most operating systems, however, Inferno itself

prevents unauthorized access to system resources.

4The Inferno development group would disagree with this statement since they view Inferno as

a more complete product. Inferno and JavaOS are roughly equivalent, however, and compete in the

same markets.
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3.2.6 Mobile agents

Mobile agents extend REV and applets by allowing a program to (1) move through a

sequence of machines, carrying its current state along with it, and (2) communicate

easily with other such moving programs. The recent popularity of mobile code has

led to an explosion in the number of mobile-agent systems. Here we describe a few

representative systems in detail and mention other systems briey.

Kali Scheme [CJK95]. Kali Scheme is an extension of Scheme 48 [KR95],

which is an e�cient, multi-threaded Scheme implementation based around a bytecode

interpreter. Kali Scheme provides a distributed set of address spaces in which the

threads execute. New threads can be spawned in either local or remote address spaces,

and an existing thread can be migrated from one address space to another, continuing

in the new address space from the point at which it left o�. When spawning a new

thread, Kali Scheme transmits the closure that contains the desired computation;

when migrating an existing thread, Kali Scheme transmits the current continuation

of that thread. Since continuations can be extremely large, Kali Scheme divides the

continuation into frames and initially transmits only the �rst few frames to the target

address space. Other frames are fetched from the source machine if and when needed.

In addition to migration, Kali Scheme allows two threads to exchange arbitrary data

objects, and allows a thread to refer to a data object in a di�erent address space via

a proxy object. Kali Scheme does not address security issues, since these issues are

orthogonal to the author's main goal of providing distributed-computing abstractions

within a higher-order language such as Scheme. Kali Scheme's main weakness is

that the implementation is Scheme speci�c (and, in fact, is contained entirely within

the Scheme 48 virtual machine itself), preventing any straightforward extension to

additional languages.
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Messengers [TDiMMH94, DiMMTH95, Tsc94]. A messenger is a message

that contains both data and code. A server on each host accepts incoming messengers

and executes each messenger's code within its own thread. Colocated messengers

communicate with each other through a shared dictionary of key/value pairs and

synchronize their actions through process queues.5 A messenger can spawn new mes-

sengers and can move through the network by transmitting itself from one machine

to another. When moving to a new machine, the messenger restarts execution at a

speci�ed entry point in its code, and must decide what to do next based on its current

state. A messenger's code can be written in either M� or Scheme; M� is similar to

Postscript except that it has migration and communication commands rather than

graphics commands. Messengers are a lightweight mobile-code mechanism and are

intended for use in communication protocols and distributed operating systems; in

both cases, the protocol and operating system components are dynamically deployed,

rather than pre-installed. The Messengers system does not address most security

issues, but the Messengers group is working on market-based approaches for fairly

allocating resources among competing messengers [Tsc97].

Obliq [Car95, BC95, BN97]. Obliq is an interpreted, lexically scoped, object-

oriented language. An Obliq object is a collection of named �elds that contain meth-

ods, aliases and values. An object can be created at a remote site, cloned onto a

remote site, or migrated with a combination of cloning and redirection. Implement-

ing mobile agents on top of these mobile objects is straightforward. An agent consists

of a user-de�ned procedure that takes a briefcase as its argument; the briefcase con-

tains the objects that the procedure needs to perform its task. The agent migrates

5Only the messenger at the head of the queue is allowed to execute. All other messengers in the

queue are blocked until the �rst messenger puts itself onto the end of the queue.
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by moving its procedure and current briefcase to the target machine; the target ma-

chine invokes the procedure, which examines the briefcase to decide what to do next.

Obliq includes an interface toolkit called Visual Obliq that a migrating agent uses

to interact with a user. When the agent migrates, the current state of its displayed

interface is captured and recreated exactly on the target machine; although this is an

interesting feature, its usefulness is unclear, since it is di�cult to imagine an appli-

cation in which the agent could not easily recreate the display itself. Obliq does not

address security issues.

Omniware [LSW95, ATLLW96]. Omniware code is written in C++ (or any

other language for which an appropriate compiler exists), compiled for a RISC-like

virtual machine, and later sent to a destination machine where it is converted into

native code. Software fault isolation, which essentially adds a range check to every

memory access, prevents the native code from corrupting the execution environment

[WLAG93]. With this arrangement, Omniware provides portable, secure code that is

only 25 percent slower than natively compiled C/C++ on average [LSW95]. There-

fore, although Omniware is not a general mobile-agent system itself, it or a similar

execution environment is likely to �nd its way into most mobile-agent systems so that

these systems can support compute-intensive applications. Omniware could even be

the only execution environment, since the interpreters for agents written in other lan-

guages could be compiled for the Omniware virtual machine and sent as needed to

the destination machines [LSW95].

Sumatra [RASS97, RAS96]. Sumatra is an extension to Java [CW97] that

supports both distributed objects and mobile code. One or more instances of the

Sumatra execution engine run on each machine.6 Each engine hosts one or more

6The Sumatra execution engine is just the extended Java interpreter.
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threads and their objects. Each object can be either independent or part of a partic-

ular object group. A program can move an object group (along with the associated

Java bytecodes) from one engine to another, invoke the methods of an object in a

di�erent engine7, create a new thread in a di�erent engine, and migrate an executing

thread from one engine to another. When migrating an object group, every local

reference to a group object is converted into a proxy reference that will transparently

redirect method invocations to the actual object. When migrating a thread, Suma-

tra captures and transfers the Java stack along will all non-group objects that are

reachable from the stack; references to group objects are turned into proxy references

on the target machine.8 Sumatra's most notable feature, and its main research fo-

cus, is a set of distributed resource monitors that measure network latency, network

bandwidth and machine load; an agent queries these resource monitors and combines

current network conditions with its own knowledge of its task to decide if and when

to migrate objects and threads. Sumatra does not provide any security mechanisms

aside from those already present in Java. Similar to Kali Scheme, its main weakness

is that the implementation is Java-speci�c (and in fact is contained entirely within

the Java virtual machine), once again preventing any straightforward extension to

additional languages.

Tacoma [JvRS95, JvRS96, MvRSS96, Knu95], Tacoma Too [Sch97a],

and security automata [Sch97b] . Tacoma (Troms� and COrnell Moving Agents)

is a mobile-agent system that supports numerous agent languages, including Tcl,

Scheme, Perl, Python, Java and C. Each agent and machine has a briefcase or �le

7Sumatra was developed before Java's Remote Method Invocation (RMI) package became avail-

able. Thus Sumatra has its own remote invocation facility.
8The idea is that an object group might be providing a service to multiple client threads; the

service should remain stationary even though its client threads are moving from machine to machine.
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cabinet of folders that contain both data and procedures. Aside from folders and

their containers, the single abstraction in Tacoma is the meet operation, which an

agent uses to request a service from another agent. During the meet operation,

the requesting agent passes a briefcase to the target agent; this briefcase contains

the arguments for the request. The target agent returns a folder of results to the

requesting agent if necessary. All other services in Tacoma are provided by other

agents. For example, an agent migrates to a remote machine by passing a briefcase

containing its code and state to the tac firewall agent on the remote machine.

The agent does not continue execution from the point at which it left o�; instead the

tac firewall agent restarts the incoming agent by calling some speci�ed entry point.

Although this migration mechanism requires more programmer e�ort, both to capture

the desired state information and to ensure that the appropriate task is performed

on each machine, there is no need to have state-capture routines built into the agent

languages themselves. In combination with the simplicity of the meet abstraction, the

ability to use unmodi�ed interpreters allows the rapid integration of new languages

into Tacoma. Important features of Tacoma are \rear-guard" agents, electronic cash,

brokers, and its use of the Horus toolkit for reliable group communication. A rear-

guard agent is left behind whenever an agent migrates to a new machine; this rear

guard restarts the agent if the agent \vanishes" due to a machine failure [JvRS95].

Electronic cash is used to pay for services and to prevent runaway agents.9 In addition,

agents can be digitally signed and encrypted, and the tac firewall agent can be

instructed to reject agents that came from unauthorized users. Broker agents provide

directory services. Most of these features are not available in the public release.

9Runaway agents are impossible since an agent cannot continue once its �nancial reserves are

exhausted.
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Tacoma Too is a version of Tacoma that is based around the ML language [Sch97a].

Tacoma Too has the samemeet abstraction as Tacoma and is being used in a prototype

active network. An o�shoot of the Tacoma Too project is concerned with securely

executing Java agents using software fault isolation and security automata [Sch97b]. A

security automata enforces a security policy and is similar to a �nite-state automata.

Transitions between states correspond to agent actions. A security exception is raised

if an agent attempts an action for which the current state has no outgoing transition.

For example, suppose that an agent is allowed to communicate with its home machine

only if it has not read from a certain �le. Then the initial state in the security

automata would have two transitions: (1) communicating with the home machine,

which simply loops back to the initial state, and (2) reading from the �le, which leads

to a second state. The second state would have one transition: (1) reading from the

�le, which simply loops back to the second state. Thus, if an agent reads from the �le

and then attempts to communicate with the home machine, the security automata

will raise a security exception, since the second state has no outgoing transition for

communicating with the home machine. Tacoma Too is also exploring various forms

of proof-carrying code [Sch97b].

Telescript [Whi94, Whi95b, Whi95a, Whi96] and Odyssey [Gen97]. Tele-

script, later marketed as part of the Tabriz web-server package, was the �rst commer-

cial mobile-agent system. It was developed at General Magic, Inc., and was primarily

used in the AT&T PersonaLink network. In Telescript, each network site is divided

into one or more virtual places, much like the address spaces of Kali Scheme and the

multiple execution engines of Sumatra. Telescript agents are written in an impera-

tive, object-oriented language that is similar to both Java and C++; this language is

compiled into virtual-machine bytecodes. A Telescript agent uses the go command to
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migrate from one place to another, continuing execution from the point at which it

left o�. An agent can interact with other agents in two ways. The agent canmeet with

an agent that is in the same place; the two agents receive references to each other's

objects and communicate by invoking each other's methods. In addition, an agent

can connect to a remote agent; the two agents pass objects along the connection.

Each network site runs a Telescript server that maintains the places at the site

and executes incoming agents. The engine continuously writes the internal state

of executing agents to nonvolatile store so that the agents can be restored after a

node failure. The engine also provides two security mechanisms. First, each agent

carries cryptographic credentials that the place uses to authenticate the identity of

the agent's owner. Second, each agent carries a set of permits that give it the right

to use certain Telescript instructions and certain amounts of available resources. One

permit, for example, might specify a maximum agent lifetime or a maximum amount

of disk space. Each engine and place impose their own permits on incoming agents

to prevent these agents from taking malicious action. Agents that attempt to violate

the conditions of their permits are terminated immediately [Whi94]. Despite the fact

that until recently Telescript was one of the most secure, fault-tolerant, and e�cient

mobile-agent systems, is has been withdrawn from the market, mainly because it was

overwhelmed by the rapid spread of Java. The AT&T PersonaLink network is also

defunct.

Odyssey is General Magic's replacement for Telescript. It is essentially the same

system except that it is implemented entirely in Java. One notable exception is that

Odyssey does not have the go instruction, since Java does not provide facilities for

capturing an executing program's complete state, making it impossible to implement

the go instruction without modifying the Java virtual machine. General Magic decided
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that a modi�ed virtual machine would prevent the widespread acceptance and use of

Odyssey. Thus, although an Odyssey agent does carry all of its objects along with

it, it must either restart execution on the destination machine or follow an itinerary

in which speci�c methods are executed at speci�c destinations. In the �rst case, the

agent examines the current state of its objects to decide what to do next. In the

latter case, the agent system automatically invokes the correct method; the agent

speci�es its itinerary before its �rst migration and can modify the itinerary at any

time. Like Sumatra, Odyssey is intimately tied to the Java language with no clear

way to integrate additional languages. General Magic is not selling Odyssey; instead

they are using it as a key internal component of their new personal messaging service.

Other Java-based systems. The IBM Aglets system [LO97] is one of the more

complete commercial o�erings. It provides authentication and access control, a glob-

ally unique namespace, whiteboards and message passing, and a simple management

environment. IBM Aglets is extremely similar to the Odyssey system, and, in fact,

the developer of IBM Aglets now works in the Odyssey group at General Magic.

The Liquid Software project [HMPP96] has two goals: (1) use mobile agents to

e�ciently solve large-scale information-retrieval problems and (2) develop a \gigabit"

compiler that can verify and compile an intermediate code representation as fast

as it arrives over the network, producing e�cient, secure native code while hiding

the compilation latency. To explore potential solutions, the project members are

building a prototype system that runs on top of the Scout operating system and

uses Java bytecodes as the intermediate code representation. The prototype will also

address security issues and the granularity of the interface between the agents and

the underlying operating system.

The evolving Mobile Objects and Agents (MOA) system is a CORBA-based sys-
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tem in which both static and active Java objects10 can move from one machine to

another [CMB96, MBZM96]. CORBA is a distributed-object manager that already

provides object naming, object location and remote invocation [YD96]. MOA builds

on CORBA to provide object persistence, a hierarchical object cache, and a location-

independent name service that uses URL's. In addition, MOA conforms to the new

Mobile Agent Facility (MAF) standard [MAF97]. MOA is currently used in the Dis-

tributed Client project in which an application is partitioned into client-side and

network-side components; these components cooperate when the network is available

but continue operation even when the network is disconnected, presenting previously

retrieved data to the user and �nding additional data to send back to the user as soon

as the network reconnects [MBZM96]. MOA will eventually enforce access restric-

tions according to the mobile object's owner, its current requirements, and possibly

its past migration history.

FTP Software's CyberAgents provided a visual editor, a visual agent manager,

some debugging tools, OLE and HTML support, and extensive logging and report-

generation facilities [FTP96]. FTP Software no longer sells CyberAgents, but a ver-

sion of CyberAgents that uses the TRAC language (rather than Java) is used in some

of FTP Software's network management tools [Gre97a].

Other Java-based systems include Mole [SBH96, BHR+97], Concordia [Mit97a,

WPW+97], Voyager [Voy97], and Wasp [Fun97]. The Mole project is focusing on

security mechanisms for protecting an agent from a malicious machine, while the

Wasp project is concerned with integrating mobile agents with Web servers. Voyager

and Concordia are commercial systems. Concordia is similar to Odyssey and IBM

Aglets, while Voyager combined mobile code with a full-featured Object Request

10An active object is an object with its own thread of control.
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Broker (ORB).

Other systems. There are many other mobile-agent systems, most of which

provide minimal security. Ara agents are written in Tcl or C++ (which is compiled

into an interpreted bytecode called MACE) and can migrate at any point during

their execution; Ara allows an agent to checkpoint its state to disk and enforces

limits on CPU time and memory usage, but does not yet protect resources such as

the �lesystem and network [PS97, Pei96]. The Ara group is currently implementing

additional security mechanisms (such as digital signatures and access restrictions for

all system resources) and adding support for the Java language.

Tripathi and Karnik propose a mobile-agent system that uses CORBA as its low-

est layer [TK93]. The proposed Distributed Internet Execution Environment (Dixie)

will combine the Prospero �le system, the Tk toolkit, and interpreters for several

languages into a virtual operating system that accepts and executes applications sent

from other hosts [Gai94]; little implementation work had been done at the time of

this writing, however. The Frankfurt Mobile Agents Infrastructure (�MAIN) [LDD95]

allows agents written in Tcl to migrate and communicate using the standard HTTP

protocol; their agent server is a modi�ed HTTP server.

Intelligent routers are written in an interpreted expression language called MPL.1

and can migrate from machine to machine with a moveto instruction; a version of the

router system that runs on homogeneous machines uses ISIS to detect and recover

from node failures and other faults [WVF89, Voo91]. IBM Itinerant Agents is a

proposed system that focuses on knowledge-based routing of service requests and

security issues [CGH+95]; it is not under active development and has given way to the

more recent IBM Aglets system [LO97]. LogicWare [Log96] supports collaborative

applications through an active object space; this object space can include mobile
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agents called Mubots that move from machine to machine in response to changing

network conditions and the location of the participants.

Agents in the MESSENGERS
11 system are written in C, compiled into machine-

independent assembly code, and then interpreted at each node; the agents construct

a logical network on top of the physical network as they execute [BFD96]. Mobile

Service Agents (MSA) are written in an extended version of the functional program-

ming language Facile; an MSA agent spawns a new agent by submitting a closure

containing data and one or more functions [TLKC95, Kna96].

The Rover toolkit combines relocatable objects,12 queued remote-procedure-calls

(QRPC) and stable logging of object state to support fault recovery; although Rover

is primarily used in disconnected or partially connected client-server computing, it

can be used with some e�ort as a more general mobile-agent system [JdT+95, JTK97,

JK96]. The Smart Messages system [HCS97] associates one or more reactive planners

with each application-level message; the reactive planners are activated whenever the

message is queued somewhere within the network and allow the message to control

its own routing, �ltering and error recovery.

SodaBot agents are written in a very high-level language called SodaBotl that pro-

vides threads, an interface toolkit, location-independent communication primitives,

and both automatic code distribution and an explicit hop operation; SodaBot agents

execute in a restricted execution environment that limits the agent's total lifetime and

prevents unauthorized access to the �lesystem and external programs [Coe94]. The

Tube is similar to Kali Scheme in that agents are written in Scheme, execute inside

multithreaded servers, and create new agents and migrate from machine to machine

11The MESSENGERS system is not the same as the Messengers system that was described in

more detail above. They were developed independently at di�erent universities.
12The methods in a Rover object are implemented in the Tcl scripting language for portability.
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by transferring a closure or continuation respectively; in addition, the Tube uses a

safe Scheme interpreter and includes noticeboards, a user-interface toolkit, a service

registry, an event system, continuous media streams, and a unique form of RPC in

which the server sends the client stubs to the client [HBB96].

WAVE represents the ultimate extension of the mobile-agent paradigm with ev-

ery application implemented as a \wave" of extremely compact, lightweight agents

that recursively spread themselves through a virtual network13; although WAVE is

syntactically awkward and demands a highly recursive programming style, it has

been used e�ectively in several applications, including distributed simulation, net-

work management, and distributed database retrieval [Sap96]. [KK94] implements a

simple mobile-agent system in which the agents are written in a scripting language

similar to AWK and migrate from machine to machine with a moveto instruction;

this system was the forerunner to Agent Tcl here at Dartmouth.

3.3 Safe languages

Finally, there are several interpreted languages where either the language itself or

speci�c interpreters provide security features that are attractive in mobile-agent sys-

tems; these security features range from restricted namespaces to bytecode veri�ca-

tion. Such languages include Java [CH97], Scheme 48 [KR95], Tcl [Ous94, OLW97],

Lua [dIC96], and Python [Lut96], as well as Obliq [Car95] and Telescript [Whi94],

which were speci�cally designed for mobile objects or agents. Except for Lua, all of

these languages are used in at least one mobile-agent system.

13As in the MESSENGERS system, the virtual network is mapped onto a physical network with

one or more virtual nodes per physical node. This mapping makes it easy to run the same application

on di�ering numbers of physical machines.
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Chapter 4

Trends and distinctions

Existing mobile-agent systems can be compared along several axes.

Research versus commercial. Aside from Telescript [Whi94], most mobile-agent

systems were strictly research projects until about two years ago. Since then, the

number of commercial systems has increased dramatically and now includes Odyssey

[Gen97], IBM Aglets [LO97], Concordia [WPW+97], Voyager [Voy97] and Omniware

[LSW95]. As the reader might expect, commercial systems provide much better

administration and development tools than research systems. In addition, all com-

mercial systems provide su�cient security mechanisms to protect a machine from

malicious agents. Otherwise the system could not be used in an open network en-

vironment and would never achieve commercial success. Research systems usually

ignore administration, auditing and development tools, and often ignore security if

security is orthogonal to the main research interest (such as the use of a high-order

language in distributed computing [CJK95]). Agent Tcl is entirely a research project,

but does provide su�cient security mechanisms to protect a machine from malicious

agents and also includes a full-featured debugger and a simple visual programming en-

vironment. Aside from the debugger and visual programming environment, however,

there are no administration or development tools.
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Languages. Nearly all mobile-agent systems use imperative languages, most no-

tably C/C++ [LSW95, JvRS95, PS97, BFD96], Java [Gen97, LO97, RASS97, HMPP96,

CMB96, SBH96], and various scripting languages [JvRS95, PS97, JdT+95, Coe94].

Functional languages such as Scheme are used only in a few research systems [CJK95,

HBB96, TLKC95]. Java is the most popular imperative language and is used in every

commercial system and several research systems. There are three reasons for Java's

popularity: (1) its virtual machine architecture makes programs both portable and

e�cient, (2) its existing security features allow the safe execution of untrusted code,

and (3) it enjoys unprecedented market penetration, mainly due to its use in active

web pages. Agent Tcl supports both imperative and functional languages, namely

Java, Tcl and Scheme, allowing the programmer to pick the language that is most

appropriate for his task.

Interpreters versus native code. Currently, for reasons of portability and secu-

rity, nearly all mobile-agent systems either interpret their languages directly, or com-

pile their languages into bytecodes for some virtual machine and then interpret the

bytecodes. Agent Tcl is no exception. Tcl is interpreted directly; Java and Scheme are

both compiled into bytecodes for a virtual machine.1 Due to the widespread recogni-

tion that agents must execute at near-native speed to be competitive with traditional

distributed-computing techniques in certain applications, however, several researchers

are experimenting with \on-the-y" compilation. The agent is initially compiled into

some intermediate code representation but then is compiled into native code on each

machine that it visits, either as soon as it arrives [LSW95, HMPP96] or while it is

executing [HMPP96]. When the entire agent is compiled upon arrival, software fault

isolation (SFI) is typically used to prevent the native code from corrupting the execu-

1Agent Tcl uses Scheme 48, an implementation of Scheme based around a virtual machine[KR95].
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tion environment and violating security constraints [LSW95]. Software-fault-isolated

native code runs only 25 percent slower than natively compiled code [LSW95]; more-

over \gigabit" compilers will be able to compile the agent as fast as it arrives over

the network, completely hiding the compilation time [HMPP96]. Although Agent Tcl

will eventually use \on-the-y" compilation, either with Java or some other language,

we have no immediate implementation plans, preferring instead to do a much more

extensive round of performance analysis �rst.

Migration. Di�erent mobile-agent systems provide di�erent migrationmechanisms.

Two distinct migration models can be identi�ed:

� jump. The system provides a primitive operation called jump that automatically

captures the executing agent's complete state and sends this state to a new

machine; the new machine restores the state and the agent continues execution

from the exact point of the jump. [Whi94]. Systems that use the jump migration

model include Agent Tcl, Kali Scheme [CJK95], and Telescript [Whi94].

� known entry point. The system moves the variables and methods of the agent to

the new machine, and then restarts agent execution at some speci�ed method

[LO97]. With an object-oriented language, the typical system automatically

captures the complete state of all existing objects [LO97]; with other languages,

the typical system requires the programmer to explicitly assemble a package

of variables and methods [JvRS95]. To ease the burden on the programmer,

many systems allow the agent to follow a pre-established itinerary, which spec-

i�es a list of machines and the method that should be executed on each one

[LO97, Gen97]. All commercial systems use the known entry point model with

an itinerary, simply because all commercial systems use Java, which cannot
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support the jump model without modi�cations to the standard virtual ma-

chine. Every system that supports the jump model also supports the known

entry point model.

In addition to these two migration models, many systems that use object-oriented

languages allow an agent to move an individual object to a remote machine and then

invoke that object's methods; the object does not have its own thread of control

[LO97, Gen97, Car95, RASS97].

Which of the two migration models is best remains unclear. The jump model

is more convenient for the end programmer since she does not have to explicitly

check the current state and �gure out what to do next at each entry point. At the

same time, the jump model requires more e�ort from the system developer, since the

complete state of an agent must be captured. Modifying interpreters to support this

complete state capture is time-consuming and unattractive in a commercial setting.

The ultimate success of the jump model likely rests on whether the developers of

popular mobile-agent languages such as Tcl and Java can be convinced to add the

necessary state capture routines to their interpreters. Agent Tcl uses modi�ed Tcl,

Scheme and Java interpreters and supports both migration models.

Communication. Communication mechanisms break down in two ways: low-level

versus high-level, and location-dependent versus location-independent. For example,

IBM Aglets provides messages, byte streams, and remote method invocation [LO97],

while Tacoma provides the single meet operation [JvRS95]. Tacoma requires a sender

to know the current machine of the recipient [JvRS95], while IBM Aglets provides

a globally unique namespace [LO97]. There has been wide disagreement over which

communication mechanisms are best for mobile agents. Our viewpoint is simple:

49



low-level mechanisms are too low-level for many agents, forcing the programmer to

reinvent the desired protocol, while high-level mechanisms are too high-level for many

others, forcing the programmer to either accept unnecessary overhead or communicate

outside the agent framework. Thus, Agent Tcl provides bytestreams, message passing,

and location-independent addresses at its lowest level. Higher-level protocols are

implemented at the agent level; currently Agent Tcl implements an RPC protocol

and a simple speech-act protocol that will be replaced with KQML.

Security. Existing mobile-agent systems focus on protecting an individual machine

from malicious agents (or a group of machines that are under single administrative

control) [Whi94, Gen97, PS97]. Typically the agent's owner or sending machine dig-

itally signs the agent; the receiving machine veri�es the digital signature, accepts

or rejects the agent based on its signature, assigns access restrictions to the agent

based on its signature and migration history, and then executes the agent in a se-

cure execution environment that enforces the restrictions. Aside from encrypting an

agent in transit and allowing an agent to authenticate the destination machine before

migrating, most existing systems do not provide any protection for the agent or for

a group of machines that are not under single administrative control.2 One notable

exception is Tacoma which uses rear guard agents to regenerate agents that suddenly

disappear, various replication and voting schemes to handle malicious machines that

provide incorrect information, and electronic cash to prevent an agent from living

forever [JvRS95, MvRSS96]; these mechanisms are only a fraction of a complete so-

lution. Agent Tcl is in the same state as other mobile-agent systems, successfully

2A machine might insert new code into an agent, modify the agent's state, terminate the agent,

or reroute the agent to a new destination; an agent might migrate forever between two machines or

send one child agent to every machine on the Internet.
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protecting a machine from malicious agents, but not yet protecting an agent from

malicious machines or a group of machines that are not under uni�ed control.

Fault tolerance. Most systems provide only a nonvolatile store so that agents

can live past machine failure [Whi94]. Tacoma, however, provides rear guard agents

that restart vanished agents [JvRS95]. In addition, the same voting and replication

schemes that allow Tacoma to partially handle malicious machines also allow agents to

continue with their task even if one or more copies of a desired service are unavailable.

Fault tolerance was not addressed in the initial phase of the Agent Tcl project, and

Agent Tcl currently provides no fault-tolerance mechanisms, although a nonvolatile

store is slowly being integrated.
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Chapter 5

Implementation { Base system

5.1 Overview

Agent Tcl has four main goals:

� Reduce migration to a single instruction, jump, and allow this instruction to

occur at arbitrary points. The instruction should capture the complete state

of the agent and transparently send this state to the destination machine. The

programmer should not have to explicitly collect state information, and the

system should hide all transmission details, even if the destination machine is

a mobile computer that is temporarily disconnected or has changed its network

address.

� Provide communication mechanisms that are exible, e�cient and low-level,

but that hide all transmission details, including whether the agents are on the

same or di�erent machines. These mechanisms should be on the level of mes-

sage queues or byte streams. Higher-level mechanisms, such as remote method

invocation (RMI), whiteboards and KQML, should not be implemented in the

base system itself, but rather at the agent-level on top of the lower-level mech-

anisms. This layered approach allows cooperating agents to use the communi-
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cation mechanism that is most appropriate for their task, either one of the base

mechanisms or a higher-level mechanism available through a communication-

services agent. Providing only a higher-level mechanism in the base system

would force many agents to �t their communication into an inappropriate pro-

tocol or to communicate outside of the agent framework, which impose se-

vere e�ciency and portability penalties respectively.1 At the same time, if a

higher-level mechanism such as RMI is used heavily, it can be moved into the

base system alongside the lower-level mechanisms. For example, all Java-only

mobile-agent systems provide RMI in the base system, since it is one of the

most e�ective ways for object-oriented Java programs to communicate.

� Use a high-level scripting language as the main agent language and TCP/IP as

the main transport mechanism, but support multiple languages and transport

mechanisms, and allow the straightforward addition of a new language or trans-

port mechanism. Multiple languages are particularly important since, although

a high-level scripting language such as Tcl is appropriate for many agents, it is

ill-suited for agents that require large amounts of code or that perform speed-

critical tasks.

� Provide e�ective security and fault-tolerance in the uncertain world of the In-

ternet.

1It is surprising how many projects not only make this mistake but go out of their way to criticize

those systems that do provide lower-level mechanisms. The mistake and criticism seems to arise from

considering only a limited set of applications and from the misconception that providing only lower-

level mechanisms in the base system means that all agents must use those lower-level mechanisms

directly.
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The overall goal is an e�cient, robust and secure mobile-agent system that will

allow the programmer to select the most appropriate language for her task and rapidly

develop even large-scale distributed applications.

The architecture of Agent Tcl is shown in Figure 5.1. The architecture builds on

the server model of Telescript [Whi94], the multiple languages of Ara [Pei96], and

the transport mechanisms of two predecessor systems at Dartmouth [Har95, KK94].

The architecture has �ve levels. The lowest level is an API for the available transport

mechanisms. The second level is a server that runs at each network site. The server

performs the following tasks:

� Status and administration. The server keeps track of the agents that are running

on its machine and answers queries about their status. The server also allows

an authorized user to suspend, resume and terminate a running agent.2

� Migration. The server accepts each incoming agent, authenticates the identity

of its owner, and passes the authenticated agent to the appropriate interpreter.

The server selects the best transport mechanism for each outgoing agent.

� Communication. The server provides a two-level namespace for agents and

allows agents to send messages to each other within this namespace. The �rst

level of the namespace is the network location of the agent; the second level is a

location-unique integer that the server picks for the agent or a location-unique

symbolic name that the agent picks for itself. Location-independent namespaces

are provided at the agent level. A message is an arbitrary sequence of bytes

with no prede�ned syntax or semantics except for two types of distinguished

2The suspend and resume operations have not been fully implemented. The next section discusses

the current status of the Agent Tcl implementation.
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Figure 5.1: The architecture of Agent Tcl. The �ve levels consist of an API for the

available transport mechanisms, a server that accepts incoming agents and mediates

agent communication, a language-independent core, an interpreter for each supported

language, and the agents themselves.
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messages. An event message provides asynchronous noti�cation of an important

occurrence while a connection message requests or rejects the establishment of

a meeting. A meeting is a named message stream between agents and is more

convenient and e�cient than message passing (since the programmer can watch

for messages on a particular stream and the server often can hand control of the

stream to the interpreter). The server bu�ers incoming messages, selects the

best transport mechanism for outgoing messages, and creates a named message

stream once a connection request has been accepted.

� Nonvolatile store. The server provides access to a nonvolatile store so that

agents can back up their internal state as desired. The server will restore the

agents from the nonvolatile store in the event of machine failure.3

As in Tacoma all other services are provided by agents. Such services include re-

source directories, network sensing, location-independent naming, higher-level com-

munication, and access control. The most important service agents in the imple-

mented system are resource manager agents that guard access to critical system re-

sources such as the screen, network and disk. These resource managers are discussed

in the security chapter.

The third level of the Agent Tcl architecture is a language-independent core that

connects each agent to the server. The core provides the following operations (in

cooperation with the server):

� begin and end. An agent calls the begin operation to register with the server

and the end operation to unregister. The agent can use the other agent opera-

tions only while it is registered.

3The nonvolatile store has not been fully implemented. The next section discusses the current

status of the Agent Tcl implementation.
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� jump. An agent calls the jump operation to migrate to a new machine. The

jump operation captures the complete state of the executing agent and sends

the state image to the new machine. The server on the new machine loads

the state image into the appropriate execution environment and resumes agent

execution from the point of the jump. The copy of the agent on the original

machine terminates as soon as the state image is delivered successfully to the

new machine.

� fork. The fork operation is the same as the jump operation except that it

clones the agent onto the new machine. Both copies of the agent continue

execution from the point of the fork operation.

� submit. The submit operation creates a new agent on the local or a remote

machine. The new agent is speci�ed as a collection of language-speci�c objects.

A new Tcl agent, for example, is speci�ed as an initial script and a set of Tcl

variables and procedures. A new Java agent is speci�ed as a set of Java objects

with the method of one object designated as the agent's entry point. In all

cases, the submit operation sends the new agent to the destination machine

where it is loaded into the appropriate interpreter and executed.

name. The agent uses the name operation to register a unique symbolic name

with the local server.

send and receive. The send and receive operations allow agents to send

and receive messages. The recipient is identi�ed by the machine on which

it is executing along with either the unique integer that its server assigned

to it or the unique symbolic name that it requested for itself with the name

operation. The send operation is asynchronous and simply delivers the message
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to the recipient's server; the server bu�ers the message until the recipient calls

the receive operation. The send and receive operations have two variants:

one which sends a normal message and one which sends a high-priority event

message. In both cases, if an agent wants to receive messages only from certain

source agents, it can set a message mask so that only messages from those source

agents can be received. Messages from other agents are bu�ered until the agent

resets or changes the message mask.

� meet. An agent uses the meet operation to request a meeting with another

agent. The recipient is speci�ed in the same manner as when sending a message,

the machine plus either the unique integer or unique symbolic name. The

meet operation itself blocks until the recipient either accepts or rejects the

meeting, but the core provide several additional operations that allow an agent

to establish the meeting asynchronously.

� status. The status operation returns information about the other agents that

are executing on the local machine. It returns either a list of all agents or the

owner, sending machine, etc., for a speci�c agent.

� notify. The notify operation asks the server to notify the agent when some

other agent comes into existence or terminates. The noti�cation takes the form

of a high-priority event message.

� select. The select operation allows the agent to wait for an incoming mes-

sage (either coming through the server or across a meeting) or for input on an

arbitrary �le descriptor.
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� suspend, resume and force. An authorized agent uses these routines to sus-

pend, resume and terminate other agents.4

� checkpoint. An agent uses the checkpoint operation to backup its current state

to nonvolatile store.5

All of these operations are subject to authorization checks and resource limits.

These checks and limits are discussed in the security chapter. In addition, all oper-

ations that involve a remote machine, such as send and jump, block until either an

agent-speci�ed timeout expires or the remote machine returns an acknowledgment.

Nonblocking versions of the operations are certainly useful in some agents and will

eventually be implemented; the nonblocking versions will use the standard technique

of returning a redeemable future. The core also includes a cryptographically-secure

random number generator that is used in the encryption subsystem and made avail-

able at the agent level for use in electronic-cash protocols, agent-speci�c encryption

and so on. Finally, if the language supports event-driven programming, the core can

be told to generate events in response to incoming messages. These events are dis-

patched during the language's event loop. Typically, an agent that uses an event loop

would not use the select operation.

The fourth level of the Agent Tcl architecture consists of one interpreter for each

supported language. We say interpreter since it is expected that most of the languages

will be interpreted due to portability and security constraints (although \just-in-

time" compilation is feasible for languages such as Java, and Omniware uses software

4The suspend and resume operations have not been fully implemented. The next section discusses

the current status of the Agent Tcl implementation.
5The checkpoint operation has not been fully implemented. The next section discusses the

current status of the Agent Tcl implementation.
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fault isolation to securely execute native code [LSW95]). Each interpreter has four

components: the interpreter itself, a security module that prevents unauthorized

access to system resources such as the �le system, a state module that captures and

restores the internal state of an executing agent, and a set of stub routines that

provide access to the generic core. Adding a new language to Agent Tcl consists of

writing the security module, the state-capture module and the stub routines. The

security module does not determine access restrictions but instead ensures that an

agent does not bypass the resource managers or violate the restrictions imposed by the

resource managers. The state-capture module must provide two functions for use in

the generic core. The �rst, captureState, takes an interpreter instance and constructs

a machine-independent byte sequence that represents its internal state. The second,

restoreState, takes the byte sequence and restores the internal state.

Ara, which also supports multiple languages, additionally requires each interpreter

to implement a set of scheduling operations and to allocate memory and access sys-

tems resources through functions de�ned in the core [PS97]. Agent Tcl does not need

the scheduling operations since it executes each agent within its own process and

relies on the underlying Unix system to schedule the processes. We hope to avoid

these scheduling operations even when we make Agent Tcl multi-threaded. In addi-

tion, instead of providing memory allocation and system access functions in the core,

Agent Tcl requires each language to implements its own security enforcement module.

Although this approach requires more coding work, the enforcement modules for our

chosen languages can be implemented without any modi�cations to the standard lan-

guage interpreters.6 Thus, the only modi�cations to the standard interpreters in the

6For example, the most recent version of Tcl includes Safe Tcl, which allows security checks

to be associated with dangerous commands. Similarly, Java provides a security manager class that
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current system are the addition of the state-capture routines, making it much easier

to migrate from one interpreter version to the next. For this reason, especially with

only three supported languages, we do not feel that it is worthwhile to take the Ara

approach and route all memory allocation and system access calls through the core.

As Agent Tcl matures and supports more languages, however, we will need to adopt

the Ara solution so that we do not have to reimplement the enforcement module for

each language, something that is quite time-consuming.

The top level of the Agent Tcl architecture consists of the agents themselves.

5.2 Current status

Agent Tcl currently supports three languages, Tcl, Java, and Scheme, but has not

been completely implemented.

� The Java and Scheme security modules and the Scheme state-capture module

are not complete.

� TCP/IP is the only transport mechanism.

� The nonvolatile store and the checkpoint operation have not been imple-

mented. The nonvolatile store and other fault-tolerance issues are discussed

in the future work chapter.

� The suspend and resume operations have not been implemented.

The rest of the architecture has been fully implemented. In addition, several

service agents exist, including the resource managers, a docking system that allows

performs security checks before every system access. These existing, builtin mechanisms are su�cient

to implement Agent Tcl's current security model. Advantages and limitations of the current security

model are discussed further in the security chapter.

61



agents to transparently migrate between mobile computers, a yellow pages directory

that allows an agent to �nd an appropriate service agent through keyword search

or interface matching, a network-sensing agent that tracks current network latency,

bandwidth and connection status, and an RPC agent (and library) that allows agents

to communicate with each other with the equivalent of RPC calls. In the rest of this

chapter, we describe the Tcl, Java and Scheme subsystems. The next chapter covers

the resource managers and the other security mechanisms. Chapter 8 discusses the

other service agents mentioned above.

5.3 Agent Tcl

5.3.1 Tcl

Tcl is a high-level scripting language that was developed in 1987 and has enjoyed

enormous popularity [Wel95]. A sample Tcl program is shown in Figure 5.2. Tcl

has several advantages as a mobile-agent language. Tcl is easy to learn and use due

to its elegant simplicity and an imperative style that is immediately familiar to any

programmer. Tcl is interpreted so it is highly portable and relatively easy to make

secure. Tcl can be embedded in other applications, which allows these applications

to implement part of their functionality with mobile Tcl agents. Finally, Tcl can

be extended with user-de�ned commands, which makes it easy to tightly integrate

agent functionality with the rest of the language and allows a resource to provide a

package of Tcl commands that an agent uses to access the resource. A package of

Tcl commands is more e�cient than encapsulating the resource within an agent and

is an attractive alternative in certain applications.

Tcl has several disadvantages. Since Tcl is a high-level interpreted language, it
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proc factorial n {

set product 1

for {set i 2} {$i <= n} {incr i} {

set product [expr $product * $i]

}

return $product

}

set n 10

set fac [factorial $n]

Figure 5.2: A Tcl script that computes the factorial of a given number n

is much slower than native machine code. In addition, Tcl provides no code mod-

ularization aside from procedures, which makes it di�cult to write and debug large

scripts. These disadvantages have not been a hindrance so far since mobile agents

tend to involve high-level resource access wrapped with straightforward control logic,

a situation for which Tcl is uniquely suited. A mobile Tcl agent is usually short

even if it performs a complex task, and is often more than e�cient enough when

compared to resource and network latencies. In addition, several groups are working

on structured-programming extensions to Tcl and on faster Tcl interpreters [Sah94].

Tcl is clearly not suitable for every mobile-agent application, however, such as per-

forming search operations against large, distributed collections of numerical data. For

this reason, Java was added to the system as discussed below. Java is much more

structured than Tcl and has the potential to run within a small factor of native speed

through \just-in-time" compilation. We expect, however, that Tcl will continue to

be the main agent language and that Java (or an even faster execution environment

such as Omniware) will be used only for speed-critical agents.
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5.3.2 State capture

The main disadvantage of Tcl is that it provides no facilities for capturing the com-

plete internal state of an executing script. Such facilities are essential for providing

transparent migration at arbitrary points. Adding these facilities to Tcl was straight-

forward but required the modi�cation of the Tcl core. The basic problem is that the

Tcl core evaluates a script by making recursive calls to Tcl Eval. The handler for the

while command, for example, recursively calls Tcl Eval to evaluate the body of the

loop. Thus a portion of the script's state is on the C runtime stack and is not easily

accessible. Our solution adds an explicit stack to the Tcl core. We split the command

handlers into one or more subhandlers where there is one subhandler for each code

section before or after a call to Tcl Eval. Each call to Tcl Eval is replaced with

a push onto the stack. Tcl Eval iterates until the stack is empty and always calls

the current subhandler for the command at the top of the stack. The subhandlers

are responsible for specifying when the command has �nished and should be popped.

Figure 5.3 illustrates this process for the while command.

It is important to note that our modi�ed Tcl core is fully compatible with the

standard Tcl core. A command procedure that makes a recursive call to Tcl Eval

will work correctly on top of the modi�ed core; it will just be impossible to capture

the script's complete state when that command procedure is on the invocation stack.

This means that existing Tcl extensions will work without modi�cation (as long as

the extension does not use the tclInt.h header �le). An extension has to be modi�ed

only if the developer wants an agent to be able to carry the extension's state from

machine to machine. In this case, the developer must make the same changes as

for the while command and must provide callback routines for state capture and

restoration.
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WHILE_EXPRESSION while expr body WHILE_EXPRESSION

if (expr)

     

else

          set flag to NEXT_COMMAND

          set flag to WHILE_BODY

          push body onto stackwhile expr bodyWHILE_BODY

bodyPARSE_COMMAND

while expr bodyWHILE_BODY

Command

WHILE_BODY

if (error in body)

          set flag to NEXT_COMMAND

          set flag to WHILE_EXPRESSION

else

evaluate and pop body

Flag

Figure 5.3: An example of how the stack works. The command stack is on the left

and the two subhandlers for the while command are on the right. A subhandler

sets the NEXT COMMAND ag when the while command has �nished and should be

popped. (The actual implementation duplicates the WHILE EXPRESSION code inside

WHILE BODY to avoid an extra iteration through the evaluation loop.)
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The explicit stack is simpler and more exible than the Ara solution, in which the

C runtime stack must be captured in a portable way, and in which the same version

of the Tcl interpreters must be present on both the source and destination machines

[Pei96]. On the other hand, the explicit stack is less e�cient. Our modi�ed Tcl

core runs Tcl programs approximately 10 percent slower than the standard Tcl core,

whereas Ara's modi�ed Tcl core imposes no signi�cant overhead. It appears that

our performance penalty can be reduced signi�cantly with additional optimization,

however, and it would also be possible to include both the standard and modi�ed Tcl

cores within the same interpreter so that an agent could run on top of the standard,

faster core if it did not want to migrate in mid-execution.

Once the explicit stack was available, it became trivial to write procedures that

save and restore the internal state of a Tcl script. These two procedures are the

heart of the state-capture module for the Tcl interpreter. They capture and restore

the stack, the procedure call frames, and all de�ned variables and procedures. Such

things as open �les and linked variables are currently ignored.7

The advantages of Tcl are strong and the disadvantages are either easily overcome

or are unimportant in many agents. Thus Tcl was chosen as the main language for

the Agent Tcl system. The same advantages have led to the use of Tcl in other

mobile-agent systems such as Tacoma [JvRS95] and Ara [Pei96].
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set query {mobile agents}

set machines {muir tenaya tioga tuolomne}

agent_begin # register with the agent system

foreach machine $machines {

agent_jump $machine

agent_send "$machine query_engine" 0 $query

set sender [agent_receive code result -blocking]

}

agent_jump $agent(home-server)

agent_end

Figure 5.4: An example Tcl agent that migrates through a sequence of machines and

interacts with a search engine on each machine. A real agent would record the results

from each search engine and present the results to its owner once it returned to the

home machine. The agent array is a global array that is automatically available inside

any Tcl agent; it contains information about the agent's current and home machines.

The 0 in the agent send call is the message code.
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5.3.3 Interface to the agent system

The interface between a Tcl agent and the agent system is a modi�ed version of Tcl 7.5

and a Tcl extension. The modi�ed version of Tcl 7.5 provides the explicit stack and

the state-capture routines. The extension provides the commands that an agent uses

to migrate, communicate, and create child agents. The most important commands are

agent begin, agent submit, agent jump, agent send, agent receive, agent meet,

agent accept, and agent end. Internally each command is just a stub that calls the

corresponding operation in Agent Tcl's language-independent core (which is written

in C++ and used for all agent languages). The core operations contact an agent

server, transfer an agent, message or request, and wait for a response. If an error

occurs in the core operation, the stub will throw a Tcl exception. The agent can

catch these exceptions and take appropriate action. The main di�erence between the

current implementation and the planned architecture is that when migrating, creating

a child agent, or sending a message, the current implementation bypasses the local

server and interacts directly with the destination server over TCP/IP. This approach

was adopted to simplify the initial implementation and will change as additional

transport mechanisms are added.

An agent is simply a Tcl script that runs on top of the modi�ed version of Tcl

7.5. The agent uses the agent begin command to register with a server and ob-

tain an identi�cation within the two-level namespace. The identi�cation consists of

the IP address of the server, a unique integer, and a unique symbolic name that

7An error occurs if the agent opens a �le or creates a linked variable, migrates to a new machine,

and then tries to use the �le or linked variable. This \delayed" error can lead to confusion. Instead

the jump command should (optionally) fail if the current state image contains objects that cannot

be transferred.
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the agent speci�es later with the agent name command. The integer and symbolic

name are unique on the agent's current machine, but are not globally unique. The

agent submit command is used to create a child agent on a particular machine. The

agent submit command accepts a Tcl script, optionally encrypts and digitally signs

the script, and sends the script to the destination server. The server authenticates

this agent, selects an integer identi�er for the agent, and starts a Tcl interpreter in

which to execute the agent. If the agent wants a symbolic name as well as an integer

identi�er, it can call agent name once it starts executing. The agent jump command

migrates an agent to a particular machine. The agent jump command captures the

internal state of the agent, optionally encrypts and digitally signs the state image,

and sends the state image to the destination server. The server authenticates this

agent, selects a new integer identi�er for the agent, and starts a Tcl interpreter. The

Tcl interpreter restores the state image and resumes agent execution at the statement

immediately after the agent jump. The agent loses its symbolic name when it jumps

and must reacquire the name using the agent name command if desired.

The agent send and agent receive commands are used to send and receive mes-

sages. The agent meet and agent accept commands are used to establish a meeting

between agents. Meetings are named message streams, and although they are not

required for communication, they are more e�cient and convenient than independent

messages. The source agent uses agent meet to send a connection request to the des-

tination agent. The destination agent uses agent accept to receive the connection

request and send either an acceptance or rejection. An acceptance includes a TCP/IP

port number to which the source agent connects. The protocol works even if both

agents use agent meet. The agent with the lower IP address and integer identi�er

selects the port and the other agent connects to that port. A exible RPC mechanism

69



has been built on top of the direct connection mechanism [NCK96]. The server will

take on more of the responsibility for establishing a direct connection as additional

transport mechanisms are added.

Agent Tcl also includes a (slightly) modi�ed version of Tk 4.1 so that an agent can

present a graphical interface and interact with the user of its current machine. Event

handlers can be associated with incoming messages and with direct connections.

A sample Tcl agent is shown in Figure 5.4. The agent �rst registers with the agent

system (agent begin) and then migrates through a sequence of machine (agent jump).

On each machine, the agent sends a query to a stationary search agent (agent send),

and then waits for the search agent to send back the results (agent receive). Once

the agent has obtained results from all the search agents, it migrates one last time

to return to its home machine (agent jump), and then tells the agent systems that it

has �nished (agent end). A tutorial on writing Tcl agents can be found in Appendix

C.

5.4 Agent Java

Agent Java is partially complete. Agents can send and receive messages and migrate

from machine to machine, but cannot change the message mask or establish meetings

with other agents. Bill Bleier and Joshua Mills have done much of the implementation

work.8

8Bill Bleier and Joshua Mills are both undergraduates in the computer science department and

have spent two semesters each working on Agent Java.
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5.4.1 Java

Java is an object-oriented language that is syntactically similar to C++ except that

there are no structures or unions, no functions, no multiple implementation inher-

itance, no operator overloading, no automatic type casts, and no pointers [GM95,

Sun97b, CH97]. A sample Java program is shown in Figure 5.5. Memory in Java

is garbage-collected so there is no delete operator. Java is multi-threaded and in-

cludes thread synchronization primitives at the language level. Most importantly, a

Java program is typically compiled into bytecodes for a stack-based virtual machine,

namely the Java Virtual Machine [Sun97c]. The program is then executed with an

e�cient, low-level interpreter. The use of bytecodes and an interpreter has two pow-

erful advantages. First, a bytecode-compiled Java program is highly portable and can

run unchanged on any machine that provides the Java interpreter, reducing devel-

opment costs signi�cantly and making applications such as active Web pages much

easier. Second, since the bytecodes are de�ned to have a statically predictable e�ect

on the type state of the stack, it is possible to run a compiled Java program through

a pre-execution veri�cation process [Sun97a]. At the end of this veri�cation process,

which also relies on the fact that Java does not provide features such as pointers

that can be used to forge access to subobjects, it is known that the program always

access objects as their actual type, always calls methods with the correct number and

types of arguments, and does not overow the operator stack. In combination with

a class loader that prevents the program from replacing a system class with its own

de�nition, and a security manager that can check for and deny unauthorized access to

system classes, the veri�cation process allows a machine to safely run a Java program

from an untrusted source. Without this security, a Java-enabled web browser would

be impossible.
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class Factorial {

public static int factorial (int n) {

int product = 1;

for (int i = 2; i <= n; ++i) {

product = product * i;

}

return (product);

}

public static void main (String args[]) {

int n = 10;

int fac = factorial (n);

}

}

Figure 5.5: A Java program that computes the factorial of a given number n
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Java has several advantages as a mobile-agent language. Since Java programs

are compiled into low-level, interpreted bytecodes (which some Java interpreters then

compile \on-the-y" into native machine code), Java is much faster than Tcl but

shares Tcl's high portability. Second, Java is far more suitable for large agents since

it provides code modularization via classes. Third, Java has become one of the most

popular languages ever, leading to a fast-growing body of Java-literate programmers

who would be able to write e�cient Java agents with minimal learning time. Finally,

since Java is targeted towards mobile-code applications, the Java language and run-

time environment already include a range of security features that make it relatively

easy to securely integrate Java into a mobile-agent system. The main disadvantage of

Java is that although Java is simpler than C++, it still has a long learning curve and

development cycle relative to Tcl, making it unattractive for smaller mobile agents.

Although the size of a \typical" mobile agent is not yet clear, it does appear that

most mobile agents are small enough for Tcl to be an e�ective language choice from a

code maintenance standpoint. Java would be used only in speed-critical applications

for which Tcl is simply too slow.

5.4.2 State capture

Release 1.1 of Sun's Java Development Kit (JDK) includes an object serialization

or pickling facility [RWWB96, WRW96]. This facility allows a program to create a

serialized representation of the state of a Java object. This bytestream can be stored

on disk or transmitted to a remote machine. The bytestream can then be used to

recreate an equivalent object. For security reasons, the object serialization facility

includes a cryptographic \�ngerprint" of the object's complete type in the bytestream,

allows a class to exclude sensitive data �elds from the serialization process, and allows
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a class to provide its own pickling methods that either (1) pack, unpack and verify any

desired subset of the object's state or (2) throw an exception if the class is sensitive

enough that it should not be pickled at all.

All commercial Java-based mobile-agent systems, such as IBM Aglets [LO97,

Ven97], General Magic's Odyssey [Gen97] and Mitsubishi's Concordia [WPW+97],

rely on this object serialization facility. Since the current serialization facility cannot

capture the state of an executing thread, and since modi�cations to the Java vir-

tual machine would severely limit acceptance of a commercial product, none of the

three systems provide a jump operation. Instead, when an agent wants to migrate,

it speci�es some subset of its objects. These objects are serialized, sent to the des-

tination machine along with their class de�nitions and then unserialized. To restart

execution of the agent, the agent server on the destination machine calls a known

entry method within one of the transferred objects. This method checks the current

state of the objects to decide what to do next. Academic systems are not concerned

with commercial acceptance and so are free to modify the Java virtual machine. The

Sumatra system [RASS97] modi�es release 1.0.2 of Sun's Java Development Kit so

that it is possible to capture the complete state of an executing Java thread. The

basic modi�cation is the addition of a type stack that is parallel to the existing stack

and maintains additional type information about the objects that are on the stack.

To capture and restore the state of the thread, the Sumatra serialization routines

pickle and unpickle the normal stack, the type stack, every object that is reachable

from the stack (i.e., every object that is reachable from the thread), and the class

de�nitions for those objects. A jump method, exactly analogous to the Agent Tcl

agent jump command, is built on top of these two serialization routines. Since one of

the subgoals of the Agent Tcl project is to compare the jump command with other,

74



more programmer-intensive migration techniques, we made the same modi�cations

to the Java virtual machine as Sumatra so that we could provide a jump command in

Agent Java.9 Sumatra and Agent Java do not actually use Sun's object serialization

facilities since the source code for these facilities was not available until recently.10

Instead, both systems use their own serialization facility, which is more e�cient than

Sun's, but uses a less compact representation for the serialized objects.

5.4.3 Interface to the agent system

The interface between a Java agent and the agent system is the Agent class, which is

shown in Figure 5.6. Since the same C++ core is used for all three agent languages,

the Agent class is simply an interface to pre-existing C++ code. Thus nearly all of

its methods are native methods whose implementation is written in C++. All of

these native methods are essentially stubs that convert the Java arguments into C++

arguments, invoke the corresponding operation in the C++ core, and then convert the

C++ result into a Java result. The native methods throw Java runtime exceptions if

an error occurs within the C++ core. The agent can catch these runtime exceptions

and take appropriate action. Although it will eventually be interesting to reimplement

the C++ core in Java, both to make the agent system more portable and to allow the

agent system to be downloaded into a Java-enabled web browser, it is not worthwhile

to undertake such a large porting e�ort at this time. Thus the Agent class and its use

of native methods to interface with the C++ core will not change in the near future.

The constructor and �nalizer for the Agent class call two native methods called

9We actually use some of the Sumatra code, which the Sumatra group graciously made available

to us.
10Source code for Sun's JDK 1.1 had only been available for a few weeks at the time of this writing.

Both Sumatra and Agent Java use JDK 1.0.2.
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public class Agent {

private int handle;

private native int createNativeAgent ();

private native void deleteNativeAgent ();

public Agent() {

handle = createNativeAgent ();

}

protected void finalize() throws Throwable {

deleteNativeAgent ();

}

public native void begin (String machine, double seconds);

public native void end (double seconds);

public native void send

(AgentId destId, Message message, double seconds);

public native ReceivedMessage receive (double seconds);

...

public native AgentId submit

(String machine, AgentBody body, ClassList list, double seconds);

public native void jump

(String machine, ClassList list, double seconds);

...

}

Figure 5.6: The Agent class is the main interface between a Java program and the

Agent Tcl system.
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public class AgentBody {

public void run (Agent agent) {

throw (EmptyBody);

}

}

Figure 5.7: A subclass of the AgentBody class is passed to the submit method. The

subclass encapsulates the code and objects that will make up the submitted agent.

createNativeAgent and deleteNativeAgent. The createNativeAgent method cre-

ates an instance of the C++ agent class de�ned in the C++ core and returns a handle

to that instance. All other native methods use this handle to identify the C++ agent

instance on which to operate. The deleteNativeAgent method deletes the C++

instance when the Java instance is garbage-collected. All of the other methods in the

Agent class correspond exactly to the commands provided to Tcl agents. To register

with the agent system, for example, a Java agent creates an instance of the Agent

class and then invokes the begin method on that instance. When the agent �nishes,

it invokes the end method on the same instance. This use of the Agent class is shown

in the example Java agent in Figure 5.8. A stationary Java program, i.e., a Java pro-

gram that never migrates, can create and use multiple instances of the Agent class,

either within the same or di�erent threads. Thus, a stationary Java program can

appear as multiple agents within the agent system. Although the wisdom of this ap-

proach is still under consideration, it does appear to be useful in those Java programs

that act as servers for other agents. A child agent created with the submit method

or an agent that has migrated with the jump method cannot create any instances of

the Agent class, but instead can use only the single instance that the agent system
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(transparently) passes to it upon its creation or arrival. This instance connects the

agent with the server on its current machine.

Once the agent has registered with the agent system using the begin method,

it can use the other methods in the Agent class. The send and receive meth-

ods, for example, are used to send and receive messages. The AgentId argument

to send speci�es the recipient agent; the Message argument contains the message.

The ReceivedMessage return value from receive contains both a Message and Agen-

tId instance; the Message instance contains the incoming message, and the AgentId

instance identi�es the source agent. The ReceivedMessage instance also contains a

security vector that indicates whether the source agent's owner and machine could

be authenticated. Most of the other methods of the Agent class are not shown in

Figure 5.6. There is one method for each Agent Tcl command and generally the

methods take the same arguments and return the same results; several methods in-

volve additional supporting classes such as the Meeting class that controls a meeting

endpoint (although the interface to the underlying C++ meeting routines is not yet

complete as noted at the start of the section). One notable di�erence between Agent

Tcl and Agent Java is that Agent Java does not allow an agent to impose a wall or

CPU time restriction on itself, primarily because it not clear yet how to handle the

restriction violation within Java. Agent Java does enforce the same machine-imposed

restrictions, however, terminating the agent if it exceeds its maximum allowance of

wall or CPU time.

The two remainingmethods shown in Figure 5.6 are the submit and jumpmethods,

which require special consideration. The submit method, like the agent submit

command in Agent Tcl, creates a child agent. The parent agent must �rst create

an instance of a subclass of the AgentBody class that is shown in Figure 5.7. This

78



import agentjava.*;

class search {

public static void main(String args[]) {

String[] machines = new String[4];

machines[0] = "muir" ; machines[1] = "tenaya";

machines[2] = "tenaya"; machines[3] = "tuolomne";

String query = "mobile agent";

Agent agent = new Agent();

AgentId aid = agent.begin (agent.getLocalMachine(), 10.0);

for (int i = 0; i < 4; i += 1) {

agent.jump (machines[i], 10.0);

AgentId engineId = new AgentId (machines[i], "query_engine");

Message request = new Message (0, query);

agent.send (engineId, request, 10.0);

RecMessage response = agent.receive (10.0);

}

agent.jump (agent.getHomeMachine(), 10.0);

agent.end (10.0);

}

}

Figure 5.8: A simple Java agent that migrates through a sequence of machines and

interacts with a search engine on each machine. A real agent would record the results

from each search engine and present the results to its owner once it returned to the

home machine. The 10.0 in some of the method calls speci�es a timeout of 10 seconds;

the 0 passed to the Message constructor is the message code.
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subclass encapsulates the data and methods that will make up the new child agent.

This subclass can contain arbitrary methods and data elements, but must override

the run method that is de�ned in the AgentBody superclass. The agent initializes

the subclass instance as desired, and then passes the instance to the submit method

as the AgentBody argument. The submit method serializes the subclass instance

and all associated class de�nitions, and then sends the serialized bytestream to the

destination machine. The Agent Tcl system on the destination machine unserializes

the bytestream and then invokes the run method to start up the new child agent.

An Agent instance that connects the new agent to its local server is passed to the

run method as an argument; the new agent is not allowed to create any additional

instances of the Agent class.

There are two important things to note about this creation process. First, the

new child agent can achieve a rough approximation to true migration by continually

submitting the same AgentBody instance to the next machine in sequence and then

immediately exiting on the current machine. Second, although it can be argued that

the two classes Agent and AgentBody should be more closely related from a semantics

viewpoint, their current \nonrelationship" seems to be the best alternative. The basic

problem is that conceptually an AgentBody does not become an Agent until it has

been submitted to the destination machine. There does not appear to be any way to

adequately reect this fact within a static class hierarchy. In any event, use of the

current AgentBody class is straightforward and should not be a burden to the agent

programmer.

The jump command serializes the stack of the calling thread, all objects reachable

from the stack, and all associated class de�nitions (as discussed in the state capture

section above). The serialized bytestream is transmitted to and restored on the given
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destination machine where the agent continues execution from the point of the jump.

All Agent instances within the agent are transparently updated to refer to a single

new Agent instance, namely an Agent instance that connects the agent to its new

agent server. In addition, as with submit, the agent will not be allowed to create any

new Agent instances. It is important to note that the the jump method moves only the

single calling thread onto the destination machine; all other threads are terminated

at the time of migration. Similarly the fork method clones only the calling thread.

Although this choice has proven reasonable so far, it will be important to see if it

remains reasonable as larger and more complex Java agents are written. A related

issue is that there is currently no tight relationship between the Agent instance and

some speci�c thread. Any thread that has a reference to the Agent instance can call

the jump or fork method, and it is that thread that will end up on the destination

machine.

Unlike Java-enabled web browsers, Agent Java cannot fetch class de�nitions from

the home machine. And, unlike Sumatra, Agent Java does not provide remote objects

whose methods can be invoked through local stubs.11 Thus all objects and class

de�nitions that the agent might use must be transmitted during the initial submit,

jump or fork. The necessary objects can be captured easily, namely by serializing

all objects reachable from the AgentBody instance or all objects reachable from the

thread stack. Class are more complex, however, since an agent will not necessarily

have any instances of a needed class at the time of the submit, jump or fork. Thus

all three methods currently take a ClassList argument that speci�es by name any

11One of the main reasons for not allowing remote objects is that it is a communication mechanism

that only Java agents can use. One of our primary design decisions is to support multiple agent

languages and language-independent communication mechanisms.
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class de�nitions that should be sent along with the agent, even if the agent currently

contains no instances of those classes. The ClassList class provides several methods

for inspecting and changing its list of classes. We intend to eventually eliminate the

ClassList argument and have the Agent Java system determine automatically which

classes are used inside the agent. One way to automatically determine the class list

is the dynamic linking technique of [AS97] which, given an incoming agent and the

set of libraries available at the current machine, determines if there are any unbound

references before the agent starts executing.

5.5 Agent Scheme

Agent Scheme is partially complete. Agents can currently send and receive messages,

but cannot migrate from machine to machine or establish meetings with other agents.

Dartmouth undergraduates Ahsan Kabir and David Gondek have done most of the

implementation work so far.

5.5.1 Scheme

Scheme is a statically scoped and properly tail-recursive dialect of Lisp [Dyb87, CR91].

Although Scheme supports several programming paradigms, such as imperative and

message passing, it is oriented towards and most commonly used for functional pro-

gramming as illustrated in Figure 5.9. Scheme provides �rst-class procedures and

lambda expressions, supports both closures and continuations, evaluates both the

operator and operand positions of a procedure call, and expresses iteration with pro-

cedure calls only [MIT97b].

The are four reasons to select Scheme as a mobile-agent language. First, since

Scheme supports functional programming and is used nearly exclusively in modern
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(define factorial

(lambda (n)

(if (zero? n)

1

(* n (factorial (- n 1))))))

(factorial 10)

Figure 5.9: A Scheme program that computes the factorial of a given number n.

arti�cial intelligence research, it opens up mobile-agent programming to a much wider

community and allows the more convenient expression of agents that plan or learn.

Second, there are several existing Scheme interpreters that support the full language,

but that are still lightweight and extremely e�cient, most notably Scheme 48 which is

based around a virtual machine [KR95]. Third, since Scheme is a type-safe language

and is lexically scoped, it already provides the initial layer of security that is needed

when executing untrusted agents [CJK95]. Finally, there has already been work on

moving ongoing Scheme computations from one machine to another [CJK95].

5.5.2 State capture

We selected Scheme 48 as the Scheme interpreter for Agent Tcl due to its e�ciency,

easy portability and its ability to interface with native C/C++ libraries. Unfortu-

nately, although Scheme 48 provides full support for both closures and continuations,

which respectively contain exactly the state information that is needed when creating

a child agent (submit) or migrating an existing agent (jump), it does not provide any

support for serializing (and later restoring) a given closure or continuation. In the

case of migration, it is possible to capture the necessary state information with the

capture-state function shown in Figure 5.10. This function, however, actually cap-
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( define (capture-state filename) (

call-with-current-continuation (

lambda (p)

(build-image (lambda(x) (p 1)) filename)

(p 0)

)

)

)

Figure 5.10: A naive state capture routine for Scheme 48. This routine has two

problems. First, it writes the state image out to disk rather than to an arbitrary

bytestream. Second, the state image contains the entire interpreter heap rather than

just the continuation p. Fixing these problems requires additions to the Scheme 48

virtual machine.
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tures the state of the entire heap of the Scheme 48 virtual machine, leading to a state

image that is both extremely large and much larger than necessary. Even for the

simplest Scheme program, the state image will typically be several hundred kilobytes,

making this state-capture implementation impractical.

Instead of capturing the entire heap, we need to capture only the desired contin-

uation or closure. This improved state capture requires additions to the Scheme 48

virtual machine. Fortunately, Kali Scheme [CJK95] has already made these additions.

Kali Scheme is derived from Scheme 48 and allows either a closure or a executing

thread (in the form of the thread's continuation) to be transferred from one machine

to another. Kali Scheme also provides remote object proxies and cross-machine com-

munication primitives in the lowest levels of the Scheme 48 virtual machine, neither of

which are needed in the Agent Tcl system. Our current task is to extract the state-

capture routines from Kali Scheme, so that we can create a version of Scheme 48

that supports the necessary state capture without also including Kali Scheme's other

distributed-computing facilities. Although this task is conceptually straightforward,

it is time-consuming and will likely take several more months of part-time undergrad-

uate e�ort.

5.5.3 Interface to the agent system

Agent Scheme uses the same generic C++ core as Agent Tcl and Agent Java and

provides a set of Scheme functions that interact with this core. In general, these

Scheme functions correspond exactly to the commands in Agent Tcl, taking the same

arguments and returning the same results. The exceptions are agent begin and

agent end, which must be called as a pair (with the code for the agent in between).

Since this pair of calls is somewhat inconsistent with the functional programming
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(define (queryAgent machine query) (

(agent_let ((agent-local-machine) 10.0 agentId)

(agent_send (list machine "query_engine") query 0 10.0)

(agent_receive 10.0)

)

)

(define machine "muir")

(define query "mobile agent")

(queryAgent machine query)

Figure 5.11: A simple Scheme agent that interacts with a search engine on a remote

machine. The 10.0 in the agent let, agent send, and agent receive calls speci�es

a timeout of 10 seconds; the agentId in the agent let call is the local variable in

which the agent's identi�cation is stored; the 0 in the agent send call is the message

code. Agent Scheme does not yet support migration, so the more complex Tcl and

Java agents above do not have a corresponding Scheme implementation.

paradigm, we instead encapsulate agent begin and agent end inside an agent let

macro. This macro is equivalent to the standard Scheme let, except that it auto-

matically calls agent begin before executing the let body, and automatically calls

agent end after executing the let body. In other words, agent let automatically

turns its body into an agent, and stores the identi�cation of the new agent in a vari-

able speci�ed in the agent let call, making this identi�cation information accessible

in the body.

A sample Scheme agent is shown in Figure 5.11. Since the migration facilities

of Agent Scheme are incomplete, the sample agent does not migrate from machine

to machine like the Tcl and Java agents, but instead remains stationary and sim-
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ply interacts with a local search engine. The agent uses the agent let macro to

register (and unregister) with the agent system and then uses the agent send and

agent receive functions to interact with the search engine.
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Chapter 6

Implementation { Security

mechanisms

A mobile agent is a program that moves from machine to machine and executes on

each. Neither the agent nor the machines are necessarily trustworthy. The agent

might try to access or destroy privileged information or consume more than its share

of some resource. The machines might try to pull sensitive information out of the

agent or change the behavior of the agent by removing, modifying or adding to its data

and code. A mobile-agent system that does not detect and prevent such malicious

actions can never be used in real applications. In an open network environment,

intentional attacks on both machines and agents will start as soon as the system is

deployed, and even in a closed network environment with trusted users, there is still

the danger of misprogrammed agents, which can do signi�cant damage accidentally.

Security is perhaps the most critical issue in a mobile-agent system and can be divided

into four interrelated problems:

� Protect the machine. The machine should be able to authenticate the agent's

owner, assign resource limits based on this authentication, and prevent any

violation of the resource limits. To prevent both the theft or damage of sensitive

information and denial-of-service attacks, the resource limits must include access
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rights (reading a certain �le), maximum consumptions (total CPU time), and

maximum consumptions per unit time (total CPU time per unit time).

� Protect other agents. An agent should not be able to interfere with another

agent or steal that agent's resources. This problem can be viewed as a sub-

problem of protecting the machine, since as long as an agent cannot subvert

the agent communication mechanisms and cannot consume or hold excessive

system resources, it will be unable to a�ect another agent unless that agent

chooses to communicate with it.

� Protect the agent. A machine should not be able to tamper with an agent

or pull sensitive information out of the agent without the agent's cooperation.

Unfortunately, without hardware support, it is impossible to prevent a machine

from doing whatever it wants with an agent that is currently executing on

that machine. Instead we must try to detect tampering as soon as the agent

migrates from a malicious machine back onto an honest machine, and then

terminate or �x the agent if tampering has occurred. In addition, we must

ensure that (1) sensitive information never passes through an untrusted machine

in an unencrypted form, (2) the information is meaningless without cooperation

from a trusted site, or (3) that theft of the information is not catastrophic and

can be detected via an audit trail.

� Protect a group of machines. An agent might consume excessive resources in the

network as a whole even if it consumes few resources at each machine. Obvious

examples are an agent that roams through the network forever or an agent that

creates two child agents on di�erent machines, each of which creates two child

agents in turn, and so on. An agent and its children should eventually be unable
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to obtain any resources anywhere and be terminated. If the network machines

are under single administrative control, solutions are relatively straightforward;

if the machines are not, solutions are much more complex.

All of these problems have been considered in the mobile-agent literature [LO95,

CGH+95, TV96, PS97], but only the �rst two have seen signi�cant implementation

work. These same two problems are addressed in the current implementation of

Agent Tcl using PGP [KPS95], Safe Tcl [LO95, OLW97] and Java security managers

[CH97]. First we present the current implementation and then potential solutions for

the remaining two security problems.

6.1 Protecting the machine (and other agents)

Protecting the machine involves two tasks:

� Authentication. Verify the identity of an agent's owner.

� Authorization and enforcement. Assign resource limits to the agent based on

this identity and enforce those resource limits.

Agent Tcl, like other mobile-agent systems, handles these two tasks with public-

key cryptography and secure execution environments that perform authorization

checks before each resource access.

6.1.1 Authentication

Each Agent Tcl server distinguishes between two kinds of agents: owned and anony-

mous. An owned agent is an agent whose owner could be authenticated and is on the

server's list of authorized users. An anonymous agent is an agent whose owner could
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not be authenticated or is not on the server's list of authorized users. Each server

can be con�gured to either accept or reject anonymous agents. If a server accepts an

anonymous agent, it gives the agent an extremely restrictive set of resource limits.

RSA public-key cryptography is used to authenticate an agent's owner. Each

owner and machine in Agent Tcl has a public-private key pair. The server can au-

thenticate the owner if (1) the agent is digitally signed with the owner's public key or

(2) the agent is digitally signed with the sending machine's key, the server trusts the

sending machine, and the sending machine was able to authenticate the owner itself.

In the second case, the sending machine would have authenticated the owner in one of

the same two ways: (1) the agent was signed by the owner or (2) the agent was signed

by one of the sending machine's trusted machines (and that trusted machine was able

to authenticate the owner itself). Thus, trust is transitive, and trust relationships

must be established carefully. Typically machines under single administrative control

would trust each other and no one else.

Agent Tcl uses Pretty Good Privacy (PGP) for its digital signatures and encryp-

tion. PGP is a standalone program that allows the secure transmission of electronic

mail and is in widespread use despite controversies over patents and export restric-

tions [KPS95]. PGP encrypts a �le or mail message using the IDEA algorithm and

a randomly chosen secret key, encrypts the secret key using the RSA public-key al-

gorithm and the recipient's public key, and then sends the encrypted key and �le to

the recipient. PGP optionally adds a digital signature by computing an MD5 cryp-

tographic hash of the �le or mail message and encrypting the hash value with the

sender's private key. Although PGP is oriented towards interactive use, it can be

used in an agent system with minimal e�ort. In the current implementation, Agent

Tcl runs PGP as a separate process, saves the data to be encrypted into a �le, asks
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the PGP process to encrypt the �le, and then transfers the encrypted �le to the desti-

nation server. This approach is much less e�cient than tightly integrating PGP with

the rest of the system, but is simpler and more exible, especially since it becomes

trivial to create an Agent Tcl distribution that does not include PGP or that uses

di�erent encryption software [Way95].

An agent chooses whether to use encryption and signatures when it migrates or

sends a message to another agent. If the agent is not concerned with interception

during migration, it turns o� encryption. If the agent is not concerned with tampering

during migration and can accomplish its task as an anonymous agent, it turns o�

signatures. When sending a message, the agent makes the same decisions, except that

it turns o� signatures only if the recipient does not need to verify the sender's identity.

Turning o� either encryption or signatures is a signi�cant performance gain due to

the slowness of public-key cryptography, and thus most agents will turn o� encryption

and signatures whenever the needed resources and the network environment allow it.

In the rest of this section, we assume that the agent does not want to be an anonymous

agent and does not want to send anonymous messages, and thus has digital signatures

turned on.

When an agent registers with its home server using the begin command (Figure

6.1), the registration request is digitally signed with the owner's private key, optionally

encrypted with the destination server's public key, and sent to the server. The server

veri�es the digital signature, checks whether the owner is allowed to register an agent

on its machine, and then accepts or rejects the request. If the agent and the server are

on di�erent machines, all further requests that the agent makes of the server must be

protected to prevent tampering and masquerade attacks.1 Ideally, the system would

1A masquerade attack here is another agent passing itself o� as the registered agent.
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Figure 6.1: Encryption for the begin command. When an agent uses the begin

command to register with the server on its home machine, the registration request is

signed with the owner's private key (S) and optionally encrypted with the receiving

machine's public key (E).

generate a secret session key, known only to the agent and the server, and then use this

session key to encrypt the requests [KPS95]. PGP does not provide direct access to its

internal secret-key routines, however, making it impossible to generate and use session

keys without modifying PGP. Therefore, the current implementation of Agent Tcl

handles the additional requests in the same manner as the initial registration request,

digitally signing them with the owner's private key. Since public-key algorithms are

much slower than secret-key algorithms, we will switch to secret sessions keys once

we replace PGP with a more exible encryption library. When the agent and the

server are on the same machine (which is the predominant case), there is no need

for a session key, since it is impossible to intercept or tamper with the additional

requests or to masquerade as the registered agent.2 Thus all additional requests are

transmitted in the clear.

2The server uses di�erent communication channels for local agents and can tell without cryptog-

raphy whether a request came from a speci�c local agent.
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Figure 6.2: Encryption for the jump command. On the �rst jump, the agent is signed

with the owner's private key (S1). On the second and later jumps, the agent is signed

with the sending machine's private key (S2), and the sending machine sets a ag

(F) to indicate whether it was able to authenticate the agent's owner itself; if the

target machine trusts the sending machine, and the sending machine reports that it

was able to authenticate the agent's owner, the target machine considers the owner

authenticated.
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When an agent migrates for the �rst time with the jump command, the state

image is digitally signed with the owner's private key, optionally encrypted with

the destination server's public key, and sent to the destination server. The server

veri�es the digital signature, checks whether the owner is allowed to send agents

to its machine, and accepts or rejects the incoming agent. This process is shown

in Figure 6.2. Of course, once the agent has migrated, the owner's private key is

no longer available. Therefore, for all subsequent migrations, the agent is digitally

signed with the private key of the sending server. If the destination server trusts the

sending server, and the sending server was able to authenticate the owner itself, the

destination server considers the owner authenticated and gives the agent the full set

of resource limits for that owner. If the destination server does not trust the sending

server, or the sending server could not authenticate the owner itself, the destination

server considers the agent to have no owner and will either (1) accept the agent as

an anonymous agent or (2) reject the agent if it is not allowed to accept anonymous

agents. Typically, Agent Tcl servers are con�gured so that machines under single

administrative control trust each other but no one else.3 Thus, if an agent migrates

from its home machine into a set of mutually trusting machines (and then stays within

that set), each machine will be able to directly (or indirectly) authenticate the owner,

and will give the agent the full set of access permissions for that owner. Once the agent

leaves the set of machines, however, it becomes anonymous, and remains anonymous

even when it comes back, since the untrusted machines might have modi�ed the agent

in a malicious way. While the agent is on a particular machine, it will make requests

of that machine's server. As in the case when an agent registers with a server on

3For example, all the machines in the Computer Science Department at Dartmouth trust each

other.
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Figure 6.3: Encryption for the send command. If the agent has not left its home

machine, the message is signed with the owner's private key (S1). If the agent has

left its home machine, the message is signed with the sending machine's key (S2), and

the sending machine sets a ag (F) to indicate whether it was able to authenticate

the agent's owner itself; if the target machine trusts the sending machine, and the

sending machine reports that it was able to authenticate the agent's owner, the target

machine considers the owner authenticated.

the same machine, however, no encryption or digital signatures are needed for these

requests.

When a new child agent is created on a di�erent machine (with the fork or submit

command), or when a message is sent to an agent on a di�erent machine (with the

send command), the same strategy is used as with jump. The message or child agent

is signed with the owner's key if the sending agent is still on its home machine, and

with the machine's key if the sending agent has already migrated (Figure 6.3). The

recipient server will believe the owner's identity if it trusts the sending server. When

receiving a message, the recipient agent gets both the message and a security vector.

The security vector speci�es the owner of the sending agent, whether the owner
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could be authenticated, the sending machine, whether the sending machine could be

authenticated, whether the message was encrypted, and whether the sending agent is

on the same machine. The recipient agent, which might be controlling access to some

resource such as a database, bases its own security decisions on this security vector.

When a new agent is created on the same machine, or a message is sent to an agent

on the same machine, no encryption or digital signatures are required. The new agent

inherits the security information of its parent. The recipient of the message gets the

same �ve-element security vector.

This authentication scheme has �ve weaknesses. First, and most serious, once an

agent leaves its home group of trusted machines, it becomes anonymous as soon as

it migrates again. Having the agent become anonymous is essential in the current

system since a malicious machine can modify an agent arbitrarily (or lie about the

identity of its owner). Thus, when dealing with machines that do not trust each

other, an application that needs the full access rights of its owner to accomplish its

task cannot send out a single agent that migrates through the machines, since the

agent will become anonymous on the second jump. Instead the application must

send an agent to the �rst machine, wait for the results, send a new agent to the

second machine, and so on. Although this problem does not prevent an application

from accomplishing its task, it places an additional burden on the programmer, and

reintroduces some of the network tra�c that mobile agents are meant to avoid. At

the same time, it is important to note that many applications operate entirely within

a set of trusted machines, and that many others, especially in the Internet, can be

accomplished with anonymous agents. Solving the multi-hop authentication problem

revolves around detecting malicious modi�cations to an agent. Then, con�dent that

certain kinds of malicious modi�cations (such as modi�cations to the static code) will
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always be detected, a machine can assign access rights that fall somewhere between

those of an anonymous agent and those of the actual owner. Detecting malicious

modi�cations is discussed below.

The remaining four problems are less serious and have clear solutions. First,

PGP is extremely slow, especially since Agent Tcl executes PGP as a separate pro-

cess. PGP must be replaced with a faster encryption library. Second, PGP does

not provide access to its internal encryption routines, making it impossible to gener-

ate session keys for ongoing communication. The replacement library must support

both public-key and secret-key cryptography. Once the system can generate session

keys, it should use session keys rather than public/private keys whenever possible

due to the speed advantage of secret-key cryptography, For example, two servers that

are communicating extensively might generate a shared session key, even if di�erent

agents are responsible for each communication. Third, Agent Tcl does not include

an automatic distribution mechanism for the public keys. Each server must already

know the public keys of all authorized users so that it can authenticate incoming

agents (agents signed with an unknown public key become anonymous). A modest

key-distribution or certi�cation mechanism must be added to Agent Tcl to reduce

the burden on the system administrator. Finally, the system is vulnerable to replay

attacks in which an attacker replays a migrating agent or a message sent to an agent

on a di�erent machine. Here a server could have a distinct series of sequence numbers

for each server with which it is in contact.

6.1.2 Authorization and enforcement

Once the identity of an agent's owner has been determined, the system must assign

access restrictions to the agent (authorization) and ensure that the agent does not
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violate these restrictions (enforcement). In other words, the system must guard access

to all available resources. We divide resources into two types. Indirect resources can

be accessed only through another agent. Builtin resources are directly accessible

through language primitives (or libraries) for reasons of e�ciency or convenience or

simply by de�nition. Builtin resources include the screen, the �lesystem, memory,

real time, CPU time, and the agent servers themselves.4

For indirect resources, the agent that controls the resource enforces its own access

restrictions, rejecting or allowing requests from other agents based on the security

vector attached to the incoming communication. Typically, the resource agent would

simply check each request against an access list, although one request could return

capabilities for use in later requests. Care must be taken with capabilities, however,

since a migrating agent will carry its capabilities along with it, possibly through ma-

licious machines. One reasonable solution is to allow an agent to obtain a capability

only if it is on the same machine as the resource, and include su�cient identi�ca-

tion information in the capability so that it becomes invalid as soon as the agent

leaves5; this solution makes it impossible for valid capabilities to exist on other ma-

chines, preventing theft and eliminating severe administrative problems. Agent Tcl

will eventually provide both access-list and capability libraries for use in resource

4The agent servers are accessed through the agent commands, such as begin, jump and send.

All agent commands use server CPU cycles; several use server memory; and several require network

access.
5For example, the capability could include the agent's id and the time at which it arrived on the

local machine. The agent will get a di�erent timestamp (and usually id) if it leaves and returns,

making it impossible to reuse the capability after a migration. In addition, since the ids are locally

unique, no other agent can ever have the same combination of id and timestamp, making it impossible

to transfer the capability to another agent.
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agents; currently each resource agent must provide its own implementation.

For builtin resources, the agent servers enforce several absolute access policies. For

example, an agent can terminate another agent only if its owner is the system admin-

istrator or if it has the same owner as the other agent. The name operation reserves

certain symbolic names for certain agent owners, preventing an arbitrary agent from

masquerading as a service agent (such as a yellow page agent that provides directory

services). The notify operation requires the server to remember which agent asked

for the noti�cation, taking up server memory. Thus, the server has a per-agent limit

on the number of outstanding noti�cations; the limit is small for visiting agents, but

large for agents that belong to the machine's owner or administrator, since noti�ca-

tions are the most e�cient and convenient way to implement monitoring tools that

track which agents are currently on the machine.6 There are similar access policies

for the other agent operations. In particular, most operations can be con�gured to

reject requests from remote machines. In a typical con�guration, for example, the

begin operation rejects any request from a remote machine, allowing only agents on

the local machine to register with the server. The begin operation also imposes a limit

on the total number of agents and the total number of anonymous agents executing

on the machine at one time. The speci�c limits and access restrictions are speci�ed

in a server con�guration �le.

For all other builtin resources, security is maintained using the language-speci�c

security (or enforcement) module and a set of resource manager agents. When an

agent requests access to a builtin resource, either implicitly or explicitly, the secu-

rity module forwards the request to the appropriate resource manager. The resource

6Or, more precisely, noti�cations will be the most convenient way once an agent can request

noti�cations for a wider range of events.
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manager, which is just a stationary agent, checks an access list, decides whether the

request should be allowed, and returns the decision to the security module. The secu-

rity module then enforces the decision (and also caches the decision when appropriate

to minimize the load on the resource managers). This approach provides a clean sep-

aration between security policy and enforcement, with the same resource managers

making security decisions for all agents, regardless of their implementation language.

There are six resource managers in the current system.

� Consumables. The consumables manager handles those resources where, even

though they never run out, each agent should be given only a limited amount

to prevent system overload. Currently these resources are wall time, CPU time,

number of child agents, maximum depth of the parent-child hierarchy, and num-

ber of migrations. Limits on these resources are enforced across groups of mu-

tually trusting machine. When making its decision, the consumables manager

takes into account how much resource the agent has used on the other machines

within the group.7 Since access to these resources is either implicit (CPU time)

or takes place through the generic agent core (migration), enforcement actu-

ally takes place in the core, with the language-speci�c security module simply

setting the new limits after the manager returns its decision. In addition, in

contrast with the other builtin resources, the agent starts with a small allowance

and must explicitly ask the manager for more. Notably absent from this set of

consumable resources are memory and CPU time per unit time (as well as agent

operations per unit time since an agent might be able to overwhelm the local

server without using much CPU time). Thus, a visiting agent can currently

7Migrating agents include a vector that speci�es how much of each resource they have used so

far.
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mount denial-of-service attacks against other agents by allocating all available

virtual memory, sitting in a computationally-intensive loop, or ooding the lo-

cal server with requests. Fixing the memory problem is trivial for Java and

Scheme 48, which already have their own memory-allocation routines that en-

force a maximum heap size, but more complex for Tcl, which calls the standard

malloc and free routines directly. A solution for Tcl that works on all platforms

might be impossible without changing its memory allocation routines. Fixing

CPU time is more di�cult since we are currently relying on the underlying Unix

system for scheduling; scheduling mechanisms must be added to Agent Tcl so

that it can timeslice the agents itself.

� Filesystem. The �lesystem manager controls read and write access to �les and

directories. It also imposes a maximum size on writable �les so that an agent

cannot �ll up the �lesystem. The manager controls access only to the entire

�le. Record-based access control is simply too �ne-grained for a mobile-agent

system. If record-based access control is required, the �le should be hidden

behind a stationary service agent. The main weakness of the current �lesystem

manager is that it does not impose a limit on disk accesses per unit time, making

it possible for an agent to thrash the local disk. As with CPU time per unit

time, the ideal solution is a scheduler that would allocate disk access \slots"

among the agents that require disk access.

� Libraries The libraries manager determines which libraries of Tcl functions,

Scheme functions or Java classes each agent can load.

� Programs The programs manager determines which external programs each

agent can execute. Since an external program is not subject to the same se-
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curity checks as the agents themselves, execute permissions are given only to

those owners whose agents can be trusted to use the program properly. Typi-

cally, then, an agent belonging to the system administrator is allowed to execute

any program, a service agent is allowed to execute only the programs that it

needs to provide the service, and all other agents are not allowed to execute

any programs. If an external program provides functionality that is useful for

all agents, it can be hidden behind a stationary service agent that performs the

necessary security checks.

� Network. The network manager decides which agents are allowed to directly

access low-level TCP/IP and UDP network services. It does not attempt to

limit certain agents to certain ports or certain remote machines; it either grants

complete access or no access at all. Thus, as with external programs, network

access is usually only given to the system administrator and speci�c service

agents. Eventually, all agents should be allowed to access certain network ser-

vices such as Sun RPC, especially when they are on a dedicated proxy site.

Then, if a resource is not on an agent-enabled machine, an agent can migrate as

close as possible to that machine and interact with the resource using standard

cross-network calls [MAF97]. In addition, most agent commands can generate

network tra�c, particularly the commands that send messages and establish

meetings. To prevent an agent from ooding the network, the network manager

and enforcement modules must impose a maximum transmission rate. Ideally,

as with CPU time and disk access, a maximum transmission rate would be set

for all agents as a group, and transmission \slots" would be scheduled among

the agents that are trying to transmit packets.
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� Screen. Like network access, screen access is controlled at the coarsest level: an

agent can do either anything or nothing. Therefore, in the current system, it

is unreasonable to give an anonymous agent any screen access, since the agent

might immediately create a window that covered the entire screen and grab the

global focus. Here we are planning a two-part solution: (1) allow an individual

agent to ask the user for screen access through some central control panel, and

(2) provide the agent with a window that mimics a full screen. In the latter

case, the agent could do anything it wanted on the virtual screen, but could not

move or resize that virtual screen itself.

Of course, a machine can have other hardware devices to which an agent might

need access, such as a microphone, speaker, camera or printer. Many of these devices,

such as a printer, can be e�ciently hidden behind a stationary service agent; this

stationary service agent performs any desired security checks before proceeding with

a request. Other devices, such as a microphone, might need to be accessible through

a library for e�ciency. In this case, resource managers for the devices must be added

to the system.

Each resource manager has a con�guration �le that speci�es the access rights and

limits for a particular owner. The manager simply loads this access list on startup

and then checks the owner of each requesting agent against the list. Of course,

the manager also takes into account whether the owner could be authenticated and

whether the requesting agent is on the same machine. Anonymous agents are given

limited access rights (mainly read access to certain libraries and initialization �les),

and remote agents are given no access rights.

The enforcement module is di�erent for each language.
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Tcl. The Tcl enforcement module is implemented with Safe Tcl. Safe Tcl is a

Tcl extension that is designed to allow the safe execution of untrusted Tcl scripts

[LO95, OLW97]. Safe Tcl provides two interpreters. One interpreter is a \trusted"

interpreter that has access to the standard Tcl/Tk commands. The other interpreter

is an \untrusted" interpreter in which all dangerous commands have been replaced

with links to secure versions in the trusted interpreter. The untrusted script executes

in the untrusted interpreter. Dangerous commands include obvious things such as

opening or writing to a �le, creating a network connection, and creating a toplevel

window. Dangerous commands also include more subtle things such as ringing the

bell, raising and lowering a window, and maximizing a window so that it covers the

entire screen. Some of these subtle security risks do not actually involve damage to

the machine or access to privileged information, but instead involve serious annoyance

for the machine's owner.

Agent Tcl uses the generalization of Safe Tcl that appears in the Tcl 7.5 core

[LO95]. Agent Tcl creates a trusted and untrusted interpreter for each incoming

agent. The agent executes in the untrusted interpreter. All dangerous commands

have been removed from the untrusted interpreter and replaced with links to se-

cure versions in the trusted interpreter. The secure version contacts the appropriate

resource manager and allows or rejects the operation depending on the resource man-

ager's response. The secure version also caches the resource manager's response on

an internal access list so that it does not have to contact the resource manager again

when the same operation is performed later. For example, if the agent issues the Tcl

command exec ls, the exec procedure in the trusted interpreter checks the internal

program access list. If permission to execute ls has already been granted, the com-

mand proceeds. If permission to execute ls has already been denied, the command
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throws a security exception. Otherwise the command contacts the program resource

manager, adds the response to the program access list, and then either proceeds or

throws the security exception.

An agent can also explicitly ask a resource manager for access permissions with the

require command. The require command takes the symbolic name of the resource

manager|e.g., �lesystem|and a list of (name, quantity) pairs that specify the desired

access permissions|e.g., (/home/rgray/test.dat, read). The require command is

actually just a link to a procedure in the trusted interpreter. This procedure sends the

list of desired access permissions to the appropriate resource manager. The procedure

waits for the response and then adds each access permission to the internal access

lists, indicating for each whether the request was granted or denied. Regardless of

whether a request is made with the require command or by invoking a Tcl command,

the resource manager will send back the most general access permissions possible,

e�ectively preloading the internal access lists and eliminating future requests. For

example, if an agent requests access to a particular �le, but is actually allowed to

access the entire �lesystem, the manager's response will grant access to the entire

�lesystem. In addition, although an agent can contact the resource managers directly

in the current implementation, such contact accomplishes nothing since the response

will not go through the trusted interpreter and therefore will not have any e�ect on

the internal access lists.

Finally, an agent can impose access restrictions on itself with the restrict com-

mand. The restrict command takes two arguments: a list of access restrictions and

a Tcl script. The command executes the script under the given access restrictions. In

the case of the consumable resources, these access restrictions remain in e�ect even

when the agent migrates to a new machine. For example, the agent can restrict itself
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to a particular number of children, even if it is migrating and creating the children on

di�erent machines. More usefully, perhaps, the agent can restrict itself to a speci�c

amount of CPU or wall time.

The Safe Tcl security module does not provide safe versions of all dangerous

commands. For example, an agent that arrives from another machine cannot use the

Tk send command, which sends a Tk event to another Tk interpreter.8 In addition,

there are no safe versions of the network and screen commands, since the resource

managers either grant complete access to the screen and network or no access at

all. The network and screen commands simply remain \hidden" until the resource

managers grant access. Since all of the annoyance security threats, including ringing

the bell, involve screen commands, only trusted owners should be given screen access

in the current system. Once the system provides a virtual screen, anonymous agents

can be given screen access as well, although the bell command will need to be handled

specially. Despite the coarse-grained access to the network and screen, the simple

kernel-user model of Safe Tcl protects the machine well. No direct access to system

resources is possible, and there is no way for an agent to subvert the resource manager

decisions, since the agent cannot modify the access lists in the trusted interpreter.

Java. The Java enforcement module is implemented as a Java security manager

[CH97]. A Java security manager is a class that provides a set of access-control

methods, such as checkExec, checkRead, and checkExit. The Java system classes

call these methods to see if the corresponding operation is allowed. For example, the

System.exec method calls checkExec to see if the Java program is allowed to execute

8It is likely that the Tk send command will never be available since it is di�cult to make secure

and agents should communicate within the agent framework anyways.
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the speci�ed external program.9 Our security manager for agents is exactly equivalent

to the Safe Tcl mechanism above: each checkXXX method contacts the appropriate

resource manager and then throws a security exception if the resource manager denies

access. Our security manager also provides the require and restrict operations.

The restrict operation is actually split into two methods addRestriction and

removeRestriction; the resource limits apply to whatever code appears between

the calls to these two methods. Implementation of the Java security manager is not

yet complete. Since the methods follow the same logic as the corresponding Safe Tcl

procedures, however, implementation will proceed rapidly.

Scheme. Scheme 48 has a module system [KR95]. A module is a set of Scheme

functions with some of those functions marked as exported or public; a program can

load the module and invoke any of the exported functions. Providing the Scheme

enforcement module is mainly a matter of rede�ning the system modules so that they

no longer export dangerous functions, but instead export secure versions of those

functions that perform the same security checks as in Tcl and Java. Although im-

plementation work is just starting, it appears that the necessary module rede�nitions

can be accomplished without changing the Scheme 48 virtual machine.

6.1.3 Summary

The mechanisms for protecting the machine are nearly complete. There are two re-

maining implementation issues. First, the implementation of the Java and Scheme

enforcement modules is incomplete. The remaining implementation work is not dif-

�cult, however, and involves little more than reimplementing the Safe Tcl security

checks. Second, screen and network access is controlled at the coarsest possible level,

9The �lename of the external program is a parameter to checkExec.
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with an agent either getting complete access or no access at all. Instead, agents

should be given a virtual screen and restricted access to common high-level network

services such as RPC and HTTP.

There are also three remaining architectural issues. First, the current architecture

requires that a new enforcement module be written for each language. This approach

minimizes the changes to the standard interpreters, but is time-consuming and error-

prone. Eventually we will move to the Ara model in which the core provides secure

versions of all system functions [PS97]; these core functions would still contact the

resource managers to determine access rights.

Second, Agent Tcl uses discretionary access control, in which each resource has an

associated access list that speci�es the allowed actions for each agent owner. Many

other security models exist, such as (1) mandatory access control, in which programs,

people and data are assigned classi�cation levels, and information can not ow from

higher to lower levels, (2) security automata [Sch97a], in which a program's current

allowed actions depend on its past resource usage,10 and (3) computer immunology

[FHS97, Gre97b], in which a program is considered malicious if its current pattern of

resource usage does not match its normal pattern. Although none of these models are

incompatible with Agent Tcl's current architecture, architectural extensions would be

needed for all three. As it becomes clearer which of the three models are useful in a

mobile-agent environment, we will consider implementing one or more of them.

Finally, an agent can still mount several denial-of-service attacks: (1) it can sit in

a tight loop and consume CPU time as fast as possible; (2) it can ood the local agent

server with requests; (3) it can ood the local network by sending requests to remote

10For example, an agent might be permitted to communicate with a remote machine as long as it

has not read from a sensitive �le.
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agent servers as fast as possible (or by using some network service such as RPC to

which it has been given direct access); (4) it can allocate all available virtual memory;

and (5) it can thrash the local disk by randomly reading from any �le to which it

has been given access (or by allocating a data structure that is too large for main

memory and then accessing the data structure in such a way as to cause page fault

after page fault). Preventing these denial-of-service attacks is not di�cult; preventing

them without arti�cially reducing performance is di�cult. Ideally the system would

specify how much CPU time, memory, network bandwidth and disk bandwidth should

be made available for all agents, and then allocate or schedule the available capacity

among the agents.11 Doing this with reasonable overhead will probably require tighter

system integration, with agents running in threads rather than in their own processes.

For this reason, we plan to start with �xed, per-agent limits for each of these resources,

and then move on to the more exible resource \scheduling" at a later time. Once the

remaining denial-of-service attacks are eliminated, Agent Tcl will successfully protect

machines from malicious agents and agents from each other.

6.2 Protecting a group of machines

Protecting a group of machines divides two distinct subcases: (1) all the machines

are under single administrative control, such as in a departmental LAN, or (2) all the

machines are not under single administrative control, such as in the Internet.

When the machines are under single administrative control, protecting the ma-

chines is straightforward. An agent is assigned a maximum resource allowance when

11The exact scheduling algorithm is an open question. There probably should be at least two

classes of agents, stationary service agents and visiting agents, with service agents having higher

priority.
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it �rst enters the machine group. The allowance and the amount that the agent has

used so far is propagated along with the agent as it migrates. If the agent exceeds

its group allowance, it is terminated.12 Agent Tcl already provides this kind of group

protection. The consumables resource manager imposes a limit on how many times

an agent can jump, how much CPU time it can use, etc., within an administrator-

speci�ed group of mutually trusting machines; the limits and the amounts used so far

are included in the migrating agent.13 Although Agent Tcl enforces this group limit

on consumables, it does not yet enforce a separate per-machine limit. Per-machine

12Alternatively, the agent could be sent back to its home machine or to a designated proxy site,

although the current Agent Tcl system does not provide such functionality. An agent can inspect

its group allowance, however, and can migrate out of the machine group if it sees that it is about to

run out of some resource.
13(1) In network environments where there is no threat of packet tampering, the group allowance

can be enforced correctly based solely on the sending machine's address that is included in the

migration header, i.e., it can be enforced correctly without encryption or digital signatures. This is

simply because each machine within the group knows about the maximum allowance for each owner

and will reset an incoming agent's reported maximum allowance if it is above the actual maximum.

Thus, although a malicious agent that is entering the group for the �rst time might have a group

machine's address in its migration header, it will end up with the same maximum allowance that it

would have gotten without lying. Then, once the agent is inside the group, it is impossible for the

address in the migration header to be wrong since the servers on the group machines are trustworthy

and no packet tampering can take place. (2) On the other hand, in network environments where

packet tampering is possible, each machine must digitally sign the agent so that a group allowance

can not be increased during transit. Of course, if packet tampering is possible, the agent must be

digitally signed for many other reasons as well, such as preventing the insertion of code, modi�cations

to variables, etc. In this case, the Agent Tcl server on each machine can be con�gured to accept

only signed agents (the signer can be the owner or the sending machine).
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limits could be provided easily within the existing framework, however.

When the machines are not under single administrative control, matters become

much more complex. One solution would be to standardize on a maximum number

of migrations and children per agent. Each agent carries along a count of migrations

and children so far, and each agent server increments these counts when appropriate.

When the agent reaches the limit, its current server denies permission to create a new

child or to migrate again. Unfortunately, this solution has three major drawbacks.

It does not prevent someone from ooding the network with multiple agents, it is

vulnerable to a malicious machine that provides the \service" of resetting the counts

of any agent that passes through it to zero, and it imposes an absolute resource limit

on all agents, rather than allowing an agent to \pay" for as many network resources

as it needs.

A more attractive solution is to use a market-based approach in which agents

pay for their resource usage with cryptographically-protected electronic cash [CB97,

SD95]. When an agent is created, it is given a �nite currency supply from its owner's

own �nite currency supply. The currency does not need to be tied to legal currency,

but it must be impossible to spend a currency unit more than once, and it must be

impossible for a user to quickly accumulate an arbitrarily large supply. The agent pays

for its resource usage with its currency and shares its currency with any child agents

that it creates. Eventually the agent and all its children run out of currency and are

sent back to the home machine, which either provides more currency or terminates

the agent. This market-based approach raises two important issues.

� Payment granularity. An agent could pay to migrate onto a machine, but then

be subject to absolute resource limits while on that machine. Alternatively, an

agent could pay for every resource that it uses, such as CPU time, memory, disk
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space, and network bandwidth, obtaining as much capacity as it wants as long

as its �nancial resources hold out.14 Both models have their advantages. The

�rst model is more e�cient since it involves only a single payment per machine.

In addition, since an agent knows the size of this single payment before it

migrates, it also knows exactly how much currency it should have left when

it leaves each machine, making it relatively easy to detect when a malicious

machine has stolen currency and to identify the exact machine responsible.15

The second model is more attractive from an economics standpoint since it

allows a machine to charge for exactly the resources that the agent uses. On

the other hand, it is less e�cient and much harder to audit, After all, who is

to say aside from the machine itself whether an agent uses 0.5 CPU seconds or

0.6.

� Legal versus nonlegal currency. Using legal currency allows an agent owner to

send out as many agents as she can a�ord, and allows a service provider to make

real money, which can be given to its own agents, used to maintain the service,

or simply viewed as pro�t. On the other hand, a malicious machine that steals

electronic cash is stealing real money. Although this theft is not necessarily

harder to detect, an audit will be much more involved, since the auditor must

decide whether to return real money to an aggrieved agent (and must impose a

corresponding �ne on the malicious service provider).

Using nonlegal (but universal) currency makes the audit process simpler. In

14There will still be absolute resource limits, of course, but they might be set much higher.
15Machines would be required to log all incoming agents and their current currency reserves and

to provide this information whenever an aggrieved agent requested an audit from an authorized

third-party. There would be a time limit on audit requests so that a machine could safely truncate

its logs.
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a borderline case, for example, the auditor could return a limited amount of

fake money to an aggrieved agent without imposing a corresponding �ne on the

service provider, simply because the auditor would not be losing real money. On

the other hand, a machine can do nothing with collected currency aside from

distributing it to its own agents, since the currency has no meaning outside of the

agent system. In addition, fake currency opens up the issue of how to generate

and distribute the currency, such that each owner has su�cient currency for

their legitimate tasks, but the global currency supply does not grow without

bound. Injecting a �xed amount of currency into the system on startup and

relying on normal economic processes seems insu�cient, since some owners will

mainly have client agents that spend the currency for network services; the

currency supply of these owners will steadily shrink.

Since the sole purpose of electronic cash here is to prevent an owner from ooding

the network with agents, it seems that a hybrid subscription approach is best. An

owner subscribes to a trusted banking service, paying real currency to get a certain

amount of fake currency per day. The subscription rates might be nonlinear so that a

single user can obtain a modest amount of fake currency for free (or nearly free), but

cannot obtain a large amount without a signi�cant cash outlay. The agent spends

this fake currency to migrate onto service machines, but the spent currency is not

added to the service provider's supply. Instead, once the banking system veri�es

that the fake currency has not been spent before, the fake currency simply ceases

to exist.16 Otherwise, the obvious attack is to set up a fake (or real) service, collect

a large amount of currency, and then ood the network with agents. For a similar

16If an agent spends currency on its owner's machines, the currency can be collected and reused.

Alternatively, certain machines might not charge certain users.
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reason, currency that is unspent after a twenty-four hour period becomes invalid, so

that an owner can not hoard currency for a later ooding attack. Of course, using

fake currency to control agent propagation does not prevent a service from charging

real money at the application level.

Many other agent projects plan to use electronic cash to control agent propagation,

including Tacoma [JvRS95], Ara [PS97], and Messengers [BFD96]. Little implemen-

tation work has been done by any of these projects. Agent Tcl does have a simple

banking system that provides cryptographically-protected digital cash, but machines

do not yet charge agents for migration or other services.

6.3 Protecting the agent

Protecting an agent from a malicious machine is the most di�cult security problem.

Unless \trusted (and tamper-resistant) hardware" is available on each agent server

[CGH+95], something which is extremely unlikely in the near future, there is no way

to prevent a malicious machine from examining or modifying any part of the agents

that visit it. Thus, the real problem is not to prevent theft and tampering, but

instead to prevent the machine from using stolen information in a meaningful way

and to detect tampering as soon as possible, ideally as soon as the agent migrates

onto the next machine. Unfortunately, there is no single mechanism that can solve

this problem, and it is unlikely that there will ever be a complete technical solution,

due to the unimaginable variety of theft and tampering attacks that can be mounted

against a visiting agent. Instead, some part of the solution will always be sociological

and legal pressures [CGH+95]. There are several partial technical solutions, however.

Hopefully, by picking and choosing from these partial solutions, most agents will be

able to protect themselves adequately for their current task, but still move freely
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throughout the network. Before considering some of these partial solutions, it is

worthwhile to consider two broad categories of tampering attacks.

� Normal routing. The malicious machine allows the agent to continue with its

normal itinerary, but holds the agent longer than necessary, charges the agent

extra money, or modi�es the agent's code or state. Holding the agent longer than

necessary prevents a time-critical agent from accomplishing its task. Modifying

the agent's code or state causes the agent to perform some work on behalf of the

malicious machine, take some dangerous action, or simply reach an incorrect

result. These modi�cation threats are why Agent Tcl agents currently become

anonymous as soon as they migrate through an untrusted machine.

� Rerouting. The malicious machine reroutes the agent to a machine that it

would not have visited under normal circumstances, or prevents the agent from

migrating at all and pretends that it is the next machine on the agent's normal

itinerary. The latter attack might be used against an agent that is migrating

through a sequence of service providers, attempting to �nd the best price for

some service or product. A service provider can hold the agent on its machine,

masquerade as the other service providers, and report higher prices than its own

price. Although such an attack requires the service provider to recognize what a

particular agent is doing and then update the agent's state as if it had actually

visited the other machines, many applications will involve pre-packaged agents

that users purchase from the application developers. Recognizing and fooling

these well-known agents will not be di�cult.

Now, with both theft and these two tampering attacks in mind, we can consider

the partial solutions.
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� Trusted machines and noncritical agents. The �rst solution is simply to realize

that many agents do not need protection at all, either because they are per-

forming some noncritical task (e.g., an anonymous agent interacting with a free

search engine), or because they operate entirely on trusted machines (e.g., an

agent that is installing new software on a department's machine). Trusted ma-

chines can include not only all the machines in your own department, but also

machines belonging to large, well-known corporations, such as America Online,

Microsoft, Netscape, and United Airlines.

� Partitioning. An agent can migrate through trusted machines only, such as a set

of general proxy sites under the control of a trusted Internet service provider.

Then it either interacts with untrusted resources from across the network using

standard RPC, or sends out child agents that contain no sensitive data and

will not migrate again, instead just returning their result. More complicated

partitioning schemes can be used if needed. In fact, partitioning can achieve

as much client protection as in traditional distributed computing, since the

sensitive portion of the agent can always be left on the home machine.

� Replication and voting. Tacoma uses a replication and voting scheme to han-

dle malicious machines that either terminate an agent outright or provide the

agent with incorrect information [MvRSS96]. Here, if the task requires a single

agent to visit n services in sequence, the application instead sends out several

agents, each of which visits distinct but supposedly equivalent copies of the n

services. The agents exchange results after each stage, each agent keeping the

majority result. Although this scheme prevents many kinds of attacks, it also
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has several drawbacks. First, there must be multiple copies of each service17; in

addition, since the copies might be functionally equivalent but not identical, the

agent must be able to handle di�erent interfaces and di�erent result formats.

Second, if the agents are spending money to access the services, the user will

spend much more money than if a single agent had migrated through a single

copy. Finally, the cryptographic overhead is large. Despite these disadvantages,

replication and voting schemes will be used in many agents, since they are the

only way to handle services that provide incorrect information (assuming that

the incorrectness cannot be easily detected). Tacoma also includes rear-guard

agents that restart a vanished agent.

� Components. Perhaps the most powerful idea is to divide each agent into com-

ponents [CGH+95]. Components can be added to the agent as it migrates, and

each component can be encrypted and signed with di�erent keys. The agent's

static code and the variables whose values never change would make up one

component, and would be signed with the owner's key before the agent left the

home machine. If a malicious machine modi�es the code or variables, the digital

signature becomes invalid and the next machine in the migration sequence will

immediately detect the modi�cation. In addition, if an agent obtains critical

information from a service, it can put this information into its own component.

Then the component is signed with the machine's key to prevent tampering, and

can even be encrypted with a trusted machine's key (e.g., the home machine or

a proxy site) so that other machines cannot examine it. Of course, the agent

must return to that trusted machine before it can use the information again

17And the copies cannot be under the control of a single organization. Otherwise all the copies

might have the same malicious behavior.
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itself. Similarly, any code or data that is not needed until the agent reaches

a particular machine can be encrypted with that machine's key. For example,

an agent might encrypt the bulk of its electronic cash with a proxy site's key,

so that it could migrate through untrusted machines without worrying about

theft. The agent would return to the proxy site when it needed to spend the

cash. Depending on the migration model, this component approach also al-

lows a machine to place greater trust in an agent that has migrated through

untrusted machines. For example, if the code to be executed on the current

machine is in its own component, digitally signed with the owner's key, and this

code does not depend on any volatile variables, the code can be executed with

the owner's permissions, rather than as anonymous. Finally, components make

it easier for an agent to use the partitioning approach above; an agent can leave

a particular component behind on a trusted machine, or can create and send

out a child agent that includes only certain components.

� Self-authentication. In most agents, certain parts of the agent's state will change

as the agent migrates from machine to machine, such as the variable values and

the control information on the interpreter's stack. Although it is impossible

to detect all malicious modi�cations to this state information, it is possible

to construct an authentication routine that will examine the state information

for any obvious inconsistencies or impossibilities [PS97]. The authentication

routine could also examine the current set of components. Such an authenti-

cation routine would be placed in its own component and digitally signed with

the owner's key. Each agent server would execute the authentication routine,

terminating the agent (and notifying the home machine) if the routine �nds

any inconsistencies. The authentication routine would run as anonymous and
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would only have authority to examine the state image. Like the components

themselves, such an authentication routine allows a machine to place greater

trust in an agent that has migrated through untrusted machines.

� Migration history. It is possible to embed a tamper-proof migration history

inside a moving agent [MvRSS96]. This movement history allows the detection

of some rerouting attacks, particularly if an agent is following a �xed itinerary,

and, in combination with additional digital signatures, makes it impossible for a

malicious machine to drop an entire component from the agent. The movement

history could also be examined inside the authentication routine above.

� Audit logs. Machines should keep logs of important agent events so that an

aggrieved agent or owner can request an audit from an authorized third-party

[CGH+95]. The auditor would seek to identify the machine responsible for a

theft or modi�cation and penalize that machine appropriately. The exact con-

tents of the audit logs is largely an open question. It is clear that all electronic-

cash transfers must be logged, however, so that a machine cannot steal electronic

cash without providing the desired service. Of course, a malicious machine can

construct a false log, so the auditor must look for log entries that are inconsistent

with log entries from other machines, rather than just log entries that explicitly

indicate a malicious action. In addition malicious machines can collude in their

logging to make an honest, intervening machine look malicious. Thus, in some

situations, the auditor can impose serious sanctions only after it has observed

an apparent attack happening to multiple agents (that are following di�erent

migration trajectories).
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� Encrypted algorithms. Recent work [San97, Hoh97] involves encrypting a pro-

gram and its inputs in such a way that (1) the encrypted program is directly

executable, (2) the encrypted program performs the same task as the original

program, and (3) the output from the encrypted program is also encrypted and

can only be decrypted by the program encrypter. Although this work is in its

infancy and remains either theoretical or unproven, it has great promise for

mobile-agent systems, since it would become much harder for a malicious ma-

chine to make a targeted modi�cation, i.e., a modi�cation with a known, useful

e�ect, to an agent or its state.

Even taken together, these techniques cannot provide complete protection. In

addition, many of the techniques involve substantial cryptographic and logging over-

head, forcing an agent to trade performance for protection. Most agents should be

able to realize adequate protection through some combination of these techniques,

however, while still maintaining reasonable performance. The overriding issue is how

to design a protection interface that allows the agent to easily use the desired combi-

nation of techniques.
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Chapter 7

Performance analysis

Di�erent applications have di�erent performance constraints. Some applications need

to continue interacting with a user or resource even if a network link goes down; other

applications need to minimize network tra�c; and still others need to minimize total

completion time or per-operation completion time. By nature, mobile agents are an

attractive choice for the �rst two kinds of applications, since they can move to the

other side of an unreliable link or closer to the necessary information sources. Whether

they are an attractive choice for the last kind of application, however, depends on

their migration latency, communication latency, and execution speed. In this chapter,

we examine exactly these three measures, comparing mobile agents against traditional

client-server systems based around TCP/IP and remote procedure call (RPC). The

current Agent Tcl system has not been turned for performance, and, as we will see, it

su�ers from high migration overhead and the slowness of interpreted languages. The

performance numbers are good enough, however, to suggest that a combination of

faster languages and additional system engineering will make Agent Tcl competitive

even for compute-intensive applications in high-performance networks.

We limit the scope of the performance analysis in three ways.

� Tcl agents. All agents are written in Tcl. Tcl is the only language for which im-
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plementation work is su�ciently complete. Java agents cannot establish meet-

ings, and Scheme agents cannot migrate, making it impossible to run a full set

of performance experiments for Java and Scheme agents.

� Anonymous agents. The agents do not use encryption; they are neither en-

crypted nor digitally signed. Agent Tcl currently uses a separate PGP process

for encryption and digital signatures. This approach is convenient and exible,

but also extremely slow, performing far worse than the encryption subsystems

found in secure client-server systems. Thus, since we are planning to replace

PGP with a faster encryption library later, it did not seem worthwhile to do

a detailed performance comparison of secure agents and secure client-server

computing now.

� Low-level operations. We measure the performance of low-level operations

rather than entire applications. Low-level operations include migration, send-

ing and receiving messages, and sending and receiving messages over a meeting.

Since there are several obvious performance enhancements that can be made

to Agent Tcl, and the low-level measurements all con�rmed the need for these

enhancements, it did not seem worthwhile to devote time to higher-level mea-

surements. Instead, application measurements will wait until the two faster

languages, Java and Scheme, are in place, and a few of the major performance

enhancements are �nished.

Despite this limited scope, the analysis highlights several areas of good perfor-

mance as well as several needed performance enhancements. The analysis is divided

into two sections. The �rst section examines the base performance of Agent Tcl,

identi�es the needed performance enhancements, and compares mobile agents with
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traditional cross-network communication. The second section develop a simple for-

mula that, under simplifying assumptions about processor and language speeds, in-

dicates whether an application should be written as a stationary client process or as

a migrating Tcl agent.

7.1 Base performance

Two machines were used to measure base performance. The �rst machine,

bald.cs.dartmouth.edu, is a 200 MHz Intel Pentium running Linux 2.0.0. It has 16

megabytes of physical memory and 128 megabytes of swap space. The second ma-

chine, q.cs.dartmouth.edu, is a 133 MHz Intel Pentium running FreeBSD 2.1.6.1. It

also has 16 megabytes of physical memory and 128 megabytes of swap space. The

two machines are connected with a 10 megabit Ethernet and one router. All single-

machine experiments were performed on bald. In the two-machine experiments, the

client or source machine was always q, and the server or destination machine was

always bald.

These two machines and their experimental roles are not meant to reect any

average or generic network. They are simply one particular example of a server

and lower-powered client connected with a reliable, low-latency, high-bandwidth net-

work. Such a network environment is the most interesting for the initial round of

performance measurements, since if a mobile agent has a performance advantage

over traditional client-server systems in a mid-performance network, this advantage

will usually increase as latency, bandwidth and reliability become worse. The two

exceptions relate to code size and processor power.

� If the agent's code size is greater than the size of the intermediate results, and

network bandwidth drops, the additional time needed to transmit the agent
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might become the dominant factor, increasing the total completion time.

� If the processor power of the server decreases or the processor power of the

client increases, an agent sent to the server might no longer outperform native

code on the client, even if the agent reduces network usage.

If the agent's code size is less than the size of the intermediate results, however, and

the client and server machines do not change, the relative performance of the mobile

agent must increase as network performance drops, since the agent transmits less

data across the network (and makes the same or fewer cross-network connections).

It is this observation that led us to do the initial performance measurements in a

mid-performance network.

7.1.1 Inter-agent communication

The two graphs in Figure 7.1 compare communication times for agents and tradi-

tional client-server techniques when the two communicating entities are on di�erent

machines.1 The TCP/IP curve shows the time needed for a (non-agent) client and

server process to exchange a request and response over an already connected TCP/IP

connection. Each request begins with two four-byte integers, one that speci�es the

size of request and another that speci�es the size of the desired response; the rest of

the request is just dummy data. The server waits for a client connection and then

sits in a tight loop, receiving requests and sending back dummy responses of the ap-

propriate size. Then client connects to the server and then times how long it takes

to exchange one hundred request and responses (for each request and response size).

This process is repeated multiple times over a twelve-hour period 2. Then, If we end

1The data for Figure 7.1 was taken from Tables A.12, A.10, A.7, A.8 and A.6.
29 p.m. to 9 a.m.
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Figure 7.1: Time in milliseconds for two processes or agents on di�erent machines to

exchange a request and a response. Each data point is an average of several timings;

the largest standard deviation is 5.3 percent. Note that the two graphs show the

same data; the top graph just shows the data for a smaller range of message sizes,

so that the details are clearly visible. Also the RPC curve ends at a message size of

8,192 bytes due to an argument-size limitation.
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up with n times for each request and response size, the longest n / 2 times are thrown

out.3 The remaining times are averaged and then divided by one hundred to get the

average per-request time. All of the average times are shown in Appendix A; the

graphs only plot the times for which the request and response sizes are the same.

The RPC curve is the same as the TCP/IP curve except that the client and server

process are using Sun RPC over UDP. Here, the request is the single argument to

the remote procedure, and the response is the result value. Both the argument and

result value are strings. The RPC curve only goes up to a request/response size of

8,192 bytes, since the RPC implementation on the client machine could not handle

arguments larger than that size.

The TCP/IP (messages) curve is the same as the TCP/IP curve except that

the client and server process are using the messaging subsystem from Agent Tcl.

The send operation in this message subsystem accepts a structure that contains the

message elements, serializes the message elements, and sends the resulting bytestream

across the connection. Similarly, the receive operation receives a bytestream from

the connection, unserializes the bytestream, and returns a structure that contains the

message elements. In this case, the message consists of a single bu�er of binary data.

TCP/IP (messages) is about 5 percent slower than TCP/IP. The slowdown is from

the serialization and unserialization routines and three dynamic-memory allocations;

the three allocations are a bu�er for the outgoing serialized message, a bu�er for the

incoming serialized message, and a bu�er for the single message component.

The Agent Tcl messages curve is the time needed for two agents to exchange a

request and response; the Agent Tcl meetings curve is the time needed for two agents

3The experiments were not run on an isolated network. Hopefully, by throwing out the longest

n / 2 times, we end up keeping only those times for which there was little other network tra�c.
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to exchange a request and response over an already established meeting.4 Although

meetings use TCP/IP and the same messaging subsystem as the TCP/IP (messages)

curve, the performance of meetings is about 20 percent worse than that of the TCP/IP

curve, rather than just 5 percent. There are three sources of additional overhead: (1)

parsing the Tcl commands that send and receive the message, (2) setting a time-

out on each receive (and removing the timeout when the message arrives), and (3)

using asynchronous I/O (rather than a blocking read or select) to detect when a

message has arrived over the meeting. Since the Tcl version is not multi-threaded,

asynchronous I/O is needed for event-driven agents, in which an incoming message

cause the immediate execution of some Tcl procedure.5 Although some optimization

is possible, these three sources of overhead cannot be reduced signi�cantly, except

that a compiled agent language will avoid most of the parsing overhead.

Messages, on the other hand, range from two to sixteen times slower than the

TCP/IP curve, even though they also use TCP/IP and the messaging subsystem.

Messages su�er from the same three sources of overhead as meetings, but also have

two more critical ine�ciencies.

� Connections. Each message involves a new TCP/IP connection between the

sending agent and remote server. Worse, most TCP/IP implementations do

not acknowledge the �rst packet sent over a new connection immediately, and

do not send the second packet until this acknowledgment is received [Ste94].6

Speci�cally, once the �rst packet arrives over a connection, the receiving ma-

4The time needed to establish the meeting will be considered later, when we look at the total

time needed for an agent to migrate onto a remote machine, interact with a service agent, and return

a result to the home machine.
5The Java version does not use asynchronous I/O. It creates a watcher thread for each meeting.
6This scheme is known as slow-start.
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chine waits for data going in the opposite direction along the connection. If data

shows up, the machine piggybacks the acknowledgment onto the data packet. If

data does not show up within a timeout interval (typically 200 milliseconds), the

machine sends a separate acknowledgment packet. The sending machine sends

the second packet only when it receives the acknowledgment. You can see this

e�ect in Figure 7.1 where the Agent Tcl messages time jumps from 4 millisec-

onds to 200 milliseconds when the message size goes from 1,024 bytes to 2,048

bytes. 1,024 bytes �t in one packet, so the receiving server immediately gets

the entire message and immediately sends back the application-level response

indicating that the message was received and bu�ered; the TCP/IP acknowl-

edgment is piggybacked on this response. 2,048 bytes require two packets, so

the server has to wait for 200 milliseconds before the second packet shows up

with the rest of the message. The reason that the delay is not 400 milliseconds

is that Linux 2.0.0. aggressively reduces the delayed acknowledgment timeout

based on packet inter-arrival times. In our environment, the timeout is already

near zero immediately after the connection has been established. Thus, only

the message sent from the Linux machine to the FreeBSD machine encounters

the 200 millisecond delay.

Eliminating the delayed acknowledgment simply requires an application-level

acknowledgment for the �rst packet (if the �rst packet does not contain the

entire message). This acknowledgment could be a single dummy byte or (more

likely) 4 zero bytes, since Agent Tcl's messaging subsystem interprets 4 zero

bytes as an empty message. The messaging subsystem can simply ignore any

empty messages that arrive before the real server response. Eliminating the

reconnection on every message is more di�cult since Agent Tcl is currently
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based around multiple processes. Although two servers whose agents were com-

municating heavily could certainly cache the open connection, the time needed

to get an outgoing message onto that connection (either by transferring the

message or �le descriptor to another local process) could easily outweigh the

reconnection time. It might reasonable, however, for each server to allow a few

remote agents to hold open a connection, much as if the agents had established

a meeting with the server rather than a speci�c agent. In addition, as more

and more of the system is multi-threaded, a dedicated connection between two

servers will become more attractive, since accessing that connection would not

require interprocess communication.

� Multiple processes. There are actually �ve process involved in receiving a mes-

sage from a remote agent: (1) a server process that bu�ers incoming messages,

(2) a server process that watches the server's TCP/IP port, (3) a server process

that is forked to handle the incoming message, (4) a \background" process that

serves as the interface between the server and the recipient agent, and (5) the

recipient agent itself. The process that is watching the server's TCP/IP port

sees the incoming message and forks a process to handle the message. This pro-

cess transfers the message to the main server process, which bu�ers the message

in its internal queue. Eventually, the background process reaches an idle point

and asks the main server process for any new messages. The main server process

transfers the incoming message to the background process, which �nally trans-

fers it to the recipient agent. The fork (and the corresponding process) can be

eliminated by replacing the single socket watcher with a pool of socket watchers.

A more complete solution, however, is to multi-thread the entire server and have

a pool of threads watching the TCP/IP port rather than a pool of processes.
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The message is then transferred between processes only once, when it is trans-

ferred from the server bu�ers to the recipient agent. Unfortunately, eliminating

this one last transfer (i.e., allowing the server to insert the message directly into

the agent's internal queues) requires either multi-threading the entire system

or far more exible shared-memory facilities than most systems provide. Both

approaches, however, are reasonable long-term implementation goals.

Although the e�ect of these two problems is reduced as message size increases

(since network transmission time dominates the total time), most messages are apt

to be small. Thus the two problems must be addressed. Our immediate plans are

to eliminate the delayed acknowledgment (through the application-level acknowledg-

ment), multi-thread the server, and then reexamine communication performance.

Figure 7.2 shows the communication times when the two agents or processes are

on the same machine.7 We ran the same experiments as before, except that we now

include a Unix domain socket, both with and without the Agent Tcl messaging sub-

system. In addition, Agent Tcl meetings and messages work slightly di�erently when

the two agents are on the same machine. Meetings use a Unix domain socket rather

than TCP/IP, and the agent does not need to establish a connection for each mes-

sage, since each agent has a permanent connection with its local server. The message

still goes through three extra processes before �nally reaching the recipient, however,

the background process for the sender, the main server process, and the background

process for the recipient. Thus, aside from the delayed TCP/IP acknowledgment, the

meetings and messages have the same sources of overhead as when the two agents

were on di�erent machines. Since the transmission time over a Unix domain socket is

much lower than over TCP/IP, however, the e�ect of these overheads is much more

7The data for Figure 7.2 was taken from Tables A.11, A.9, A.4, A.2, A.5, A.3, and A.1.
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pronounced, with meetings twelve times slower than a bare Unix socket and messages

�fty-two times slower.

With messages, multi-threading the server will again eliminate two of the extra

processes, making messages only twice as slow as meetings rather than four times as

slow. In addition, even with each agent in its own process, it is possible to bypass

the server entirely when sending a message. For example, each agent could have

its own Unix domain socket within some designated directory. Although such a

scheme would require careful access control to prevent one agent from masquerading

as another8, it is workable. The performance improvement when sending only a

single message is di�cult to predict and will probably vary widely from machine to

machine; since the system could hold open the connection that is established for the

�rst message, however, sending multiple messages to the same agent should be nearly

as fast as sending those same messages over a meeting. In fact, if it turns out that the

performance improvement is small for only a single message, we can dispense with

the special Unix domain socket and simply have the agents automatically establish

a meeting when sending more than one message. As before, improving performance

further will require more aggressive multi-threading or more exible shared-memory

facilities.

Finally, as before, a compiled agent language would not have the parsing overhead

of Tcl. For meetings, the current overhead (for parsing the Agent Tcl commands that

send and receive the messages) is 25 percent (220 milliseconds) for 64-byte messages

and 55 percent (33000 milliseconds) for 64-kilobyte messages. For messages, the

parsing overhead is 8 percent (300 milliseconds) for 64-byte messages and 28 percent

(34000 milliseconds) for 64-kilobyte messages. The parsing actually takes about the

8Currently it is the main server process that prevents masquerade attacks.
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Figure 7.2: Time in milliseconds for two processes or agents on the same machine to

exchange a request and a response. Each data point is an average of several timings;

the largest standard deviation is 4.7 percent. Note that the two graphs show the

same data; the top graph just shows the data for a smaller range of message sizes,

so that the details are clearly visible. Also the RPC curve ends at a message size of

8,192 bytes due to an argument-size limitation.
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same amount of time for both meetings and messages, but has a much greater relative

impact on meetings, which are much faster overall.

Figure 7.3 compares communication times for two agents on the same machine

with communication times for two client-server processes on di�erent machines.9 Lo-

cal agent meetings are always faster than cross-network communication (e.g, TCP/IP),

ranging from two to six times faster as message size increases, with all but the smallest

message size three times faster or more. On the other hand, local agent messages are

slower than cross-network communication for data sizes below 400 bytes (due to the

high overhead of copying the message between server processes), but 50 percent faster

than cross-network communication for data sizes above 1024 bytes. Multi-threading

the server and thus eliminating two extra message copies will make local agent mes-

sages just as fast as cross-network communication for the smallest messages and more

than twice as fast for the largest messages. Bypassing the server altogether will im-

prove performance further, possibly making messages as fast as meetings if multiple

messages are sent to the same recipient. Finally, it is easy to believe that nearly 75

percent of the Tcl parsing overhead can be eliminated. For example, the stationary

service agent could be written in C or C++, and the migrating agent could be written

in Java. Then, local agent meetings would become three to seven times faster than

cross-network communication, with all but the two smallest message sizes four times

faster or more. Messages would see a similar (but smaller) improvement.

Thus, even though they are written in Tcl, two agents on the same machine

can communicate faster than two client/server processes on di�erent machines (in

most cases), meaning that we can reduce communication time by dispatching an

agent to a remote machine. The question then is how much work the Tcl agent can

9The data for Figure 7.3 was taken from Tables A.8, A.6, A.11 and A.9.
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Figure 7.3: The Agent Tcl messages and Agent Tcl meetings curves are communica-

tion times for two agents on the same machine; the TCP/IP and RPC curves are for

two client/server processes on di�erent machines. As in the other �gures, the two

graphs show the same data, just for a di�erent range of messages sizes, and the RPC

curve ends at a message size of 8,192 bytes.

135



perform before its CPU time exceeds the savings in communication time. As one

might expect, the answer depends entirely on the agent's task, especially since Tcl

is an interesting mix of high-level string and list commands and low-level control

commands such as if, for and while. To get a general impression, however, we

will consider two tasks: (1) see if a string contains a given substring (which can be

done with a built-in Tcl command called string that is implemented in C), and (2)

�nd the minimum element in a list of integers (which must be done with a loop and

comparison statement written in Tcl). With meetings, local agent communication is

1.2 milliseconds faster than cross-network communication for 64-byte messages, 3.9

milliseconds faster for 512-byte messages, and 140 milliseconds faster for 64-kilobyte

messages. Within these time periods, the agent can determine that a 5K, 17K, or

512K string respectively does not contain a given 5-element substring.10 On the

other hand, it can �nd the minimum integer in a list of only 11, 37 or 1200 integers

respectively. For comparison, within these same time periods, a compiled (but non-

optimized) C++ program on the same machine can determine that an 18K, 58K,

or 2,090K string respectively does not contain a given 5-element substring, and can

�nd the minimum integer in a list of 4800, 15,600, or 560,000 integer respectively.

These measurements lead to two conclusions. First, a Tcl agent is interested in end-

to-end latency can do only a small amount of work between each resource access;

otherwise the Tcl agent will take longer than a traditional client/server system that

accesses the resource from across the network. Second, excluding the small amount of

CPU time that the agent-enabled server saves by not writing intermediate data onto

the network, an agent-enabled server might see a CPU load as much as 500 times

higher than a server that provides the desired high-level operation directly (rather

10The string and the given substring have no characters in common.
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then providing low-level primitives and allowing an agent to combine those primitives

itself).

Of course, the actual increase in CPU load depends entirely on the resources that

the server provides and the languages that it supports. For example, if a resource

maintains a large database and allows high-level queries against this database, the

additional CPU time for an agent that makes a few independent queries against

the database might be insigni�cant, even if the agent is written in Tcl. Also, Java

and Scheme 48, which have already been integrated into the system, are only ten to

twenty times slower than natively compiled code, an overhead that more servers will

be willing to accept. In addition, there are faster execution environments such as

Omniware that can execute an agent only 25 percent slower than natively compiled

code on average [ATLLW96]; if such an environment is incorporated into Agent Tcl,

the CPU load on the server (excluding migration overhead) will be about the same

regardless of whether the server provides low-level operations and accepts agents or

provides high-level operations and does not accept agents.11

7.1.2 Agent migration

Figure 7.4 shows the time needed to create a child agent on either the local machine

or a remote machine (and for the child agent to send a 64-byte dummy result to its

parent).12 As can be seen from the Agent Tcl messages curves in Figures 7.1 and

7.2, the time needed to send the result back to the home machine is relatively small.

11Of course, the server would need to discourage agents from using slower languages, such as

imposing a harsh CPU-time limit, charging those agents more money, or disallowing those agents

altogether. Agents that were then unwilling or unable to migrate onto the machine would have to

interact with the resource from across the network.
12The data for Figure 7.4 was taken from Tables A.14 and A.13.
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Thus, agent creation is currently an ine�cient operation, taking over a tenth of a

second for even the smallest agent. Most of the overhead comes from starting up

a Tcl interpreter in which to execute the new agent. On our destination machine,

it takes approximately 60,000 microseconds for the server to exec the interpreter

and for the interpreter to read its initialization �les. In addition, when the agent is

created on a remote machine, the destination server must fork twice, once to create

the request handler and once again to exec the interpreter. When the agent is created

on the same machine, the local server must fork only once to exec the interpreter; the

request handler already exists. In both cases, the request handler must communicate

with the main server process to add the agent to the internal tables, and must copy

the registration information and the child agent's state information into the new

interpreter process.

Multi-threading the server will help here just as it helps with messages, eliminat-

ing one fork and the interprocess communication that registers the new agent with

the main server process.13 Clearly, however, the main point of attack must be the

interpreter startup time. One intermediate approach, which would cut startup time

approximately in half, is to embed the initialization �les inside the Tcl interpreter's

code, so that they do not have to be read from disk. A more attractive approach,

however, is to maintain a pool of interpreter processes, each of which has already

read the initialization �les. Then, an incoming agent is simply passed to one of these

available interpreters. In addition, to replenish the pool e�ciently (i.e., to provide

good migration times even under high load), one of the pool interpreters should al-

ways remain unused; when there are no other free interpreters left in the pool, this

unused interpreter forks to create new interpreters. It seems likely that, except for

13The fork is only eliminated for child agents created on a remote machine.
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Figure 7.4: Time in milliseconds to create a child agent and for that agent to send
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the time needed to capture and restore the state information, agent creation can be

made nearly as e�cient as sending a message.

Figure 7.5 shows the time needed for an existing agent to migrate from the home

machine to the destination machine and then back to the home machine.14 One im-

portant note is that, in contrast with the other experiments and plots, the initial and

�nal sizes are just the size of the dummy variable that is used to pad the agent. Every

agent includes approximately 2K of additional identi�cation and state information.

Thus, every agent encounters the delayed acknowledgment problem, which accounts

for 200 milliseconds of the migration overhead.15 The rest of the overhead is from

the forks and interprocess communication in the server and the time needed to start

up two interpreters, one when the agent journeys to the remote machine and another

when the agent returns to the home machine. The time needed to start the inter-

preter on the remote machine is 60 milliseconds as before; the time needed to start

the interpreter on the slower home machine is approximately 100 milliseconds. Fix-

ing the delayed acknowledgment, multi-threading the server, and maintaining a pool

of ready interpreters should reduce migration time to just the time needed to send

a message plus the time needed to capture and restore the state information. The

capture and restoration time ranges from about 3 milliseconds for a 64-byte agent to

about 76 milliseconds for a 64-kilobyte agent. Capture and restoration is ine�cient

in the current system, however, since the state information is packaged as a human-

readable Tcl list for implementation and debugging convenience. Packaging the state

14The data for Figure 7.5 was taken from Table A.15.
15Note the the delayed acknowledgment problem was not encountered when creating child agents

(Figure 7.4). The child agents were sent to the Linux machine, which does not implement the delayed

acknowledgment, and the dummy result sent back to the FreeBSD machine was small enough to �t

in one packet.
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information as a binary bytestream instead should reduce capture and restoration

time by more than a factor of two.

Combining the current creation and migration times with the 11.9 milliseconds

needed to establish a meeting, we have a somewhat negative result. When a 1-kilobyte

agent is created on a remote machine and then establishes a meeting with a service

agent, the agent must make at least 113 64-byte requests, 35 512-byte requests or 1

64-kilobyte request over the meeting before the time savings from the more e�cient

local communication outweighs the creation time. Similarly, when a 1-kilobyte agent

migrates and establishes a meeting (and later migrates back), it must make at least

345 64-byte requests, 106 512-byte requests, or 3 64-kilobyte requests. Thus, in its
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current form, Agent Tcl cannot be used for applications in which end-to-end latency

is the primary concern, except if (1) the network is extremely slow, (2) the interme-

diate results are extremely large, or (3) the downtime of an unreliable network link

contributes signi�cantly to the end-to-end latency. The performance improvements

outlined above, however, should drop these thresholds to only a handful of requests.

More speci�cally, if we eliminate interpreter startup time (60 and 100 milliseconds on

the two machines used in the experiments), eliminate the delayed acknowledgment

(200 milliseconds), improve the state capture and restoration routines (2 to 38 mil-

liseconds as agent size increases), and multi-thread the server to eliminate forks and

interprocess communication (tens of milliseconds for all agent sizes plus additional

time as agent size increases), we will reduce the creation times in Figure 7.4 by nearly

100 milliseconds for the smallest agents; similarly, we will reduce the migration times

in Figure 7.5 by nearly 400 milliseconds for the smallest agents. Conservatively as-

suming that this leaves us with 25 milliseconds to create a 1K child agent and 50

milliseconds to migrate a 1K agent to and from a remote machine, the child agent

only needs to make 21 64-byte requests, 7 512-byte requests, or 1 64-kilobyte request,

and the migrating agent only needs to make 42 64-bytes, 13 512-byte requests, or 1

64-kilobyte request.

A �nal performance note is that there is currently no overlapping of communi-

cation and processing. With both incoming agents and messages, the system �rst

receives the entire bytestream, then unserializes the bytestream, and �nally processes

the agent or message. Overlapping these activities could lead to a signi�cant perfor-

mance improvement (when the agent or message is coming from a di�erent machine),

since at least some of the processing time would be hidden inside the transmission

time. Unfortunately, although conceptually straightforward, such overlapping re-
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quires signi�cant implementation work.

7.1.3 Summary

Although several optimizations can be made to the communication subsystem, the

current communication times are promising and are su�cient for many applications.

Instead the main problem in the current system is the migration overhead. Reducing

the migration overhead and integrating faster languages should allow Agent Tcl agents

to be at least competitive with traditional client-server computing in mid-performance

networks such as our 10 megabit Ethernet, and signi�cantly better in slower or less

reliable networks.

7.2 When to migrate

Migration only makes sense under certain network and resource conditions. In this

section, we consider an application that needs to access a network resource to perform

its task and that wants to minimize its total completion time. We derive a formula

that indicates whether the application should be written as (1) a stationary client

process that interacts with the resource over a standard TCP/IP connection or (2) a

mobile agent that migrates to the location of the resource, interacts with the resource

using the Agent Tcl communication primitives, and then migrates back to the home

machine. To simplify the formula, we make four assumptions.

� The stationary client and the mobile agent are written in the same language.

� All machines in the network are the same and are lightly loaded.

� Links between machines never go down.

� Machines never go down.
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With these four assumptions, the formula does not have to take into account

machine speeds, machine loads, the expected downtimes of machines and links, or

the relative execution speed of native and mobile code.

The data used to derive the formula was obtained experimentally in an isolated

network of two machines. Each machine was a 133 MHz Pentium laptop running

Linux 2.027. Each machine had 16 MB of physical memory and 64 MB of swap

space. Depending on the experiment, the two machines were connected with a 28.8

Kb/s modem link, a 2.0 MB/s wireless Ethernet link, or a 10.0 MB/s wired Ethernet

link.

Figure 7.6 shows the time needed for two agents on the same laptop to exchange

a request and response, either over an Agent Tcl meeting or with the send and

receive primitives.16 The time is plotted as a function of the total number of bytes

transferred, i.e., the request size plus the response size. As in the previous section,

the meeting data does not include the time needed to establish the meeting.

Computing the best-�t linear functions with discrete least-squares approximation,

we see that the time t in milliseconds for the two agents to exchange an S-byte request

and an R-byte response over an Agent Tcl meeting is

t = 0:00066(S +R) + 0:65 (7.1)

Similarly, the time for the two agents to exchange a request and response using

the send and receive primitives is

t = 0:0013(S +R) + 4:3 (7.2)

16The data for Figure 7.6 was taken from Tables B.2 and B.1.
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The top graph in Figure 7.7 shows the time needed for a client and server process

on di�erent laptops to exchange a request and response over a 28.8 Kb/s modem

connection.17 As before, the time is plotted as a function of the total number of bytes

transferred. The bottom graph in Figure 7.7 shows the time needed for a Tcl agent

to migrate from one laptop to the other and back, again over a 28.8 Kb/s modem

connection. As in the client/server case, the time is plotted as a function of the

total number of bytes transferred, i.e., the agent's initial size (its size when it leaves

the home machine) plus the agent's �nal size (its size when it returns to the home

machine). Similarly, the graphs in Figure 7.8 show the client/server and mobile-agent

times for a 2.0 Mb/s wireless Ethernet connection, and the graphs in Figure 7.9 show

the times for a 10.0 Mb/s wired Ethernet connection.18 As in the previous section,

the client/server data does not include the time needed to establish the connection.

Once again approximating the data with a best-�t linear function, we obtain

three equations for the time that it takes the client and server processes to exchange

a request and response.

t = 0:1785(S +R) + 272 (28.8 Kb/s modem) (7.3)

t = 0:0070(S +R) + 17 (2.0 Mb/s wireless Ethernet) (7.4)

t = 0:0011(S +R) + 1 (10 Mb/s wired Ethernet) (7.5)

Similarly, we obtain three equations for the time that it takes the Tcl agent to

make its round-trip migration. In these three equations, I is the initial size of the

17The data for Figure 7.7 was taken from Tables B.3 and B.4.
18The data for Figure 7.8 was taken from Tables B.5 and B.6. The data for Figure 7.9 was taken

from Tables B.7 and B.8.
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Figure 7.6: The top graph shows the time in milliseconds for two agents on the same

laptop to exchange a request and response over an Agent Tcl meeting; the bottom

graph, with Agent Tcl messages. The points are the actual data; the lines are the

best-�t linear functions (least-squares approximation). Each data point is the average

of multiple timings; the largest standard deviation was 3.2 percent.
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Figure 7.7: The top graph shows the time in milliseconds for two client/server pro-

cesses on di�erent laptops to exchange a request and response over a 28.8 Kb/s

modem link; the bottom graph, for an agent to migrate from one laptop to the other

and back. The points are the actual data; the lines are the best-�t linear functions

(least-squares approximation). Each data point is the average of multiple timings;

the largest standard deviation is 5.4 percent.
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Figure 7.8: The top graph shows the time in milliseconds for two client/server pro-

cesses on di�erent laptops to exchange a request and response over a 2.0 Mb/s wireless

Ethernet link; the bottom graph, for an agent to migrate from one laptop to the other

and back. The points are the actual data; the lines are the best-�t linear functions

(least-squares approximation). Each data point is the average of multiple timings; the

largest standard deviation is 13.4 percent (but the deviation is less than 5.1 percent

for all but three data points).
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Figure 7.9: The top graph shows the time in milliseconds for two client/server pro-

cesses on di�erent laptops to exchange a request and response over a 10 Mb/s Ethernet

link; the bottom graph, for an agent to migrate from one laptop to the other and back.

The points are the actual data; the lines are the best-�t linear functions (least-squares

approximation). Each data point is the average of multiple timings; the largest stan-

dard deviation is 24.0 percent (but the deviation is less than 5.2 percent for all but

nineteen data points).
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agent, and F is the �nal size of the agent.

t = 0:1786(I + F ) + 1581 (28.8 Kb/s modem) (7.6)

t = 0:0091(I + F ) + 360 (2.0 Mb/s wireless Ethernet) (7.7)

t = 0:0035(I + F ) + 337 (10 Mb/s wired Ethernet) (7.8)

In general, these equations match our expectations. The constant in each migra-

tion equation is larger than the constant in the corresponding client/server equation,

since migration involves the additional overhead of establishing a TCP/IP connection

between the migrating agent and the destination server, forking a request handler,

and starting up the Tcl interpreter, all of which are constant across all agent sizes.

Similarly, the coe�cient in each migration equation is larger than the coe�cient in

the corresponding client/server equation, since migration involves the additional over-

head of capturing and restoring a state image and copying the state image from the

request handler to the new Tcl interpreter, both of which are linear in the agent size.

Now assume that an application needs to invoke n operations against some net-

work resource; the expected request size is S bytes and the expected response size is

R. Using Equation 7.3, the time for the stationary client process to invoke these n

operations over the 28.8 Kb/s modem connection is

tn = n(0:1785(S + R) + 272) (7.9)

Using Equations 7.1 and 7.6, and noting that it takes 19 milliseconds to establish

an Agent Tcl meeting on the laptops that were used in the experiments, the time for
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the mobile agent to invoke the same n operations is

tn = 0:1786(I + F ) + 1581 + n(0:00066(S +R) + 0:65) + 19 (7.10)

This equation simply sums the time to migrate to and from the resource location,

the time to invoke the n operations over an Agent Tcl meeting, and the time to

establish the meeting. Assuming the agent carries only the result of the last operation

back to its home machine, we have F = I +R and can rewrite Equation 7.10 as

tn = 0:1786(2I +R) + n(0:00066(S +R) + 0:65) + 1600 (7.11)

Combining Equations 7.9 and 7.11, we see that when the two machines are con-

nected with the 28.8 Kb/s modem link, the mobile agent outperforms the stationary

client process whenever

0:1786(2I +R) + n(0:00066(S +R) + 0:65) + 1600 < n(0:1785(S +R) + 272)

(7.12)

Solving for n, we have

n >
0:1786(2I +R) + 1600

0:1778(S +R) + 271
(7.13)
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Following the same process, when the two machines are connected with the 2.0

Mb/s wireless Ethernet link, the mobile agent outperforms the stationary client pro-

cess whenever

n >
0:0091(2I +R) + 379

0:0063(S +R) + 16
(7.14)

Finally, when the two machines are connected with the 10.0 Mb/s wired Ethernet

link, the mobile agent outperforms the stationary client process whenever

n >
0:0035(2I +R) + 356

0:0004(S +R) + 2
(7.15)

With these three equations, we can calculate the minimum number of operations

that a migrating Tcl agent must invoke against a particular resource for it to out-

perform stationary client/server processes. Figure 7.10 shows the minimum number

of operations for a 1KB agent. If the agent is performing fewer operations, it should

remain on the home machine. If it is performing more operations, it should migrate

to the resource location and then back to the home machine.

We can combine our three equations into a single equation easily. The time for

a client and server process to exchange n requests and responses over a TCP/IP

connection is

tn = n(TB(S +R) + TL) (7.16)
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where TB and TL are the network-speci�c parameters that we determined experimen-

tally in each of the three cases (e.g, TB = 0:1785 and TL = 272 for the 28.8 Kb/s

modem connection as seen in Equation 7.3. Similarly, the time for an agent to migrate

to a remote machine and then back home is

tn = AB(2I +R) + AL + n(0:00066(S +R) + 0:65) + 19 (7.17)

(As before, the last two terms are the time to exchange n requests and responses

over a local Agent Tcl meeting and the time to establish that meeting.) Combining

these two equations, we �nd that the agent should migrate whenever

n >
AB(2I +R) + AL + 19

(TB � 0:00066)(S +R) + TL � 0:65
(7.18)

Although this equation is a useful starting point, it must be improved in several

ways. First, although the four parameters, AB, AL, TB and TL, can be calculated

easily from network measurements, they are too high-level. For example, the equation

should be recast in terms of the observed network bandwidth, rather than the observed

round-trip migration time. Second, the equation applies only to a speci�c machine

architecture, and only when each machine is lightly loaded. For example, the time

to establish an Agent Tcl meeting and to exchange a request and response over that

meeting is \hard-coded" into the equation. Although each machine might measure the

meeting times experimentally (and then make the measurements available to agents),

the equation should be extended to include machine loads and relative speeds. Finally,

the equation applies only to a very speci�c agent behavior, i.e., the agent migrates
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to the remote machine, interacts with a resource, and migrates back to the home

machine. Many other agent behaviors are possible. The equation should be turned

into a set of equations that will help an agent pick the best behavior for its current

environment.

7.3 Performance studies from other projects

Although few performance studies are reported for any mobile-agent system, there

are a few interesting results from other projects.

Agent languages. Omniware programs are compiled into intermediate code for

a RISC-based virtual machine and then into software-fault-isolated (SFI) native code;

this code runs only 25 percent slower than natively compiled code on average [LSW95,

ATLLW96]. Java programs are compiled into intermediate code for a stack-based

virtual machine and then either interpreted or compiled on-the-y into native code.

When interpreted, Java programs run 10 to 20 times slower than natively compiled

C or C++ [CH97]. When compiled on-the-y into native code, Java programs run

2 times slower than natively compiled C or C++ if they are compute-intensive.19

Since Omniware and Java both protect the local machine from malicious code, these

performance numbers mean that agents can be executed nearly as fast as native code

(as long as the agents are compiled for the appropriate virtual machine). In turn, this

means that, excluding migration overhead, a server will see about the same CPU load

regardless of whether it provides a high-level operation directly or provides low-level

primitives and allows a migrating agent to implement the high-level operation itself.

19The author has not been able to �nd any formal performance study of just-in-time compilation

for Java. The statement is based on marketing information for the various Java virtual machines as

well as informal benchmarks such as the Ca�eineMarks.
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Sumatra. One application of Sumatra is an Internet chat server that positions

itself so as to minimize the maximum latency between itself and its clients [RASS97].

The chat server can migrate to any machine that is participating in the chat conver-

sation. Resource monitors continually monitor the maximum latency between each

machine and others and periodically sends the latency information to the chat server.

If another machine has a better maximum latency than the server's current machine,

and this better maximum latency remains stable for some period of time, the chat

server migrates to the other machine. The Sumatra developers tested their mobile

chat server in a local area network, but added delays to each network link from Inter-

net latency traces, producing a rough approximation of the Internet. In the tests, the

average maximum latency between the mobile chat server and its clients was nearly

four times less than between a stationary chat server and its clients.

Tacoma. Within the context of the StormCast weather-monitoring system, the

Tacoma group compared two di�erent ways of determining the maximum temper-

ature within a particular range of days [Knu95]. In the �rst approach, the entire

temperature record for the days of interest is downloaded to the client machine. In

the second approach, a mobile agent is sent to the machine where the temperature

record is stored; the agent then extracts and returns only the desired maximum tem-

perature. The mobile agent was written in either Tcl or compiled C. Due mainly to

migration overhead and the slowness of Tcl, they found that the mobile agent had

better performance only when the agent was written in compiled C, and the tempera-

ture record for the desired period took up nearly one hundred kilobytes [Knu95]. This

particular task, however, is probably the worst possible use of Tcl, as we saw above

when �nding a minimum integer in some set of integers. Reducing migration over-

head and using a faster language such as Java might provide competitive performance
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without resorting to compiled code.

A second Tacoma performance study [JSvR97] found that it takes 21.7 millisec-

onds to start a null agent on a remote machine. The code for the agent was already

on the remote machine, the parameters to the agent were 42 bytes of dummy data,

and both the local and remote machines were 160 MHZ Hewlett-Packard C-160 work-

stations. In contrast, Agent Tcl takes 128 milliseconds to submit a 64-byte null agent

to a remote machine and then receive a 64-byte result message from that agent. The

code for the agent was part of the 64 bytes, the local machine was a 133 MHz Intel

Pentium workstation, and the remote machine was a 200 MHz Intel Pentium worksta-

tion. The Tacoma time is much lower because it measures only how long it takes for

the remote machine to acknowledge the correct startup of the new agent. In contrast,

the Agent Tcl time measures how long it takes for the new agent to send back its

result message, which includes not only the time needed to send the message but also

the time needed for the Tcl interpreter to read and evaluate a set of initialization

scripts. In addition, Agent Tcl must add the new agent to its server tables, which

involves additional interprocess communication. Once these di�erences are taken into

account, the Tacoma and Agent Tcl times are comparable.

Network management. Steward and Appleby use lightweight mobile agents

to control tra�c congestion in a circuit-switched telecommunications network [SA94,

AS94]. There are two kind of agents: load-management agents, which �nd routes

that have the highest spare capacity and adjust routing tables accordingly, and em

parent agents, which randomly walk around the network and launch load-management

agents when an overload is detected. None of the agents communicate directly but

instead leave messages at each node that other agents can read; old messages are

given less weight and eventually purged. The messages indicate whether a load agent
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has recently been launched on that node, whether a parent agent has recently visited,

and so on. In their experiments, the mobile agents reduced maximum node utilization

by between 39 and 50 percent, in addition, there were no overloaded nodes and no

unused nodes [SA94, AS94]. The authors acknowledge that the same e�ect could be

achieved with a more traditional distributed algorithm, but argue that mobile agents

provide an extremely fault-tolerant solution without undue programmer e�ort. In

particular, agents can randomly disappear without having any negative impact on

the overall algorithm.
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Chapter 8

Applications

Mobile agents are best viewed as a tool for implementing distributed applications,

rather than as an enabling technology. In other words, their advantage lies not so

much in making new distributed applications possible, but rather in providing a uni-

�ed programming model and improving the performance of existing applications. Per-

formance can be a matter of network utilization, completion time, programmer con-

venience, or simply availability (during a period of network disconnection). Like most

mobile-agent systems, therefore, Agent Tcl is intended for use in general distributed

applications. In this chapter, we �rst describe applications of other mobile-agent sys-

tems, briey considering whether each application can be implemented e�ectively in

the current Agent Tcl system. Then we present the existing applications of Agent

Tcl.

8.1 Other systems

Kali Scheme. [CJK95] suggests several applications for Kali Scheme: load balanc-

ing, where executing threads are moved to a lightly loaded machine; incremental

distributed linking, where a new procedure (such as a debugging or monitoring pro-

cedure) is dynamically inserted into a distributed computation; parameterized client-
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server applications, where a client and server o�oad work to each other in the form

of shipped procedures; distributed data mining and information retrieval, where an

arbitrary search procedure is sent to a database rather than bringing large amounts

of data across the network; and executable content in messages, where a message

includes a program that performs some useful action on the local machine, such as

installing new software or presenting an application front-end to the user. Using

mobile agents for load balancing is questionable, since existing mobile-agent systems,

including Agent Tcl and Kali Scheme, use interpreted languages that run at least

several times slower than native code. Thus, the price of load balancing with mobile

agents is a signi�cant increase in the required CPU time, leading to longer comple-

tion times unless a large number of lightly loaded machines are available. As agent

languages become faster1, general load balancing will be a more reasonable applica-

tion. At the same time, if mobile agents are chosen for other reasons, the agents can

be load-balanced easily, since they can migrate at will from one machine to another.

Incremental linking is also questionable since, as with load balancing, the price of the

dynamic code insertion is interpretive overhead. In fact, such dynamic code insertion

can be achieved easily in natively compiled code [HG97]. Again, if mobile agents

are used for other reasons, such dynamic code insertion would be a useful capability.

We do not have any immediate implementation plans, however, since code insertion

introduces additional security issues and is only useful in a few applications; most

applications can be organized as collections of small, cooperating agents that are re-

placed when needed. The last three applications are all variations on the same theme,

1Omniware, for example, uses on-the-y compilation and software fault isolation to securely

execute a C++ program only 25 percent slower than natively compiled code [LSW95]; similar

approaches are just starting to �nd their way into mobile-agent systems.
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either moving computation from client to server (e.g., a query against a database) or

from server to client (e.g., a graphical front-end for a database), eliminating all inter-

mediate network transmission and reducing either overall or per-operation latency.

Whether migrating a query reduces overall latency depends on the number of cross-

network calls eliminated, the amount of data per call, the relative speed of agents

versus native code, and the relative speed of the client and server machines. On the

other hand, migrating a graphical front-end almost always reduces per-operation la-

tency, since the amount of processing per user event (e.g., a mouse click) is typically

small. This client-server \customization" is one of the main applications for Agent

Tcl, although migrating a Java or Scheme agent is more often a performance win

than migrating a Tcl agent, due to the slowness of Tcl.

Messengers. Messengers are oriented towards communication protocols and dis-

tributed operating systems [DiMMTH95]. If a machine wants to communicate with

a remote machine that does not understand the desired communication protocol, it

dispatches a messenger that implements the protocol; this messenger lives on the

remote machine and handles the communication channel on its behalf. Agent Tcl

can be used in a similar manner. Like the Messenger system, however, Agent Tcl

is more suited to application-level rather than network-level protocols due to the in-

terpretive overhead. For example, an application can dispatch a graphical front-end

to a remote machine, replacing the transmission of individual screen updates with

application-speci�c requests and responses. In the case of a distributed operating

system, each machine would have a small microkernel; the rest of the operating sys-

tem would be implemented as messengers that dynamically distribute themselves as

needed [TDiMMH94]. Although this is an interesting use of mobile agents, no ex-

isting mobile agent system (including Messengers) seems e�cient enough to be used
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for arbitrary system-level components, which means that the native \microkernel"

must be relatively large. Agent Tcl certainly cannot be used at the system level in

its current state. It must either provide a language that can be compiled on-the-y

into native code, or accept native code directly from certain highly trusted sources.

Of course, accepting native code directly makes it much more di�cult to handle a

heterogeneous environment.

Sumatra. [RASS97] suggests several applications for mobile programs: searching,

�ltering and combining \periodically generated large-volume datasets"; positioning

a video or Internet chat server to minimize the average latency between the server

and its clients; prefetching web pages; and more generally moving a network-intensive

computation from a mobile computer to a dynamically selected proxy site within the

permanent network. Agent Tcl can be used e�ectively in all of these applications,

although most of them would need to use Java rather than Tcl to achieve su�cient

speed; the chat server is a possible exception since it does relatively little processing

per message.

Tacoma. The Tacoma system is used primarily in StormCast, a distributed

weather-monitoring system in which the data volumes are so immense as to make

data movement impractical [JvRS95]. Mobile agents allow new �ltering and monitor-

ing operations to be rapidly constructed and deployed to the data and sensor loca-

tions. The Tacoma project found that Tcl was too slow for their compute-intensive

operations, but did not experiment with a more e�cient interpreted language such

as Java or with on-the-y compilation. If Java is fast enough, Agent Tcl can be used

\as-is" for the StormCast simulation; otherwise we must wait until Agent Tcl pro-

vides on-the-y compilation for at least one of its languages. Tacoma is also used in

active documents and to manage software installation within a networked collection
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of machines [JvRS96]. Agent Tcl can be used e�ectively in both, although active

documents require additional infrastructure to inject an agent embedded inside a

document into the local agent system.2

Telescript. Telescript was used primarily in active mail, network and platform

management, and electronic commerce [Rei94]. In active mail, a Telescript agent

is embedded inside an e-mail message; the agent is executed when the message is

received or viewed. Typically such an agent might allow the user to sign up for

some service, asking the user for needed information and then contacting the service

provider. One platform-management application is automatic software updates. An

agent carries the necessary �les onto a machine, installs the �les itself and then

disappears. In electronic-commerce applications, a Telescript agent might leave a

personal digital assistant (PDA), search multiple electronic catalogs for a certain

product, return to the PDA with the best vendor and price, and then optionally leave

the PDA again to actually purchase the product. Agent Tcl can be used for all of

these applications, although active mail requires additional infrastructure, speci�cally

a MIME type for Agent Tcl agents and a corresponding \viewer" that injects the agent

into the local agent system.3

Mobile Service Agents (MSA). The Mobile Service Agent (MSA) system is

used primarily for \follow-me" computing in which an application moves to the lo-

cation of the user for more e�cient interaction. The main MSA demo involves a

conference proceedings [TLKC95]. When a user connects his laptop to the confer-

ence's machines, an agent containing the conference proceedings, site map and local

points of interest is sent to the laptop. The user interacts with the conference proceed-

ings via this agent and can continue interacting even when the laptop is disconnected.

2This infrastructure is easy to implement.
3This infrastructure is also easy to implement.
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Other suggested applications include active e-mail, distributed information retrieval,

software updates in telecommunications switches, software updates for general user

applications (that are organized as a collection of cooperating agents), and auto-

matic introduction of new components into a computer-aided manufacturing system

[TLKC95, Kna96]. Except for telecommunications software, which demands code

speed that existing mobile-agent systems cannot deliver, all of these applications are

reasonable uses for mobile agents in general and Agent Tcl in particular.

Network management. As discussed in the performance analysis section, Stew-

ard and Appleby use lightweight mobile agents to control tra�c congestion in a circuit-

switched telecommunications network [SA94, AS94]. Load-management agents �nd

the routes that have the highest spare capacity and adjust routing tables accordingly;

parent agents randomly walk around the network and launch load-management agents

when an overload is detected. Agent Tcl is not yet suited for such an application since

its migration overhead is large; however, once migration overhead is reduced, Agent

Tcl's Java agents should provide su�cient performance, since the agents are perform-

ing only a small amount of computation per node. Agent Tcl also does not allow a

migrating agent to leave messages behind at a node, but such a mechanism can be

added easily.

8.2 Agent Tcl

Due to the research interests of the other Agent Tcl project members, Agent Tcl

is used primarily in workow, noti�cation, and information-retrieval applications.

Before describing these applications, it is useful to examine the code for a simple,

complete Tcl agent that determines which users are logged onto some set of machines.

This \who" agent is shown in Figure 8.1. The agent accepts a list of machines as
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input and then migrates from machine to machine with the agent jump command,

executing the Unix who command on each one. Once the agent has migrated through

all the machines, it uses agent jump one last time to return to the home machine,

where it presents the list of users to its owner.

Although its task is simple and can be accomplished easily without a mobile agent,

the \who" agent illustrates the general form of any agent that migrates sequentially

through a set of machines. Existing Agent Tcl agents that fall into this category

are a workow agent that carries an electronic form from user to user [CGN96] and

a medical agent that retrieves distributed medical records based on certain criteria

[Wu95]. The workow agent must migrate sequentially since the users need to �ll

out the sections of the form in order. The medical-retrieval agent chooses to migrate

sequentially since the agent can discard potential candidates as it travels through the

distinct databases; spawning one child agent per remote database or interacting with

the databases using the traditional client/server approach increases the total network

tra�c even when only a single operation is being performed against each database.

In addition, the workow and medical agents do not require continuous contact

with the home machine and will continue their task even if the home machine becomes

temporarily disconnected. The agents are also extremely easy to implement. The

code is written as if every resource is local to the agent; the only di�erence is that the

agent jump command is used to move the agent from one machine to the next. The

agent jump command is not strictly necessary since we could continually resubmit

a Tcl procedure that was parameterized according to the current status of the task;

the procedure would use the parameters to determine what it needed to do on the

current machine [JvRS95]. Such an approach, however, requires that the programmer

explicitly collect the necessary state information. In the \who" agent, this state
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      agent_jump $machine              # jump to each machine
      append output [exec who]        # any local processing
}

agent_jump $agent(home)              # jump back home

# display output window

agent_end                                        # unregister

agent_begin           # register with the local agent server

set output {}
set machineList {muir tenaya ...}

    

A

foreach machine $machineList {

Home (bald)

A

Tenaya

Muir

A ...

Figure 8.1: The \who" agent migrates through a set of machines and �gures out who

is logged onto each one. Although the \who" agent is not the most useful agent, it

illustrates the general form of any agent that migrates sequentially through a set of

machines (and is short enough to �t on one page). The exec who can be replaced

with any desired processing.
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information is nothing more than an index into the machine list, but more and more

state information is required as the agent becomes more complex.4 The agent jump

command captures all the state information automatically.

An example noti�cation agent is the \alert" agent that monitors a speci�ed set

of remote resources and noti�es its owner of any change in resource status. Figure

8.2 shows an \alert" agent that monitors a set of �les and noti�es the user if the

status of a �le changes signi�cantly (monitored characteristics include the Unix rwx

bits and the �le size). The agent creates one child agent for each remote �lesystem

using agent submit. Each child agent monitors one or more �les in its �lesystem

and sends a message to the parent when the status of a �le changes signi�cantly. The

parent then contacts the owner's \mail" agent to send an e-mail message.

Since the child agents know which status changes are \signi�cant", only the sta-

tus changes that the user actually wants to see are transmitted across the network.

Without mobile agents, either the remote machine would have to send back a noti-

�cation of every change (which the application would �lter on the home machine),

or the appropriate monitoring routines would have to be pre-installed on the remote

machine, limiting the application to the changes that the remote administrator con-

siders signi�cant. With mobile agents, the application can monitor for status changes

according to any desired criteria while minimizing the ongoing network tra�c.

A recent information-retrieval agent is the technical-report searcher that was dis-

cussed in the motivation section and that is shown again in Figure 8.3. The agent's

task is to search a distributed collection of technical reports for information relevant

to the user's query. The agent �rsts asks the user to enter a free-text query. Then,

4The workow agent, for example, must carry along all user-entered information. The medical-

retrieval agent must carry along the results from each database.
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  # status of a file has changed; then send an alert message to the user
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Create
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set machines "bald moose"
set directory "~rgray"

  # get a name from the server

agent_begin 

set email_agent "bald rgray_email"      # machine and name of email agent

  # submit the "file" agents that watch for changes in file size

  # by asking the user’s email agent to send a message to its owner

while {1} {

}

  agent_receive code string -blocking
  set alert [construct_alert $string]
  agent_send $email_agent {SEND OWNER $alert}

for each m $machines {
  agent_submit $m -vars directory -proc file_watch {file_watch $directory}
}

  # wait for one of the "file" agents to send a message saying that the

Figure 8.2: The \alert" agent monitors a set of �les and sends an e-mail message

to the user when the status of a �le changes signi�cantly. A simpli�ed version of

the \alert" agent appears at bottom; procedure file watch, which polls the �les

at regular intervals using the file stat command, and procedure construct mail,

which constructs a readable mail message, are not shown. The network location of

the various agents is shown at top.
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if the connection between the home machine and the network is reliable and of high

bandwidth, the agent will stay on the home machine. If the connection is unreliable

or of low bandwidth, such as if the home machine is a mobile device, the agent will

jump to a proxy site within the network. This initial jump reduces the use of the

poor-quality link to just the transmission of the agent and the transmission of the

complete result, allowing the agent to proceed with its task even if the link goes down.

The proxy site is dynamically selected according to the current location of the home

machine and the document collections.

Once the agent has migrated to a proxy site if desired, it must interact with the

stationary agents that serve as an interface to the technical-report collections. If

these stationary agents provide high-level operations, the agent simply makes RPC-

style calls across the network (using the agent-communication mechanisms). If the

stationary agents provide only low-level operations, the agent sends out child agents

that travel to the document collections and perform the query there, avoiding the

transfer of large amounts of intermediate data. Once the agent has the results from

each child agent, it merges and �lters these results, returns to the home machine

if necessary, and presents the results to the user. Finally, although the behavior

exhibited by this agent is complex, it requires surprisingly little code; the decisions

whether to jump and create children involve little more than two if statements that

check the information returned from the network monitor on the home machine and

from the directory services.

The salesman agent shown in Figure 8.4 is similar to the technical-report searcher

except that it operates in two phases. First, the user enters a description of the

desired product. Then the agent queries the yellow page directory services to identify

vendors that might sell the product, and then queries each vendor to obtain product
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Figure 8.3: Technical report searcher. Here an agent searches a distributed collection

of technical reports for information relevant to a user query. Depending on current

network conditions and the granularity of the search engine interfaces, the agent might

move to a proxy site within the permanent network and/or send child agents to each

collection site.
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availability and pricing. During this process, the agent might migrate to a proxy

site, and might send child agents to each vendor, depending on the network links and

vendor interfaces. Once the agent has the list of vendors and prices, it returns to

the home machine and allows the user to select one or more products to purchase. If

the user does select a product, she provides the agent with the appropriate amount

of electronic cash, and the agent journeys into the network again to exchange the

electronic cash for the product (or for some non-repudiable proof of purchase).

Agent Tcl has also been used to retrieve three-dimensional drawings of mechanical

parts from distributed CAD databases [CBC96], to track purchase orders [CGN96],

and in several information-retrieval applications at external sites.

8.3 Summary

None of these applications require mobile agents. Mobile agents, however, allow the

applications to be implemented easily within a single, general framework, without

such things as application-specify proxies and server operations, queued RPC, or au-

tomated installation facilities. We have not done any performance analysis on these

applications yet, choosing instead to implement some of the more obvious perfor-

mance improvements �rst. Since the existing agents are all written in Tcl, however,

their end-to-end latency is worse than alternative implementation techniques, due to

the migration overhead, the slowness of Tcl, and the moderate data volumes involved

in our applications. On the other hand, the existing agents do reduce network uti-

lization signi�cantly and can continue with their task if the network link with the

home machine is down. In addition, with faster languages and additional system

engineering, they should be competitive in terms of end-to-end latency as well.
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product, queries the yellow page directories to identify vendors who might sell the

product, queries these vendors, returns the possible purchase locations and prices to

the user, and �nally purchases any selected product with electronic cash.
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Chapter 9

Other components

The Agent Tcl project includes many other graduate and undergraduate students

from the Thayer School of Engineering and the Department of Computer Science.

In this chapter, we present some of the components that these students have imple-

mented, both to highlight their excellent work and to provide a complete picture of

Agent Tcl's current capabilities.

9.1 Debugging

One of the main challenges facing an agent developer is debugging a broken agent,

especially since the agent physically moves from machine to machine during its execu-

tion and does not necessarily stay in contact with the home machine. In the absence

of debugging tools, the developer has to manually add debugging code that sends

constant status updates to the home machine, since otherwise the �rst indication of

a problem would be when the agent either disappeared forever1 or returned with in-

correct information. The addition and maintenance of this debugging code becomes

tedious extremely quickly (as in the more common case of debugging a stationary pro-

1Of course, the agent's owner can never know that the agent has disappeared, only that it has

not returned within some expected worst-case time.

173



gram). Therefore Melissa Hirschl2 wrote an interactive, graphical debugger for Agent

Tcl [HK97]. The debugger tracks the agent as it moves from machine to machine,

monitors its communication with other agents, and provides the traditional debugger

features such as breakpoints, watch conditions, and line-at-a-time execution. Figure

9.1 shows the debugger interface while debugging the \who" agent from Figure 8.1.

The agent's code appears in the top half of the window, and an execution history

appears in the bottom half. A breakpoint can be associated with any line or with

any agent event (such as migration or incoming communication from other agents).

In this case, the agent has been told to break on migration and has suspended its

execution at the agent jump command, right before jumping to the next machine in

its list. While the agent is suspended at the breakpoint, the user can add new break

points or watch conditions and can inspect all de�ned variables and procedures.

There are several issues that must be addressed. First, the debugger currently

works for Tcl agents only. The debugging routines must be separated into language-

dependent and language-independent modules and appropriate language-dependent

modules must be written for Java and Scheme. Second, there is no debugging sup-

port built into the Agent Tcl system itself. Instead the debugger simply instruments

the agent so that the agent sends back constant status reports and drops into an

\inspect-and-evaluate" mode at each breakpoint. Although not requiring any debug-

ging support from the Agent Tcl system is advantageous in its own way, it does lead

to a much more complex debugger. Moving some of the debugging functionality into

the Agent Tcl core would allow a cleaner and more e�cient implementation. Likely

work along this line is to (1) make Agent Tcl optionally call debugger-speci�ed code

2Melissa Hirschl graduated in 1997 with a Master's degree in computer science. She has taken a

job in the SunScript group at Sun Microsystems.
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Figure 9.1: The Agent Tcl debugger. The debugger tracks the agent as it travels

through the network, monitors its communication with other agents, and provides

traditional features such as breakpoints, watch conditions and line-at-a-time execu-

tion. Here we are debugging the \who" agent and have told the debugger to break

before each jump.
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before and after agent events and (2) make the system aware of the identity and lo-

cation of the debugger so that the system itself can contact the debugger if the agent

dies due to some exceptional condition. Finally, the debugger interface is still heavily

text-based. Current work is aimed at providing various graphical representations of

an agent's path through the network and its communication with other agents.

9.2 Docking

Mobile agents are particularly useful when dealing with mobile hosts that do not have

a permanent network connection. By migrating to or from a mobile host, an agent

can continue interacting with a user or network resource respectively, even if the link

between the host and network goes down. A basic problem, however, is what to do

when an agent tries to visit or leave a mobile host that is currently disconnected from

the network. The naive solution of having the agent poll the network connection

is extremely ine�cient. Instead Ting Cai, Saurab Nog, Vishesh Khemani and Jun

Shen3 have developed a docking system that allows agents to simply go to sleep until

the network connection is available again [GKN+97]. This docking system is shown

in Figure 9.2. Each mobile host has an associated dock, which is some permanently

connected machine within the network. A stationary agent called the dockmaster

runs on each dock machine. If an agent wants to visit the mobile host, it �rst tries

to migrate directly to the host. If the migration fails, the agent transfers itself to the

3Ting Cai graduated in 1996 with a Master's degree in computer science and is currently working

at Bay Networks. Saurab Nog graduated in 1996 with a Master's degree in computer science and is

currently working at Microsoft. Vishesh Khemani and Jun Shen are undergraduates in the computer

science department. Both have spent several semesters working on the Agent Tcl project and will

graduate in 1998.
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dock, adds itself to the dockmaster's queue of waiting agents, and goes to sleep. The

dockmaster waits until it makes contact with the mobile host. This contact happens

in one of two ways. First, the mobile host noti�es the dockmaster of its current

network address whenever it reconnects to the network. Second, the dockmaster

periodically polls the last known location of the mobile host (at long intervals). This

polling is required since the initial migration will occasionally fail due to network

congestion, even though the mobile device was actually connected to the network. In

either case, once the dockmaster makes contact with the mobile host, it forwards all

waiting agents onto the host. In addition to the dockmaster on the dock, there is also

a dockmaster on the mobile host itself. This second dockmaster handles agents that

are trying to leave the host. If an agent tries to leave while the network connection

is down, it adds itself to the local dockmaster's queue and goes to sleep. As soon as

the host reconnects to the network, the local dockmaster forwards all waiting agents

to the appropriate destination.

The docking system is implemented entirely at the agent level and is completely

transparent to the agents that use it. It has two notable weaknesses, however. First,

it handles only migration. It must be extended to handle inter-agent communication

as well, so that an agent does not have to continually resend a message if its or the

recipient's network connection is down. Second, Agent Tcl itself has no knowledge of

a device's temporary IP address; it knows only the device's permanent IP address;

Thus agents and messages are always directed to the permanent IP address, leading

to an unnecessary trip through the dock if the device is actually connected but is at a

di�erent address. To �x this problem, each migrating agent should include both the

permanent and current address of its sending machine and the permanent and last-

known address of its home machine. In addition, each message should include both
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Figure 9.2: The Agent Tcl docking system. Each mobile host (M)has an associated

dock (M Dock). When an agent cannot reach the mobile host directly, it goes and

waits at the dock. The dockmaster on the dock periodically polls the mobile host,

and the mobile host noti�es the dockmaster whenever it reconnects to the network.

In either case, once the dockmaster makes contact with the mobile host, all waiting

agents are forwarded.
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the permanent and current address of the sending machine. Finally, the dockmasters

should report the last-known IP address of the mobile machine, either on demand

or whenever they accept an agent or message for later delivery. With the current

and last-known IP addresses included in agent communication whenever possible,

the servers can maintain a cache of last-known IP addresses and direct outgoing

agents and messages to the last-known address of the destination machine, making

the docking system much more e�cient and exactly analogous to mobile IP [Joh95].

In fact, once mobile IP is widely available, the implementation of the docking system

will become much simpler.4

9.3 Yellow pages

In a real-world environment, an agent must identify, locate and use previously un-

known services. To this end, Dawn Lawrie, Mark Hoagland and Joseph Edelman5

have developed a hierarchical service index [GKN+97]. This hierarchical index is im-

plemented as a set of stationary yellow page agents, which maintain a set of entries

that refer to speci�c service agents as well as other yellow page agents. Each entry

contains a set of named �elds. Each �eld contains either a keyword list or a de�nition

of the interface that the server agent supports. Possible interface de�nitions include

a set of KQML queries [GSS94] or a set of Agent RPC functions [NCK96]. To �nd a

service, an agent contacts a yellow page agent and does an exact or ranked search on

the contents of one or more �elds. If this search returns other yellow page agents, the

agent can optionally recurse and make the same query of these other agents. In any

4The docking system is still necessary so that agents do not have to poll the network connection.
5Dawn Lawrie graduated with a B.A. in computer science in 1997. Mark Hoagland and Joseph

Edelman are both undergraduates in the computer science department and will graduate in 1998

and 1999 respectively. All three have spent several semesters working on the Agent Tcl project.
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event, once the agent has a list of service agents, it will proceed to interact with one

or more of those agents. To notify other agents of an available service, a service agent

posts a description of its service to one or more yellow page agents. This description

is simply the named �elds, keyword lists, and interface de�nitions that should be

added to the yellow page databases.

The yellow page system is used in most of our example applications, most notably

the salesman application that was shown in Figure 8.4. Work is underway to (1)

develop a standardized set of �elds for describing agent services and (2) make the

yellow pages more e�cient, robust and maintainable, using techniques from other

hierarchical service indices such as those in the Harvest information retrieval system

[BDH+94].

9.4 Network sensing and path planning

Under certain network conditions, it is more e�cient for an agent to remain stationary

and interact with a resource from a remote location, rather than migrating to that

resource. Unfortunately, the exact conditions depend entirely on the resource and

the agent's current task. For example, in most networks, an agent that needs to

invoke only a single operation against a remote resource should almost always remain

stationary, so that it avoids the migration overhead.6 On the other hand, even in

high-performance networks, an agent that needs to invoke hundreds of operations

should almost always migrate, so that it avoids the overhead of the cross-network

calls. Of course, although making a migration decision based solely on the expected

6One notable exception is if the operation produces an extremely large result of which the agent

needs only a small fragment. The agent can �lter the result on the remote machine, rather than

transmitting the entire result across the network.
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number of operations is a useful \rule of thumb", it is too simplistic in many cases.

Also a�ecting the migration decision are the machine loads, the relative speed of agent

versus native code, the reliability, latency and bandwidth of the network links, the

average size of each operation's result, the speci�c performance constraints that the

agent is trying to meet, and whether the resource's machine even allows third-party

agents.

Clearly, to decide if, when and where to migrate, an agent must examine ma-

chine and network conditions and then combine the current status information with

knowledge of the resource and its own task. E�orts along these lines fall into three

subareas: (1) provide e�cient network sensors and an e�ective description of a re-

source's behavior (expected result size, expected operation latency under light load,

etc.); (2) provide a library of routines that accept the current network status, the

resource description, and a simple description of the agent's task and return an ap-

propriate migration decision; and (3) make agent code independent of whether the

agent migrates or remains stationary, so that the programmer does not have to write

two intertwined versions. Agent Tcl addresses the third issue already, since the com-

munication primitives are the same whether the agent is communicating with a local

or remote agent. Typically, an agent would decide whether to create a child agent on

the local or remote machine and then use the same code, or would decide whether to

migrate and then use the same code. On the other hand, the �rst two issues, network

sensing and a decision-making library, are much more complex and are the subject of

ongoing work.

Wilmer Caripe, Katsuhiro Moizumi7 and several undergraduates in the computer

science department are working on various network-sensing and decision-making tech-

7Wilmer Caripe and Hiro Moizumi are both Ph.D. students in the Thayer School of Engineering.
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niques [GKN+97, Car97]. Both passive and active network-sensing techniques are

under development. Passive techniques include piggybacking bandwidth and latency

information onto existing agent tra�c as well as taking round-trip timings for existing

agent tra�c. In the latter case, for example, the round-trip time for a request sent

to an agent server gives a rough approximation of the network transit time plus the

server processing time. Active techniques revolve around a set of network monitoring

agents, one per site, which store the passively-collected data and actively update this

data by sending out \ping" packets on request or at periodic intervals. In particular,

each network monitor keeps track of the expected latency, bandwidth and uptime of

the link that connects its machine with the rest of the network. When an agent is

deciding whether to migrate, it asks one or more network monitors about the current

conditions. Stationary agents also make use of the network monitors. The docking

system, for example, relies on the local network monitor to tell it when the machine's

network connection is back up. Sumatra uses a similar system of network monitors

called Komodo [RAS96].

Machines have their own characteristics, most notably CPU speed and current

load. Although this information can also be handled in the network monitors, we are

planning to use the Simple Network Management Protocol (SNMP) instead [Car97].

The SNMP protocol associates a simple database (or MIB) with each network de-

vice. The network device �lls these �elds with information about its inherent and

current characteristics; applications run queries against the MIB to identify the de-

vice's current status. In our case, each machine would have a MIB that included CPU

speed, current load, current number of agents, and so on. The advantage of SNMP

is twofold. First, it is an existing, widespread protocol, which reduces the amount of

code that needs to be written for a mobile-agent system. Second, it is external to the
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mobile-agent system, which allows non-agent applications to query the same device

information.

Once network and machine monitors are available, the remaining task is to provide

the decision-making routines. There are several broad approaches, most notably

mathematical models and machine-learning techniques. Our current applications use

machine learning, speci�cally the new Q-learning algorithm [CMG95]. Here each

agent reports its observed performance to a Q-learning agent on each visited site;

later agents query the Q-learning agents to obtain a performance prediction based

on the past observations and the current network conditions [Car97]. The current

prototype considers only agent size, result sizes, observed latencies, and time of day.

There are several important research questions, but the question of immediate

interest to us is how much extra network tra�c the network monitors must generate

to keep their performance estimates up-to-date. Initial work suggests that a sampling

rate of thirty seconds to several hours generates su�ciently accurate estimates; the

extra tra�c at this sampling rate should be only a small fraction of the overall tra�c

[RASS97].

9.5 Mobile Agent Construction Environment

Although both Tcl and Java are generally regarded as easy to learn, they are still

languages that fall within the realm of a capable programmer, rather than a nonpro-

grammer. Therefore most end users of Agent Tcl are limited to pre-packaged agents

that simply ask for certain parameters (such as which document collections to search,

how many results to report, and so on). The Mobile Agent Construction Environment

(MACE) is a �rst step towards removing this limitation and allowing end users to
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construct their own useful agents [Sha97]. MACE, which Rohit Sharma8 developed as

part of his thesis work, is a simple visual programming environment in which a user

assembles a mobile agent from a set of prede�ned components. The MACE environ-

ment is shown in Figure 9.3. It is oriented towards workow applications where an

agent guides a work item through a series of steps, but there is no reason that it can-

not be used for other applications, provided that those applications can be expressed

in the current visual programming interface. Essentially the user is provided with a

set of domain-speci�c components that perform various operations, such as querying

a parts database, �ltering a list of parts according to price, or presenting the list of

parts to a user. These components appear as boxes in Figure 9.3. The user selects

the desired components and connects them by clicking and dragging within the main

window. Each connection represents a one-way ow of data; the target component

uses the result from the source component and cannot start its task until the source

component �nishes. Each component is annotated with either a speci�c machine on

which the task should be performed or a routine that selects an appropriate machine

based on some application criteria. Certain components also take parameters.

Once the user �nishes, the graphical representation is compiled into a Tcl agent.

This agent makes heavy use of Agent Tcl's migration, cloning and communication

facilities to send results from one component to another and to execute each compo-

nent on the appropriate machine as soon as the necessary results are available. The

agent can be launched immediately or stored on the local machine for later execu-

tion. MACE needs to be extended in several ways. First, the current set of prede�ned

components is extremely small. A more ambitious component library needs to be de-

veloped for and tested in some selected application domain. Second, MACE allows

8Rohit Sharma graduated in 1997 with a Master's degree in computer engineering.
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Figure 9.3: The Mobile Agent Construction Environment (MACE) allows a nonpro-

grammer to graphically construct an agent. This �gure appears in [Sha97] and was

used with permission.
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limited interaction between components, namely the forwarding of a result from one

component to another. A much wider range of interactions is possible, only some of

which can be expressed easily in a visual programming environment. Finally, MACE

generates only Tcl code. It should generate Java or Scheme code as well.

9.6 Agent RPC

Agent Tcl's builtin communication mechanisms are low-level bytestreams and mes-

sage passing. The idea is to allow agents that have simple requirements to commu-

nicate with minimal overhead, while providing a base on top of which more complex

communication protocols can be implemented e�ciently at the agent level. Possible

protocols include whiteboards, KQML [GSS94], remote procedure call (RPC) [BN84]

and remote method invocation [YD96]. Agent RPC, which Saurab Nog and Sumit

Chawla9 developed as a course project, is an RPC mechanism for Agent Tcl [NCK96].

The architecture of Agent RPC is shown in Figure 9.4. Agent RPC is exactly anal-

ogous to traditional RPC and allows an agent to invoke exported operations from

another agent as if those operations were local procedures. An interface de�nition

is compiled into client and server stubs, which are included in the client and server

agents. On startup, the server agent registers its location, keyword description and

interface de�nition with one or more nameserver agents. To �nd a server agent that

provides a particular service, a client agent queries the nameservers, either by name

or by interface de�nition. In the case of interface de�nition, the nameservers match

the desired interface against the interface of all registered server agents, returning

9Saurab Nog graduated in 1996 with a Master's degree in computer science and is now working

at Microsoft. Sumit Chawla graduated in 1997 with a Ph.D. degree in computer science and is now

working at SGI.
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those agents that provide the same interface. The interface matching is quite exible,

ignoring parameter order and considering only the function name, the result type,

and the number, names and types of the parameters. Once the client agent has iden-

ti�ed an appropriate server agent, it connects to the server agent and invokes the

exported server operations by calling the client stubs. Each client stub converts the

procedure arguments into a message and sends this message along the connection to

the server agent. The corresponding server stub unpacks the arguments, invokes the

appropriate sever operation, and then sends back the result. Agent RPC has three

main areas of future work. First, although Agent RPC is language-independent, the

current stub compilers only generate Tcl stubs. The stub compilers should generate

Java and Scheme stubs as well.10 Second, as will be discussed further in the future

work chapter, it must be possible to include arbitrary binary data in Agent Tcl mes-

sages (rather than just strings), which would make communication protocols such as

Agent RPC more e�cient. Finally, the separate nameservers can be eliminated by

including the RPC interface de�nitions in the yellow pages.

10In addition, the stubs should work across languages so that client and server agents can be

written in di�erent languages. Since the stubs use the existing agent communication mechanisms,

which work across languages already, this interoperability can be achieved without any extra work.
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Figure 9.4: The architecture of the Agent RPC system. First a stub compiler trans-

forms an interface de�nition into client and server stubs that are included in the client

and server agents respectively. The server agent registers its interface with the name-

servers on startup. The client agent �nds the desired server agent by querying the

nameservers, either by name or by interface de�nition. The client agent then connects

to the server agent and calls its local client stubs to invoke server operations. This

�gure appears in [NCK96] and was used with permission.
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Chapter 10

Future work

Performance analysis and performance improvements. When network con-

ditions are good, i.e., when bandwidth and reliability are high and latency is low,

traditional RPC exhibits signi�cantly better performance than mobile Tcl agents,

mainly due to the slowness of Tcl, the migration overhead, and the simplistic imple-

mentation of the agent servers and the communication subsystem. The performance

of the Tcl agents is good enough, however, to suggest that a combination of faster

languages and additional system engineering will lead to competitive performance

under even the best network conditions. Other performance studies such as [Knu95]

and [RASS97] bear out this contention.

Two faster languages, Java and Scheme, have already been added to Agent Tcl.

In addition, there are several obvious improvements that can be made in the system

implementation. First, the amount of dynamic memory allocation in the messaging

subsystem can be reduced signi�cantly. Second, shared memory, rather than Unix

domain sockets, can be used for communication among agents on the same machine,

although the resulting performance improvement will be much greater on some ar-

chitectures than others. Third, every agent and every server request is currently

executed in a separate process, which requires process creation, interprocess commu-
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nication and interprocess synchronization, all of which have high overhead. Although

we do not feel that it is worthwhile to multithread the entire system as in Ara [Pei96],

the server itself should be multithreaded, eliminating most process creation and sev-

eral extraneous communication steps. We will also consider limited multithreading

in the interpreters themselves. For example, given that Java and Scheme are al-

ready multithreaded, it would be reasonable to run all Java agents inside one process,

all Scheme agents inside another, and each Tcl agent in its own process as before.

Fourth, even without any multithreading of the interpreters, migration latency can be

reduced signi�cantly with a pool of ready interpreter processes and application-level

caching of needed initialization �les, particularly in the case of Tcl. Finally, when

both the source and target agent of a communication are on the same machine, the

server should always be bypassed.

Once the system enhancements are �nished, we need to reevaluate performance

under a wider range of network conditions. Depending on the performance of Java

agents relative to native code, we will consider either \just-in-time" compilation or

software-fault-isolation of native code (or more likely of code for a low-level virtual ma-

chine that is immediately compiled into native code) [ATLLW96, WLAG93, LSW95].

Alternatively, the system could accept native code only from certain trusted users,

eliminating the need for software fault isolation, but limiting untrusted agents to the

slower, interpreted languages. Finally, once we have replaced PGP with a more ef-

�cient and exible encryption subsystem, we need to compare secure mobile agents

with secure versions of the traditional distributed computing paradigms. To our

knowledge, no such performance comparison has been done; our own performance

analysis was limited to anonymous agents that required neither encryption nor digi-

tal signatures. It seems reasonable to expect, however, that authenticating a mobile
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agent should involve roughly the same overhead as authenticating a cross-network

call, and that we will see the same relative performance whether or not the agents

are encrypted.

Security. The immediate task is to replace PGP with a faster and more exible

encryption library, �nish the security enforcement modules for Java and Scheme,

allow untrusted agents to have limited screen access, and eliminate the remaining

denial-of-service attacks, such as an agent that sends messages to another agent as

fast as possible or an agent that sits in a tight loop and uses its allocated CPU time as

fast as possible. Eliminating the denial-of-service attacks requires additional resource

limits and rate throttles. Once this initial work is complete, we can move on to

protect a group of machines from a malicious agent and an agent from a malicious

machine. To protect a group of machines, we are looking at electronic cash schemes

where each resource has an associated price; agents must spend electronic cash from

their �nite reserve to access the desired resources and thus cannot survive forever

within the network [JvRS95, DiMMTH95].1 To protect an agent, we are looking at

a combination of audit trails [CGH+95], replication and voting schemes [MvRSS96],

a component model in which an agent is divided into pieces that are encrypted and

signed at di�erent times and with di�erent keys [CGH+95], limited forms of proof-

carrying or self-authenticating code [PS97], and a tamper-proof movement history

embedded inside a migrating agent [MvRSS96].

1Most electronic cash schemes involve signi�cant network communication. In a mobile-agent

system, it is critical to eliminate as much communication as possible and defer the rest so that it

does not lie on a critical path.
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Fault tolerance. Although mobile agents allow an application to make minimal

use of a low-quality network link, they do not eliminate all of the fault-tolerance

issues associated with traditional distributed computing and introduce some of their

own. Agent Tcl currently does not address any of these issues, making fault tolerance

one of the most critical areas of future work. Most importantly, both migratory and

stationary agents must be able to live past a machine failure, restarting with the most

current state image possible as soon as the machine comes back up. Such recovery

requires a persistent store in which the server can store the agent's administrative

information and in which the agent itself can store its current state information. One

such persistent store is the Gamelon File I/O library from the Menai corporation,

which provides object-oriented persistent storage through a familiar �le-access API

[Men96]. Work is underway to integrate this library into the Agent Tcl system. The

server's internal tables will be mirrored into the persistent store; an agent's complete

state will be saved at startup or upon arrival; and initially the agent will be able to

save its complete state at additional times of its choosing. Since the complete state

image is already captured during migration, no new code needs to be written; the

same state image is simply written to the persistent store rather than transmitted

across the network. If the server crashes and restarts, it will reload its internal tables

from the persistent store and restart all agents with their saved state images. Due

to the overhead involved in writing the entire state image to disk, even if it is just

written once upon agent arrival, persistent state backup will be an optional feature, so

that a noncritical agent can get better performance at the risk of suddenly vanishing

due to machine failure.

Requiring the agent to checkpoint its complete state is ine�cient and often un-

necessary. The agent should be able to perform an incremental checkpoint of its
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complete state or a partial checkpoint of some desired subset of its state. Incremen-

tal checkpoints save only the changes in the agent's state, either automatically or at

agent-speci�ed times, maintaining a complete state image in persistent store with-

out the overhead of recapturing the entire state image. Unfortunately, incremental

checkpointing require either substantial support from the interpreters or a general

mechanism for incrementally capturing the state of arbitrary native processes, both

of which are beyond the scope of the project. Partial checkpointing, however, is much

more straightforward and, in its simplest form, requires no language-speci�c support.

Each agent is allocated a �xed amount of space within the persistent store and al-

lowed to write arbitrary data into that space. When an agent restarts after a machine

crash, Agent Tcl raises an exception within the agent, so that the agent knows about

the restart and can check the persistent store for previously saved data.2

Of course, it would also be useful to integrate partial state capture more closely

with each agent language. Tcl traces, for example, provide a way to automatically

detect and save any change in the value of a Tcl variable; Ara uses traces for just

this purpose [Pei96]. Similarly, persistent objects can be implemented easily with

Java's existing object serialization facilities [CH97]. Although such higher-level state

capture is more convenient for the programmer, we plan to focus on the more general

mechanism, and implement the language-speci�c mechanisms as time allows.

Allowing an agent to survive machine failure is a �rst step towards a robust mobile-

agent system, but is not su�cient in and of itself. If a migrating agent temporarily

disappears due to a machine crash, the overall application might not be able to wait

2Such an exception should always be raised after a machine crash so that a restored agent can

take whatever action is appropriate for its task. For example, a time-dependent agent might report

failure to its home site and then terminate if too much time has elapsed between crash and restart.
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until the machine comes back up and the agent reappears. Therefore the application

must be able to detect a machine failure so that it can spawn a new agent to carry on

with the task. One approach is illustrated in Tacoma where a migrating agent leaves

behind rear guard agents [JvRS95]. A rear guard concludes that the migrating agent

has disappeared if it loses contact with the agent for a suitably long period of time.

Once this happens, the rear guard sends out a new copy of the agent. In Tacoma,

failed machines do not restart the agents that were executing on the machine, so the

rear guards does not need to worry about the original agent's reappearance. In Agent

Tcl, where a failed machine will restart the agents, any such rear guard mechanism

must take the original agent's reappearance into account. One simple approach is to

have a restarted agent terminate immediately if the crash lasted longer than the rear

guard timeout interval. In either case, duplicate copies of the same agent are certainly

possible if contact is lost due to a network rather than machine failure; preventing

such duplicates is an open problem.

From a similar viewpoint, if a stationary service agent disappears due to a machine

failure, having the service remain unavailable until the machine comes back up is no

more reasonable than in any distributed computing environment, demanding tradi-

tional service replication with a backup service agent taking over for an unavailable

primary [Mul93]. Mobile agents do allow an interesting enhancement to traditional

replication schemes, however, namely on-the-y replication in which a new copy of

the service agent can be dynamically deployed to any desired network location, either

in response to machine and network failures or to changing load [RASS97]. Finally,

cooperating mobile agents are vulnerable to all the same communication failures as co-

operating stationary processes, which means that some mobile-agent applications will

need reliable group communication, transactions, voting schemes, and so on [Mul93].
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As with replication, there are three interesting questions: (1) which existing tech-

niques are the more natural �t for a mobile-agent system, (2) how can techniques

intended for stationary processes be extended to handle the fact that the commu-

nicating entities are moving from machine to machine, and (3) how much of each

technique can be implemented e�ciently at the agent level so that the agent servers

remain lightweight.

Mobile computing. Agent Tcl is meant to work seamlessly with both mobile

computers and wireless networks. The existing docking system brings us a long ways

towards this goal and will be our near-term focus [GKN+97]. The docking system

must be re-implemented in a faster agent language, must be extended so that it han-

dles inter-agent communication in addition to migration, and must actively exchange

information about a machine's current network location so that as few agents as

possible are actually routed through the docks.

Even with these enhancements, however, the docking system may prove too inef-

�cient in wireless networks with rapidly changing con�gurations3, since the machines

will be unreachable frequently but often for only short periods. Bu�ering all agents

and messages on some remote dock machine during these short periods of discon-

3An example of a \rapidly changing" network would be some number of moving vehicles and

people, each with a wireless device that can communicate only with the other wireless devices (i.e.,

there is no central tower or satellite to serve as an intermediary). Network connectivity will change

quickly as vehicles and people move in and out of range with each other. Such a network is in

marked contrast to an essentially wired network, in which a laptop is unplugged from one location

and later plugged in at a di�erent location, or a tower- or satellite-based network, in which the only

changes are infrequent cell hando�s. Cellular networks with small cells, where hando�s are frequent,

fall somewhere in the middle.
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nection could produce unacceptably high latencies. Since it is our intention to work

with o�-the-shelf networks rather than implementing our own network protocols, the

�rst issue is to make all the information that the network is already exchanging

about its current con�guration visible to Agent Tcl, so that Agent Tcl will know a

machine's current location whenever possible. In addition, the docks must be far

more hierarchical and distributed, so that an agent or message can be bu�ered as

close as possible to the suspected location of the target machine, even if this means

bu�ering the agent or message on one or more machines that are themselves wireless.

Of course, if a network already supports e�cient location-independent addressing of

the physical machines (e.g., a slowly changing network with mobile IP), the docking

system becomes much simpler, since it no longer needs to keep track of temporary

network locations. Instead it simply needs to bu�er agents and messages at the most

advantageous network locations. Although some networks can handle the bu�ering as

well, relying on the network for bu�ering would eliminate several convenient features,

such as the ability to wake up an agent and have it proceed with some alternative

task if it is unable to reach the target machine within a speci�ed timeout.

Standardization. There have been some recent e�orts towards developing stan-

dards for mobile-agent systems, most notably by a multi-company coalition consist-

ing of Crystaliz, General Magic, GMD FOKUS, IBM, and The Open Group. The

coalition has developed a Mobile Agent Facility (MAF) speci�cation in response to

the Object Management Group's Common Facility Task Force RFP3 [MAF97]. The

speci�cation \focuses on the interoperability of di�erent agent systems" [MAF97].

The speci�cation does not allow an agent from one system to execute inside another

system; such a cross-execution mechanism is simply impossible due to the wide range
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of programming languages that are used in di�erent systems. Instead the speci�ca-

tion (1) provides a uniform management interface, so that the system administrator

can manage multiple agent systems via the same interface, and (2) allows an agent to

locate and communicate with agents from di�erent systems, so that clients and server

providers do not have to have the same system. In the latter case, an agent would

typically migrate to the system that had the same type as its home system and that

was as close as possible to the desired resource, and then interact with the resource

from across the network. Systems that were su�ciently similar could adopt additional

standards to allow an agent to actually migrate from one system to another.4

Although Agent Tcl, like all current mobile-agent systems, does not support the

MAF standard, it has most of the same functionality and can be extended easily to

provide the rest. If the standard is accepted and gains acceptance in the developer

community, supporting the full standard will allow Agent Tcl to interoperate with

other systems, accelerating the acceptance of Agent Tcl and providing a much larger

and more interesting environment in which Agent Tcl agents can be developed and

used.

Modeling and simulation. Organizations are justi�ably hesitant to install a pro-

totype mobile-agent system on their machines, due to the security risks associated

with the execution of untrusted code. Thus a mobile-agent system expands its in-

stalled base extremely slowly, with organizations �rst testing the system on internal,

isolated networks and slowly making the system available to external agents. Al-

though the slow spread of mobile-agent systems is acceptable in the long run, it does

4
At a minimum, \su�ciently similar" means that the systems must support the same agent

language, since there is not yet any adequate way to automatically translate an agent from one

language to another.
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signi�cantly complicate the development and testing process, since it is nearly impos-

sible to obtain a large testbed. Most testing and development is done in small, local

networks, leaving open questions about the scalability of security and fault-tolerance

algorithms. There are two partial solutions. The �rst solution is to construct a larger

testbed by cooperating with other mobile-agent research groups, each of which is fac-

ing the same problem. Currently Dartmouth, Cornell and the University of Tromso

in Norway are setting aside a few machines each. Each group's mobile-agent system

will be installed on each machine, allowing experimentation across a much wider area

although still on a small number of machines. We hope to extend this testbed to

other universities and eventually a few commercial research labs.

The second solution is to develop a formal model of a mobile-agent system and

then simulate system execution on as many virtual machines as desired. Although

simulation would never be able to predict the performance of an actual system exactly,

it would allow a relative comparison of di�erent security and fault-tolerance strategies.

Many potential strategies could be eliminated from consideration without the need

to test each one within an actual network. Appropriate simulation environments are

critical to future success and must be developed soon. Although other groups may

be working on such simulation environments, none had been made public at the time

of this writing.

Binary messages. Agent Tcl messages are currently null-terminated ASCII strings.

Although strings are an appropriate transmission unit for some applications, such as

those in which the agents exchange KQML messages [GK94], strings introduce extra

overhead in many other applications, such as those in which the agents exchange

numeric data. The overhead comes from converting the data into a string and then
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parsing the string to recover the data. To e�ciently support a wider range of com-

munication styles, Agent Tcl must be extended so that a message can include either

a string or arbitrary binary data. Helper routines would be provided to add and

extract standard RPC data types [BN84] from a binary data bu�er. The ability to

transmit binary data would eliminate the parsing overhead, and in particular, would

be a much more e�cient lower-layer for the Agent RPC system [NCK96]. The mes-

saging subsystem in Agent Tcl can already handle binary messages; we just need to

implement a binary data type and the helper routines for each language.

Unmodi�ed interpreters. The jump command requires modi�cations to the Tcl,

Java and Scheme interpreters since the unmodi�ed interpreters do not allow the cap-

ture of an executing program's (or thread's) complete state. These modi�cations are

not a major concern yet, since both the binaries and source code of the modi�ed Tcl

and Scheme interpreters and the binaries of the modi�ed Java interpreter can be dis-

tributed freely for academic use. However, the modi�ed interpreters increase the size

of the Agent Tcl code base and lead to a signi�cant amount of extra work when port-

ing Agent Tcl to a new platform or when moving to a new version of the interpreter.

In addition, some users have already objected to installing another version of the

interpreter on their system when the standard version is already available. The most

immediate need is to create a version of Agent Tcl that does not provide the jump

command and thus can run with the unmodi�ed interpreters. Such a version would

use migration techniques similar to those found in Aglets [Ven97], Odyssey [Gen97],

Concordia [WPW+97] or Tacoma [JvRS95]. At the same time, we need to decide

whether the convenience of the jump command outweighs the additional burden that

it places on the system programmer. If it does, we need to work with the interpreter
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developers to get the necessary state capture routines added to the standard inter-

preters. Due to the growing interest in mobile computation, the developers are likely

to agree.

Administration tools. Agent Tcl currently does not provide a machine's owner

or administrator with an e�ective view of the agents running on that machine, sup-

porting little more than the forcible termination of a particular agent. This does

not represent any conceptual fault with the Agent Tcl system, but rather a lack of

time for implementing administration tools. However, as Agent Tcl moves into wider

release, such tools are becoming more and more critical. The administrator needs

a graphical tool that shows the status and identity of all the agents running on the

current machine and allows her to terminate, suspend, resume or adjust the security

parameters for any and all agents. To support such a tool, the server needs to report

on the allowances that the resource managers have assigned to each agent and how

much of each allowance an agent has left; the resource managers must accept tempo-

rary or permanent security policy changes for individual agents or agent owners; and

the agent core must respond to suspend and resume messages sent from the server.

Aside from suspend and resume, all the necessary information and mechanisms al-

ready exist within the Agent Tcl system, but cannot be accessed through a single

point of control.

Web access. One way to bring Agent Tcl into much wider use is to make the

system accessible via the Web. There are two approaches. Most or all of the system

can be rewritten in Java and downloaded on demand to Java-enabled web browsers,

essentially turning these browsers into temporary agent servers [Ven97]. Alternatively,

the system can provide a much simpler Java applet or CGI script that interfaces with
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an agent server on the same machine as the web server. A user would give an agent to

the applet or CGI script, which would pass the agent on to the agent server [JvRS96].

Although the �rst approach is more exible, it is much more complex and is mainly

a matter of porting code, making it more suited to a commercial product rather than

a research project. Instead we will take the second approach.

Operating system support. The security and resource scheduling mechanisms

in most operating systems are a poor match for mobile agents. For example, a

mobile-agent system must impose a limit on disk accesses per unit time so that an

agent can not thrash the local disk. Most operating systems do not support such a

limit, forcing the mobile-agent system to implement the limit itself, something that

is awkward at best since the mobile-agent system is executing in application space. If

the operating system did support such limits, however, and could schedule available

capacity among competing entities, the mobile-agent implementation would be more

e�cient and much simpler.
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Chapter 11

Conclusion

Agent Tcl is a simple but powerful mobile-agent system that distinguishes itself from

other mobile-agent systems with (1) its combination of multiple languages, a simple

migration mechanism, and both low- and high-level communication protocols, (2) its

simple but e�ective security model, and (3) its extensive support services and tools.

� Multiple languages. Agent Tcl supports multiple, o�-the-shelf languages,

Tcl, Java and Scheme, and allows the straightforward addition of new languages.

The agent programmer can select the language that is most appropriate for her

task.

� Migration. Agent Tcl reduces migration to a single instruction, jump, which

automatically capture the complete state of the agent and sends the state image

to the new machine. The agent continues from the point of the jump on the

new machine. Although the system programmer must implement the jump

instruction for each supported language, once the instruction is available, the

agent programmers do not need to explicitly collect state information before

migration.
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� Communication. The base Agent Tcl system provides two low-level commu-

nication mechanisms, messaging passing and direct connections (for bulk data

transfer), which work the same regardless of whether the communicating agents

are on the same or di�erent machines. Higher-level communication mechanisms,

such as a Remote Procedure Call (RPC) mechanism [NCK96], are implemented

at the agent level on top of the two low-level services. With this approach, the

agent programmer can choose from a range of communication mechanisms, but

the base system remains lightweight.

� Security. Agent Tcl protects an individual machine against malicious agents

with a straightforward security model that cleanly separates policy and en-

forcement. Agents are digitally signed during migration so that their owner can

be identi�ed. Resource manager agents use the identity of the agent's owner

to decide which screen, network, disk, etc., accesses are allowed for that agent.

Lightweight enforcement modules for each supported language enforce the man-

ager decisions.

� Support services. Agent Tcl provides numerous support services, most no-

tably (1) a debugger that tracks an agent as it moves through the network and

provides traditional debugger features such as breakpoints, watch conditions

and line-at-a-time execution [HK97], (2) a docking system that allows an agent

to transparently migrate to or from a mobile computer [GKN+97], (3) hierarchi-

cal yellow pages that provide a keyword-indexed directory of available services

[GKN+97], (4) several network sensing and planning modules that allow an

agent to determine the best route through the network [GKN+97, Car97], and

(5) a Mobile Agent Construct Environment (MACE) that allows a nonprogram-
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mer to graphically construct an agent [Sha97].

The main weaknesses of Agent Tcl are its lack of fault-recovery mechanisms and

its poor performance relative to traditional client-server techniques. The poor perfor-

mance is due to to the large migration overhead and the slowness of Tcl (which was the

only language considered in the performance analysis). In a mid- or high-performance

network, an Agent Tcl agent is an attractive choice only if (1) the client-server so-

lution would perform a hundred or more cross-network calls or (2) link reliability or

the latency of each individual call is the overriding performance concern. The per-

formance numbers are good enough, however, to suggest that a combination of faster

languages and additional system engineering will make an Agent Tcl agent compet-

itive with or better than the corresponding client-server solution in a much wider

range of applications, including those where the client-server solution performs only

a handful of cross-network calls. Two faster languages, Scheme and Java, are already

in place, and we are working to make the messaging system more e�cient and to

eliminate most of the migration overhead.

Once performance and fault tolerance are addressed (as well as some of the less

critical issues that were discussed in Chapter 10), Agent Tcl will become an attractive

platform for most distributed applications, not because it makes radically new appli-

cations possible, but because applications can be implemented e�ciently and easily

within a single, general framework.
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Appendix A

Performance data - Base

performance

Tables A.1 through A.15 contain the timing data from the experiments that were done

to measure Agent Tcl's base performance. Each data point is an average of between

2 and 180 measured times, where each measured time was obtained by timing 100

or 1000 iterations of the event in question and then dividing by 100 or 1000.1 More

iterations and trials were done for those experiments in which each iteration took

a short time; fewer iterations and trials were done for those experiments in which

each iteration took a longer time. Figure A.1 shows the distribution of the standard

deviations for the data points, where each deviation is expressed as a percentage of

the corresponding average. The data and the experiments are discussed further in

Chapter 7.

1Between 4 and 360 times were obtained for each data point. All times above the median were

thrown out, and the remaining 2 to 180 times were averaged. The intent was to keep only those

times that correspond to periods of light network load.
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Figure A.1: Histogram of the standard deviations for the average times in Tables

A.1 through A.15. Each standard deviation is expressed as a percentage of the cor-

responding average.
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Request

size

(bytes)

Response size (bytes)

64 128 256 512

64 0.07 0.08 0.08 0.08

128 0.07 0.07 0.08 0.08

256 0.08 0.07 0.07 0.08

512 0.08 0.08 0.08 0.08

1024 0.10 0.09 0.09 0.10

2048 0.14 0.14 0.14 0.15

4196 0.22 0.22 0.22 0.23

8192 0.35 0.35 0.35 0.36

16384 0.60 0.60 0.61 0.61

32768 1.13 1.14 1.15 1.16

65536 2.30 2.30 2.31 2.32

Request

size

(bytes)

1024 2048 4196 8192

64 0.10 0.14 0.22 0.34

128 0.09 0.14 0.22 0.34

256 0.09 0.14 0.22 0.35

512 0.10 0.15 0.23 0.36

1024 0.10 0.16 0.24 0.37

2048 0.16 0.19 0.28 0.41

4196 0.24 0.28 0.35 0.48

8192 0.37 0.42 0.49 0.61

16384 0.63 0.67 0.74 0.87

32768 1.17 1.21 1.28 1.41

65536 2.33 2.39 2.45 2.61

Request

size

(bytes)

16384 32768 65536

64 0.57 1.03 2.20

128 0.58 1.04 2.21

256 0.58 1.04 2.21

512 0.59 1.05 2.23

1024 0.60 1.07 2.24

2048 0.64 1.12 2.30

4196 0.71 1.21 2.38

8192 0.85 1.34 2.53

16384 1.09 1.57 2.82

32768 1.63 2.08 3.27

65536 2.85 3.33 4.48

Table A.1: Time in milliseconds for two processes on the same machine to exchange

a request and response over a Unix domain socket.

227



Request

size

(bytes)

Response size (bytes)

64 128 256 512

64 0.21 0.22 0.24 0.27

128 0.23 0.23 0.24 0.28

256 0.24 0.24 0.26 0.30

512 0.27 0.28 0.29 0.32

1024 0.35 0.35 0.37 0.40

2048 0.50 0.51 0.53 0.56

4096 0.79 0.80 0.82 0.86

8192 1.37 1.39 1.41 1.44

16384 2.60 2.61 2.63 2.67

32768 4.99 5.01 5.02 5.06

65536 12.19 12.21 12.23 12.26

Request

size

(bytes)

1024 2048 4196 8192

64 0.34 0.49 0.79 1.37

128 0.35 0.50 0.80 1.38

256 0.36 0.51 0.81 1.39

512 0.39 0.55 0.85 1.42

1024 0.46 0.62 0.92 1.50

2048 0.64 0.78 1.06 1.64

4096 0.93 1.07 1.34 1.93

8192 1.51 1.66 1.94 2.51

16384 2.74 2.89 3.18 3.76

32768 5.14 5.29 5.59 6.20

65536 12.34 12.54 12.82 13.51

Request

size

(bytes)

16384 32768 65536

64 2.61 5.08 12.33

128 2.62 5.08 12.34

256 2.64 5.12 12.37

512 2.68 5.15 12.39

1024 2.75 5.22 12.47

2048 2.89 5.38 12.62

4096 3.19 5.68 12.91

8192 3.76 6.26 13.55

16384 4.98 7.53 14.86

32768 7.49 9.92 17.25

65536 14.82 19.12 24.42

Table A.2: Same as the previous experiment except that we are using the messaging

subsystem from Agent Tcl.
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Request

size

(bytes)

Response size (bytes)

64 128 256 512

64 0.19 0.19 0.19 0.20

128 0.19 0.19 0.19 0.20

256 0.19 0.19 0.19 0.20

512 0.20 0.20 0.20 0.21

1024 0.21 0.21 0.22 0.23

2048 0.26 0.26 0.27 0.28

4196 0.37 0.38 0.38 0.39

8192 0.59 0.59 0.60 0.61

16384 0.93 0.93 0.93 0.94

32768 1.73 1.74 1.75 1.76

65536 3.43 3.44 3.45 3.46

Request

size

(bytes)

1024 2048 4196 8192

64 0.21 0.26 0.37 0.57

128 0.21 0.27 0.37 0.58

256 0.22 0.27 0.38 0.58

512 0.23 0.28 0.39 0.59

1024 0.24 0.29 0.40 0.61

2048 0.29 0.34 0.45 0.64

4196 0.41 0.45 0.57 0.75

8192 0.63 0.66 0.77 0.96

16384 0.96 0.99 1.10 1.30

32768 1.78 1.82 1.94 2.15

65536 3.48 3.53 3.64 3.84

Request

size

(bytes)

16384 32768 65536

64 0.91 1.72 3.37

128 0.92 1.72 3.36

256 0.92 1.74 3.38

512 0.93 1.74 3.39

1024 0.95 1.76 3.42

2048 0.98 1.81 3.47

4196 1.09 1.93 3.59

8192 1.30 2.14 3.80

16384 1.64 2.48 4.17

32768 2.50 3.32 5.01

65536 4.20 5.05 6.70

Table A.3: Time in milliseconds for two processes on the same machine to exchange

a request and response over a TCP/IP socket.
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Request

size

(bytes)

Response size (bytes)

64 128 256 512

64 0.35 0.35 0.37 0.41

128 0.35 0.36 0.38 0.42

256 0.37 0.38 0.40 0.43

512 0.41 0.42 0.44 0.47

1024 0.48 0.49 0.51 0.55

2048 0.64 0.65 0.67 0.70

4096 0.98 0.99 1.01 1.04

8192 1.64 1.65 1.67 1.70

16384 2.96 2.96 2.99 3.02

32768 5.76 5.76 5.79 5.83

65536 13.14 13.14 13.17 13.21

Request

size

(bytes)

1024 2048 4196 8192

64 0.48 0.63 0.97 1.64

128 0.48 0.64 0.98 1.65

256 0.51 0.66 1.00 1.67

512 0.54 0.70 1.04 1.71

1024 0.62 0.78 1.11 1.78

2048 0.78 0.93 1.25 1.93

4096 1.11 1.26 1.59 2.26

8192 1.77 1.92 2.25 2.91

16384 3.09 3.25 3.58 4.24

32768 5.90 6.05 6.39 7.06

65536 13.30 13.48 13.82 14.51

Request

size

(bytes)

16384 32768 65536

64 3.01 5.89 13.32

128 3.02 5.89 13.34

256 3.04 5.91 13.36

512 3.08 5.95 13.41

1024 3.15 6.02 13.51

2048 3.30 6.16 13.65

4096 3.64 6.50 13.96

8192 4.29 7.16 14.62

16384 5.62 8.49 15.99

32768 8.44 11.27 18.79

65536 15.96 20.70 26.39

Table A.4: Same as the previous experiment except that we are using the messaging

subsystem from Agent Tcl.
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Request

size

(bytes)

Response size (bytes)

64 128 256 512

64 0.29 0.30 0.31 0.34

128 0.30 0.30 0.31 0.35

256 0.31 0.32 0.33 0.35

512 0.33 0.34 0.35 0.36

1024 0.38 0.38 0.40 0.42

2048 0.47 0.48 0.49 0.52

4096 0.81 0.82 0.83 0.85

8192 1.31 1.31 1.32 1.35

Request

size

(bytes)

1024 2048 4196 8192

64 0.39 0.51 0.84 1.36

128 0.40 0.52 0.85 1.36

256 0.41 0.53 0.86 1.38

512 0.43 0.55 0.88 1.40

1024 0.45 0.59 0.92 1.44

2048 0.57 0.67 1.00 1.51

4096 0.90 1.01 1.33 1.88

8192 1.39 1.51 1.87 2.38

Table A.5: Time in milliseconds to make an RPC call when the client and server are

on the same machine.
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Request

size

(bytes)

Response size (bytes)

64 128 256 512

64 2.11 2.36 2.80 3.58

128 2.61 2.84 3.26 4.07

256 2.80 3.03 3.44 4.21

512 3.62 3.84 4.25 5.06

1024 5.20 5.41 5.92 6.74

2048 7.43 7.74 8.19 8.93

4196 9.91 10.26 10.73 11.29

8192 14.23 14.59 14.75 15.26

16384 24.65 24.83 25.40 25.45

32768 47.76 48.03 48.99 49.21

65536 91.39 92.72 93.06 95.71

Request

size

(bytes)

1024 2048 4196 8192

64 5.15 7.46 9.25 14.14

128 5.67 7.95 9.65 14.29

256 5.92 8.19 9.94 14.37

512 6.59 8.97 10.61 15.27

1024 8.21 10.55 12.17 17.07

2048 10.50 12.88 14.45 19.10

4196 12.97 15.36 17.00 21.38

8192 17.01 19.24 21.31 25.64

16384 27.11 29.21 31.77 35.82

32768 50.35 52.85 54.57 59.25

65536 96.30 97.39 99.88 104.92

Request

size

(bytes)

16384 32768 65536

64 22.30 60.12 107.15

128 22.95 61.11 109.00

256 22.90 60.37 107.59

512 23.50 60.16 110.15

1024 25.49 61.77 110.92

2048 27.62 60.53 113.67

4196 29.72 67.41 113.08

8192 33.64 71.09 114.25

16384 43.83 78.26 140.78

32768 69.61 102.96 160.42

65536 113.82 147.83 195.18

Table A.6: Time in milliseconds for two processes on di�erent machines to exchange

a request and response over a TCP/IP socket.
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Request

size

(bytes)

Response size (bytes)

64 128 256 512

64 2.50 2.69 3.14 3.97

128 3.00 3.12 3.64 4.36

256 3.13 3.32 3.75 4.56

512 3.99 4.14 4.58 5.46

1024 5.69 5.83 6.24 7.17

2048 8.34 8.55 8.92 9.72

4096 10.59 10.92 11.54 12.07

8192 15.55 15.58 16.38 16.93

16384 27.38 27.53 27.74 28.96

32768 54.00 53.78 53.25 54.98

65536 103.38 102.60 104.16 106.35

Request

size

(bytes)

1024 2048 4196 8192

64 5.62 8.00 9.99 15.14

128 6.00 8.42 10.15 15.45

256 6.22 8.55 10.46 15.66

512 7.09 9.51 11.67 16.51

1024 8.75 11.16 13.09 18.28

2048 11.53 13.81 15.96 20.75

4096 13.81 16.05 18.15 23.37

8192 18.64 21.06 22.90 28.46

16384 30.11 32.49 34.41 39.88

32768 56.33 57.99 61.47 65.95

65536 105.51 107.35 110.39 115.24

Request

size

(bytes)

16384 32768 65536

64 24.19 60.25 113.40

128 24.54 60.74 112.48

256 25.13 60.63 114.81

512 25.95 62.20 116.88

1024 27.62 69.24 112.90

2048 30.20 72.37 111.88

4096 32.77 73.17 114.87

8192 38.03 74.94 141.85

16384 48.96 92.73 148.10

32768 74.34 109.62 167.90

65536 125.00 164.53 210.57

Table A.7: Same as the previous experiment except that we are using the messaging

subsystem from Agent Tcl.
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Request

size

(bytes)

Response size (bytes)

64 128 256 512

64 2.50 2.72 3.13 3.96

128 2.74 2.95 3.37 4.22

256 3.14 3.36 3.76 4.61

512 3.96 4.19 4.59 5.40

1024 5.60 5.81 6.22 7.04

2048 7.80 8.03 8.44 9.25

4096 10.34 10.68 10.98 11.78

8192 14.55 14.86 15.21 15.95

Request

size

(bytes)

1024 2048 4196 8192

64 5.67 7.46 9.73 13.81

128 5.84 7.68 9.97 14.08

256 6.25 8.11 10.36 14.45

512 7.09 8.99 11.17 15.31

1024 8.68 10.56 12.78 17.01

2048 10.89 12.73 15.06 19.33

4096 13.46 15.31 17.53 21.64

8192 17.64 19.48 21.75 25.94

Table A.8: Time in milliseconds to make an RPC call when the client and server are

on di�erent machines.

234



Request

size

(bytes)

Response size (bytes)

64 128 256 512

64 0.90 0.93 0.97 1.06

128 0.93 0.95 1.00 1.09

256 0.98 1.01 1.04 1.14

512 1.07 1.09 1.13 1.19

1024 1.26 1.28 1.32 1.40

2048 1.62 1.67 1.71 1.79

4096 2.33 2.37 2.41 2.51

8192 3.81 3.85 3.89 3.98

16384 6.94 6.97 7.02 7.12

32768 13.09 13.13 13.18 13.27

65536 30.90 30.95 31.00 31.09

Request

size

(bytes)

1024 2048 4196 8192

64 1.27 1.62 2.34 3.85

128 1.29 1.67 2.38 3.88

256 1.33 1.71 2.43 3.92

512 1.40 1.79 2.51 4.01

1024 1.55 1.95 2.70 4.21

2048 1.99 2.28 3.05 4.58

4096 2.69 3.04 3.72 5.29

8192 4.17 4.54 5.26 6.73

16384 7.31 7.68 8.41 9.88

32768 13.48 13.85 14.58 16.11

65536 31.30 31.70 32.47 34.04

Request

size

(bytes)

16384 32768 65536

64 6.93 13.11 31.07

128 6.98 13.17 31.10

256 7.03 13.20 31.16

512 7.11 13.30 31.23

1024 7.29 13.48 31.42

2048 7.67 13.87 31.88

4096 8.40 14.60 32.59

8192 9.90 16.12 34.18

16384 12.98 19.35 37.36

32768 19.17 27.17 43.16

65536 37.14 43.23 59.98

Table A.9: Time in milliseconds for two agents on the same machine to exchange a

request and response over an Agent Tcl meeting.
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Request

size

(bytes)

Response size (bytes)

64 128 256 512

64 3.04 3.26 3.70 4.60

128 3.47 3.69 4.13 5.03

256 3.71 3.93 4.36 5.26

512 4.62 4.84 5.27 6.14

1024 6.42 6.64 7.08 7.96

2048 9.17 9.41 9.84 10.74

4096 11.79 12.00 12.44 13.33

8192 17.63 17.82 18.27 19.20

16384 31.17 31.37 31.79 32.71

32768 59.75 60.10 60.57 61.36

65536 118.30 118.58 119.19 120.19

Request

size

(bytes)

1024 2048 4196 8192

64 6.38 8.92 11.20 17.25

128 6.80 9.34 11.62 17.70

256 7.03 9.58 11.85 17.96

512 7.93 10.47 12.75 18.85

1024 9.70 12.25 14.58 20.64

2048 12.50 14.96 17.26 23.39

4096 15.10 17.61 19.98 26.10

8192 20.96 23.48 25.88 31.92

16384 34.53 36.86 39.37 45.46

32768 63.19 65.85 68.09 74.14

65536 121.76 124.54 127.09 133.63

Request

size

(bytes)

16384 32768 65536

64 28.39 69.11 139.27

128 28.79 70.81 136.79

256 29.03 68.90 136.91

512 29.90 70.56 139.59

1024 31.71 71.18 139.77

2048 34.49 71.35 141.44

4096 37.20 70.57 140.61

8192 43.00 84.97 148.11

16384 56.61 96.97 161.01

32768 85.32 127.80 186.25

65536 145.13 185.54 263.28

Table A.10: Time in milliseconds for two agents on di�erent machines to exchange a

request and response over an Agent Tcl meeting.

236



Request

size

(bytes)

Response size (bytes)

64 128 256 512

64 3.87 3.92 4.00 4.20

128 3.90 3.96 4.06 4.26

256 4.01 4.09 4.18 4.34

512 4.21 4.24 4.32 4.52

1024 4.57 4.62 4.71 4.88

2048 5.36 5.41 5.50 5.68

4096 6.84 6.89 6.99 7.15

8192 9.82 9.88 9.97 10.09

16384 16.10 16.16 16.26 16.47

32768 28.45 28.51 28.59 28.79

65536 63.65 63.68 63.76 63.94

Request

size

(bytes)

1024 2048 4196 8192

64 4.59 5.37 6.82 9.85

128 4.63 5.42 6.90 9.89

256 4.74 5.52 7.02 9.98

512 4.91 5.69 7.18 10.18

1024 5.26 6.03 7.51 10.59

2048 6.04 6.80 8.31 11.35

4096 7.50 8.31 9.72 12.83

8192 10.56 11.36 12.82 15.76

16384 16.83 17.57 19.09 22.08

32768 29.16 29.95 31.43 34.47

65536 64.43 65.31 66.80 70.04

Request

size

(bytes)

16384 32768 65536

64 16.21 28.46 63.26

128 16.23 28.50 63.36

256 16.38 28.67 63.43

512 16.57 28.82 63.61

1024 16.93 29.21 64.10

2048 17.67 29.96 64.86

4096 19.16 31.51 66.41

8192 22.18 34.49 69.56

16384 28.18 40.72 75.74

32768 40.67 54.92 87.96

65536 76.16 88.75 120.76

Table A.11: Time in milliseconds for two agents on the same machine to exchange a

request and response using the send and receive primitives.
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Request

size

(bytes)

Response size (bytes)

64 128 256 512

64 28.28 31.15 33.50 33.28

128 27.48 33.22 37.53 37.49

256 27.96 32.87 37.58 34.15

512 28.08 31.56 33.72 33.59

1024 29.68 33.12 33.80 34.62

2048 32.76 35.40 36.52 36.77

4096 36.04 38.62 38.70 39.38

8192 43.28 44.78 44.98 46.17

16384 60.11 61.35 61.85 61.95

32768 95.96 95.69 96.87 96.87

65536 172.47 172.75 172.57 174.42

Request

size

(bytes)

1024 2048 4196 8192

64 34.72 199.87 200.01 200.01

128 34.67 199.84 200.01 200.00

256 35.45 199.86 200.01 200.02

512 35.17 199.84 200.01 200.01

1024 35.69 199.89 200.01 200.01

2048 38.49 199.89 200.01 200.01

4096 40.12 199.86 200.01 200.01

8192 46.38 199.92 200.01 200.01

16384 62.40 199.91 200.01 200.01

32768 96.95 199.91 200.01 200.01

65536 173.45 202.63 202.81 245.62

Request

size

(bytes)

16384 32768 65536

64 200.02 200.85 400.47

128 200.03 200.05 399.87

256 200.02 200.05 398.67

512 200.02 200.44 399.67

1024 200.01 200.04 400.07

2048 200.02 200.45 399.88

4096 200.02 200.05 399.86

8192 200.02 200.04 399.86

16384 200.02 200.05 399.87

32768 200.22 242.65 400.07

65536 399.82 400.05 401.28

Table A.12: Time in milliseconds for two agents on di�erent machines to exchange a

request and response using the send and receive primitives.
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Agent

size

(bytes)

Time

(ms)

64 126.59

128 126.49

256 126.75

512 126.93

1024 127.30

2048 128.12

4096 130.03

8192 133.18

16384 139.67

32768 154.14

65536 181.04

Table A.13: Time in milliseconds to submit an empty agent to the same machine and

receive a dummy result.
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Agent

size

(bytes)

Response size (bytes)

64 128 256 512

64 118.03 118.51 118.48 119.00

128 119.01 119.32 119.30 119.73

256 119.68 119.97 120.09 120.56

512 120.63 120.78 120.80 121.25

1024 122.67 122.64 122.63 122.91

2048 125.27 125.30 125.26 125.65

4096 130.57 130.66 130.66 131.14

8192 143.03 143.07 142.82 143.33

16384 168.56 168.43 168.33 168.74

32768 221.85 221.52 221.85 221.86

65536 323.90 325.41 323.70 323.79

Agent

size

(bytes)

1024 2048 4196 8192

64 119.44 197.77 200.89 201.37

128 120.18 195.20 200.85 201.34

256 121.00 195.53 200.85 201.36

512 121.57 201.15 200.85 201.30

1024 123.58 197.42 200.85 201.35

2048 126.09 201.59 200.84 201.28

4096 131.46 197.61 200.78 201.25

8192 143.67 197.19 200.63 201.16

16384 169.34 202.76 200.40 234.10

32768 222.57 388.82 399.84 400.36

65536 326.14 398.68 398.95 399.41

Agent

size

(bytes)

16384 32768 65536

64 203.21 386.12 410.94

128 203.22 386.08 410.76

256 203.21 386.13 410.83

512 203.21 386.06 410.98

1024 203.22 386.12 410.88

2048 204.88 386.12 410.92

4096 219.22 405.70 410.82

8192 382.91 405.68 444.14

16384 402.43 405.48 590.42

32768 402.18 405.03 589.94

65536 465.32 600.38 623.70

Table A.14: Time in milliseconds to submit an empty agent to a remote machine and

receive a dummy result.
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Initial

size

(bytes)

Final size (bytes)

64 128 256 512

64 390.55 401.24 401.48 401.55

128 390.59 401.86 401.52 401.76

256 390.45 401.52 401.59 401.41

512 390.83 401.34 401.55 401.62

1024 390.62 401.21 401.34 401.76

2048 390.79 401.00 401.31 401.90

4096 391.17 401.10 401.21 401.90

8192 409.76 401.07 401.48 401.66

16384 410.38 401.62 401.41 401.83

32768 584.55 575.41 575.83 578.86

65536 608.38 601.69 601.41 601.66

Initial

size

(bytes)

1024 2048 4196 8192

64 401.66 401.90 402.07 404.03

128 401.55 402.00 401.97 404.00

256 401.62 401.59 401.55 403.76

512 401.72 402.03 401.93 403.90

1024 401.83 401.69 402.38 403.83

2048 401.38 401.72 402.45 403.69

4096 401.76 401.07 401.79 403.93

8192 401.59 401.86 401.97 403.93

16384 401.86 401.90 402.21 466.41

32768 584.72 589.86 595.17 603.62

65536 601.55 602.34 602.55 648.62

Initial

size

(bytes)

16384 32768 65536

64 406.07 597.79 827.66

128 405.86 597.83 833.62

256 405.93 597.90 839.48

512 406.03 597.79 837.86

1024 406.93 597.83 835.17

2048 411.48 597.72 842.93

4096 428.10 597.90 837.07

8192 585.48 610.93 832.69

16384 585.66 797.55 855.55

32768 605.72 797.48 854.41

65536 782.83 941.59 1048.07

Table A.15: Time in milliseconds for an agent to jump to a remote machine and then

jump back with a dummy result.
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Appendix B

Performance data - Migration

versus client/server

Tables B.1 through B.8 contain the data from the experiments that were done to

compare mobile agents with traditional client/server computing. Each data point

is an average of between 4 and 23 measured times, where each measured time was

obtained by timing 100 or 1000 iterations of the event in question and then dividing

by 10, 100 or 1000.1 More iterations and trials were done for those experiments

in which each iteration took a short time; fewer iterations and trials were done for

those experiments in which each iteration took a longer time. Figure B.1 shows the

distribution of the standard deviations for the data points, where each deviation is

expressed as a percentage of the corresponding average. The data and the experiments

are discussed further in Chapter 7.

1Between 8 and 46 times were obtained for each data point. All times above the median were

thrown out, and the remaining 4 to 23 times were averaged. The intent was to keep only those times

that correspond to periods of light network load.
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Figure B.1: Histogram of the standard deviations for the average times in Tables B.1

through B.8. Each standard deviation is expressed as a percentage of the correspond-

ing average.
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Request

size

(bytes)

Response size (bytes)

64 128 256 512

64 1.61 1.66 1.73 1.89

128 1.66 1.70 1.77 1.93

256 1.73 1.76 1.83 1.99

512 1.87 1.91 1.98 2.12

1024 2.18 2.22 2.29 2.41

2048 2.74 2.78 2.85 2.96

4096 3.83 3.89 3.97 4.11

8192 6.04 6.09 6.17 6.32

16384 10.77 10.81 10.88 11.04

32768 20.02 20.07 20.13 20.28

65536 45.74 45.81 45.91 46.07

Request

size

(bytes)

1024 2048 4196 8192

64 2.18 2.75 3.84 6.11

128 2.23 2.80 3.88 6.15

256 2.29 2.87 3.96 6.22

512 2.43 3.01 4.11 6.39

1024 2.71 3.30 4.41 6.67

2048 3.27 3.81 4.95 7.22

4096 4.39 4.96 5.94 8.34

8192 6.62 7.18 8.26 10.51

16384 11.32 11.92 13.00 15.23

32768 20.58 21.18 22.25 24.55

65536 46.31 46.97 48.19 50.55

Request

size

(bytes)

16384 32768 65536

64 10.83 20.02 45.99

128 10.87 20.04 46.06

256 10.95 20.22 46.11

512 11.10 20.31 46.25

1024 11.37 20.58 46.60

2048 11.97 21.17 47.06

4096 13.04 22.25 48.44

8192 15.29 24.59 50.73

16384 19.95 29.38 55.49

32768 29.24 38.33 63.54

65536 55.19 64.36 87.46

Table B.1: Time in milliseconds for two agents on the same laptop to exchange a

request and response over an Agent Tcl meeting.

244



Request

size

(bytes)

Response size (bytes)

64 128 256 512

64 6.09 6.19 6.31 6.65

128 6.20 6.25 6.38 6.70

256 6.34 6.42 6.53 6.84

512 6.68 6.75 6.86 7.15

1024 7.28 7.35 7.44 7.77

2048 8.35 8.42 8.58 8.90

4096 10.61 10.67 10.81 11.14

8192 15.18 15.25 15.41 15.72

16384 24.33 24.42 24.55 24.90

32768 42.93 42.97 43.11 43.40

65536 94.16 94.20 94.37 94.77

Request

size

(bytes)

1024 2048 4196 8192

64 7.24 8.35 10.58 15.23

128 7.32 8.46 10.68 15.32

256 7.47 8.58 10.82 15.47

512 7.73 8.89 11.14 15.78

1024 8.33 9.48 11.60 16.35

2048 9.42 10.52 12.79 17.43

4096 11.69 12.79 14.93 19.70

8192 16.31 17.40 19.60 24.06

16384 25.48 26.61 28.78 33.40

32768 44.01 45.09 47.34 51.96

65536 95.41 96.61 99.07 103.69

Request

size

(bytes)

16384 32768 65536

64 24.44 42.95 93.07

128 24.54 43.08 93.16

256 24.67 43.17 93.34

512 24.95 43.43 93.64

1024 25.54 44.03 94.27

2048 26.62 45.14 95.51

4096 28.89 47.45 97.87

8192 33.45 52.05 102.59

16384 42.49 63.45 111.80

32768 61.13 82.77 129.98

65536 112.78 131.60 178.04

Table B.2: Time in milliseconds for two agents on the same laptop to exchange a

request and response using the send and receive primitives.
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Request

size

(bytes)

Response size (bytes)

64 128 256 512

64 152.83 160.34 277.01 359.67

128 166.67 168.34 288.67 369.34

256 187.51 196.00 303.17 395.00

512 268.01 279.17 400.34 476.34

1024 390.84 400.34 517.51 600.17

2048 691.00 719.83 830.34 897.34

4196 1117.17 1124.17 1239.33 1322.00

8192 1820.00 1724.17 1840.00 1930.00

16384 3151.34 3170.51 3276.00 3361.51

32768 6679.01 6313.00 6439.84 6502.17

65536 12008.50 12067.84 12165.17 12218.67

Request

size

(bytes)

1024 2048 4196 8192

64 431.51 566.34 950.18 1647.67

128 442.34 572.17 958.67 1665.18

256 465.67 601.00 985.34 1684.17

512 549.18 674.01 1051.84 1750.17

1024 672.17 787.17 1167.51 1872.01

2048 976.17 1097.67 1478.17 2189.51

4196 1397.84 1530.50 1889.68 2594.17

8192 1996.35 2123.17 2503.51 3200.51

16384 3429.68 3570.38 3931.84 4650.01

32768 6539.17 6692.51 7079.51 7798.51

65536 12292.01 12436.34 12800.34 13493.51

Request

size

(bytes)

16384 32768 65536

64 3081.34 5957.01 11735.85

128 3094.18 5975.01 11738.01

256 3115.34 6002.17 11759.52

512 3187.68 6068.18 11831.18

1024 3295.18 6174.52 11942.18

2048 3619.17 6491.00 12254.85

4196 4029.67 6879.41 12674.35

8192 4639.84 7496.84 13264.17

16384 6069.85 9124.51 14702.49

32768 9175.68 12076.68 17943.85

65536 14945.67 17802.01 23629.68

Table B.3: Time in milliseconds for two processes on di�erent laptops to exchange a

request and response over a 28.8 Kb/s modem link.

246



Initial

size

(bytes)

Final size (bytes)

64 128 256 512

64 1521.50 1556.00 1545.50 1591.67

128 1560.50 1571.50 1578.00 1616.50

256 1550.33 1595.50 1599.00 1616.83

512 1611.67 1659.50 1657.00 1702.50

1024 1708.50 1747.50 1751.50 1799.50

2048 1926.83 1948.50 1958.33 1985.33

4096 2319.17 2328.83 2367.17 2394.17

8192 3087.17 3115.67 3129.33 3169.50

16384 4584.17 4620.17 4647.83 4662.67

32768 7462.00 7501.20 7465.20 7533.80

65536 13382.80 13399.00 13438.60 13435.40

Initial

size

(bytes)

1024 2048 4196 8192

64 1747.00 1916.83 2284.00 3039.50

128 1752.00 1920.67 2286.17 3048.50

256 1760.67 1934.17 2303.67 3049.00

512 1813.17 2003.67 2408.00 3126.00

1024 1910.50 2100.00 2488.17 3227.67

2048 2106.00 2312.17 2711.00 3424.17

4096 2529.00 2709.17 3098.67 3824.33

8192 3287.50 3471.67 3829.17 4604.67

16384 4797.83 4985.33 5387.50 6104.17

32768 7631.60 7830.80 8292.60 9058.60

65536 13545.60 13693.20 14066.60 14716.20

Initial

size

(bytes)

16384 32768 65536

64 4563.17 7402.00 13280.33

128 4577.17 7427.17 13322.17

256 4599.00 7434.67 13350.83

512 4648.17 7465.00 13378.50

1024 4735.67 7561.67 13449.00

2048 4924.00 7735.50 13664.17

4096 5359.00 8160.33 13999.00

8192 6086.33 9032.83 14704.33

16384 7442.67 10499.40 16191.00

32768 10492.40 13310.40 18963.60

65536 16112.20 18947.00 24746.00

Table B.4: Time in milliseconds for an agent to jump from one laptop to another

(and back) over a 28.8 Kb/s modem link.
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Request

size

(bytes)

Response size (bytes)

64 128 256 512

64 4.57 5.02 5.95 7.80

128 5.03 5.48 6.40 8.24

256 5.94 6.38 7.32 9.15

512 7.80 8.25 9.16 10.94

1024 11.46 11.91 12.84 14.68

2048 38.38 38.83 39.39 41.23

4196 72.65 75.18 70.58 72.59

8192 100.75 103.43 98.05 99.78

16384 160.18 159.09 153.01 153.37

32768 263.06 269.82 245.23 246.88

65536 484.59 505.97 461.75 462.89

Request

size

(bytes)

1024 2048 4196 8192

64 11.45 18.67 33.76 61.92

128 11.90 19.11 67.59 62.37

256 12.82 20.05 35.09 63.45

512 14.66 21.88 37.02 65.27

1024 18.33 25.53 40.64 68.85

2048 44.87 52.09 75.10 95.33

4196 76.79 84.10 104.19 126.90

8192 103.59 110.48 131.57 154.88

16384 156.34 157.24 180.92 207.67

32768 250.44 257.56 272.84 300.77

65536 466.53 473.60 491.67 517.13

Request

size

(bytes)

16384 32768 65536

64 119.63 234.35 459.58

128 120.08 234.80 460.04

256 121.00 235.73 460.95

512 122.84 237.55 462.80

1024 126.49 241.23 466.44

2048 153.14 268.12 493.31

4196 185.03 300.55 529.73

8192 211.33 328.32 555.15

16384 266.11 382.78 612.49

32768 358.51 494.06 723.30

65536 574.51 694.40 942.16

Table B.5: Time in milliseconds for two processes on di�erent laptops to exchange a

request and response over a 2.4 Mb/s wireless link.
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Initial

size

(bytes)

Final size (bytes)

64 128 256 512

64 358.08 361.92 364.54 364.00

128 362.00 362.62 365.00 370.69

256 363.54 366.23 363.08 365.85

512 367.54 365.54 368.54 370.54

1024 370.77 370.69 372.62 371.00

2048 381.69 381.46 381.23 384.69

4096 399.92 397.62 401.54 402.77

8192 435.23 434.62 436.69 438.46

16384 507.00 505.08 507.69 506.62

32768 662.31 652.77 653.77 662.08

65536 954.15 958.85 959.23 959.08

Initial

size

(bytes)

1024 2048 4196 8192

64 378.08 377.92 400.00 436.31

128 369.15 384.23 397.46 433.85

256 374.54 383.31 401.00 434.08

512 373.77 384.38 403.00 433.77

1024 380.15 385.38 407.31 446.23

2048 388.85 400.15 416.00 454.08

4096 406.92 417.69 445.46 469.62

8192 444.15 455.77 473.77 508.00

16384 519.85 521.62 548.08 576.77

32768 662.54 674.62 693.15 734.54

65536 962.92 980.00 994.62 1028.69

Initial

size

(bytes)

16384 32768 65536

64 505.54 652.77 958.31

128 506.92 658.54 946.85

256 508.08 659.00 956.54

512 511.46 667.31 960.08

1024 515.46 665.54 962.62

2048 525.00 674.69 974.23

4096 549.77 693.15 996.92

8192 582.54 730.08 1028.85

16384 652.15 810.62 1103.92

32768 804.85 961.69 1244.54

65536 1097.54 1246.69 1553.77

Table B.6: Time in milliseconds for an agent to jump from one laptop to another

(and back) over a 2.4 Mb/s wirless link.
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Request

size

(bytes)

Response size (bytes)

64 128 256 512

64 0.72 0.83 1.05 1.48

128 0.83 0.94 1.15 1.59

256 1.05 1.15 1.37 1.80

512 1.48 1.59 1.80 2.23

1024 2.36 2.46 2.68 3.11

2048 3.43 3.54 3.75 4.19

4196 5.35 5.45 5.67 6.10

8192 8.62 8.73 8.95 9.38

16384 16.22 16.39 16.60 16.96

32768 51.12 51.91 50.18 42.19

65536 70.48 71.45 70.69 69.29

Request

size

(bytes)

1024 2048 4196 8192

64 2.35 3.22 5.11 8.60

128 2.46 3.33 5.21 8.70

256 2.68 3.55 5.42 8.93

512 3.11 3.98 5.86 9.36

1024 3.97 4.84 6.71 10.20

2048 5.08 5.94 7.80 11.29

4196 6.97 7.81 9.69 13.15

8192 10.25 11.07 12.92 16.42

16384 17.87 18.68 20.33 24.06

32768 44.27 44.09 42.76 47.31

65536 69.44 71.14 72.45 77.43

Request

size

(bytes)

16384 32768 65536

64 16.17 51.59 70.63

128 16.32 51.54 71.74

256 16.42 51.03 72.66

512 16.89 50.39 72.41

1024 17.71 43.36 73.85

2048 18.70 46.08 75.96

4196 20.60 45.02 74.91

8192 23.88 49.23 78.63

16384 31.50 55.60 87.76

32768 54.28 81.61 113.48

65536 84.16 110.71 140.13

Table B.7: Time in milliseconds for two processes on di�erent laptops to exchange a

request and response over a 10 Mb/s Ethernet link.
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Initial

size

(bytes)

Final size (bytes)

64 128 256 512

64 335.60 336.50 337.80 335.40

128 337.30 335.40 335.50 338.80

256 337.40 334.70 340.90 338.80

512 337.90 336.00 335.40 339.70

1024 339.80 338.10 343.80 342.00

2048 339.20 341.60 339.50 347.20

4096 350.30 346.60 351.20 351.30

8192 368.50 370.30 364.10 371.30

16384 400.00 396.20 395.90 399.80

32768 457.40 458.00 457.90 462.50

65536 562.22 562.33 565.56 563.67

Initial

size

(bytes)

1024 2048 4196 8192

64 342.30 339.90 350.10 366.50

128 336.50 344.20 351.20 366.10

256 338.50 342.50 348.10 369.80

512 340.00 345.10 353.40 369.40

1024 341.10 348.10 352.50 373.60

2048 346.40 348.70 360.60 378.00

4096 355.30 355.00 362.60 382.10

8192 368.70 377.80 383.70 398.80

16384 403.20 403.60 413.10 428.30

32768 461.60 468.50 469.80 490.20

65536 563.78 572.33 573.78 597.67

Initial

size

(bytes)

16384 32768 65536

64 397.30 457.50 564.50

128 399.60 459.60 567.30

256 399.70 459.20 565.60

512 401.10 458.60 566.00

1024 399.70 463.80 568.90

2048 405.90 465.70 570.10

4096 410.60 471.40 580.20

8192 428.20 492.40 598.20

16384 461.40 521.80 626.80

32768 519.00 589.30 691.00

65536 620.56 686.00 802.44

Table B.8: Time in milliseconds for an agent to jump from one laptop to another

(and back) over a 10 Mb/s Ethernet link.
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Appendix C

A tutorial on Agent Tcl

This appendix is a tutorial on how to write Tcl agents for Agent Tcl. First, we give a

brief overview of the Tcl scripting language and the special agent commands. Then

we write two versions of the \who" agent.

C.1 Tcl and Tcl agents

Tcl has two components. The �rst component is a shell, usually called tclsh, that

is used to execute stand-alone Tcl scripts and interactive commands. The second

component is a library of C functions. The library provides functions to \create" a

Tcl interpreter, de�ne new Tcl commands in the interpreter, and submit Tcl scripts

to the interpreter for evaluation. This library allows Tcl to be embedded inside a

larger application; any application that needs a scripting language can include the

library and allow its users to write Tcl scripts.

A tutorial on Tcl is beyond the scope of this document. Tcl is easy to learn,

however, and is similar to other scripting languages such as Perl and the various Unix

shells. The following Tcl script, for example, asks the user for a number and then

displays the factorial of that number. The script keeps asking for numbers until the

user enters Q to stop. For now, we simply examine the key features of the script; we
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describe how to actually run the script in the next section.

# Procedure ``factorial'' recursively computes a factorial.

proc factorial x {

if {$x <= 1} {

return 1

}

return [expr $x * [factorial [expr $x - 1]]]

}

# Repeat until the user enters "Q" to quit.

set number ""

while {$number != "q"} {

# Get the integer for which we want the factorial

# (or "Q" to quit).

puts -nonewline \

"Enter a nonnegative integer (or \"Q\" to quit): "

gets stdin number

# Convert to lowercase in case it's a "Q".

set number [string tolower $number]

# Compute the factorial if we're not quitting.

if {$number != "q"} {
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puts "$number! is equal to [factorial $number]"

}

}

There are several important things to note about Tcl in general. First, Tcl stores

all data as strings. The number variable, for example, can be used to hold both a

number and the letter Q because Tcl stores numbers as strings. Commands that

expect numbers, such as expr (which evaluates general mathematical expressions),

convert the given strings into an internal numeric representation.

Second, Tcl has no �xed grammar that \de�nes" the language [Ous94]. The Tcl

interpreter does not treat the while construct above, for example, as a reserved word,

followed by an expression, followed by a repeatedly-executed subprogram. Instead

the Tcl interpreter treats the construct as a command name, while, followed by two

argument strings; the curly bracket characters, { and }, represent nothing more than

a kind of string quotation. The two arguments are passed to the handler for the while

command which interprets them as it sees �t. The standard while handler does, in

fact, treat the �rst argument as an expression, and if the expression is true, passes the

second argument back to the Tcl interpreter for evaluation as a Tcl script. If the while

handler is replaced, however, the behavior of the while command changes. Thus,

although many Tcl commands look and act like traditional programming constructs,

it is important to remember that Tcl parses everything as a command name and

arguments.

Finally, there are two types of special syntactic constructs that can appear inside

the argument strings. These constructs are called substitutions. In the command

expr $x * [factorial [expr $x - 1]], for example, $x is a variable substitution,

and [expr $x - 1] is a command substitution. When the command is parsed, $x

will be replaced with the contents of variable x, and [expr $x - 1] will be replaced
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with the result of executing the command expr $x - 1, namely the value of $x - 1.

The quotation characters around the string determine whether these substitutions

are actually performed. Curly brackets, for example, mean that substitutions are not

performed and that the string is passed unchanged to the command handler. Dou-

ble quotes (") or no quotes means that substitutions are performed. In the while

command, above, we use curly brackets around the �rst argument, $number != "q",

so that the string is passed unchanged to the while handler. The variable substitu-

tion $number is then performed once per iteration, each time that the while handler

checks the value of the expression. If we had used double quotes instead, the variable

substitution would have been performed when the while command was �rst parsed,

and the string passed to the while handler would have been "" != "q". This ex-

pression is always true so the loop would have run forever. Proper quoting is the

most di�cult aspect of Tcl; it will be easier if you remember that the Tcl interpreter

parses everything as a string, and that the di�erent quotation characters a�ect the

parsing process.

Keeping these three points in mind, it becomes straightforward to understand the

script. First, the proc command is used to create a new command called factorial

that takes a single argument x and computes x! by making recursive calls to itself.

Then, the puts and gets commands are used to interact with the user and obtain

a number; the factorial command is called with this number as its argument; and

puts is used to display the factorial result. The while command repeats this process

until the user enters Q rather than a number. This script highlights the main features

of Tcl but uses only a small fraction of the Tcl commands. More information on Tcl

can be found in the books by Ousterhout [Ous94] and Welch [Wel95], in the Tcl man

pages, and in the comp.lang.tcl usenet group.

In addition to the standard Tcl commands, Agent Tcl agents use a special set

of commands to migrate from machine to machine and to communicate with other
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agents. These commands are provided as a Tcl extension, but can be treated as a

native part of the Tcl language when writing an agent. In the remainder of this

section, we briey de�ne each command. In the next section, we use the commands

to develop two agents. The commands can be divided into three main categories.

The �rst category of commands allow an agent to register itself with an agent server

and to obtain an identi�er in the agent namespace.

� agent begin [machine]. The agent begin command registers the agent with

the agent server on the speci�ed machine (or on the local machine if no machine

is speci�ed) and returns the agent's new identi�er within the agent namespace.

In the current system, this identi�er consists of the symbolic name of the server,

the IP address of the server, a symbolic name that the agent chooses for itself,

and a unique integer that the server assigns to the agent. So if an agent issues

the command agent begin bald, for example, the command might return the

four-element Tcl list bald.cs.dartmouth.edu 129.170.192.98 {} 15. The

129.170.192.98 is the IP address of bald. The empty curly brackets indicate

that the agent initially has no symbolic name; a symbolic name can be chosen

at a later time with the agent name command. The 15 is the integer id that

the server on bald has assigned to the new agent; this integer is unique among

all agents executing on bald but not among all agents everywhere. The agent's

current identi�er is stored in element local of the global Tcl array agent. This

array is always available inside an Agent Tcl script and is read-only; it contains

other useful information as we will see in the programming examples below.

Once the agent has issued the agent begin command, it can use the other

agent commands.

� agent name name. The agent name command selects a symbolic name for the

agent. If the agent in the example above issues the command agent name
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FtpAgent, its complete name will become

bald.cs.dartmouth.edu 129.170.192.98 FtpAgent 15.

� agent end. An agent calls the agent end command when it is �nished with its

task and no longer requires agent services.

The second category of commands allow an agent to migrate from machine to

machine and to create child agents.

� agent jump machine. An agent calls the agent jump command when it wants

to migrate to a new machine. This command captures the internal state of the

agent and sends the state to the agent server on the speci�ed machine. The

server restores the state and the agent continues execution immediately after

the agent jump. Certain components of the state, such as open �les and child

processes, are intrinsically tied to a speci�c machine and are not transferred to

the new machine. The agent receives a new 4-element identi�cation when it

jumps, which again is stored in element local of the global Tcl array agent.

The agent also loses its symbolic name when it jumps and must request it again

if needed.

� agent fork machine. The agent fork command is roughly analogous to Unix

fork. It creates a copy of the agent on the speci�ed machine. Both the original

agent and the copy continue execution from the point of the agent fork. The

agent fork command returns the 4-element identi�cation of the copy to the

original agent and the string CHILD to the copy.

� agent submit machine -procs names -vars names -script script.

The agent submit command creates a completely new agent. The parameters

to agent submit are a machine, a list of Tcl variables, a list of Tcl procedures,

and a startup script. A new agent is created on the speci�ed machine. This
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agent contains copies of the speci�ed variables and procedures and begins exe-

cution by evaluating the startup script. The agent submit command returns

the 4-element identi�cation of the new agent.

The �nal category of commands allow agents to communicate with each other.

� agent send id code string. The agent send command sends a message to

another agent. A message consists of an integer code and an arbitrary string.

The recipient agent is speci�ed by its 4-element id or by any subset of the 4-

element id that uniquely identi�es the agent, such as the server name and the

unique integer. The recipient receives the message using the agent receive

command, or if it is using Tk, by establishing an event handler for incoming

messages using the mask command.

� agent event id tag string. The agent event command is a variant of

agent send that sends a tag and a string rather than an integer code and a

string. A tag is just an arbitrary string itself. The advantage of agent event is

that the recipient can associate event handlers with speci�c tags using the mask

command. The event handler is called automatically whenever a message arrives

with the corresponding tag. If the recipient is not using Tk or chooses not to use

event handlers, it must receive these tagged messages with the agent getevent

command.

� agent meet id. The agent meet command is used to request a meeting with

the speci�ed recipient. The recipient accepts the connection request either by

issuing its own agent meet command or with the agent accept command.

Once the connection request has been accepted, and the meeting has been es-

tablished, arbitrary data can be sent along the connection using the tcpip read

and tcpip write commands. The names of these commands reect the current

258



link between direct connections and TCP/IP; they should be changed but have

been left alone for backward compatibility. Meetings are more e�cient than the

two message-passing variants since they bypass the agent servers.

There are several miscellaneous commands that do not fall into the three main

categories. The agent info command, for example, is used to obtain information

from a server about the agents executing on its machine; the retry command retries

a block of Tcl code until no error occurs or the maximum number of tries has been

reached; and the restrict command imposes resource restrictions on an arbitrary

block of Tcl code. The Agent Tcl documentation describes these commands, along

with all of the commands listed above, in more detail.

C.2 Programming examples

The Unix who command lists all the users who are logged into a machine. In this

section, we develop two versions of an agent that will travel from machine to machine,

execute the Unix who command on each machine, and then return to the home site and

show the complete list of users to its owner. These examples are a simplistic use of an

agent, but they illustrate the general structure of itinerant agents, they do not require

support agents at each network site, and they �t conveniently on a few pages while

demonstrating most of the agent commands. As you work through these examples,

you should keep in mind that the application-speci�c section of each agent|i.e., the

invocation of the Unix who command|can be replaced with any desired processing.

The �rst step in developing the examples is to install the Agent Tcl system on two

or more machines (the examples work with only one machine but are somewhat bor-

ing). Detailed installation instructions are included in the Agent Tcl documentation.

Once the Agent Tcl system is installed, you will have three executable �les, agentd,

agent and agent-tk. agentd is the agent server, agent is the agent interpreter, and
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agent-tk is the agent interpreter that includes the Tk toolkit. You should start the

server agentd on each machine on which you installed the Agent Tcl system. Again

detailed instructions are included in the Agent Tcl documentation.

Once the server is running on each machine, you can execute Agent Tcl agents

or any Tcl script that is fully compatible with Tcl 7.4 and Tk 4.0. Tcl scripts that

require Tcl 7.5 and Tk 4.1 will not work with this version of Agent Tcl. There are

three ways to execute a Tcl script using the agent interpreters. Suppose that the

factorial script above is in a �le called factorial.tcl. The �rst execution method

is to start the agent interpreter by typing agent at the Unix prompt. Then you type

source factorial.tcl at the Tcl prompt. You will return to the Tcl prompt after

the factorial script �nishes executing; you can type in additional Tcl commands or

type exit to leave the agent interpreter and return to the Unix prompt. The second

execution method is to type agent factorial.tcl at the Unix prompt; you will

return to the Unix prompt when the factorial script has �nished executing. The third

execution method is to turn on the Unix execution permissions for �le factorial.tcl

and add the line

#!/usr/local/bin/agent

at the beginning of factorial.tcl. This assumes that the agent interpreter is in

directory /usr/local/bin; you will need to change this line if you installed agent is

in a di�erent directory. Then you simply type factorial.tcl at the Unix prompt;

you will return to the Unix prompt once the factorial script �nishes executing. If the

agent uses Tk, you use the same three execution methods, only with agent-tk rather

than agent. Since the Agent Tcl system uses a modi�ed Tcl interpreter, you must

execute agents with either agent or agent-tk. It is impossible to execute an agent

with the standard Tcl interpreters, tclsh and wish, even if you recompile them so

that they include the agent extension.
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Figure C.1: The �rst version of the \who" agent. The parent agent (P) submits a

child agent (C) that migrates through a sequence of machines and executes the Unix

who command on each. Then the child (C) sends the complete list of users to the

parent (P) for display to the user. In the speci�c case shown, the child agent (C)

migrates through four machines at Dartmouth, cosmo, lost-ark, temple-doom, and

tuolomne.

Now we develop the two versions of the \who" agent. The �rst version is text-

based. It asks the user for a list of machines. Then it submits a single child agent

using the agent submit command. This child agent migrates through the speci�ed

machines using the agent jump command, executes the Unix who command on each

machine, and records the users of each machine. Once the child agent �nishes, it

sends the complete list of users to its parent using the agent send command. The

parent displays the list of users and exits. Figure C.1 illustrates the behavior of this

agent.

The Tcl code for this agent is actually quite simple. You can enter the code using

any standard Unix text editor. Once you have entered the code, you should save it in
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a �le with extension .tcl. The discussion below assumes that you use the �lename

who.tcl. The Tcl code for the agent appears below. The code is interspersed with

discussion. The code is indented and appears in a �xed-width font; the discussion is

ush with the left margin and appears in the normal font. Make sure that you do

not type in the discussion as part of the agent. In addition, certain lines end with a

backslash (\) which is the Tcl line-continuation character. There should not be any

spaces or tabs after these backslashes. The �rst piece of code is simply a comment

header.

#!/usr/local/bin/agent

#

# who.tcl

#

# This agent executes the "who" command on multiple machines.

# It submits a SINGLE child agent. The child jumps from

# machine to machine and executes the WHO command on each

# machine. Then the child returns the complete list of users

# to the parent for display.

The �rst line speci�es the location of the agent interpreter. This line allows you

to execute the agent simply by typing who.tcl at the Unix prompt. You will have

to change this line if you installed agent in a di�erent directory. The other lines are

comments which are indicated by a pound sign (#).

The second piece of code is the procedure that implements the child agent.

# Procedure `who' is the child agent that does the jumping.

proc who machines {

global agent
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# start with an empty list

set list ""

# loop through the machines and jump to each

foreach m $machines {

# if we do not jump successfully, append an error message

# otherwise append the list of users

if {[catch {agent_jump $m} result]} {

append list "$m:\nunable to JUMP here ($result)\n\n"

} else {

set users [exec who]

append list "$agent(local-server):\n$users\n\n"

}

}

# send back the list of users and finish

agent_send $agent(root) 0 $list

exit

}

There are several important things to note about this procedure. First, the pro-

cedure takes a single argument machines which contains the list of machines that

the child agent should visit. For the purposes of the examples, a Tcl list is just a

string that contains one or more whitespace-separated substrings|e.g., the string

bald cosmo lost-ark is a Tcl list that contains three elements, bald, cosmo and
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lost-ark. Second, the command global agent tells the Tcl interpreter that we

want to access the global array agent from inside the procedure; this array contains

information about the location of the agent. Third, the foreach command loops

through each element in the list of machines; the variable m is set to the next ma-

chine on each iteration. Fourth, the agent jump command is used to jump onto each

machine m. The agent jump command is enclosed within a catch command. Tcl

commands raise exceptions if an error occurs; these exceptions are caught with the

catch command. If the agent jump command fails, the catch command catches the

exception, puts the associated error message in the variable result, and returns 1.

The if clause of the if statement is executed and the agent records an error message.

If agent jump succeeds, the catch command returns 0. The else clause is executed

so the agent invokes the Unix who command and records the list of users. Finally,

once the child agent has migrated through each machine, it sends the list of users

(and error messages) back to its parent using the agent send command.

When agents create other agents, a parent-child hierarchy arises with a single

agent at the top. The agent at the top is called the root agent and, in both itself

and all of its descendents, its 4-element identi�cation is found in element root of the

agent array. Thus, since the parent of the child agent is also the root agent in this

case, we can just send the list of users to agent(root). A current limitation of the

Agent Tcl system is that it does not record the complete parent-child hierarchy. If

we wanted to send the message to the parent and the parent was not a root agent,

we would have to explicitly record the 4-element identi�cation of the parent in an

auxiliary variable before creating the child agent.

The next piece of code is the start of the parent agent. It asks for the list of

machines and registers the agent with the agent server.

# get the machines
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puts -nonewline "Please enter the list of machines: "

gets stdin machines

# register the agent

if {[catch {agent_begin} result]} {

return -code error "ERROR: unable to register on \

$agent(actual-server) ($result)"

}

The gets and puts commands let the user enter the list of machines. The

agent begin command registers the agent with the server on the local machine.

The agent begin command is enclosed within a catch command in case the server

is not available on the local machine for some reason (element actual-sever of the

agent array always contains the name of the local machine). The agent cannot use

any of the other agent commands until it successfully registers using the agent begin

command.

The �nal piece of code is the rest of the parent agent. It creates the child agent,

waits for the child agent to send the message containing the list of users, and �nally

displays the list of users.

# catch any error

if {[catch {

# submit the child agent that does the jumping

agent_submit $agent(local-ip) -vars machines -procs who \

-script {who $machines}
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# wait for the list of users

agent_receive code message -blocking

# output the list of users

puts "\nWHO'S WHO on our computers\n\n$message"

# cleanup

agent_end

} error_message]} then {

# cleanup on error

agent_end

# throw the error message up to the next level

return -code error -errorcode $errorCode \

-errorinfo $errorInfo error_message

}

First, the parent creates the child agent using agent submit. The child agent is

speci�ed with the -script parameter and consists only of a call to procedure who

with parameter machines. Since the child makes this call, it must have copies of

procedure who and variable machines, so this procedure and variable are speci�ed

after the -procs and -vars parameters respectively. Once the child agent is created,

the parent waits for the child's message using the agent receive command. The

-blocking parameter indicates that the agent will wait until the message arrives

rather than timeout. Once the message arrives, the integer code is placed in variable
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code and the string is placed in variable string. Finally, the puts command displays

the list of users and the agent end command ends the agent. This whole sequence

is enclosed in a catch command in case an error occurs. The agent is now complete

and can be run with any of the three methods described above. So if you type agent

who.tcl at the Unix prompt, you will see the request

Please enter the list of machines:

You should type in the desired machine names with one or more spaces between

names. The agent server must be running on the speci�ed machines. As an example,

if the agent were executed at Dartmouth and you entered the same machine names

shown in Figure C.1 (as well as one machine that does not exist), you might see the

output

Please enter the list of machines:

cosmo lost-ark xxx temple-doom tioga

WHO'S WHO on our computers

cosmo.dartmouth.edu:

lost-ark.dartmouth.edu:

lwilson ttyq0 Apr 29 08:16

pascalb ttyq2 Apr 29 09:11

pascalb ttyq3 Apr 29 09:11

xxx:

unable to JUMP here (unable to get IP address of "xxx")

temple-doom.dartmouth.edu:

rgray ttyq0 Apr 29 08:55

267



rgray ttyq2 Apr 29 09:08

tioga.cs.dartmouth.edu:

rgray ttyp2 Apr 29 09:07

There will be a short delay before the child agent �nishes its travels and the list

of users is displayed. Note that the nonexistent machine xxx causes no di�culties

due to the catch command surrounding the agent jump command. Detecting and

handling errors when the agent is moving is no more di�cult than when the agent is

stationary. Uncaught errors cause the agent to terminate, although an error message

will be automatically sent to the root agent

The second version of the \who" agent expands on the �rst. First, it uses the Tk

toolkit to display a window in which the user enters the names of the machines. Then,

the agent itself jumps from machine to machine and executes the Unix who command

on each machine. Once the agent has migrated through each machine, it jumps again

to return to its home machine where it displays a second window that contains the

results. As an additional feature, the agent leaves behind a tracker agent on the home

machine; the agent communicates with the tracker agent to provide a continuous up-

date of its current status and network location. This behavior is shown in Figure C.2.

A sample screen dump is shown in Figure C.3. This agent is much longer so you will

probably want to use the copy in systems/agent-tcl/book-examples/winwho.tcl

rather than typing it in yourself. All of the code should be placed in one �le although

logically there are two agents (the \who" agent creates the \tracker" agent just before

it starts to migrate). The �rst piece of the \who" agent is again a comment header.

The only di�erence is that the �rst line must specify the location of the agent-tk

interpreter rather than the agent interpreter.

#!/usr/contrib/bin/agent-tk
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Figure C.2: The second version of the \who" agent. The agent (A) migrates through

the machines itself, returns to the home machine, and displays the list of users in

a Tk window. Before it begins migrating, the agent (A) creates a child agent that

will serve as a tracker (T). The agent (A) communications with the tracker (T) as it

migrates to provide a continuous update of its location.
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#

# who.tk

#

# This agent executes the "who" command on multiple machines.

# It displays a Tk window in which the user enters a list of

# machines. Then it jumps from machine to machine and executes

# the Unix "who" command on each machine. Finally it returns

# to the home machine and displays a Tk window that contains

# the complete list of users. While traveling, it leaves

# behind a tracker agent; it communicates with the tracker

# agent to display continuous information about its progress.

The second piece of the \who" agent are procedures GetMachines and

DisplayList. Procedure GetMachines creates the window in which the user en-

ters the machine names; this window is the top window in Figure C.3. Procedure

DisplayList creates the output window in which the list of users is displayed; the

output window is the bottom window in Figure C.3. Procedure GetMachines is called

before the agent starts migrating; procedure DisplayList is called when the agent

returns to the home machine with the list of users. These procedures use standard

Tk commands and do not use any agent commands, so we do not describe them in

detail. The only nonstandard commands are main create and main destroy, which

create and destroy a main window for the application. The standard Tk interpreter,

wish, automatically creates a main window. Agents, however, do not always need

a main window so we introduce the command main create to explicitly create the

main window when desired. In addition, an agent can not migrate if it is currently

displaying a window. For this reason main destroy is used to destroy the main win-

dow before migration. Unlike wish, destroying the main window does not terminate

the agent. Because of the need to destroy windows before migrating|and because
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agents cannot jump from inside a Tk event handler|Tk agents make heavy use of

the tkwait command. The agent displays the desired interface, uses tkwait to stay

in the event loop until the agent needs to migrate, and then destroys the interface

and jumps to the next machine. This approach imposes a useful structure on the

agent and is more convenient than it might seem.

# Procedure GetMachines creates the Tk window in which the

# user enters the list of machines. It returns "OK" if the

# user enters a list of machines and selects the "GO" button

# It returns "FORGET" if the user selects the "FORGET" button.

proc GetMachines {} {

# The global variable "machines" holds the list of machines

# and the global variable "status" is either "GO" or

# "FORGET" depending on which button the user hits. The

# global variable "display" holds the name of the display

# --- e.g., # "cosmo.dartmouth.edu:0".

global display

global machines

global status

# create the main window

main create -name "List of machines" -display $display

# fill in the main window with an entry box and two buttons

entry .entry -width 40 -relief sunken -bd 2 \

-textvariable machines
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button .go -text "Go!" -command {set status GO}

button .forget -text "Forget it!" -command {set status FORGET}

pack .entry -side top -fill x -expand 1

pack .go -side left -padx 3m -pady 3m -expand 1

pack .forget -side left -padx 3m -pady 3m -expand 1

bind .entry <Return> {set status GO}

focus .entry

# wait for the user to fill in the entry box correctly,

# first making sure that the "status" variable does not yet

# exist

catch {unset status}

while {![info exists status]} {

# wait for the user to hit a button

tkwait variable status

# if the user hit button "GO", see if the entry box is

# filled in

if {($status == "GO") && ([string trim $machines] == "")} {

tk_dialog .t "No machine!" \

"You must enter at least one machine name!" error 0 OK

unset status

}

}

# return the status --- e.g., "GO" or "FORGET" --- but first
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# destroy the window

main destroy

return $status

}

# Procedure DisplayList creates the window in which the list

# of users is displayed. The "users" argument contains the

# list of users.

proc DisplayList users {

# The global variable "display" contains the name of the

# display and the global variable "status" will be set to

# DONE when the user finishes looking at the results.

global display

global status

# create the main window

main create -name "WHO'S WHERE?" -display $display

# make the placeholder frames

frame .top -relief raised -bd 1

frame .bot -relief raised -bd 1

pack .bot -side bottom -fill both

pack .top -side bottom -fill both -expand 1

# make a text box that will hold the list of users
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text .text -relief raised -bd 2 -width 60 \

-yscrollcommand ".scroll set"

scrollbar .scroll -command ".text yview"

pack .scroll -in .top -side right -fill y

pack .text -in .top -side left -fill both -expand 1

# make the "DONE" button

button .done -text "Done!" -command {set status DONE}

pack .done -in .bot -side left -expand 1 -padx 3m -pady 2m

# fill in the text area

.text delete 1.0 end

.text insert end $users

# wait for the user to finish looking at the results, first

# making sure that the "status" variable does not yet exist

report "Done! You should see the results window."

catch {unset status}

tkwait variable status

main destroy

}

The next piece of the \who" agent is actually the tracker agent that displays

the progress of the \who" agent through the network. The \who" agent uses the

agent event command to send tagged messages back to the tracker. Rather than

explicitly receiving these messages with the agent getevent command, the tracker

uses the mask command to establish two message handlers. These handlers are au-
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tomatically called when a tagged message arrives. Procedure messageHandler is

automatically called if the message tag is MESSAGE. The source parameter is �lled in

with the 4-element identi�cation of the sender; the tag parameter is �lled in with the

message tag; and the string parameter is �lled in with the message string. Similarly

procedure errorHandler is called if the message tag is ERROR. Procedure Tracker

is the main body of the tracker agent. It creates a simple text window, establishes

the two message handlers using the mask command, and calls tkwait to sit in the

event loop. The two handlers are automatically called whenever a message arrives

and simply insert the status information into the text window. This text window is

the middle window in Figure C.3. The tracker agent illustrates that agents can use

the Tk event model e�ectively. In fact Tk agents should almost always establish event

handlers for incoming messages; otherwise the agent will not respond to user events

while it sits at an agent receive or agent getevent command (or it will have to

continuously poll). Procedure LeaveTracker actually starts up the tracker agent us-

ing agent submit; it is called by the \who" agent just before the \who" agent starts

migrating. The procedure returns the 4-element identi�cation of the tracker so that

the \who" agent knows where to send its status messages.

# Procedure errorHandler, messageHandler and Tracker make up

# the tracker agent. Procedure LeaveTracker starts the

# tracker agent and returns either the 4-element id of the

# tracker or the string "FAILED".

proc messageHandler {source tag string} {

.text insert end "$string\n"

}

proc errorHandler {source tag string} {
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.text insert end "\nERROR: $string\n\n"

bell

}

proc Tracker {} {

# The global variable "display" holds the name of the

# display. The global variable "status" will be set to

# DONE when the user decides to exit. The global array

# "mask" --- which is available inside every agent ---

# specifies event handlers.

global display

global status

global mask

# create the tracker window

main create -name "Tracker agent" -display $display

# make the placeholder frames

frame .top -relief raised -bd 1

frame .bot -relief raised -bd 1

pack .bot -side bottom -fill both

pack .top -side bottom -fill both -expand 1

# make a text box that will hold the list of users

text .text -relief raised -bd 2 -width 60 \

-yscrollcommand ".scroll set"
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scrollbar .scroll -command ".text yview"

pack .scroll -in .top -side right -fill y

pack .text -in .top -side left -fill both -expand 1

# make the "DONE" button

button .done -text "Done!" -command {set status DONE}

pack .done -in .bot -side left -expand 1 -padx 3m -pady 2m

# turn on the event handlers

mask add $mask(event) "ANY -tag MESSAGE \

-handler messageHandler"

mask add $mask(event) "ANY -tag ERROR -handler errorHandler"

# wait for the user to finish looking at the results, first

# making sure that the variable "status" does not yet exist

catch {unset status}

tkwait variable status

main destroy

}

proc LeaveTracker {} {

global agent

global display

# try to submit the tracker agent

if {[catch {
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set tracker [

agent_submit $agent(local-ip) -vars display \

-procs errorHandler messageHandler Tracker \

-script {Tracker; exit}

]

} result]} {

set tracker FAILED

}

return $tracker

}

The next piece of the \who" agent is procedure who, which routes the agent

through the speci�ed machines using agent jump and executes the Unix who command

on each. This procedure is almost the same as the who procedure from the �rst version.

The only di�erence is that it reports its current location and status to the tracker

agent by calling the report and reportError procedures. These two procedures use

agent event to send a tagged message back to the tracker. When the tracker receives

the tagged message, either procedure messageHandler or procedure errorHandler is

automatically called, and the status information is inserted into the tracker window.

# Procedure who executes the Unix "who" command on each

# machine. Procedure report sends normal information back to

# the tracker agent whereas Procedure reportError sends error

# information back to the tracker agent.

proc report message {

278



# The global variable "tracker" holds the 4-element id of

# the tracker agent.

global tracker

# send the message, ignoring errors

catch {

agent_event $tracker MESSAGE $message

}

}

proc reportError error {

# The global variable "tracker" holds the 4-element id of

# the tracker agent.

global tracker

# send the message, ignoring errors

catch {

agent_event $tracker ERROR $error

}

}

proc who machines {

global agent

global tracker
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# start with an empty list

set list ""

# jump from machine to machine

foreach m $machines {

# if we do not jump successfully, append an error message

# otherwise append the list of users

if {[catch "agent_jump $m" result]} {

reportError "Failed to jump to machine $m ($result)"

append list \

"$m:\nunable to JUMP to this machine ($result)\n\n"

} else {

report "Jumped to machine $agent(actual-server)"

set users [exec who]

append list "$agent(local-server):\n$users\n\n"

}

}

return $list

}

The last piece of the \who" agent simply calls the procedures above. First, the

\who" agent calls procedure GetMachines to get the machine names from the user; the

machine names are stored in the global variable machines. Once the machine names

have been obtained, the agent calls agent begin to register the agent with the local

agent server, and then calls procedure LeaveTracker to start up the tracker agent.
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Then the \who" agent jumps through the speci�ed machines by calling procedure

who; procedure who returns the list of users. Once procedure who is �nished, the

agent calls agent jump one more time to return home. Once the agent is home, it

calls procedure DisplayList to show the list of users in an output window. Finally

the agent calls agent end and exits.

# remember the display

if {![info exists env(DISPLAY)]} {

set display ":0"

} else {

set display $env(DISPLAY)

}

# get the list of machines

if {[GetMachines] == "FORGET"} {

exit

}

# register the agent with an agent server and remember the

# home machine

if {[catch {agent_begin} result]} {

puts "Unable to register on $agent(actual-server) ($result)"

exit

}

set home $agent(local-ip)

# try to leave behind the tracker agent
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set tracker [LeaveTracker]

if {$tracker == "FAILED"} {

puts "Unable to leave behind the tracker agent!"

exit

}

# jump from machine to machine, executing the "who" command on

# each machine, and then jump back home

set users [who $machines]

agent_jump $home

# display the results

DisplayList $users

# done

exit

The agent is now complete. It can be run with any of the three methods discussed

above except that you must use agent-tk rather than agent. One important note

is that, if you followed the installation instructions carefully (which is highly recom-

mended), an agent will start running under a special userid as soon as it jumps for

the �rst time. On most Unix machines, you will need to use the xhost command (or

equivalent) to allow this special userid to create windows on your screen; otherwise

the agent will not be able to create the output and tracker windows. The reference

documentation for your Unix machine will have more details about screen access.

282



Once the agent starts executing, you will �rst see the entry form where you enter

the names of the machines. Once you hit \GO!" to send the agent on its way, the

entry form will disappear, and the tracker window will appear. Lines will appear in

the tracker window one at a time as the \who" agent makes its ways through the

network and reports back its current location. Finally the \who" agent will return

and the output window will appear showing the list of users. A sample run is shown

in Figure C.3; the machine names are the same as were used before.

Although these two versions of the \who" agent perform a simple task, they use

most of the agent commands and can serve as building blocks for more complex agents.

There is no reason for the agent to be self-contained, for example. There might be ser-

vice agents on each machine with which the agent communicates as it migrates. These

service agents should be given well-known names with the agent name command so

that client agents can communicate with them easily. In one of our information-

retrieval applications, for example, there is an agent named TechReports on each

machine which provides a low-level search interface to a collection of technical re-

ports. Agents, migrating from collection to collection, combine the low-level search

primitives into complex queries.

One area of di�culty for new agent programmers is debugging a moving agent.

Agent Tcl includes a visual debugger called \agdb" that tracks an agent as it moves

through the network, monitors its communication with other agents, and provides

traditional debugger features such as breakpoints, watch conditions, and line-at-a-

time execution.
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Figure C.3: A sample run of the second \who" agent. The �rst window that the user

sees is the entry box at top where the machine names are entered. Once the machine

names are entered, the agent uses agent submit to create the tracker agent in the

middle. Then the agent jumps from machine to machine, eventually returning to the

starting machine and displaying the list of users at bottom. As the agent migrates,

it communicates its position to the tracker agent; the text in the tracker window

appears one line at a time.
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