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Preface 

Happy anniversary! As  we near completion o f  this book i t  i s  also the 50th anniversary of 
the first papers on automatic dynamic memory management, or garbage collection, written 
by McCarthy and Collins in 1960. Garbage collection was born in the Lisp programming 
language. By a curious coincidence, we started writing on the tenth anniversary of the first 
International Symposium on Memory Management, held in October 1998, almost exactly 40 
years after the implementation of Lisp started in 1958.  McCarthy [1978] recollects that the 
first online demonstration was to an MIT Industrial Liaison Symposium. It was important 
to make a good impression but unfortunately, mid-way through the demonstration, the 
IBM 7041 exhausted (all of! ) its 32k words of memory - McCarthy's team had omitted to 
refresh the Lisp core image from a previous rehearsal - and its Flexowriter printed, at ten 
characters per second, 

THE GARBAGE COLLECTOR HAS BEEN CALL E D . S OME INTERE S T ING 

STAT I S T I C S  ARE AS FOLLOWS : 

and so on at great length, taking all the time remaining for the demonstration. McCarthy 
and the audience collapsed in laughter. Fifty years on, garbage collection is no joke but an 
essential component of modem programming language implementations . Indeed, Visual 
Basic (introduced in 1991) is probably the only widely used language developed since 1990 
not to adopt automatic memory management, but even its modem incarnation, VB.NET 
(2002), relies on the garbage collector in Microsoft's Common Language Runtime. 

The advantages that garbage collected languages offer to software development are le
gion. It eliminates whole classes of bugs, such as attempting to follow dangling pointers 
that still refer to memory that has been reclaimed or worse, reused in another context. It 
is no longer possible to free memory that has already been freed. It reduces the chances of 
programs leaking memory, although it cannot cure all errors of this kind . It greatly sim
plifies the construction and use of concurrent data structures [Herlihy and Shavit, 2008] . 
Above all, the abstraction offered by garbage collection provides for better software engi
neering practice. It simplifies user interfaces and leads to code that is easier to understand 
and to maintain, and hence more reliable. By removing memory management worries 
from interfaces, it leads to code that is easier to reuse. 

The memory management field has developed at an ever increasing rate in recent years, 
in terms of both software and hardware. In 1996, a typical Intel Pentium processor had a 
clock speed of 120 MHz although high-end workstations based on Digital's Alpha chips 
could run as fast as 266 MHz! Today's top-end processors run at over 3 GHz and multicore 
chips are ubiquitous. The size of main memory deployed has similarly increased nearly 
1000-fold, from a few megabytes to four gigabytes being common in desktop machines 

1The IBM 704's legacy to the Lisp world includes the terms car  and cdr. The 704's 36-bit words included two 
15-bit parts, the address and decrement parts. Lisp's list or cons cells stored pointers in these two parts. The head 
of the list, the car, could be obtained using the 704's car 'Contents of the Address part of Register ' instruction, 
and the tail, the cdr, with its cdr 'Contents of the Decrement part of Register ' instruction. 
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today. Nevertheless, the advances made in the performance of DRAM memory continue 
to lag well behind those of processors. At that time, we wrote that we did not argue that 
"garbage collection is a panacea for all memory management problems," and in particu
lar pointed out that "the problem of garbage collection for hard real-time programming 
[where deadlines must be met without fail] has yet to be solved" [Jones, 1996] . Yet today, 
hard real-time collectors have moved out of the research laboratory and into commercially 
deployed systems. Nevertheless, although many problems have been solved by modem 
garbage collector implementations, new hardware, new environments and new applica
tions continue to throw up new research challenges for memory management. 

The audience 

In this book, we have tried to bring together the wealth of experience gathered by au
tomatic memory management researchers and developers over the past fifty years . The 
literature is huge - our online bibliography contains 2,500 entries at the time of writing. 
We discuss and compare the most important approaches and state-of-the-art techniques 
in a single, accessible framework . We have taken care to present algorithms and concepts 
using a consistent style and terminology. These are described in detail, often with pseu
docode and illustrations. Where it is critical to performance, we pay attention to low level 
details, such as the choice of primitive operations for synchronisation or how hardware 
components such as caches influence algorithm design. 

In particular, we address the new challenges presented to garbage collection by ad
vances in hardware and software over the last decade or so. The gap in performance 
between processors and memory has by and large continued to widen. Processor clock 
speeds have increased, more and more cores are being placed on each die and config
urations with multiple processor modules are common. This book focuses strongly on 
the consequences of these changes for designers and implementers of high performance 
garbage collectors . Their algorithms must take locality into account since cache perfor
mance is critical . Increasing numbers of application programs are multithreaded and run 
on multicore processors. Memory managers must be designed to avoid becoming a se
quential bottleneck. On the other hand, the garbage collector itself should be designed to 
take advantage of the parallelism provided by new hardware.  In Jones [1996] , we did not 
consider at all how we might run multiple collector threads in parallel. We devoted but a 
single chapter to incremental and concurrent collection, which seemed exotic then. 

We are sensitive throughout this book to the opportunities and limitations provided by 
modem hardware. We address locality issues throughout. From the outset, we assume 
that application programs may be multithreaded . Although we cover many of the more 
simple and traditional algorithms, we also devote nearly half of the book to discussing 
parallel, incremental, concurrent and real-time garbage collection. 

We hope that this survey will help postgraduate students, researchers and developers 
who are interested in the implementation of programming languages . The book should 
also be useful to undergraduate students taking advanced courses in programming lan
guages, compiler construction, software engineering or operating systems. Furthermore, 
we hope that it will give professional programmers better insight into the issues that the 
garbage collector faces and how different collectors work and that, armed with this knowl
edge, they will be better able to select and configure the choice of garbage collectors that 
many languages offer. The almost universal adoption of garbage collection by modem 
programming languages makes a thorough understanding of this topic essential for any 
programmer. 
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Structure of the book 

Chapter 2 starts by considering why automatic storage reclamation is desirable, and briefly 
introduces the ways in which different garbage collection strategies can be compared. It 
ends with a description of the abstractions and pseudocode notation used throughout the 
rest of the book. 

The next four chapters discuss the classical garbage collection building blocks in de
tail. We look at mark-sweep, mark-compact and copying garbage collection, followed by 
reference counting. These strategies are covered in depth, with particular focus on their 
implementation on modem hardware. Readers looking for a gentler introduction might 
also consult our earlier book Garbage Collection: Algorithms for Automatic Dynamic Memory 
Management, Richard Jones and Rafael Lins, Wiley, 1996. The next chapter compares the 
strategies and algorithms covered in Chapters 2 to 5 in depth, assessing their strengths, 
weaknesses and applicability to different contexts. 

How storage is reclaimed depends on how it is allocated. Chapter 7 considers different 
techniques for allocating memory and examines the extent to which automatic garbage 
collection leads to allocator policies that are different to those of explicit ma l l oc/ f r e e  

memory management. 
The first seven chapters make the implicit assumption that all objects in the heap are 

managed in the same way. However, there are many reasons why that would be a poor 
design. Chapters 8 to 10 consider why we might want to partition the heap into different 
spaces, and how we might manage those spaces. We look at generational garbage col
lection, one of the most successful strategies for managing objects, how to handle large 
objects and many other partitioned schemes. 

The interface with the rest of the run-time system is one of the trickiest aspects of build
ing a collector. 2 We devote Chapter 11 to the run-time interface, including finding pointers, 
safe points at which to collect, and read and write barriers, and Chapter 12 to language
specific concerns such as finalisation and weak references. 

Next we tum our attention to concurrency. We set the scene in Chapter 13 by examining 
what modem hardware presents to the garbage collection implementer, and looking at 
algorithms for synchronisation, progress, termination and consensus. In Chapter 14 we see 
how we can execute multiple collector threads in parallel while all the application threads 
are halted. In the next four chapters we consider a wide range of concurrent collectors, in 
which we relax this 'stop-the-world' requirement in order to allow collection to take place 
with only the briefest, if any, interruptions to the user program. Finally, Chapter 19 takes 
this to its most challenging extreme, garbage collection for hard real-time systems. 

At the end of each chapter, we offer a summary of issues to consider. These are intended 
to provoke the reader into asking what requirements their system has and how they can 
be met. What questions need to be answered about the behaviour of the client program, 
their operating system or the underlying hardware? These summaries are not intended as 
a substitute for reading the chapter. Above all, they are not intended as canned solutions, 
but we hope that they will provide a focus for further analysis. 

Finally, what is missing from the book? We have only considered automatic techniques 
for memory management embedded in the run-time system. Thus, even when a language 
specification mandates garbage collection, we have not discussed in much depth other 
mechanisms for memory management that it may also support. The most obvious example 
is the use of 'regions' [Tofte and Talpin, 1994), most prominently used in the Real-Time 
Specification for Java. We pay attention only briefly to questions of region inferencing or 
stack allocation and very little at all to other compile-time analyses intended to replace, or 

2 And one that we passed on in Jones [1996]! 
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at least assist, garbage collection. Neither do we address how best to use techniques such 
as reference counting in the client program, although this is popular in languages like C++. 
Finally, the last decade has seen little new research on distributed garbage collection. In 
many ways, this is a shame since we expect lessons learnt in that field also to be useful 
to those developing collectors for the next generation of machines with heterogeneous 
collections of highly non-uniform memory architectures. Nevertheless, we do not discuss 
distributed garbage collection here. 

Online resources 

The web page accompanying the book can be found at 

ht tp : / / www . gchandbo o k . org 

I t  includes a number of resources including our comprehensive bibliography. The bibliog
raphy at the end of this book contains over 400 references. However, our comprehensive 
online database contains over 2500 garbage collection related publications. This database 
can be searched online or downloaded as BIBTEX, PostScript or PDF. As well as details of 
the article, papers, books, theses and so on, the bibliography also contains abstracts for 
some entries and URLs or DOis for most of the electronically available ones. 

We continually strive to keep this bibliography up to date as a service to the commu
nity. Richard (R.E.Jones@kent.ac .uk) would be very grateful to receive further entries (or 
corrections). 
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Chapter 1 

Introduction 

Developers are increasingly turning to  managed languages and run-time systems for the 
many virtues they offer, from the increased security they bestow to code to the flexibility 
they provide by abstracting away from operating system and architecture. The benefits of 
managed code are widely accepted [Butters, 2007] . Because many services are provided by 
the virtual machine, programmers have less code to write. Code is safer if it is type-safe 
and if the run-time system verifies code as it is loaded, checks for resource access viola
tions and the bounds of arrays and other collections, and manages memory automatically. 
Deployment costs are lower since it is easier to deploy applications to different platforms, 
even if the mantra 'write once, run anywhere' is over-optimistic. Consequently, program
mers can spend a greater proportion of development time on the logic of their application. 

Almost all modern programming languages make use of dynamic memory allocation. 
This allows objects to be allocated and deallocated even if their total size was not known 
at the time that the program was compiled, and if their lifetime may exceed that of the 
subroutine activation1 that allocated them. A dynamically allocated object is stored in a 
heap, rather than on the stack (in the activation record or stack frame of the procedure that 
allocated it) or statically (whereby the name of an object is bound to a storage location 
known at compile or link time) . Heap allocation is particularly important because it allows 
the programmer: 

• to choose dynamically the size of new objects (thus avoiding program failure through 
exceeding hard-coded limits on arrays); 

• to define and use recursive data structures such as lists, trees and maps; 

• to return newly created objects to the parent procedure (allowing, for example, fac
tory methods); 

• to return a function as the result of another function (for example, closures or suspen-
sions in functional languages) .  

Heap allocated objects are accessed through references . Typically, a reference i s  a pointer to 
the object (that is, the address in memory of the object). However, a reference may alterna
tively refer to an object only indirectly, for instance through a handle which in turn points 
to the object. Handles offer the advantage of allowing an object to be relocated (updating 
its handle) without having to change every reference to that object/handle throughout the 
program. 

1We shall tend to use the terms method,function, procedure and subroutine interchangeably. 
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Figure 1.1: Premature deletion of an object may lead to errors. Here B has 
been freed. The live object A now contains a dangling pointer. The space 
occupied by C has leaked: C is not reachable but it cannot be freed. 

1.1 Explicit deallocation 

Any non-trivial program, running in a finite amount of memory, will need from time to 
time to recover the storage used by objects that are no longer needed by the computation. 
Memory used by heap objects can be reclaimed using explicit deallocation (for example, 
with C's f r e e  or C++'s de l e t e  operator) or automatically by the run-time system, using 
reference counting [Collins, 1960] or a tracing garbage collector [McCarthy, 1960] . Manual 
reclamation risks programming errors; these may arise in two ways. 

Memory may be freed prematurely, while there are still references to it. Such a reference 
is called a dangling pointer (see Figure 1 . 1 ) .  If the program subsequently follows a dangling 
pointer, the result is unpredictable. The application programmer has no control over what 
happens to deallocated memory, so the run-time system may choose, among other options, 
to clear (fill with zeroes) the space used by the deleted object, to allocate a new object in 
that space or to return that memory to the operating system. The best that the programmer 
can hope for is that the program crashes immediately. However, it is more likely that it will 
continue for millions of cycles before crashing (making debugging difficult) or simply run 
to completion but produce incorrect results (which might not even be easy to detect) . One 
way to detect dangling references is to use fat pointers. These can be used to hold the ver
sion number of their target as well as the pointer itself. Operations such as dereferencing 
must then check that the version number stored in the pointer matches that stored in the 
object. However, this approach is mostly restricted to use with debugging tools because of 
its overhead, and it is not completely reliable.2 

The second kind of error is that the programmer may fail to free an object no longer 
required by the program, leading to a memory leak. In small programs, leaks may be benign 
but in large programs they are likely to lead either to substantial performance degradation 
(as the memory manager struggles to satisfy new allocation requests) or to failure (if the 
program runs out of memory) .  Often a single incorrect deallocation may lead to both 
dangling pointers and memory leaks (as in Figure 1 . 1 ) .  

Programming errors of this kind are particularly prevalent in the presence of sharing, 
when two or more subroutines may hold references to an object. This is even more prob
lematic for concurrent programming when two or more threads may reference an object. 
With the increasing ubiquity of multicore processors, considerable effort has gone into the 
construction of libraries of data structures that are thread-safe . Algorithms that access 
these structures need to guard against a number of problems, including deadlock, livelock 
and ABA3 errors. Automatic memory management eases the construction of concurrent 
algorithms significantly (for example, by eliminating certain ABA problems) .  Without this, 
programming solutions are much more complicated [Herlihy and Shavit, 2008] . 

The issue is more fundamental than simply being a matter of programmers needing to 
take more care. Difficulties of correct memory management are often inherent to the pro-

2Tools such as the memc h e c k  leak detector used with the val gr i nd open source instrumentation framework 
(see h t t p : I / val g r  i nd .  o r g) are more reliable, but even slower. There are also a number of commercially 
available programs for helping to debug memory issues. 

3 ABA error: a memory location is written (A), overwritten (B) and then overwritten again with the previous 
value A (see Chapter 13). 
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gramming problem in question.4 More generally, safe deallocation of an object is complex 
because, as Wilson [1994] points out, "liveness is a global property", whereas the decision 
to call f r e e  on a variable is a local one. 

So how do programmers cope in languages not supported by automatic dynamic mem
ory management? Considerable effort has been invested in resolving this dilemma. The 
key advice has been to be consistent in the way that they manage the ownership of ob
jects [Belotsky, 2003; Cline and Lomow, 1995] . Belotsky [2003] and others offer several 
possible strategies for C++. First, programmers should avoid heap allocation altogether, 
wherever possible. For example, objects can be allocated on the stack instead. When the 
objects' creating method returns, the popping of the stack will free these objects automat
ically. Secondly, programmers should pass and return objects by value, by copying the 
full contents of a parameter I result rather than by passing references. Clearly both of these 
approaches remove all allocation/ deallocation errors but they do so at the cost of both 
increased memory pressure and the loss of sharing. In some circumstances it may be ap
propriate to use custom allocators, for example, that manage a pool of objects . At the end 
of a program phase, the entire pool can be freed as a whole . 

C++ has seen several attempts to use special pointer classes and templates to improve 
memory management. These overload normal pointer operations in order to provide safe 
storage reclamation. However, such smart poin ters have several limitations. The aut o_pt r 

class template cannot be used with the Standard Template Library and will be deprecated 
in the expected next edition of the C++ standard [Boehm and Spertus, 2009] .5 It will be re
placed by an improved u n i que_pt r that provides strict ownership semantics that allow 
the target object to be deleted when the unique pointer is. The standard will also include 
a reference counted s h a r e d_pt r,6 but these also have limitations. Reference counted 
pointers are unable to manage self-referential (cyclic) data structures. Most smart pointers 
are provided as libraries, which restricts their applicability if efficiency is a concern. Pos
sibly, they are most appropriately used to manage very large blocks, references to which 
are rarely assigned or passed, in which case they might be significantly cheaper than trac
ing collection. On the other hand, without the cooperation of the compiler and run-time 
system, reference counted pointers are not an efficient, general purpose solution to the 
management of small objects, especially if pointer manipulation is to be thread-safe. 

The plethora of strategies for safe manual memory management throws up yet another 
problem. If it is essential for the programmer to manage object ownership consistently, 
which approach should she adopt? This is particularly problematic when using library 
code. Which approach does the library take? Do all the libraries used by the program use 
the same approach? 

1.2 Automatic dynamic memory management 

Automatic dynamic memory management resolves many of these issues. Garbage collection 
(GC) prevents dangling pointers being created: an object is reclaimed only when there is 
no pointer to it from a reachable object. Conversely, in principle all garbage is guaranteed 
to be freed - any object that is unreachable will eventually be reclaimed by the collector 
- with two caveats. The first is that tracing collection uses a definition of 'garbage' that is 
decidable and may not include all objects that will never be accessed again. The second 
is that in practice, as we shall see in later chapters, garbage collector implementations 

4 "When C++ is your hammer, everything looks like a thumb," Steven M. Haflich, Chair of the NCITS/}13 
technical committee for ANSI standard for Common Lisp. 

5The final committee draft for the next ISO C++ standard is currently referred to as C++Ox. 
6 h t t p : / / bo o s t . o rg 
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may choose for efficiency reasons not to reclaim some objects. Only the collector releases 
objects so the double-freeing problem cannot arise. All reclamation decisions are deferred 
to the collector, which has global knowledge of the structure of objects in the heap and the 
threads that can access them. The problems of explicit deallocation were largely due to 
the difficulty of making a global decision in a local context. Automatic dynamic memory 
management simply finesses this problem. 

Above all, memory management is a software engineering issue. Well-designed pro
grams are built from components (in the loosest sense of the term) that are highly cohesive 
and loosely coupled. Increasing the cohesion of modules makes programs easier to main
tain. Ideally, a programmer should be able to understand the behaviour of a module from 
the code of that module alone, or at worst a few closely related modules. Reducing the cou
pling between modules means that the behaviour of one module is not dependent on the 
implementation of another module. As far as correct memory management is concerned, 
this means that modules should not have to know the rules of the memory management 
game played by other modules . In contrast, explicit memory management goes against 
sound software engineering principles of minimal communication between components; 
it clutters interfaces, either explicitly through additional parameters to communicate own
ership rights, or implicitly by requiring programmers to conform to particular idioms. Re
quiring code to understand the rules of engagement limits the reusability of components . 

The key argument in favour of garbage collection is not just that it simplifies coding 
- which it does - but that it uncouples the problem of memory management from inter
faces, rather than scattering it throughout the code. It improves reusability. This is why 
garbage collection, in one form or another, has been a requirement of almost all modern 
languages (see Table 1 . 1 ) .  It is even expected that the next C++ standard will require code 
to be written so as to allow a garbage-collected implementation [Boehm and Spertus, 2009] . 
There is substantial evidence that managed code, including automatic memory manage
ment, reduces development costs [Butters, 2007] . Unfortunately, most of this evidence is 
anecdotal or compares development in different languages and systems (hence comparing 
more than just memory management strategies), and few detailed comparative studies 
have been performed. Nevertheless, one author has suggested that memory management 
should be the prime concern in the design of software for complex systems [Nagle, 1995] . 
Rovner [1985] estimated that 40% of development time for Xerox's Mesa system was spent 
on getting memory management correct. Possibly the strongest corroboration of the case 
for automatic dynamic memory management is an indirect, economic one: the continued 
existence of a wide variety of vendors and tools for detection of memory errors . 

We do not claim that garbage collection is a silver bullet that will eradicate all memory
related programming errors or that it is applicable in all situations. Memory leaks are one 
of the most prevalent kinds of memory error. Although garbage collection tends to reduce 
the chance of memory leaks, it does not guarantee to eliminate them. If an object structure 
becomes unreachable to the rest of the program (for example, through any chain of pointers 
from the known roots), then the garbage collector will reclaim it. Since this is the only way 
that an object can be deleted, dangling pointers cannot arise. Furthermore, if deletion of an 
object causes its children to become unreachable, they too will be reclaimed. Thus, neither 
of the scenarios of Figure 1 . 1  are possible. However, garbage collection cannot guarantee 
the absence of space leaks . It has no answer to the problem of a data structure that is still 
reachable, but grows without limit (for example, if a programmer repeatedly adds data to 
a cache but never removes objects from that cache), or that is reachable and simply never 
accessed again. 

Automatic dynamic memory management is designed to do just what it says. Some 
critics of garbage collection have complained that it is unable to provide general resource 
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ActionScript (2000} Algol-68 (1965) 
AppleScript (1993) AspectJ (2001) 
Beta (1983) C# (1999) 
Managed C++ (2002) Cecil (1992) 
Clean (1984) CLU (1974) 
Dylan (1992) Dynace (1993) 
Eiffel (1986) Elasti-C (1997) 
Erlang (1990) Euphoria (1993) 
Fortress (2006) Green (1998) 
Groovy (2004) Haskell (1990) 
Icon (1977) Java (1994) 
Liana (1991 ) Limbo (1996} 
LotusScript (1995) Lua (1994) 
MATLAB (1970s) Mercury (1993) 
ML (1990) Modula-3 (1988) 
Objective-C (2007-) Obliq (1993) 
Pike (1996) PHP (1995) 
POP-2 (1970) PostScript (1982) 
Python (1991 )  Rexx (1979) 
Sather (1990) Scala (2003) 
Self (1986) SETL (1969) 
SISAL (1983) Smalltalk (1972) 
Squeak (1996) Tel (1990) 
VB.NET (2001)  VBScript (1996) 
VHDL (1987) X10 (2004} 

APL (1964) 
Awk (1977) 
Cyclone (2006) 
Cedar (1983) 
D (2007) 
E (1997) 
Emerald (1988) 
F# (2005) 
Go (2010) 
Hope (1978) 
JavaScript (1994) 
Lingo (1991 )  
Mathematica (1987) 
Miranda (1985) 
Oberon (1985) 
Perl (1986) 
Pliant (1999) 
Prolog (1972) 
Ruby (1993) 
Scheme (1975) 
Simula (1964) 
SNOBOL (1962} 
Theta (1994) 
Visual Basic (1991) 
YAFL (1993) 

Table 1.1: Modern languages and garbage collection. These languages all 
rely on garbage collection. 

Online sources: Dictionary of Programming Languages, Wikipedia and Coogle. 
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management, for example, to close files or windows promptly after their last use. How
ever, this is unfair. Garbage collection is not a universal panacea. It attacks and solves 
a specific question: the management of memory resources. Nevertheless, the problem of 
general resource management in a garbage collected language is a substantial one. With 
explicitly-managed systems there is a straightforward and natural coupling between mem
ory reclamation and the disposal of other resources. Automatic memory management in
troduces the problem of how to structure resource management in the absence of a natural 
coupling. However, it is interesting to observe that many resource release scenarios re
quire something akin to a collector in order to detect whether the resource is still in use 
(reachable) from the rest of the program. 

1.3 Comparing garbage collection algorithms 

In this book we discuss a wide range of collectors, each designed with different workloads, 
hardware contexts and performance requirements in mind. Unfortunately, it is never pos
sible to identify a 'best' collector for all configurations. For example, Fitzgerald and Tarditi 
[2000] found in a study of 20 benchmarks and six collectors that for every collector there 
was at least one benchmark that would run at least 1 5% faster with a more appropriate 
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collector. Singer et al [2007b] applied machine learning techniques to predict the best col
lector configuration for a particular program. Others have explored allowing java virtual 
machines to switch collectors as they run if they believe that the characteristics of the work
load being run would benefit from a different collector [Printezis, 2001; Soman et al, 2004] . 
In this section, we examine the metrics by which collectors can be compared.  Nevertheless, 
such comparisons are difficult in both principle and practice . Details of implementation, 
locality and the practical significance of the constants in algorithmic complexity formulae 
make them less than perfect guides to practice. Moreover, the metrics are not independent 
variables. Not only does the performance of an algorithm depend on the topology and 
volume of objects in the heap, but also on the access patterns of the application. Worse, 
the tuning options in production virtual machines are inter-connected . Variation of one 
parameter to achieve a particular goal may lead to other, contradictory effects . 

Safety 

The prime consideration is that garbage collection should be safe: the collector must never 
reclaim the storage of live objects. However, safety comes with a cost, particularly for 
concurrent collectors (see Chapter 15) . The safety of conservative collection, which receives 
no assistance from the compiler or run-time system, may in principle be vulnerable to 
certain compiler optimisations that disguise pointers [Jones, 1996, Chapter 9 ] .  

Throughput 

A common goal for end users is that their programs should run faster. However, there 
are several aspects to this. One is that the overall time spent in garbage collection should 
be as low as possible. This is commonly referred to in the literature as the mark/cons ratio, 
comparing the early Lisp activities of the collector ('marking' live objects) and the mutator 
(creating or 'consing' new list cells) . However, the user is most likely to want the applica
tion as a whole (mutator plus collector) to execute in as little time as possible . In most well 
designed configurations, much more CPU time is spent in the mutator than the collector. 
Therefore it may be worthwhile trading some collector performance for increased mutator 
throughput. For example, systems managed by mark-sweep collection occasionally per
form more expensive compacting phases in order to reduce fragmentation so as to improve 
mutator allocation performance (and possibly mutator performance more generally) . 

Completeness and promptness 

Ideally, garbage collection should be complete: eventually, all garbage in the heap should be 
reclaimed. However, this is not always possible nor even desirable. Pure reference count
ing collectors, for example, are unable to reclaim cyclic garbage (self-referential structures) .  
For performance reasons, i t  may be desirable not to collect the whole heap at every collec
tion cycle. For example, generational collectors segregate objects by their age into two or 
more regions called generations (we discuss generational garbage collection in Chapter 9). 
By concentrating effort on the youngest generation, generational collectors can both im
prove total collection time and reduce the average pause time for individual collections. 

Concurrent collectors interleave the execution of mutators and collectors; the goal of 
such collectors is to avoid, or at least bound, interruptions to the user program. One con
sequence is that objects that become garbage after a collection cycle has started may not be 
reclaimed until the end of the next cycle; such objects are called floating garbage. Hence, in a 
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concurrent setting it may be more appropriate to define completeness as eventual reclama
tion of all garbage, as opposed to reclamation within one cycle. Different collection algo
rithms may vary in their promptness of reclamation, again leading to time/ space trade-offs . 

Pause time 

On the other hand, an important requirement may be to minimise the collector 's intru
sion on program execution. Many collectors introduce pauses into a program's execution 
because they stop all mutator threads while collecting garbage. It is clearly desirable to 
make these pauses as short as possible. This might be particularly important for interac
tive applications or servers handling transactions (when failure to meet a deadline might 
lead to the transaction being retried, thus building up a backlog of work) . However, mech
anisms for limiting pause times may have side-effects, as we shall see in more detail in 
later chapters . For example, generational collectors address this goal by frequently and 
quickly collecting a small nursery region, and only occasionally collecting larger, older 
generations . Clearly, when tuning a generational collector, there is a balance to be struck 
between the sizes of the generations, and hence not only the pause times required to collect 
different generations but also the frequency of collections . However, because the sources 
of some inter-generational pointers must be recorded, generational collection imposes a 
small tax on pointer write operations by the mutator. 

Parallel collectors stop the world to collect but reduce pause times by employing multi
ple threads. Concurrent and incremental collectors aim to reduce pause times still further 
by occasionally performing a small quantum of collection work interleaved or in parallel 
with mutator actions. This too requires taxation of the mutator in order to ensure correct 
synchronisation between mutators and collectors . As we shall see in Chapter 15, there are 
different ways to handle this synchronisation. The choice of mechanism affects both space 
and time costs .  It also affects termination of a garbage collection cycle . The cost of the 
taxation on mutator time depends on how and which manipulations of the heap by the 
mutator (loads or stores) are recorded. The costs on space, and also collector termination, 
depends on how much floating garbage (see below) a system tolerates . Multiple muta
tor and collector threads add to the complexity. In any case, decreasing pause time will 
increase overall processing time (decrease processing rate) .  

Maximum or average pause times on their own are not adequate measures . It is also 
important that the mutator makes progress. The distribution of pause times is therefore 
also of interest. There are a number of ways that pause time distributions may be reported. 
The simplest might be a measure of variation such as standard deviation or a graphical rep
resentation of the distribution. More interesting measures include minimum mutator utili
sation (MMU) and bounded mutator utilisation (BMU). Both the MMU [Cheng and Blelloch, 
2001) and BMU [Sachindran et al, 2004] measures seek to display concisely the (minimum) 
fraction of time spent in the mutator, for any given time window. The x-axis of Figure 1 .2 
represents time, from 0 to total execution time, and its y-axis the fraction of CPU time spent 
in the mutator (utilisation) . Thus, not only do MMU and BMU curves show total garbage 
collection time as a fraction of overall execution time (the y-intercept, at the top right of the 
curves is the mutators' overall share of processor time), but they also show the maximum 
pause time (the longest window for which the mutator 's CPU utilisation is zero) as the 
x-intercept. In general, curves that are higher and more to the left are preferable since they 
tend towards a higher mutator utilisation for a smaller maximum pause. Note that the 
MMU is the minimum mutator utilisation (y) in any time window (x) . As a consequence 
it is possible for a larger window to have a lower MMU than a smaller window, leading 
to dips in the curve. In contrast, BMU curves give the MMU in that time window or any 
larger one. Monotonically increasing BMU curves are perhaps more intuitive than MMU. 
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Figure 1.2: Minimum mutator utilisation and bounded mutator utilisation 
curves display concisely the (minimum) fraction of time spent in the mutator, 
for any given time window. MMU is the minimum mutator utilisation (y) 
in any time window (x) whereas BMU is minimum mutator utilisation in 
that time window or any larger one. In both cases, the x-intercept gives the 
maximum pause time and the y-intercept is the overall fraction of processor 
time used by the mutator. 

Space overhead 

The goal of memory management is safe and efficient use of space . Different memory 
managers, both explicit and automatic, impose different space overheads. Some garbage 
collectors may impose per-object space costs (for example, to store reference counts); oth
ers may be able to smuggle these overheads into objects' existing layouts (for example, a 
mark bit can often be hidden in a header word, or a forwarding pointer may be written 
over user data) . Collectors may have a per-heap space overhead. For example, copying 
collectors divide the heap into two semispaces. Only one semispace is available to the mu
tator at any time; the other is held as a copy reserve into which the collector will evacuate 
live objects at collection time. Collectors may require auxiliary data structures. Tracing 
collectors need mark stacks to guide the traversal of the pointer graph in the heap; they 
may also store mark bits in separate bitmap tables rather than in the objects themselves. 
Concurrent collectors, or collectors that divide the heap into independently collected re
gions, require remembered sets that record where the mutator has changed the value of 
pointers, or the locations of pointers that span regions, respectively. 

Optimisations for specific languages 

Garbage collection algorithms can also be characterised by their applicability to different 
language paradigms. Functional languages in particular have offered a rich vein for op
timisations related to memory management. Some languages, such as ML, distinguish 
mutable from immutable data. Pure functional languages, such as Haskell, go further and 
do not allow the user to modify any values (programs are referentially transparent) . Inter
nally, however, they typically update data structures at most once (from a 'thunk' to weak 
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head normal form); this gives multi-generation collectors opportunities to promote fully 
evaluated data structures eagerly (see Chapter 9) . Authors have also suggested complete 
mechanisms for handling cyclic data structures with reference counting. Declarative lan
guages may also allow other mechanisms for efficient management of heap spaces . Any 
data created in a logic language after a 'choice point' becomes unreachable after the pro
gram backtracks to that point. With a memory manager that keeps objects laid out in the 
heap in their order of allocation, memory allocated after the choice point can be reclaimed 
in constant time. Conversely, different language definitions may make specific require
ments of the collector. The most notable are the ability to deal with a variety of pointer 
strengths and the need for the collector to cause dead objects to be finalised . 

Scalability and portability 

The final metrics we identify here are scalability and portability. With the increasing preva
lence of multicore hardware on the desktop and even laptop (rather than just in large 
servers), it is becoming increasingly important that garbage collection can take advantage 
of the parallel hardware on offer. Furthermore, we expect parallel hardware to increase 
in scale (number of cores and sockets) and for heterogeneous processors to become more 
common. The demands on servers are also increasing, as heap sizes move into the tens 
or hundreds of gigabytes scale and as transaction loads increase. A number of collection 
algorithms depend on support from the operating system or hardware (for instance, by 
protecting pages or by double mapping virtual memory space, or on the availability of 
certain atomic operations on the processor) . Such techniques are not necessarily portable. 

1.4 A performance disadvantage? 

We conclude the discussion of the comparative merits of automatic and manual dynamic 
memory management by asking if automatic memory management must be at a perfor
mance disadvantage compared with manual techniques. In general, the cost of automatic 
dynamic memory management is highly dependent on application behaviour and even 
hardware, making it impossible to offer simple estimates of overhead. Nevertheless, a long 
running criticism of garbage collection has been that it is slow compared to explicit mem
ory management and imposes unacceptable overheads, both in terms of overall through
put and in pauses for garbage collection. While it is true that automatic memory manage
ment does impose a performance penalty on the program, it is not as much as is commonly 
assumed. Furthermore, explicit operations like ma l l oc and f r e e  also impose a signifi
cant cost. Hertz, Feng, and Berger [2005] measured the true cost of garbage collection for 
a variety of Java benchmarks and collection algorithms. They instrumented a Java virtual 
machine to discover precisely when objects became unreachable, and then used the reach
ability trace as an oracle to drive a simulator, measuring cycles and cache misses . They 
compared a wide variety of garbage collector configurations against different implemen
tations of mal l o c/ f ree :  the simulator invoked f ree  at the point where the trace indi
cated that an object had become garbage. Although, as expected, results varied between 
both collectors and explicit allocators, Hertz et al found garbage collectors could match the 
execution time performance of explicit allocation provided they were given a sufficiently 
large heap (five times the minimum required) .  For more typical heap sizes, the garbage 
collection overhead increased to 17% on average. 
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1.5 Experimental methodology 

One of the most welcome changes over the past decade or so has been the improvement 
in experimental methodology reported in the literature on memory management. Never
theless, it remains clear that reporting standards in computer science have some way to 
improve before they match the quality of the very best practice in the natural or social sci
ences. Mytkowicz et al [2008] find measurement bias to be 'significant and commonplace' . 

In a study of a large number of papers on garbage collection, Georges et al [2007] found 
the experimental methodology, even where reported, to be inadequately rigorous in many 
cases. Many reported performance improvements were sufficiently small, and the reports 
lacking in statistical analysis, to raise questions of whether any confidence could be placed 
in the results . Errors introduced may be systematic or random. Systematic errors are 
largely due to poor experimental practice and can often be reduced by more careful de
sign of experiments . Random errors are typically due to non-determinism in the system 
under measurement. By their nature, these are unpredictable and often outside the exper
imenter 's control; they should be addressed statistically. 

The use of synthetic or small scale, 'toy', benchmarks has long been criticised as inad
equate [Zorn, 1989] . Such benchmarks risk introducing systematic errors because they do 
not reflect the interactions in memory allocation that occur in real programs, or because 
their working sets are sufficiently small that they exhibit locality effects that real programs 
would not. Wilson et al [1995a] provide an excellent critique of such practices. Fortunately, 
other than for stress testing, synthetic and toy benchmarks have been largely abandoned 
in favour of larger scale benchmark suites, consisting of widely used programs that are 
believed to represent a wide range of typical behaviour (for example, the DaCapo suite for 
Java [Blackburn et al, 2006b]) .  

Experiments with benchmark suites that contain a large number of realistic programs 
can introduce systematic bias. Managed run-times, in particular, offer several opportunities 
for the introduction of systematic errors. Experimenters need to take care to distinguish the 
context that they are trying to examine: are they interested in start-up costs (important, for 
example, for short-lived programs) or in the steady state? For the latter, it is important to 
exclude system warm-up effects such as class loading and dynamic code optimisation . In 
both cases, it is probably important to disregard cold-start effects such as latency caused by 
loading the necessary files into the disk cache: thus Georges et al [2007] advocate running 
several invocations of the virtual machine and benchmark and discarding the first. 

Dynamic (or run-time) compilation is a major source of non-determinism, and is par
ticularly difficult to deal with when comparing alternative algorithms. One solution is to 
remove it. Compiler replay [Blackburn et al, 2006b] allows the user to record which methods 
are optimised and to which level in a preparatory run of the benchmark. This record can 
then used by the virtual machine to ensure the same level of optimisation in subsequent, 
performance runs. However, a problem with this approach is that alternative implemen
tations typically execute different methods, particularly in the component under test. It is 
not clear which compilation record should be used . Two separate ones? Their intersection? 

Sound experimental practice requires that outcomes are valid even in the presence of 
bias (for example, random errors) .  This requires repetitions of the experiment and statis
tical comparison of the results . To be able to state with confidence that one approach is 
superior to another requires that, first, a confidence level is stated, and second, confidence 
intervals for each alternative are derived from the results and that these intervals are not 
found to overlap. Georges et al [2007] offer a statistically rigorous methodology to address 
non-deterministic and unpredictable errors (including the effects of dynamic compilation) .  
They advocate invoking one instance of the virtual machine and executing a benchmark 
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many times until i t  reaches a steady state (that is, when the coefficient of variation7 for 
the last k benchmark iterations falls below some preset threshold) .  These k iterations can 
then be used to compute a mean for the benchmark under steady state. By repeating this 
process, an overall mean and a confidence interval can be computed. Better, the whole 
distribution (or at least more than one or two moments of it) should be reported . 

Garbage collection research needs thorough performance reports . A single 'spot' figure, 
even if decorated with a confidence interval, is not sufficient. The reason is that memory 
management involves space and time trade-offs . In most circumstances, one way to re
duce collection times is to increase the size of the heap (up to a certain point - after that 
locality effects typically cause execution times to deteriorate). Thus, no experiment that 
reports a figure for just a single heap size can be taken seriously. It is vital, therefore, that 
environments allow the user to control the size of heaps (and spaces within those heaps) in 
order to understand fully the performance characteristics of a particular memory manage
ment algorithm. We firmly advocate this even for production virtual machines which may 
automatically adapt sizes for optimal performance; while automatic adaptation might be 
appropriate for end users, researchers and developers need more insight. 

The chaotic nature of garbage collection reinforces this requirement. By calling garbage 
collection chaotic, we mean that small changes in configuration can, and commonly do, 
lead to large changes in behaviour. One example is the scheduling of collections . Even a 
small change to the point at which a garbage collection occurs may mean that a large data 
structure either remains reachable or becomes garbage. This can have large effects not 
only on the cost of the current collection but on how soon the next collection will occur, 
thus making such variation self-amplifying. By providing results for a range of heap sizes 
(often expressed in terms of multiples of the smallest heap size in which a program will 
run to completion), such 'jitter ' is made readily apparent. 

1.6 Terminology and notation 

We conclude this chapter by explaining the notation used in the rest of the book. We also 
give more precise definitions of some of the terms used earlier. 

First, a note about units of storage. We adopt the convention that a byte comprises eight 
bits . Similarly, we use kilobyte (KB), megabyte (MB), gigabyte (GB) and terabyte (TB) to mean 
a corresponding power of two multiple of the unit byte (210, 220, 230 , 240, respectively), in 
flagrant disregard for the standard definitions of the SI decimal prefixes. 

The heap 

The heap is either a contiguous array of memory words or organised into a set of discon
tiguous blocks of contiguous words. A granule is the smallest unit of allocation, typically 

7The coefficient of variation is the standard deviation divided by the mean. 
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a word or double-word, depending on alignment requirements . A chunk is a large contigu
ous group of granules. A cell is a generally smaller contiguous group of granules and may 
be allocated or free, or even wasted or unusable for some reason. 

An object is a cell allocated for use by the application. An object is usually assumed to be 
a contiguous array of addressable bytes or words, divided into slots or fields, as in Figure 1 .3 
(although some memory managers for real-time or embedded systems may construct an 
individual large object as a pointer structure, this structure is not revealed to the user 
program) . A field may contain a reference or some other scalar non-reference value such 
as an integer. A reference is either a pointer to a heap object or the distinguished value 
nul l .  Usually, a reference will be the canonical pointer to the head of the object (that is, its 
first address), or it may point to some offset from the head. An object will sometimes also 
have a header field which stores metadata used by the run-time system, commonly (but not 
always) stored at the head of an object. A derived pointer is a pointer obtained by adding an 
offset to an object's canonical pointer. An in terior pointer is a derived pointer to an internal 
object field. 

A block is an aligned chunk of a particular size, usually a power of two. For complete
ness we mention also that a frame (when not referring to a stack frame) means a large 
2k sized portion of address space, and a space is a possibly discontiguous collection of 
chunks, or even objects, that receive similar treatment by the system. A page is as defined 
by the hardware and operating system's virtual memory mechanism, and a cache line (or 
cache block) is as defined by its cache. A card is a 2k aligned chunk, smaller than a page, 
related to some schemes for remembering cross-space pointers (Section 11 .8) .  

The heap is often characterised as an object graph, which is a directed graph whose nodes 
are heap objects and whose directed edges are the references to heap objects stored in their 
fields. An edge is a reference from a source node or a root (see below) to a destination node. 

The mutator and the collector 

Following Dijkstra et al [1976, 1978], a garbage-collected program is divided into two semi
independent parts. 

• The mutator executes application code, which allocates new objects and mutates the 
object graph by changing reference fields so that they refer to different destination 
objects. These reference fields may be contained in heap objects as well as other 
places known as roots, such as static variables, thread stacks, and so on. As a result 
of such reference updates, any object can end up disconnected from the roots, that is, 
unreachable by following any sequence of edges from the roots. 

• The collector executes garbage collection code, which discovers unreachable objects 
and reclaims their storage. 

A program may have more than one mutator thread, but the threads together can usually 
be thought of as a single actor over the heap. Equally, there may be one or more collector 
threads. 

The mutator roots 

Separately from the heap memory, we assume some finite set of mutator roots, represent
ing pointers held in storage that is directly accessible to the mutator without going through 
other objects. By extension, objects in the heap referred to directly by the roots are called 
root  objects . The mutator visits objects in the graph by loading pointers from the current 
set of root objects (adding new roots as it goes) . The mutator can also discard a root by 
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overwriting the root pointer's storage with some other reference (that is, nul.J. or a pointer 
to another object) . We denote the set of (addresses of) the roots by Root s .  

In practice, the roots usually comprise static/global storage and thread-local storage 
(such as thread stacks) containing pointers through which mutator threads can directly 
manipulate heap objects . As mutator threads execute over time, their state (and so their 
roots) will change. 

In a type-safe programming language, once an object becomes unreachable in the heap, 
and the mutator has discarded all root pointers to that object, then there is no way for the 
mutator to reacquire a pointer to the object. The mutator cannot 'rediscover ' the object 
arbitrarily (without interaction with the run-time system) - there is no pointer the mutator 
can traverse to it and arithmetic construction of new pointers is prohibited. A variety of 
languages support finalisation of at least some objects . These appear to the mutator to be 
'resurrected' by the run-time system. Our point is that the mutator cannot gain access to 
any arbitrary unreachable object by its efforts alone. 

References, fields and addresses 

In general, we shall refer to a heap node N by using its memory address (though this need 
not necessarily be the initial word of an object, but may be to some appropriate standard 
point in the layout of the object's data and metadata) .  Given an object (at address) N, we 
can refer to arbitrary fields of the object - which may or may not contain pointers - by 
treating the object as an array of fields: the ith field of an object N will be denoted N [i] , 
counting fields from 0; the number of fields of N is written I N I . We write the usual C 
syntax for dereferencing a (non-null) pointer p as * P · Similarly, we use & to obtain the 
address of a field. Thus, we write &N [i] for the address of the ith field of N. Given an 
object (at address) N the set P o i nt e r s (N)  denotes the set of (addresses of) pointer fields of 
N. More formally: 

P o i nt e r s (N)  = {a I a =&N [i] , Vi : 0 :::; i < I N I where N [i] is a pointer} 

For convenience, we write P o inters  to denote the set of all pointer fields of all objects 
in the heap. Similarly, Nodes denotes the set of all (allocated) objects in the heap. For 
convenience, we will also treat the set Root s as a pseudo-object (separate from the heap), 
and define P o i nters (Root s ) =Root s synonymously. By implication, this allows us to 
write Root s [i] to refer to the ith root field. 

Liveness, correctness and reachability 

An object is said to be live if it will be accessed at some time in the future execution of the 
mutator. A garbage collector is correct only if it never reclaims live objects . Unfortunately, 
liveness is an undecidable property of programs: there is no way to decide for an arbitrary 
program whether it will ever access a particular heap object or not.8 Just because a pro
gram continues to hold a pointer to an object does not mean it will access it. Fortunately, 
we can approximate liveness by a property that is decidable: pointer reachability. An object 
N is reachable from an object M if N can be reached by following a chain of pointers, start
ing from some field f of M. By extension, an object is only usable by a mutator if there is a 
chain of pointers from one of the mutator 's roots to the object. 

More formally (in the mathematical sense that allows reasoning about reachability), we 
can define the immediate 'points-to' relation --+ 1 as follows. For any two heap nodes M, N 
in Node s,  M -+t N if and only if there is some field location J= & M [i] in P o i nt e r s (M) 

8The undecidability o f  liveness i s  a corollary o f  the halting problem. 
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such that * J=N. Similarly, Root s --+ 1 N if and only if there is some field f in Root s such 
that * f =N. We say that N is directly reachable from M, written M --+ N, if there is some 
field f in P o i n t e r s (M ) such that M --+ 1 N (that is, some field f of M points to N). Then, 
the set of reachable objects in the heap is the transitive referential closure from the set of 
Root s under the --+ relation, that is, the least set 

reachable = {N  E N o d e s I ( :lr E Root s : r --+ N) V (3M E reachable : M --+ N) } ( 1 . 1 )  

An object that i s  unreachable in  the heap, and not pointed to  by any mutator root, can 
never be accessed by a type-safe mutator. Conversely, any object reachable from the roots 
may be accessed by the mutator. Thus, liveness is more profitably defined for garbage col
lectors by reachability. Unreachable objects are certainly dead and can safely be reclaimed. 
But any reachable object may still be live and must be retained . Although we realise that 
doing so is not strictly accurate, we will tend to use live and dead interchangeably with 
reachable and unreachable, and garbage as synonymous with unreachable. 

Pseudo-code 

We use a common pseudo-code to describe garbage collection algorithms. We offer these 
algorithm fragments as illustrative rather than definitive, preferring to resolve ambiguities 
informally in the text rather than formally in the pseudocode. Our goal is a concise and 
representative description of each algorithm rather than a full-fleshed implementation. 

Indentation denotes the extent of procedure bodies and the scope of control statements . 
The assignment operator is +- and the equality operator is = .  Otherwise we use C-style 
symbols for the other logical and relational operators, such as I I  (conditional or), && (con
ditional and), �, 2:, -=/=, % (modulus) and so on. 

The allocator 

The heap allocator, which can be thought of as functionally orthogonal to the collector, sup
ports two operations : a l l ocate,  which reserves the underlying memory storage for an 
object, and free  which returns that storage to the allocator for subsequent re-use. The size 
of the storage reserved by a l locat e is passed as an optional parameter; when omitted the 
allocation is of a fixed-size object, or the size of the object is not necessary for understand
ing of the algorithm. Where necessary, we may pass further arguments to a l l ocate ,  for 
example to distinguish arrays from other objects, or arrays of pointers from those that do 
not contain pointers, or to include other information necessary to initialise object headers . 

Mutator read and write operations 

As they execute, mutator threads perform several operations of interest to the collector: 
New, Read and W r i t e .  We adopt the convention of naming mutator operations with a 
leading upper-case letter, as opposed to lower-case for collector operations. Generally, 
these operations have the expected behaviour: allocating a new object, reading an object 
field or writing an object field . Specific memory managers may augment these basic op
erations with additional functionality that turns the operation into a barrier: an action that 
results in synchronous or asynchronous communication with the collector. We distinguish 
read barriers and write barriers. 
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New( ) . The New operation obtains a new heap object from the heap allocator which re
turns the address of the first word of the newly-allocated object. The mechanism for actual 
allocation may vary from one heap implementation to another, but collectors usually need 
to be informed that a given object has been allocated in order to initialise metadata for that 
object, and before it can be manipulated by the mutator. The trivial default definition of 
New simply allocates. 

New( ) : 
return a l locat e ( )  

Read( src,i ) . The Read operation accesses an object field in memory (which may hold a 
scalar or a pointer) and returns the value stored at that location. Read generalises memory 
loads and takes two arguments: (a pointer to) the object and the (index of its) field being 
accessed . We allow s rc=Root s if the field s rc [i ]  is a root (that is, & s rc [ i ] E Root s) .  The 
default, trivial definition of Re ad simply returns the contents of the field. 

Read ( s rc ,  i ) : 
return s rc [i ]  

Write (src,i,val ) . The Wr i t e  operation modifies a particular location in memory. It 
generalises memory stores and takes three arguments: (a pointer to) the source object and 
the (index of its) field to be modified, plus the (scalar or pointer) value to be stored. Again, 
if s r c=Root s then the field s r c  [ i] is a root (that is, & s r c  [ i ]  E Ro ot s) .  The default, trivial 
definition of Wr i t e  simply updates the field .  

Writ e ( s rc ,  i ,  va l ) : 
s rc [ i ]  +- val 

Atomic operations 

In the face of concurrency between mutator threads, collector threads, and between the 
mutator and collector, all collector algorithms require that certain code sequences appear 
to execute atomically. For example, stopping mutator threads makes the task of garbage 
collection appear to occur atomically: the mutator threads will never access the heap in the 
middle of garbage collection. Moreover, when running the collector concurrently with the 
mutator, the New, Read, and Write  operations may need to appear to execute atomically 
with respect to the collector and/ or other mutator threads. To simplify the exposition 
of collector algorithms we will usually leave implicit the precise mechanism by which 
atomicity of operations is achieved, simply marking them with the keyword atomic. The 
meaning is clear: all the steps of an atomic operation must appear to execute indivisibly 
and instantaneously with respect to other operations. That is, other operations will appear 
to execute either before or after the atomic operation, but never interleaved between any 
of the steps that constitute the atomic operation. For discussion of different techniques to 
achieve atomicity as desired see Chapter 1 1  and Chapter 13 .  

Sets, multisets, sequences and tuples 

We use abstract data structures where this clarifies the discussion of an algorithm. We use 
mathematical notation where it is appropriate but does not obscure simpler concepts. For 
the most part, we will be interested in sets and tuples, and simple operations over them to 
add, remove or detect elements. 
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We use the usual definition of a set as a collection of distinct (that is, unique) elements . 
The cardinality of a set S, written I S  I ,  is the number of its elements . 

In addition to the standard set notation, we also make use of multisets . A multiset's 
elements may have repeated membership in the multiset. The cardinality of a multiset is 
the total number of its elements, including repeated memberships. The number of times 
an element appears is its multiplicity. We adopt the following notation: 

• [ ]  denotes the empty multiset 

• [a, a, b] denotes the multiset containing two as and one b 

• [a, b] + [a] = [a, a, b] denotes multiset union 

• [a, a, b] - [a] = [a, b] denotes multiset subtraction 

A sequence is an ordered list of elements. Unlike a set (or multiset), order matters. Like a 
multiset, the same element can appear multiple times at different positions in the sequence. 
We adopt the following notation: 

• ( )  denotes the empty sequence 

• ( a, a, b) denotes the sequence containing two as followed by a b 

• ( a, b ) · (a )  = (a, b, a )  denotes appending of the sequence (a )  to (a ,  b ) 

While a tuple of length k can be thought of as being equivalent to a sequence of the same 
length, we sometimes find it convenient to use a different notation to emphasise the fixed 
length of a tuple as opposed to the variable length of a sequence, and so on. We adopt the 
notation below for tuples; we use tuples only of length two or more . 

• (a 1 , . . .  , ak )  denotes the k-tuple whose ith member is a;, for 1 :::; i :::; k 



Chapter 2 

Mark-sweep garbage collection 

All garbage collection schemes are based on one of four fundamental approaches: mark
sweep collection, copying collection, mark-compact collection or reference counting. Different col
lectors may combine these approaches in different ways, for example, by collecting one 
region of the heap with one method and another part of the heap with a second method. 
The next four chapters focus on these four basic styles of collection. In Chapter 6 we com
pare their characteristics . 

For now we shall assume that the mutator is running one or more threads, but that 
there is a single collector thread. All mutator threads are stopped while the collector thread 
runs. This stop-the-world approach simplifies the construction of collectors considerably. 
From the perspective of the mutator threads, collection appears to execute atomically: no 
mutator thread will see any intermediate state of the collector, and the collector will not 
see interference with its task by the mutator threads. We can assume that each mutator 
thread is stopped at a point where it is safe to examine its roots : we look at the details 
of the run-time interface in Chapter 1 1 .  Stopping the world provides a snapshot of the 
heap, so we do not have to worry about mutators rearranging the topology of objects in 
the heap while the collector is trying to determine which objects are live. This also means 
that there is no need to synchronise the collector thread as it returns free space with other 
collector threads or with the allocator as it tries to acquire space. We avoid the question 
of how multiple mutator threads can acquire fresh memory until Chapter 7. There are 
more complex run-time systems that employ parallel collector threads or allow mutator 
and collector threads to execute concurrently; we discuss them in later chapters . 

We encourage readers to familiarise themselves with the collectors in the next four 
chapters before progressing to the more advanced collectors covered in later chapters . Ex
perienced readers may wish to skip the descriptions of the basic algorithms, although we 
hope that the accounts of more sophisticated ways to implement these collectors will prove 
of interest. We refer readers who find some of the material in these four chapters rather too 
compressed to Chapters 2 to 6 of Jones [1996] , where the classical algorithms are covered 
in greater detail with more examples. 

The goal of an ideal garbage collector is to reclaim the space used by every object that 
will no longer be used by the program. Any automatic memory management system has 
three tasks: 

1. to allocate space for new objects; 

2. to identify live objects; and 

3. to reclaim the space occupied by dead objects. 

17  
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Algorithm 2.1: Mark-sweep : allocation 

1 New ( ) : 
r ef  +- a l l o c a t e ( )  
if re f = null  

c o l l e c t ( )  
r e f  +- a l l o c at e ( )  
i f  re f = null 

e r r o r  " Out o f  memo r y "  
return r e f  

t o  atomic c o l l e ct ( ) : 
1 1  markFromRo ot s ( )  
1 2  sweep (HeapSt a rt ,  HeapEnd)  

/* Heap is ful l  4 

I* Heap is still full 4 

These tasks are not independent. In particular, the way space is reclaimed affects how fresh 
space is allocated. As we noted in Chapter 1, true liveness is an undecidable problem. 
Instead, we tum to an over-approximation of the set of live objects: pointer reachability 
(defined on page 13) .  We accept an object as live if and only if it can be reached by following 
a chain of references from a set of known roots. By extension, an object is dead, and its 
space can be reclaimed, if it cannot be reached though any such chain of pointers . This is a 
safe estimate. Although some objects in the live set may never be accessed again, all those 
in the dead set are certainly dead. 

The first algorithm that we look at is mark-sweep collection [McCarthy, 1960] . It is a 
straightforward embodiment of the recursive definition of pointer reachability. Collection 
operates in two phases . First, the collector traverses the graph of objects, starting from the 
roots (registers, thread stacks, global variables) through which the program might immedi
ately access objects and then following pointers and marking each object that it finds. Such 
a traversal is called tracing. In the second, sweeping phase, the collector examines every 
object in the heap: any unmarked object is deemed to be garbage and its space reclaimed. 

Mark-sweep is an indirect collection algorithm. It does not detect garbage per se, but 
rather identifies all the live objects and then concludes that anything else must be garbage . 
Note that it needs to recalculate its estimate of the set of live objects at each invocation. Not 
all garbage collection algorithms behave like this. Chapter 5 examines a direct collection 
method, reference counting. Unlike indirect methods, direct algorithms determine the 
liveness of an object from the object alone, without recourse to tracing. 

2.1 The mark-sweep algorithm 

From the viewpoint of the garbage collector, mutator threads perform just three operations 
of interest, New, Read  and Write ,  which each collection algorithm must redefine appro
priately (the default definitions were given in Chapter 1 on page 15) .  The mark-sweep 
interface with the mutator is very simple. If a thread is unable to allocate a new object, 
the collector is called and the allocation request is retried (Algorithm 2 . 1 ) .  To emphasise 
that the collector operates in stop-the-world mode, without concurrent execution of the 
mutator threads, we mark the c o l l e c t  routine with the atomic keyword. If there is 
still insufficient memory available to meet the allocation request, then heap memory is 
exhausted. Often this is a fatal error. However, in some languages, New may raise an ex
ception in this circumstance that the programmer may be able to catch. If memory can 
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Algorithm 2.2: Mark-sweep: marking 

1 ma rkFromRoot s ( ) : 
i n i t i a l i s e (wo rk l i s t ) 
for each fld  in Roo t s  

r e f  +- * f l d  
if ref  -=/:. null  && not i sMa rked (r e f ) 

setMarked ( r e f ) 
add (work l i s t ,  ref ) 
mark ( )  

1 0  in i t i a l i s e (work l i s t ) : 
1 1  wo r k l i s t  +- emp t y  
1 2  

1 3  ma r k ( ) : 
1 4  

1 5  

1 6  

1 7  
1 8  

1 9  

20 

while not i s Empt y (workl i s t ) 
r e f  +- remove (workl i s t ) 
for each f l d  in Point e r s ( ref ) 

chi l d  +- * f l d  
i f  ch i l d  -=/:. null && not i sMarked ( c h i l d ) 

setMarked ( chi l d ) 
add (wo r k l i st ,  chi l d ) 
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I* re f is marked *f 

be released by deleting references (for example, to cached data structures which could be 
recreated later if necessary), then the allocation request could be repeated . 

Before traversing the object graph, the collector must first prime the marker 's work 
list with starting points for the traversal (ma rkFromRoo t  s in Algorithm 2.2) . Each root 
object is marked and then added to the work list (we defer discussion of how to find 
roots to Chapter 11 ) .  An object can be marked by setting a bit (or a byte), either in the 
object's header or in a side table. If an object cannot contain pointers, then because it has 
no children there is no need to add it to the work list. Of course the object itself must 
still be marked. In order to minimise the size of the work list, ma rkFromRoot s calls 
ma rk immediately. Alternatively, it may be desirable to complete scanning the roots of 
each thread as quickly as possible. For instance, a concurrent collector might wish to stop 
each thread only briefly to scan its stack and then traverse the graph while the mutator is 
running. In this case rna r k (line 8) could be moved outside the loop. 

For a single-threaded collector, the work list could be implemented as a stack. This 
leads to a depth-first traversal of the graph. If mark-bits are co-located with objects, it has 
the advantage that the elements that are processed next are those that have been marked 
most recently, and hence are likely to still be in the hardware cache. As we shall see re
peatedly, it is essential to pay attention to cache behaviour if the collector is not to sacrifice 
performance. Later we discuss techniques for improving locality. 

Marking the graph of live objects is straightforward . References are removed from the 
work list, and the targets of their fields marked, until the work list is empty. Note that in 
this version of ma rk, every item in the work list has its mark-bit set. If a field contains a 
null pointer or a pointer to an object that has already been marked, there is no work to do; 
otherwise the target is marked and added to the work list. 

Termination of the marking phase is enforced by not adding already marked objects 
to the work list, so that eventually the list will become empty. At this point, every object 
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Algorithm 2.3: Mark-sweep : sweeping 

sweep(  s t a rt ,  end) : 
s can  f- s t a rt 
while s can  < end 

if i sMa rked ( s c an )  
unsetMarked( s c a n )  

else free ( s c an )  
s c an f- next Ob j ect ( s c a n )  

reachable from the roots will have been visited and its mark-bit will have been set. Any 
unmarked object is therefore garbage. 

The sweep phase returns unmarked nodes to the allocator (Algorithm 2.3) .  Typically, 
the collector sweeps the heap linearly, starting from the bottom, freeing unmarked nodes 
and resetting the mark-bits of marked nodes in preparation for the next collection cycle. 
Note that we can avoid the cost of resetting the mark-bit of live objects if the sense of the 
bit is switched between one collection and the next. 

We will not discuss the implementation of a l l o c at e  and free until Chapter 7, but 
note that the mark-sweep collector imposes constraints upon the heap layout. First, this 
collector does not move objects. The memory manager must therefore be careful to try to 
reduce the chance that the heap becomes so fragmented that the allocator finds it difficult 
to meet new requests, which would lead to the collector being called too frequently, or in 
the worst case, preventing the allocation of new memory at all. Second, the sweeper must 
be able to find each node in the heap. In practice, given a node, sweep must be able to 
find the next node even in the presence of padding introduced between objects in order to 
observe alignment requirements. Thus, nextOb j ect may have to parse the heap instead 
of simply adding the size of the object to its address (line 7 in Algorithm 2.3); we also 
discuss heap parsability in Chapter 7. 

2.2 The tricolour abstraction 

It is very convenient to have a concise way to describe the state of objects during a collec
tion (have they been marked, are they in the work list, and so on) . The tricolour abstraction 
[Dijkstra et al, 1976, 1978] is a useful characterisation of tracing collectors that permits rea
soning about collector correctness in terms of invariants that the collector must preserve.  
Under the tricolour abstraction, tracing collection partitions the object graph into black 
(presumed live) and white (possibly dead) objects. Initially, every node is white; when a 
node is first encountered during tracing it is coloured grey; when it has been scanned and 
its children identified, it is shaded black. Conceptually, an object is black if the collector 
has finished processing it, and grey if the collector knows about it but has not yet finished 
processing it (or needs to process it again) .  By analogy with object colour, fields can also 
be given a colour: grey when the collector first encounters them, and black once traced by 
the collector. This analogy also allows reasoning about the mutator roots as if the mutator 
were an object [Pirinen, 1998] . A grey mutator has roots that have not yet been scanned 
by the collector. A black mutator has roots that have already been scanned by the collector 
(and do not need to be scanned again) .  Tracing makes progress through the heap by mov
ing the collector wavefront (the grey objects) separating black objects from white objects 
until all reachable objects have been traced black. 
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Figure 2.1: Marking with the tricolour abstraction. Black objects and their 
children have been processed by the collector. The collector knows of grey 
objects but has not finished processing them. White objects have not yet been 
visited by the collector (and some will never be). 
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Objects are coloured by mark-sweep collection as follows. Figure 2.1 shows a simple 
object graph and a mark stack (implementing the work list), mid-way through the mark 
phase. Any objects held on the mark stack will be visited again, and so are grey. Any object 
that has been marked, and is not on the stack, is black (the root of the graph in the figure) .  
All other objects are white (currently, A, B and C).  However, once ma rk has completed its 
traversal of the graph, the mark stack will be empty (no grey nodes), only C will remain 
white (garbage), and all other nodes will have been marked (black) . 

The algorithm preserves an important invariant: at the end of each iteration of the 
marking loop, there are no references from black to white objects. Thus any white object 
that is reachable must be reachable from a grey object. If this invariant were to be broken, 
then a live descendant of a black object might not be marked (and hence would be freed in
correctly) since the collector does not process black nodes further. The tricolour view of the 
state of garbage collection is particularly useful when algorithms for concurrent garbage 
collection are considered, where mutator threads run concurrently with the collector. 

2.3 Improving mark-sweep 

It is not uncommon for an application's performance to be dominated by its cache be
haviour. The latency to load a value from main memory is possibly hundreds of clock 
cycles whereas the latency for Level 1 caches may only be three or four cycles. Caches im
prove performance because applications typically exhibit good temporal locality: if a mem
ory location has been accessed recently, it is very likely that it will be accessed again soon, 
and so it is worth caching its value. Applications may also exhibit good spatial locality: if 
a location is accessed, it is likely adjacent locations will also be accessed soon. Modem 
hardware can take advantage of this property in two ways. Rather than transferring single 
words between a cache and lower levels of memory, each entry in the cache (the cache line 
or cache block) holds a fixed number of bytes, typically 32-128 bytes. Secondly, processors 
may use hardware prefetching. For example, the Intel Core micro-architecture can detect a 
regular stride in the memory access pattern and fetch streams of data in advance. Explicit 
prefetching instructions are also commonly available for program-directed prefetching. 
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Unfortunately, garbage collectors do not behave like typical applications . The tempo
ral locality of mark-sweep collection is poor. In the mark phase, the collector typically 
reads and writes an object's header just once, since most objects are not shared (that is, 
they are referenced by just one pointer), although a small number of objects may be very 
popular [Printezis and Garthwaite, 2002] . The mark-bit is read, and set if the object has not 
already been marked: it is unlikely to be accessed again in this phase. Typically, the header 
also contains a pointer to type information (possibly also an object itself), needed so that 
the collector can find the reference fields in this object. This information may contain either 
a descriptor identifying these fields, or it may be code that will mark and push the object's 
descendants onto the mark stack. Because programs use only a limited number of types, 
and their frequency distribution is heavily skewed in favour of a small number of heavily 
used types, type information may be a good candidate for caching. But, otherwise, objects 
tend to be touched just once in this phase. Hardware prefetching is not tuned for this kind 
of pointer chasing. 

We now consider ways in which the performance of a mark-sweep collector can be 
improved. 

2.4 Bitmap marking 

Space for a mark-bit can usually be found in an object header word. Alternatively, mark
bits can be stored in a separate bitmap table to the side of the heap, with a bit associated 
with every address at which an object might be allocated. The space needed for the bit
map depends on the object alignment requirements of the virtual machine. Either a single 
bitmap can be used or, in a block structured heap, a separate bitmap can be used for each 
block. The latter organisation has the advantage that no space is wasted if the heap is 
not contiguous. Per-block bitmaps might be stored in the blocks. However, placing the 
bitmap at a fixed position in each block risks degrading performance. This is because the 
bitmaps will contend for the same sets in a set-associative cache. Also, accessing the bit
map implies touching the page. Thus it may be better to use more instructions to access 
the bit rather than to incur locality overheads due to paging and cache associativity. To 
avoid the cache associativity issue, the position of the bitmap in the block can be varied by 
computing some simple hash of the block's address to determine an offset for the bit map. 
Alternatively, the bitmap can be stored to the side [Boehm and Weiser, 1988], but using a 
table that is somehow indexed by block, perhaps by hashing. This avoids both paging and 
cache conflicts . 

Bit maps suffice if there is only a single marking thread . Otherwise, setting a bit in a 
bitmap is vulnerable to losing updates to races whereas setting a bit in an object header 
only risks setting the same bit twice: the operation is idempotent. Instead of a bitmap, 
byte-maps are commonly used (at the cost of an 8-fold increase in space), thereby making 
marking races benign. Alternatively, a bitmap must use a synchronised operation to set a 
bit. In practice, matters are often more complicated for header bits in systems that allow 
marking concurrently with mutators, since header words are typically shared with muta
tor data such as locks or hash codes. With care, it may be possible to place this data and 
mark-bits in different bytes of a header word . Otherwise, even mark-bits in headers must 
be set atomically. 

Mark bitmaps have a number of potential advantages. We identify these now, and then 
examine whether they materialise in practice on modem hardware. A bitmap stores marks 
much more densely than if they are stored in object headers. Consider how mark-sweep 
behaves with a mark bitmap. With a bitmap, marking will not modify any object, but 
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will only read pointer fields of live objects . Other than loading the type descriptor field, 
no other part of pointer-free objects will be accessed . Sweeping will not read or write to 
any live object although it may overwrite fields of garbage objects as part of freeing them 
(for example to link them into a free-list) . Thus bitmap marking is likely to modify fewer 
words, and to dirty fewer cache lines so less data needs to be written back to memory. 

Bitmap marking was originally adopted for a conservative collector designed to pro
vide automatic memory management for uncooperative languages like C and C++ [Boehm 
and Weiser, 1988] . Type-accurate systems can precisely identify every slot that contains a 
pointer, whether it is in an object, the stack frame of a thread or another root. Conservative 
collectors, on the other hand, do not receive this level of support from the compiler or run
time system and so have to make conservative decisions on pointer identity. If the value 
held in a slot looks sufficiently like an object reference, it is assumed to be one. We discuss 
the problems of pointer finding in more detail in Chapter 1 1 .  Conservative collection may 
interpret a slot as a pointer when it is not; this has two consequences for safety. First, the 
collector must not alter the value stored in any location owned by the mutator (including 
objects and roots) . This rules out all algorithms that move objects since this would require 
updating every reference to a moved object. It also rules out storing mark-bits in object 
headers since the 'object' in question might not be an object if it was reached by following 
a false pointer. Setting or clearing a bit might destroy user data .  Second, it is very useful to 
minimise the chance of the mutator interfering with the collector 's data. Adding a header 
word for the collector's use, contiguous to every object, is riskier than keeping collector 
metadata such as mark-bits in a separate data structure. 

Bitmap marking was also motivated by the concern to minimise the amount of paging 
caused by the collector [Boehm, 2000] . However, in modern systems, any paging at all due 
to the collector is generally considered unacceptable. The question for today is whether 
bitmap marking can improve cache performance. There is considerable evidence that ob
jects tend to live and die in clusters [Hayes, 1991; Jones and Ryder, 2008 ] .  Many allocators 
will tend to allocate these objects close to each other. Sweeping with a bitmap has two ad
vantages . It allows the mark-bits of clusters of objects to be tested and cleared in groups as 
the common case will be that either every bit/byte is set or every bit/byte is clear in a map 
word. A corollary is that it is simple from the bitmap to determine whether a complete 
block of objects is garbage, thus allowing the whole block to be returned to the allocator. 

Many memory managers use a block structured heap (for example, Boehm and Weiser 
[1988] ) .  A straightforward implementation might reserve a prefix of each block for its bit
map. As previously discussed this leads to unnecessary cache conflicts and page accesses, 
so collectors tend to store bitmaps separately from user data blocks. 

Garner et al [2007] adopt a hybrid approach, associating each block in a segregated fits 
allocator's data structure with a byte in a map, as well as marking a bit in object headers. 
The byte is set if and only if the corresponding block contains at least one object. The byte
map of used/unused blocks thus allows the sweeper to determine easily which blocks are 
completely empty (of live objects) and can be recycled as a whole. This has two advan
tages. Both the bit in the object header and the byte in the byte-map, corresponding to 
the block in which the object resides, can be set without using synchronised operations . 
Furthermore, there are no data dependencies on either write (which might lead to cache 
stalls), and writing the byte in the byte-map is unconditional. 

Printezis and Detlefs [2000] use bitmaps to reduce the amount of space used for mark 
stacks in a mostly-concurrent, generational collector. First, as usual, mutator roots are 
marked by setting a bit in the map. Then, the marking thread linearly searches this bit
map, looking for live objects. Algorithm 2.4 strives to maintain the invariant that marked 
objects below the current 'finger', cur  in the mark routine, are black and those above it are 
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Algorithm 2.4: Printezis and Detlefs's bitmap marking 

1 ma r k ( )  
cur  +-- next i nB i t map ( )  
while c u r  < HeapEnd I* marked ref  is black if and only if re f < cur  *I 

add(work l i st ,  c u r )  
markStep (  c u r )  
cur  +-- next i nB i tmap ( )  

s ma rkStep ( s t a rt ) : 
while not i s Empt y (work l i s t )  

10 re f +-- remove (work l i s t )  
n for each f l d  in P o i nt e r s ( re f )  
1 2  c h i l d  +-- * f l d  
1 3  if chi l d  -=I= null && not i sMarke d ( c h i ld )  
M setMarked ( chi ld) 
1s if ch i l d  < s t a rt 
16 add(work l i st ,  chi l d) 

I* re f is marked *I 

grey. When the next live (marked) object cur  is found, it is pushed onto the stack and we 
enter the usual marking loop to restore the invariant: objects are popped from the stack 
and their children marked recursively until the mark stack is empty. If an item is below 
c u r  in the heap, it is pushed onto the mark stack; otherwise its processing is deferred to 
later in the linear search. The main difference between this algorithm and Algorithm 2.1 is 
its conditional insertion of children onto the stack at line 15. Objects are only marked re
cursively (thus consuming mark stack space) if they are behind the black wavefront which 
moves linearly through the heap . Although the complexity of this algorithm is propor
tional to the size of the space being collected, in practice searching a bitmap is cheap. 

A similar approach can be used to deal with mark stack overflow. When the stack 
overflows, this is noted and the object is marked but not pushed onto the stack. Marking 
continues until the stack is exhausted . Now we must find those marked objects that could 
not be added to the stack. The collector searches the heap, looking for any marked objects 
with one or more unmarked children and continues the trace from these children. The 
most straightforward way to do this is with a linear sweep of the heap. Sweeping a bitmap 
will be more efficient than examining a bit in the header of each object in the heap . 

2.5 Lazy sweeping 

The complexity of the mark phase is O(L ) , where L is the size of the live data in the heap; 
the complexity of the sweep phase is O(H) where H is the size of the heap. Since H > L, at 
first sight it might seem that the mark-sweep algorithm is dominated by the cost of sweep
ing. However, in practice, this is not the case. Chasing pointers in the mark phase leads 
to unpredictable memory access patterns, whereas sweep behaviour is more predictable . 
Further, the cost of sweeping an object tends to be much less than the cost of tracing it. One 
way to improve the cache behaviour of the sweep phase is to prefetch objects. In order to 
avoid fragmentation, allocators supporting mark-sweep collectors typically lay out objects 
of the same size consecutively (see Chapter 7 on page 93) leading to a fixed stride as a block 
of same-sized objects is swept. Not only does this pattern allow software prefetching, but 
it is also ideal for the hardware prefetching mechanisms found in modem processors. 
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Algorithm 2.5: Lazy sweeping with a block structured heap 

1 atomic c o l l e c t ( ) : 
ma rkFromRoot s ( ) 
for each bl ock  in B l o c k s  

i f  not i sMa rked(b l o c k )  
add ( b l ockAl locat o r, block )  

else 
add( reclaimL i s t ,  b lock )  

9 atomic a l l o c at e ( s z ) : 
10 result  +-- remove ( s z )  
n if result  = null 
1 2  la zySweep ( s z )  
n result  +-- remove ( s z )  
w return r e s u l t  
15 

16 l a zySweep ( s z ) : 
11 repeat 

I* no objects marked in this block? *f 
I* return block to block allocator *f 

I* queue block for lazy sweeping *f 

I* allocate from size class for s z *I 
I* if no free slots for this size . . .  *I 

I* sweep a little *I 

I* if still null, collect *f 

1s block  +-- nextB l o c k ( reclaimL i s t ,  s z ) 
19 if b l o c k  =I null 
20 sweep ( s t art (bl o c k ) ,  end(bl o c k ) )  
D if spa ceFound (block )  
22 

23 
24 

25 

return 
until b l o c k  = null 
a l locS l ow ( s z )  

26 a l l o c S low ( s z ) : 
21 block  +-- a l l o cateBl o c k ( )  
2s if block  -1 null 
29 in i t i a l i s e (block, s z )  

I* reclaim list for th is size class is empty *I 
I* get an empty block *I 

I* allocation slow path *I 
I* from the block allocator *I 

Can the time for which the mutators are stopped during the sweep phase be reduced or 
even eliminated? We observe two properties of objects and their mark-bits. First, once an 
object is garbage, it remains garbage: it can neither be seen nor be resurrected by a mutator. 
Second, mutators cannot access mark-bits. Thus, the sweeper can be executed in parallel 
with mutator threads, modifying mark-bits and even overwriting fields of garbage objects 
to link them into allocator structures. The sweeper (or sweepers) could be executed as sep
arate threads, running concurrently with the mutator threads, but a simple solution is to 
use lazy sweeping [Hughes, 1982] . Lazy sweeping amortises the cost of sweeping by having 
the allocator perform the sweep. Rather than a separate sweep phase, the responsibility 
for finding free space is devolved to a l l ocat e .  At its simplest, a l l ocate  advances the 
sweep pointer until it finds sufficient space in a sequence of unmarked objects. However, 
it is more practical to sweep a block of several objects at a time. 

Algorithm 2.5 shows a lazy sweeper that operates on a block of memory at a time. It is 
common for allocators to place objects of the same size class into a block (we discuss this in 
detail in Chapter 7) . Each size class class will have one or more current blocks from which 
it can allocate and a reclaim list of blocks not yet swept. As usual the collector will mark 
all live objects in the heap, but instead of eagerly sweeping the whole heap, col l e c t  will 
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simply return any completely empty blocks to the block level allocator (line 5 ) .  All other 
blocks are added to the reclaim queue for their size-class. Once the stop-the-world phase 
of the collection cycle is complete, the mutators are restarted.  The a l l o c a t e  method 
first attempts to acquire a free slot of the required size from an appropriate size class (in 
the same way as Algorithm 7.2 would) . If that fails, the lazy sweeper is called to sweep 
one or more remaining blocks of this size class, but only until the request can be satisfied 
(line 12) . However, it may be the case that no blocks remain to be swept or that none of 
the blocks swept contained any free slots. In this case, the sweeper attempts to acquire 
a whole fresh block from a lower level, block allocator. This fresh block is initialised by 
setting up its metadata - for example, threading a free-list through its slots or creating a 
mark byte-map .  However, if no fresh blocks are available, the collector must be called. 

There is a subtle issue that arises from lazy sweeping a block-structured heap such as 
one that allocates from different size-classes. Hughes [1982] worked with a contiguous 
heap and thus guaranteed that the allocator would sweep every node before it ran out of 
space and invoked the garbage collector again. However, lazily sweeping separate size
classes does not make this guarantee since it is almost certain that the allocator will exhaust 
one size-class (and all the empty blocks) before it has swept every block in every other 
size-class. This leads to two problems. First, garbage objects in unswept blocks will not 
the reclaimed, leading to a memory leak. If the block also contains a truly live object, this 
leak is harmless since these slots would not have been recycled anyway until the mutator 
made a request for an object of this size-class. Second, if all the objects in the unswept 
block subsequently become garbage, we have lost the opportunity to reclaim the whole 
block and recycle it to more heavily used size-classes. 

The simplest solution is to complete sweeping all blocks in the heap before starting 
to mark. However, it might be preferable to give a block more opportunities to be lazily 
swept. Garner et al [2007] trade some leakage for avoiding any eager sweeps. They achieve 
this for Jikes RVM /MMTk [Blackburn et al, 2004b] by marking objects with a bounded in
teger rather than a bit. This does not usually add space costs since there is often room to 
use more than one bit if marks are stored in object headers, and separate mark tables often 
mark with bytes rather than bits. Each collection cycle increments modulo 2K the value 
used as the mark representing 'live', where K is the number of mark-bits used, thus rolling 
the mark back to zero on overflow. In this way, the collector can distinguish between an 
object marked in this cycle and one marked in a previous cycle . Only marks equal to the 
current mark value are considered to be set. Marking value wrap-around is safe because, 
immediately before the wrap-around, any live object in the heap is either unmarked (al
located since the last collection) or has the maximum mark-bit value. Any object with a 
mark equal to the next value to be used must have been marked last some multiple of 2K 

collections ago. Therefore it must be floating garbage and will not be visited by the marker. 
This potential leak is addressed somewhat by block marking. Whenever the MMTk col
lector marks an object, it also marks its block. If none of the objects in a block has been 
marked with the current value, then the block will not have been marked either and so 
will be reclaimed as a whole at line 5 in Algorithm 2.5. Given the tendency for objects to 
live and die in clumps, this is an effective tactic. 

Lazy sweeping offers a number of benefits. It has good locality: object slots tend to 
be used soon after they are swept .  It reduces the algorithmic complexity of mark-sweep 
to be proportional to the size of the live data in the heap, the same as semispace copying 
collection, which we discuss in Chapter 4. In particular, Boehm [1995] suggests that mark 
and lazy sweep will perform best in the same circumstance that copying performs best: 
when most of the heap is empty, as the lazy sweep's search for unmarked objects will 
terminate quickly. In practice, the mutator 's cost of initialising objects is likely to dominate 
the cost of sweeping and allocation. 
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Figure 2.2: Marking with a FIFO prefetch buffer. As usual, references are 
added to the work list by being pushed onto the mark stack. However, to 
remove an item from the work list, the oldest item is removed from the FIFO 
buffer and the entry at the top of the stack is inserted into it. The object to 
which this entry refers is prefetched so that it should be in the cache by the 
time this entry leaves the buffer. 

2.6 Cache misses in the marking loop 

27  

We have seen how prefetching can improve the performance o f  the sweep phase. We now 
examine how it can also be employed to advantage in the mark phase. For example, by 
densely packing mark-bits into a bitmap, the number of cache misses incurred by testing 
and setting marks can be reduced. However, cache misses will be incurred as the fields 
of an unmarked object are read as part of the traversal. Thus, much of the potential cache 
advantage of using mark bitmaps in the mark phase will be lost as object fields are loaded. 

If an object is pointer-free, it is not necessary to load any of its fields. Although matters 
will vary by language and by application, it is likely that the heap may contain a significant 
volume of objects with no user-defined pointer fields. Whether or not an object contains 
pointers is an aspect of its type. One way that this can be determined is from the type 
information slot in an object's header. However, it is also possible to obtain information 
about an object from its address, for example if objects with similar characteristics are lo
cated together. Lisp systems have often used a big bag of pages allocation (BiBoP) technique, 
allocating objects of only one type (such as cons  cells) on a page, thus allowing type in
formation to be compactly associated with the page rather than each object [Foderaro et al, 
1985] .  Similarly, pointer-full and pointer-free objects could be segregated. In the past, type 
information has also been encoded in pointers themselves [Steenkiste, 1987] . 

Boehm [2000] observes that marking dominates collection time, with the cost of fetch
ing the first pointer from an object accounting for a third of the time spent marking on 
an Intel Pentium III system. He suggests prefetching on grey: fetching the first cache line 
of an object as that object is greyed (added to the mark stack, line 20 of Algorithm 2.2), 
and prefetching a modest number of cache lines ahead as very large objects are scanned. 
However, this technique relies on the timing of the prefetch. If the cache line is prefetched 
too soon, it may be evicted from the cache before it is used. If it is fetched too late, then the 
cache miss will occur anyway. 
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Algorithm 2.6: Marking with a FIFO prefetch buffer 

1 add(wo r k l i st ,  i t em) : 
ma rkStack  +- get S t a c k (wo r k l i s t )  
pu sh (ma r k S t a ck ,  i t em) 

s remove (wo r k l i st ) : 
ma rkSt ack  +- get S t a c k (wo rk l i s t )  
addr +- pop(ma rk S t a c k )  
prefet ch (addr )  
f i f o  +- get F i f o (workl i s t )  

w prepend( f i fo, addr )  
n return remove ( f i fo )  

Algorithm 2.7: Marking graph edges rather than nodes 

1 ma rk ( ) : 
while not i sEmpty (wo r kl i s t )  

ob j +- remove (workl i s t )  
i f  not i sMa rked (ob j )  

s etMa rked (  ob j )  
for each f l d  in P o i nt e r s (ob j )  

chi l d  +- dld 
if c h i l d  =I null 

add(wo r k l i st ,  ch i l d) 

Cher et al [2004] observe that the fundamental problem is that cache lines are fetched 
in a breadth-Jirst,first-in,first-out (FIFO), order but the mark-sweep algorithm traverses the 
graph depth-first, last-in,first-out (LIFO). Their solution is to insert a first-in, first-out queue 
in front of the mark stack (Figure 2.2 and Algorithm 2.6) . As usual, when mark  adds an 
object to its work list, a reference to the object is pushed onto a mark stack. However, when 
rna r k wants to acquire an object from the work list, a reference is popped from the mark 
stack but inserted into the queue, and the oldest item in the queue is returned to ma rk.  The 
reference popped from the stack is also prefetched, the length of the queue determining the 
prefetch distance. Prefetching a few lines beyond the popped reference will help to ensure 
that sufficient fields of the object to be scanned are loaded without cache misses. 

Prefetching the object to be marked through the first-in, first-out queue enables rna r k 
to load the object to be scanned without cache misses (lines 16-17 in Algorithm 2.2). How
ever, testing and setting the mark of the child nodes will incur a cache miss (line 18) .  
Garner et  al [2007] realised that ma rk's tracing loop can be restructured to offer greater 
opportunities for prefetching. Algorithm 2.2 added each node of the live object graph to 
the work list exactly once; an alternative would be to traverse and add each edge exactly 
once. Instead of adding children to the work list only if they are unmarked, this algorithm 
inserts the children of unmarked objects unconditionally (Algorithm 2.7) .  Edge enqueu
ing requires more instructions to be executed and leads to larger work lists than node 
enqueuing since graphs must contain more edges than nodes (Gamer et al suggest that 
typical Java applications have about 40% more edges than nodes) . However, if the cost of 
adding and removing these additional work list entries is sufficiently small then the gains 
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from reducing cache misses will outweigh the cost of this extra work. Algorithm 2.7 hoists 
marking out of the inner loop. The actions that might lead to cache misses, i sMa r k e d  and 
P o i nt e r s , now operate on the same object ob j ,  which has been prefetched through the 
first-in, first-out queue, rather than on different objects, ob j and its children, as previously. 
Gamer et al observe that tracing edges rather than nodes can improve performance even 
without software prefetching, speculating that the structure of the loop and the first-in, 
first-out queue enables more aggressive hardware speculation through more predictable 
access patterns. 

2. 7 Issues to consider 

Despite its antiquity as the first algorithm developed for garbage collection [McCarthy, 
1960], there are many reasons why mark-sweep collection remains an attractive option for 
developers and users. 

Mutator overhead 

Mark-sweep in its simplest form imposes no overhead on mutator read and write opera
tions. In contrast, reference counting (which we introduce in Chapter 5) imposes a signifi
cant overhead on the mutator. However, note that mark-sweep is also commonly used as 
a base algorithm for more sophisticated collectors which do require some synchronisation 
between mutator and collector. Both generational collectors (Chapter 9), and concurrent 
and incremental collectors (Chapter 15), require the mutator to inform the collector when 
they modify pointers . However, the overhead of doing so is typically small, a few percent 
of overall execution time. 

Throughput 

Combined with lazy sweeping, mark-sweep offers good throughput. The mark phase is 
comparatively cheap, and dominated by the cost of pointer chasing. It simply needs to 
set a bit or byte for each live object discovered, in contrast to algorithms like semispace 
copying collection (Chapter 4) or mark-compact (Chapter 3) which must copy or move 
objects. On the other hand, like all the tracing collectors in these initial chapters, mark
sweep requires that all mutators be stopped while the collector runs. The pause-time for 
collection depends on the program being run and its input, but can easily extend to several 
seconds or worse for large systems. 

Space usage 

Mark-sweep has significantly better space usage than approaches based on semispace 
copying. It also potentially has better space usage than reference counting algorithms. 
Mark-bits can often be stored at no cost in spare bits in object headers . Alternatively, if a 
side bitmap table is used, the space overhead depend on object alignment requirements; 
it will be no worse 1 /alignment of the heap (-k  or -l4 of the heap, depending on architec
ture), and possibly better depending on alignment restrictions. Reference counting, on the 
other hand, requires a full slot in each object header to store counts (although this can be 
reduced if a limit is placed on the maximum reference count stored) .  Copying collectors 
make even worse use of available memory, dividing the available heap into two equally 
sized semispaces, only one of which is used by the mutator at any time. On the debit 
side, non-compacting collectors, like mark-sweep and reference counting, require more 
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complex allocators, such as segregated fits free-lists. The structures needed to support 
such collectors impose a further, non-negligible overhead. Furthermore, non-compacting 
collectors can suffer from fragmentation, thus increasing their effective space usage. 

However, mark-sweep is a tracing algorithm. Like other tracing algorithms, it must 
identify all live objects in a space before it can reclaim the memory used by any dead 
objects. This is an expensive operation and so should be done infrequently. This means 
that tracing collectors must be given some headroom in which to operate in the heap. If 
the live objects occupy too large a proportion of the heap, and the allocators allocate too 
fast, then a mark-sweep collector will be called too often: it will thrash. For moderate to 
large heaps, the headroom necessary may be between 20% and 50% of the heap Uones, 
1996] though Hertz and Berger [2005] show that, in order to provide the same throughput, 
Java programs managed by mark-sweep collection may need a heap several times larger 
than if it were to be managed by explicit deallocation. 

To move or not to move? 

Not moving objects has both advantages and disadvantages . Its benefit is that it makes 
mark-sweep a suitable candidate for use in uncooperative environments where there is 
no communication between language compiler and garbage collector (see Chapter 1 1 ) .  
Without type-accurate information about the mutators' roots and the fields of objects, they 
cannot be updated with the new locations of moved objects - the putative 'root' might not 
be a pointer but other user data . In some cases, hybrid mostly-copying collection is possible 
[Bartlett, 1988a; Hosking, 2006 ] .  Here, a program's roots must be treated conservatively (if 
it looks like a pointer, assume it is a pointer), so the collector cannot move their referents. 
However, type-accurate information about the layout of objects is available to the collector 
so it can move others that are not otherwise p inned to their location. 

Safety in uncooperative systems managed by a conservative collector precludes the col
lector 's modifying user data, including object headers. It also encourages placing collector 
metadata separate from user or other run-time system data, to reduce the risk of modifi
cation by the mutator. For both reasons, it is desirable to store mark-bits in bitmaps rather 
than object headers. 

The problem with not moving objects is that, in long running applications, the heap 
tends to become fragmented. Non-moving memory allocators require space O(log '::,�� ) 
larger than the minimum possible, where min and max are the smallest and largest possible 
object sizes [Robson, 1971, 1974] . Thus a non-compacting collector may have to be called 
more frequently than one that compacts. Note that all tracing collectors need sufficient 
headroom (say, 20-50%) in the heap in order to avoid thrashing the collector. 

To avoid having performance suffer due to excessive fragmentation, many production 
collectors that use mark-sweep to manage a region of the heap also periodically use an
other algorithm such as mark-compact to defragment it. This is particularly true if the 
application does not maintain fairly constant ratios of object sizes or allocates many very 
large objects . If the application allocates more large objects than it previously did, the re
sult may be many small holes in the heap no longer being reused for new allocations of 
objects of the same size. Conversely, if the application begins to allocate smaller objects 
than before, these smaller objects might be allocated in gaps previously occupied by larger 
objects, with the remaining space in each gap being wasted. However, careful heap man
agement can reduce the tendency to fragment by taking advantage of objects' tendency to 
live and die in clumps [Dimpsey et al, 2000; Blackburn and McKinley, 2008 ] .  Allocation 
with segregated-fits can also reduce the need to compact. 



Chapter 3 

Mark-compact garbage collection 

Fragmentation1 can be  a problem for non-moving collectors . Although there may be  space 
available in the heap, either there may be no contiguous chunk of free space sufficiently 
large to handle an allocation request, or the time taken to allocate may become excessive 
as the memory manager has to search for suitable free space. Allocators may alleviate this 
problem by storing small objects of the same size together in blocks [Boehm and Weiser, 
1988] especially, as we noted earlier, for applications that do not allocate many very large 
objects and whose ratios of different objects sizes do not change much. However, many 
long running applications, managed by non-moving collectors, will fragment the heap and 
performance will suffer. 

In this and the next chapter we discuss two strategies for compacting live objects in 
the heap in order to eliminate external fragmentation. The major benefit of a compacted 
heap is that it allows very fast, sequential allocation, simply by testing against a heap limit 
and 'bumping' a free pointer by the size of the allocation request (we discuss allocation 
mechanisms further in Chapter 7) . The strategy we consider in this chapter is in-place 
compaction2 of objects into one end of the same region. In the next chapter we discuss 
a second strategy, copying collection - the evacuation of live objects from one region to 
another (for example, between semispaces) .  

Mark-compact algorithms operate in a number of phases. The first phase is always a 
marking phase, which we discussed in the previous chapter. Then, further compacting 
phases compact the live data by relocating objects and updating the pointer values of all 
live references to objects that have moved. The number of passes over the heap, the order 
in which these are executed and the way in which objects are relocated varies from algo
rithm to algorithm. The compaction order has locality implications. Any moving collector 
may rearrange objects in the heap in one of three ways. 

Arbitrary: objects are relocated without regard for their original order or whether they 
point to one another. 

Linearising: objects are relocated so that they are adjacent to related objects, such as ones 
to which they refer, which refer to them, which are siblings in a data structure, and 
so on, as far as this is possible. 

Sliding: objects are slid to one end of the heap, squeezing out garbage, thereby maintain
ing their original allocation order in the heap . 

1 We discuss fragmentation in more detail in Section 7.3. 
20ften called compactifying in older papers. 

31 



32 CHAPTER 3. MARK-COMPACT GARBAGE COLLECTION 

Most compacting collectors of which we are aware use arbitrary or sliding orders. Ar
bitrary order compactors are simple to implement and fast to execute, particularly if all 
nodes are of a fixed size, but lead to poor spatial locality for the mutator because related 
objects may be dispersed to different cache lines or virtual memory pages. All modern 
mark-compact collectors implement sliding compaction, which does not interfere with 
mutator locality by changing the relative order of object placement. Copying collectors 
can even improve mutator locality by varying the order in which objects are laid out by 
placing them close to their parents or siblings. Conversely, recent experiments with a col
lector that compacts in an arbitrary order confirm that its rearrangement of objects' layout 
can lead to drastic reductions in application throughput [Abuaiadh et al, 2004] . 

Compaction algorithms may impose further constraints. Arbitrary order algorithms 
handle objects of only a single size or compact objects of different sizes separately. Com
paction may require two or three passes through the heap. It may be necessary to provide 
an extra slot in object headers to hold relocation information: such an overhead is likely 
to be significant for a general purpose memory manager. Compaction algorithms may im
pose restrictions on pointers. For example, in which direction may references point? Are 
interior pointers allowed? We discuss the issues they present in Chapter 1 1 .  

We examine several styles of compaction algorithm. First, we introduce Edwards's 
Two-Finger collector [Saunders, 1974] . Although this algorithm is simple to implement 
and fast to execute, it disturbs the layout of objects in the heap. The second compacting 
collector is a widely used sliding collector, the Lisp 2 algorithm. However, unlike the 
Two-Finger algorithm, it requires an additional slot in each object's header to store its 
forwarding address, the location to which it will be moved. Our third example, Jonkers's 
threaded compaction [1979] , slides objects without any space overhead. However, it makes 
two passes over the heap, both of which tend to be expensive. The final class of compacting 
algorithms that we consider are fast, modern sliding collectors that similarly require no 
per-object storage overhead . Instead, they compute forwarding addresses on-the-fly. All 
compaction algorithms are invoked as follows: 

atomic c o l l e c t ( ) : 

ma r k F r omRo o t s ( )  
c ompa ct ( )  

3 .1  Two-finger compaction 

Edwards's Two-Finger algorithm [Saunders, 1974] is a two-pass, arbitrary order algorithm, 
best suited to compacted regions containing objects of a fixed size. The idea is simple: 
given the volume of live data in the region to be compacted, we know where the high
water mark of the region will be after compaction. Live objects above this threshold are 
moved into gaps below the threshold. Algorithm 3.1  starts with two pointers or 'fingers', 
f r e e  which points to the start of the region and s c a n  which starts at the end of the re
gion. The first pass repeatedly advances the f r e e  pointer until it finds a gap (an unmarked 
object) in the heap, and retreats the s c a n  pointer until it finds a live object. If the f r e e  

and s c a n  fingers pass each other, the phase i s  complete . Otherwise, the object a t  s c an is 
moved into the gap at f r ee ,  overwriting a field of the old copy (at s c a n ) with a forward
ing address, and the process continues. This is illustrated in Figure 3 . 1 ,  where object A has 
been moved to its new location A' and some slot of A (say, the first slot) has been over
written with the address A'.  Note that the quality of compaction depends on the size of 
the gap at f re e  closely matching the size of the live object at s can .  Unless this algorithm 
is used on fixed-size objects, the degree of defragmentation might be very poor indeed. 
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Figure 3.1: Edwards's Two-Finger algorithm. Live objects at the top of the 
heap are moved into free gaps at the bottom of the heap. Here, the object at 
A has been moved to A'. The algorithm terminates when the free  and scan  
pointers meet. 

Algorithm 3.1: The Two-Finger compaction algorithm 

compact ( ) : 
re l ocate (Heap S t a rt,  HeapEnd) 
updateRe ferenc e s (Heap S t a rt ,  free ) 

rel o c a t e ( s t a rt,  end) : 
f ree +-- s t a rt 
s can  +-- end 

while free < s can 
while i sMarked ( free ) 

unsetMarked ( free ) 
free +- free + s i z e ( free ) 

while not i sMarked( s can ) && s c an > free 

I* find next hole 4 

s can +- s can - s i z e ( s can ) l* find previous live object *f 

if s can > free 
unsetMa rked ( s can ) 
move ( s can, free ) 
* S can +- free 
free +-- free + 
s c an +-- s c an -

I* leave forwarding address (destructively) 4 
s i ze (free ) 
s i ze ( scan ) 

24 updateRe ferences ( st art ,  end) : 
� for each f l d  in Root s I* update roots that pointed to moved objects *I 
26 

27 

28 

29 
30 
31 

32 

33 

35 

36 

re f +-- * f l d  
if r e f  2: end 

* f l d  +- * ref  I* use the forwarding address left in first pass 4 

scan  +-- start 
while s can < end 

for each f l d  in P o i nters (scan ) 
ref  +- * f ld  
if re f 2: end 

I* update fields in live region 4 

* f 1 d +-- * re f  I* use the forwarding address left in first pass 4 
s can +-- s can  + s i ze ( s can ) I* next object 4 
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At the end of this phase, f r e e  points at the high-water mark. The second pass updates 
the old values of pointers that referred to locations beyond the high-water mark with the 
forwarding addresses found in those locations, that is, with the objects' new locations. 

The benefits of this algorithm are that it is simple and fast, doing minimal work at each 
iteration. It has no memory overhead, since forwarding addresses are written into slots 
above the high-water mark only after the live object at that location has been relocated: no 
information is destroyed. The algorithm supports interior pointers. Its memory access pat
terns are predictable, and hence provide opportunities for prefetching (by either hardware 
or software) which should lead to good cache behaviour in the collector. However, the 
movement of the s can pointer in r e l ocate  does require that the heap (or at least the live 
objects) can be parsed 'backwards'; this could be done by storing mark-bits in a separate 
bitmap, or recording the start of each object in a bitmap when it is allocated. Unfortunately, 
the order of objects in the heap that results from this style of compaction is arbitrary, and 
this tends to harm the mutator 's locality. Nevertheless, it is easy to imagine how mutator 
locality might be improved somewhat. Since related objects tend to live and die together 
in clumps, rather than moving individual objects, we could move groups of consecutive 
live objects into large gaps. In the remainder of this chapter, we look at sliding collectors 
which maintain the layout order of the mutator. 

3.2 The Lisp 2 algorithm 

The Lisp 2 collector (Algorithm 3 .2) is widely used, either in its original form or adapted 
for parallel collection [Flood et al, 2001 ] .  It can be used with objects of varying sizes and, 
although it makes three passes over the heap, each iteration does little work (compared, 
for example, with threaded compactors). Although all mark-compact collectors have rela
tively poor throughput, a complexity study by Cohen and Nicolau [ 1983] found the Lisp 2 
compactor to be the fastest of the compaction algorithms they studied. However, they did 
not take cache or paging behaviour into account, which is an important factor as we have 
seen before. The chief drawback of the Lisp 2 algorithm is that it requires an additional 
full-slot field in every object header to store the address to which the object is to be moved; 
this field can also be used for the mark-bit. 

The first pass over the heap (after marking) computes the location to which each live 
object will be moved, and stores this address in the object's f o rwardingAdd r e s s  field 
(Algorithm 3.2) . The compu t e L o c a t i o n s  routine takes three arguments: the addresses 
of the start and the end of the region of the heap to be compacted, and the start of the 
region into which the compacted objects are to be moved. Typically the destination region 
will be the same as the region being compacted, but parallel compactor threads may use 
their own distinct source and destination regions. The c ompu t e Locat i o n s  procedure 
moves two 'fingers' through the heap: s c an iterates through each object (live or dead) in 
the source region, and free points to the next free location in the destination region. If the 
object discovered by scan  is live, it will (eventually) be moved to the location pointed to 
by f ree  so f r e e  is written into its forwa rd i n gAddre s s  field, and is then incremented 
by the size of the object (plus any alignment padding) . If the object is dead, it is ignored. 

The second pass (updat e Re f e rences  in Algorithm 3.2) updates the roots of mutator 
threads and references in marked objects so that they refer to the new locations of their 
targets, using the forwarding address stored in each about-to-be-relocated object's header 
by the first pass. Finally, in the third pass, re l o c a t e  moves each live (marked)  object in a 
region to its new destination. 

Notice that the direction of the passes (upward, from lower to higher addresses in our 
code) is opposite to the direction in which the objects will move (downward, from higher 
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Algorithm 3.2: The Lisp 2 compaction algorithm 

c ompa c t ( ) : 
c omputeLocat i ons ( HeapS t a r t ,  HeapEnd, HeapS t a r t )  
updateRefe rences ( HeapS t a r t ,  HeapEnd)  
r e l o cate (HeapS t art,  HeapEnd)  

6 c omput eLocat i o n s ( s t a rt ,  end, t oRegion ) : 
s c an +-- s t a r t  
f r e e  +-- t oRegion  
while s can  < end 

w if i sMarked ( s can )  
n forwa r d ingAddres s ( s c an )  +-- free  
u free  +-- free  + s i z e ( s can )  
n s can  +-- s can  + s i z e ( s c an )  
1 4  

1 s  updateRe feren c e s ( s t art ,  end) : 
1 6  for each f l d  in Roo t s  
1 7  

1 8  

1 9  

20 

21 

22 

23 
24 

25 
26 

27 

28 

ref  +-- * f l d  
if ref  1= null 

* f ld  +-- forwardi ngAddr e s s ( r e f )  

s c an +-- s t a r t  
while s can  < end 

if i sMarked ( s can )  
for each f l d  in P o i nt e r s ( s can )  

if  * f l d  1= null 
* f l d  +-- forwardingAddr e s s ( * f l d) 

s can  +-- s can  + s i z e ( s c an )  

29 r e l o c a t e (  s t a rt ,  end) : 
30 s can  +-- s t a r t  
Jt while s can  < end 
n if i sMarked ( s can )  
n de s t  +-- forwardi n gAddres s ( s ca n )  
34 move ( s c an, des t )  
� uns etMa r ked(de s t )  
36 s can +-- s can  + s i z e ( s ca n )  

35 

I* update roots *I 

I* update fields *f 
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(a) Before threading: three objects refer to N 
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N 

(b) After threading: all pointers to N have been 
'threaded' so that the objects that previously re
ferred to N can now be found from N .  The value 
previously stored in the header word of N, which is 
now used to store the threading pointer, has been 
(temporarily) moved to the first field (in A) that re
ferred to N .  

Figure 3.2: Threading pointers 

to lower addresses) . This guarantees that when the third pass copies an object, it is to 
a location that has already been vacated. Some parallel compactors that divide the heap 
into blocks slide the contents of alternating blocks in opposite directions . This results in 
larger 'clumps', and hence larger free gaps, than sliding each block's contents in the same 
direction [Flood et al, 2001 ] .  An example is shown in Figure 14.8. 

This algorithm can be improved in several ways. Data can be prefetched in similar 
ways as for the sweep phase of mark-sweep collectors . Adjacent garbage can be merged 
after line 10 of comput e L o c at i on s  in order to improve the speed of subsequent passes. 

3.3 Threaded compaction 

The most immediate drawbacks of the Lisp 2 algorithm are (i) that it requires three com
plete passes over the heap, and (ii) that space is added to each object for a forwarding 
address. The one is the consequence of the other. Sliding compacting garbage collection is 
a destructive operation which overwrites old copies of live data with new copies of other 
live data . It is essential to preserve forwarding address information until all objects have 
been moved and all references updated . The Lisp 2 algorithm is non-destructive at the cost 
of requiring an extra slot in the object header to store the forwarding address. The Two
Finger algorithm is non-destructive because the forwarding addresses are written beyond 
the live data high-water mark into objects that have already been moved, but it reorders 
objects arbitrarily which is undesirable. 

Fisher [1974] solved the pointer update problem with a different technique, threading, 
that requires no extra storage yet supports sliding compaction. Threading needs there to be 
sufficient room in object headers to store an address (if necessary overwriting other data), 
which is not an onerous requirement, and that pointers can be distinguished from other 
values, which may be harder. The best known threading is probably that due to Morris 



3.3. lliREADED COMPACTION 

Algorithm 3.3: Jonkers's threaded compactor 

c ompa ct ( ) : 

upda t e F o rwardRe f e r e n c e s ( )  
updateBac kwardRe f e r e n c e s ( )  

37 

5 t h r ead ( r e f ) : I* thread a reference 4 
if * r e f  1= null 

* r e f, * * r e f  +--- * * r e f, r e f  

9 updat e ( r e f, addr ) : I* unthread all references, replacing with addr 4 
1 0  tmp +--- * re f  

n while i s Re fe r e n c e (t mp ) 
1 2  * tmp, t mp +--- addr, * t mp 

1 3  * r e f  +--- t mp 

14 

m updat eForwa rdRe f e r en c e s ( ) : 

16 for each f l d  in Roo t s 

11 thread ( * f l d) 
1 8  

1 9  f r e e  +--- HeapStart 

20 s c an +--- HeapStart 

21 while s c a n  � HeapE n d  

n if i sMa r k ed ( s can ) 
23 upda t e ( s can, f r e e ) I* forward refs to s c an set to f r e e  4 
24 for each f l d  in P o i nt e r s ( s c an ) 
25 t h r ead ( f l d ) 
26 f r e e  +--- free  + s i z e (s can ) 
21 s can +--- s can + s i z e ( s c an ) 
28 

� updat eBackwardRe f e r en c e s ( ) : 

3o f r e e  +--- HeapStart 

31 

32 

33 

34 
35 

36 
37 

s can +--- HeapStart 

while s c an � HeapE nd 

if i sMa rked ( s can ) 
updat e ( s can, f r e e ) 
move ( s c an, f r e e ) 
f r e e  +--- free  + s i z e ( s can ) 

s can +--- s c an + s i z e ( s c an ) 

I* backward refs to s c an set to f r e e  *I 
I* slide s c an back to f r e e  *I 

[ 1978, 1979, 1982] but Jonkers [1979] imposes fewer restrictions (for example, on the direc
tion of pointers) . The goal of threading is to allow all references to a node N to be found 
from N .  It does so by temporarily reversing the direction of pointers . Figure 3.2 shows 
how fields previously referring to N can be found by following the threaded pointers from 
N .  Notice that, after threading as in Figure 3.2b, the contents i n f o  of N 's header has been 
written into a pointer field of A. When the collector chases the pointers to unthread and 
update them, it must be able to recognise that this field does not hold a threaded pointer. 

Jonkers requires two passes over the heap, the first to thread references that point for
ward in the heap, and the second to thread backward pointers (see Algorithm 3.3) .  The 
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first pass starts by threading the roots. It then sweeps through the heap, start to finish, 
computing a new address f r e e  for each live object encountered, determined by summing 
the volume of live data encountered so far. It is easiest to understand this algorithm by 
considering a single marked (live) node N .  When the first pass reaches A, it will thread 
the reference to N .  By the time that the pass reaches N, all the forward pointers to N will 
have been threaded (see Figure 3 .2b) .  This pass can then update all the forward references 
to N by following this chain and writing the value of f ree,  the address of the location to 
which N will be moved, into each previously referring slot. When it reaches the end of 
the chain, the collector will restore N's i n f o  header word. The next step on this pass is 
to increment f r e e  and thread N 's children. By the end of this pass, all forward references 
will have been updated to point to their new locations and all backward pointers will have 
been threaded. The second pass similarly updates references to N, this time by following 
the chain of backward pointers . This pass also moves N .  

The chief advantage of this algorithm i s  that i t  does not require any additional space, 
although object headers must be large enough to hold a pointer (which must be distin
guishable from a normal value) .  However, threading algorithms suffer a number of dis
advantages. They modify each pointer field of live objects twice, once to thread and once 
to unthread and update references . Threading requires chasing pointers so is just as cache 
unfriendly as marking but has to chase pointers three times (marking, threading and un
threading) in Jonkers's algorithm. Martin [1982] claimed that combining the mark phase 
with the first compaction pass improved collection time by a third but this is a testament to 
the cost of pointer chasing and modifying pointer fields. Because Jonkers modifies point
ers in a destructive way, it is inherently sequential and so cannot be used for concurrent 
compaction. For instance, in Figure 3.2b, once the references to N have been threaded, 
there is no way to discover that the first pointer field of B held a reference to N (unless that 
pointer is stored at the end of the chain as an extra slot in A's header, defeating the goal 
of avoiding additional storage overhead) . Finally, Jonkers does not support interior point
ers, which may be an important concern for some environments. However, the threaded 
compactor from Morris [1982] can accommodate interior pointers at the cost of an addi
tional tag bit per field, and the restriction that the second compaction pass must be in the 
opposite direction to the first (adding to the problem of heap parsability) . 

3.4 One-pass algorithms 

If we are to reduce the number of passes a sliding collector makes over the heap to two 
(one to mark and one to slide objects), and avoid the expense of threading, then we must 
store forwarding addresses in a side table that is preserved throughout compaction. Abua
iadh et al [2004] , and Kermany and Petrank [2006] both designed high performance mark
compact algorithms for multiprocessors that do precisely this. The former is a parallel, 
stop-the-world algorithm (it employs multiple compaction threads); the latter can be can 
also be configured to be concurrent (allowing mutator threads to run alongside collector 
threads), and incremental (periodically suspending a mutator thread briefly to perform a 
small quantum of compaction work) . We discuss the parallel, concurrent and incremen
tal aspects of these algorithms in later chapters. Here, we focus on the core compaction 
algorithms in a stop-the-world setting. 

Both algorithms use a number of side tables or vectors. Common to many collectors, 
marking uses a bitmap with one bit for each granule (say, a word) . Marking sets the bits 
corresponding to the first and last granules of each live object. For example, bits 16 and 
19 are set for the object marked old in Figure 3 .3 .  By scrutinising the mark bitmap in the 
compaction phase, the collector can calculate the size of any live object. 
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Figure 3.3: The heap (before and after compaction) and metadata used by 
Compressor [Kermany and Petrank, 2006] . Bits in the mark-bit vector indi
cate the start and end of each live object. Words in the offset vector hold 
the address to which the first live object in their corresponding block will be 
moved. Forwarding addresses are not stored but are calculated when needed 
from the offset and mark-bit vectors. 
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Second, a table is used to store forwarding addresses.  It would be prohibitively expen
sive to do this for every object (especially if we assume that objects are word-aligned) so 
both these algorithms divide the heap into small, equal-sized blocks (256 or 512 bytes, re
spectively). The o f f s e t  table stores the forwarding address of the first live object in each 
block. The new locations of the other live objects in a block can be computed on-the-fly 
from the offset and mark-bit vectors. Similarly, given a reference to any object, we can 
compute its block number and thus derive its forwarding address from the entry in the 
offset table and the mark-bits for that block. This allows the algorithms to replace multi
ple passes over the full heap to relocate objects and to update pointers with a single pass 
over the mark-bit vector to construct the offset vector and a single pass over the heap (after 
marking) to move objects and update references by consulting these summary vectors. Re
ducing the number of heap passes has consequent advantages for locality. Let us consider 
the details as they appear in Algorithm 3.4. 

After marking is complete, the c omput eLocat i o n s  routine passes over the mark-bit 
vector to produce the o f f s e t  vector. Essentially, it performs the same calculation as in 
Lisp 2 (Algorithm 3.2) but does not need to touch any object in the heap. For example, 
consider the first marked object in block 2, shown with a bold border in Figure 3.3. Bits 2 
and 3, and 6 and 7 are set in the first block, and bits 3 and 5 in the second (in this example, 
each block comprises eight slots) .  This represents 7 granules (words) that are marked in 
the bitmap before this object. Thus the first live object in block 2 will be relocated to the 
seventh slot in the heap. This address is recorded in the o f f s e t  vector for the block (see 
the dashed arrow marked o f f s e t [b l o c k ] in the figure). 

Once the o f f s e t  vector has been calculated, the roots and live fields are updated to 
reflect the new locations. The Lisp 2 algorithm had to separate the updating of references 
and moving of objects because relocation information was held in the heap and object 
movement destroyed this information as relocated objects are slid over old objects. In con
trast, Compressor-type algorithms relocate objects and update references in a single pass, 
upda t eRe fe r e nc e s Re l o cat e in Algorithm 3.4. This is possible because new addresses 
can be calculated reasonably quickly from the mark bitmap and the o f f s e t  vector on
the-fly: Compressor does not have to store forwarding addresses in the heap. Given the 
address of any object in the heap, newAddre s s  obtains its block number (through shift 
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Algorithm 3.4: Compressor 

compa c t ( ) : 

compu t e Locat i o n s ( H e apSt art,  He apEnd, Heap S t a rt ) 
updat eRe ference s R e l o cate (H e ap S t a rt, HeapEnd) 

5 comput e L o c a t ions ( s t a r t ,  end, t oR e g i o n ) : 

l o c  +--- t oReg io n  

b l o c k  +--- getBl o c kNum( s t a rt ) 
for b +--- 0 to numB i t s ( s t a r t ,  end) - 1  

if  b % B I TS_I N_BLOCK = 0 
10 o f fset [b l o c k ] +--- l o c  

I* crossed block boundary? 4 
I* first object will be moved to l o c  4 

n b l o c k  +--- b l o ck + 1 

1 2  if bi tmap [b] = MARKED 
13 l o c  +--- l o c  + BYTES_P E R  B I T  I* advance by size of live objects *I 
14 

1 5  newAdd r e s s ( old) : 

1 6  b l o c k  +--- get B l o c kNum (old) 
1 1  return o f fset [b l o c k ] + o f f s e t i nBlock ( o l d ) 
1 8  

1 9  updateRe f e rencesRe l o c a t e ( s t a r t ,  e nd) : 

20 for each fld in R o o t s  

21 r e f +--- * fld 

22 if  r e f  =F nul.l. 
23 * f ld +--- n e wAddre s s ( re f ) 
24 

25 

26 

27 

28 

29 

30 

31 

32 

s c an  +--- s t a rt 

whil.e s c an < e n d  

s c a n  +--- nextMa r k edOb j e c t ( s c an ) 
for each f l d  in P o i nt e r s ( s can ) 

r e f  +--- * f l d  

if r e f  =F nul.l. 
* fld +--- n e wAddre s s ( r e f ) 

de s t  +--- newAdd r e s s ( s can ) 
move ( s can, de s t ) 

I* use the bitmap 4 
/* update references 4 

and mask operations), and uses this as an index into the o f f s et vector. The o f f s et vec
tor gives the forwarding address of the first object in that block. Compressor must then 
consult the bitmap for that block to discover how much live data precedes this object in its 
block, and therefore how much to add to the offset. This can be done in constant time by 
a table lookup . For example, the o l d  object in the figure has an offset of 3 marked slots in 
its block so it is moved to slot 10 :  o f fset [b l o c k ] = 7  plus o f f s et i nB l o c k ( o l d ) = 3 .  

3.5 Issues to consider 

Is compaction necessary? 

Mark-sweep garbage collection uses less memory than other techniques such as copying 
collection (which we discuss in the next chapter) . Furthermore, since it does not move ob
jects, a mark-sweep collector need only identify (a superset of) the roots of the collection; it 
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does not need to modify them. Both of these considerations may be important in environ
ments where memory is tight or where the run-time system cannot provide type-accurate 
identification of references (see Section 1 1 .2) . 

As a non-moving collector, mark-sweep is vulnerable to fragmentation. Using a parsi
monious allocation strategy like sequential-fits (see Section 7.4) reduces the likelihood of 
of fragmentation becoming a problem, provided that the application does not allocate very 
many large objects and that the ratio of object sizes does not change much. However, frag
mentation is certainly likely to be a problem if a general-purpose, non-moving allocator is 
used to allocate a wide variety of objects in a long-running application. For this reason, 
most production Java virtual machines use moving collectors that can compact the heap. 

Throughput costs of compaction 

Sequential allocation in a compacted heap is fast. If the heap is large compared to the 
amount of memory available, mark-compact is an appropriate moving collection strategy. 
It has half the memory requirements of copying collectors. Algorithms like Compressor 
are also easier to use with multiple collector threads than many copying algorithms (as we 
shall see in Chapter 14) .  There is, of course, a price to be paid . Mark-compact collection 
is likely to be slower than either mark-sweep or copying collection . Furthermore, many 
compaction algorithms incur additional overheads or place restrictions on the mutator. 

Mark-compact algorithms offer worse throughput than mark-sweep or copying collec
tion largely because they tend to make more passes over objects in the heap; Compressor 
is an exception. Each pass tends to be expensive, not least because many require access to 
type information and object pointer fields, and these are the costs that tend to dominate 
after 'pointer chasing', as we saw in Chapter 2. A common solution is to run with mark
sweep collection for as long as possible, switching to mark-compact collection only when 
fragmentation metrics suggest that this be profitable [Printezis, 2001 ;  Soman et al, 2004] . 

Long-lived data 

It is not uncommon for long-lived or even immortal data to accumulate near the beginning 
of the heap in moving collectors. Copying collectors handle such objects poorly, repeatedly 
copying them from one semispace to another. On the other hand, generational collectors 
(which we examine in Chapter 9) deal with these well, by moving them to a different space 
which is collected only infrequently. However, a generational solution might not be accept
able if heap space is tight. It is also obviously not a solution if the space being collected is 
the oldest generation of a generational collector! Mark-compact, however, can simply elect 
not to compact objects in this 'sediment' . Hanson [ 1977] was the first to observe that these 
objects tended to accumulate at the bottom of the 'transient object area' in his SITBOL sys
tem.  His solution was to track the height of this 'sediment' dynamically, and simply avoid 
collecting it unless absolutely necessary, at the expense of a small amount of fragmenta
tion. Sun Microsystems' HotSpot Java virtual machine uses mark-compact as the default 
collector for its old generation. It too avoids compacting objects in the user-configurable 
'dense prefix' of the heap [Sun Microsystems, 2006 ] .  If bitmap marking is used, the extent 
of a live prefix of desired density can be determined simply by examining the bitmap. 

Locality 

Mark-compact collectors may preserve the allocation order of objects in the heap or they 
may rearrange them arbitrarily. Although arbitrary order collectors may be faster than 
other mark-compact collectors and impose no space overheads, the mutator 's locality is 
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likely to suffer from an arbitrary scrambling of object order. Sliding compaction has a 
further benefit for some systems: the space occupied by all objects allocated after a certain 
point can be reclaimed in constant time, just by retreating the free space pointer. 

Limitations of mark-compact algorithms 

A wide variety of mark-compact collection algorithms has been proposed. A fuller account 
of many older compaction strategies can be found in Chapter 5 of Jones [1996 ] .  Many of 
these have properties that may be undesirable or unacceptable. The issues to consider 
include what space overheads may be incurred to store forwarding pointers (although this 
cost will be lower than that of a copying collector) . Some compaction algorithms place 
restrictions on the mutator. Simple compactors like the Two-Finger algorithm can only 
manage fixed-size objects. It is certainly possible to segregate objects by size class, but in 
this case, to what extent is compaction necessary? Threaded compaction requires that it 
be possible to distinguish pointers from non-pointer values temporarily stored in pointer 
fields. Threading is also incompatible with concurrent collection because it (temporarily) 
destroys information in pointer fields. Morris's [ 1978,1979,1982] threaded algorithm also 
restricts the direction in which references may point. Finally, most compaction algorithms 
preclude the use of interior pointers: the Two-Finger algorithm is an exception. 



Chapter 4 

Copying garbage collection 

So far we have seen that mark-sweep has comparatively cheap collection costs but may 
suffer from fragmentation. Given that garbage collection should account for only a small 
proportion of overall execution time in any well configured system, it is essential that over
heads on the mutator are kept to a minimum and, in particular, that allocation is fast, since 
mutator costs dominate those of the collector. Mark-compact collectors eliminate frag
mentation and support very fast, 'bump a pointer ' allocation (see Chapter 7) but require 
multiple passes over live objects, and significantly increase collection times. In this chap
ter, we discuss a third style of tracing garbage collection, semispace copying [Fenichel and 
Yochelson, 1969; Cheney, 1970] . Copying compacts the heap, thus allowing fast allocation, 
yet requires only a single pass over the live objects in the heap. Its chief disadvantage is 
that it reduces the size of the available heap by half. 

4.1 Semispace copying collection 

Basic copying collectors divide the heap into two, equally sized semispaces, called fromspace 
and tospace. For simplicity, Algorithm 4.1  assumes that the heap is one contiguous region 
of memory, but this is not essential . New objects are allocated in tospace by incrementing 
the value of a f r e e  pointer if there is sufficient room.1 Otherwise, the role of the two 
semispaces is flipped (line 2 in Algorithm 4.2) before the collector copies all live objects from 
what is now the fromspace to the tospace. This collector simply picks out - evacuating or 
scavenging - live objects from the old semispace. At the end of the collection, all live 
objects will have been placed in a dense prefix of tospace. The collector simply abandons 
fromspace (and the objects it contains) until the next collection. In practice, however, many 
collectors will zero that space for safety during the initialisation of the next collection cycle 
(see Chapter 11 where we discuss the interface with the run-time system) .  

After initialisation, semispace copying collectors populate their work list by copying 
the root objects into tospace (line 4). Copied but not yet scanned objects are grey. Each 
pointer field of a grey object will hold either null or a reference to a fromspace object. The 
copying scan traces each grey field, updating it to point to the tospace replica of its tar
get. When the trace visits a fromspace object, copy checks whether it has been evacuated 
(forwarded) yet. If not, the object is copied now to the location in tospace to which f r e e  

points, and the f re e  pointer is incremented by the size o f  the object (as for allocation) .  It 

1 Note: our a l l o c a t e  and c o p y  routines ignore issues of alignment and padding, and also the possibility that 
a copied object may have a different format, such as an explicit rather than an implicit hash code for Java objects. 

43 



44 CHAPTER 4. COPYING GARBAGE COLLECTION 

Algorithm 4.1: Semispace copying garbage collection: initialisation and allocation. For 
simplicity this assumes that the heap is a single contiguous region. 

1 c reat e S emi spac e s ( ) : 

t o space  f- H e ap S t art 

extent f- (H e ap E nd - Heap S t a rt ) I 2 

t op f- f roms p a c e  f- HeapS t a rt + ext e n t  

f r e e  f- t o sp a c e  

1 atomic a l l ocat e ( s i z e ) : 

re s u l t  f- f r e e  

n e w  f re e  f- re s u l t  + 
10 if newfree > t op 

s i z e  

/* size of a semispace 4 

I I  return null  /* signal 'Memory exh a u s t ed ' 4 
1 2  f r e e  f- new f r e e  

1 3  return res u l t  

i s  essential that collectors preserve the topology of live objects in the tospace copy o f  the 
heap. This is achieved by storing the address of each tospace object as a forwarding address 
in its old, fromspace replica when the object is copied (line 34) . The f o r w a rd routine, 
tracing from a tospace field, uses this forwarding address to update the field, regardless of 
whether the copy was made in this tracing step or a previous one (line 22). Collection is 
complete when all tospace objects have been scanned. 

Unlike most mark-compact collectors, semispace copying does not require any extra 
space in object headers. Any slot in a fromspace object can be used for the forwarding ad
dress (at least, in stop-the-world implementations), since that copy of the object is not used 
after the collection. This makes copying collection suitable even for header-less objects. 

Work list implementations 

Like all tracing collectors, semispace copying needs a work list of objects to process. The 
work list can be implemented in different ways, leading to different orders of traversing 
the object graph and different space requirements. Fenichel and Yochelson [ 1969] imple
mented the work list as a simple auxiliary stack, just as the mark-sweep collectors de
scribed in Chapter 2 did. Copying is complete when the stack is empty. 

The elegant Cheney scanning algorithm Cheney [1970] uses the grey objects in tospace 
as a first-in, first-out queue. It requires no additional storage other than a single pointer, 
s c an, which points to the next unscanned object. When the semispaces are flipped, both 
the f re e  and s c an pointers are set to point to (the start of) t o  space (see i n i t i al i s e  in 
Algorithm 4.3) . After the root objects are copied, the work list - the set of grey objects -
comprises precisely those (copied but unscanned) objects between s c a n  and free .  This 
invariant is maintained throughout the collection. The s c an pointer is advanced as to
space fields are scanned and updated (line 9). Collection is complete when the work list 
is empty: when the s c a n  pointer catches up with the f r e e  pointer. Thus, the actions of 
this implementation are very simple. To determine termination, i s Empt y does no more 
than compare the s can and f re e  pointers; r emove just returns the s c a n  pointer; and no 
action is required to add work to the work list. 
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Algorithm 4.2: Semispace copying garbage collection 

1 atomic c o l lect ( ) : 

f l ip ( )  
i n i t i a l i s e (w o rk l i st ) 
for each f l d  in Root s 

p r o ce s s ( f l d) 
while not i s Empty (work l i s t ) 

re f f- remove (wo rkl i s t ) 
s c an ( re f ) 

10 f l ip ( ) : 

n f r omspace, t o s p a c e  f- t o s p a ce, fromsp a c e  

12 t op f- tospace  + ext ent 

1 3  f r e e  f- t o sp a c e  

14 

1 5  s c an ( re f ) : 

1 6  for each f l d  in P o i nt e r s ( r e f ) 
v p r o ce s s ( f l d ) 
18 

I* empty *f 
I* copy the roots *f 

I* copy transitive closure *f 

I* switch semispaces *f 

19 proce s s ( f l d) : I* update field with reference to tospace replica 4 
20 f r omRe f f- * f l d  

21 if f r omRe f � null 
22 * f l d  f- f o rward ( fromRe f ) 
23 

24 f o rward ( fromRe f ) : 

25 t oRe f f- f o rwardi ngAddr e s s ( f romRe f ) 
26 if t oRe f = null 
21 t oRe f f- copy ( fromRe f ) 
� return toRe f  

29 

I* update with tospace reference *I 

I* not copied (not marked) *f 

3o copy ( f romRe f ) : I* copy object and return forwarding address *f 
31 

32 

33 

34 
35 

t oRe f f- free  

f r e e  f- free + s i z e ( f romRe f ) 
move ( fromRe f, t oRe f ) 
f o rwardi ngAddre s s ( fromRe f ) f- toRe f 

add (wo r k l i s t ,  t oRe f ) 
� return toRe f  

I* mark *f 



46 CHAPTER 4. COPYING GARBAGE COLLECTION 

Algorithm 4.3: Copying with Cheney's work list 

i n i t i a l i s e (wo rk l i s t ) : 

s c an  +-- f ree 

4 i s Empt y (wo rk l i s t ) : 

return s c an = f ree  

7 remove (wo r k l i s t ) : 

r e f  +-- s can 

s c an +-- s can + s i z e ( s can ) 
w return re f 

1 1  

1 2  add (wo r k l i st ,  re f ) : 

13 /* nop 4 

An example 

Figure 4.1 shows an example of how a Cheney scan would copy L, a linked list structure 
with pointers to the head and tail of the list. Figure 4. la shows fromspace before the collec
tion starts . At the start of the collection, the roles of the semis paces are flipped and L, which 
we assume is directly reachable from the roots, is copied to tospace (advancing the free 

pointer) and a forwarding reference to  the new location L '  is written into L (for instance, 
over the first field) .  The s c a n  pointer points to the first object in tospace (Figure 4.lb). The 
collector is now ready to start copying the transitive closure of the roots. The s can pointer 
points to the first object to process. L' holds references to A and E in fromspace, so these 
objects are evacuated to the location pointed at by free in tospace (advancing free ), the 
references in L' are updated to point to the new locations A' and E' (Figure 4 . lc), and s ca n  

i s  advanced to  the next grey object. Note that the collector i s  finished with L '  so i t  i s  concep
tually black, whereas the next objects to scan, A' and E', are grey. This process is repeated 
for each tospace object until the s can and f r ee  pointers meet (Figure 4 . 1 f) .  Observe that, 
in Figure 4 . le, D' holds a reference to E, which has already been copied. The referring field 
in D' is therefore updated with the forwarding address stored in E, thereby preserving the 
shape of the graph. As with other tracing algorithms, copying garbage collection can cope 
with all shapes of graphs, including cyclic data structures, preserving sharing properly. 

4.2 Traversal order and locality 

Mutator and collector locality can have a significant impact on program performance. As 
we saw in the previous chapter, the collector can harm the mutator's locality and hence its 
performance if it moves objects to arbitrary new locations without regard for either pointer 
relationships or the original allocation order [Abuaiadh et al, 2004] . However, there is a 
performance trade-off between locality benefits for the mutator, and for the collector and 
the frequency of collections. Compare mark-sweep and copying collection. Mark-sweep 
collectors have twice as much usable heap space available as do copying collectors, and 
hence will perform half as many collections, all other things being equal . Consequently, 
we might expect that mark-sweep collection offer better overall performance. Blackburn 
et al [2004a] found that this was indeed the case for collection in tight heaps, where he 
used a segregated-fits allocator for the non-moving collector. Conversely, in large heaps 
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(a) Fromspace before collection 
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(b) Copy the root, L 

Lfree 
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Figure 4.1: Copying garbage collection:  an example 
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(f) Scan D's  replica. s c a n =  f r e e  so collection is  complete. 

Figure 4.1 (continued): Copying garbage collection: an example 
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@] 
(a) The tree to copy 

Depth-first l 1 I 2 4 8 9 1 5 10 1 1  3 6 12 13 7 14 15 
Breadth-first l 1 I 2 3 4 5 1 6 7 8 9 10 11  12 13 14 15 

Hierarchical decomposition l 1 I 2 3 4 8 1 9  5 10 1 1  6 12 13 7 14 15 
Onl ine object reordering l 1 I 2 3 7 5 I ll 10 4 15 14 6 l3 9 8 12 

(b) Placement of obJects in the heap af er copying 

Figure 4.2: Copying a tree with different traversal orders. Each row shows 
how a traversal order lays out objects in tospace, assuming that three objects 
can be placed on a page (indicated by the thick borders) .  For online object 
reordering, prime numbered (bold italic) fields are considered to be hot. 
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the locality benefits to the mutator of sequential allocation outweighed the space efficiency 
of mark-sweep collection, leading to better miss rates at all levels of the cache hierarchy. 
This was particularly true for newly allocated objects which tend to experience higher 
mutation rates than older objects [Blackburn and McKinley, 2003] . 

The Blackburn et al [2004a] study copied objects depth-first. In contrast, Cheney's copy
ing collector traverses the graph breadth-first. Although this is implemented by a linear 
scan of - and hence predictable access to - the work list of grey tospace objects, breadth
first copying adversely affects mutator locality because it tends to separate parents and 
children. The table in Figure 4.2b compares the effect of different traversal orders on object 
layout, given the tree in Figure 4.2a. Each row shows where different tracing orders would 
place objects in tospace . If we examine row 2, we see that breadth-first traversal places 
only objects 2 and 3 near their parent. In this section we look more closely at traversal 
order and its consequences for locality. 

White [1980] suggested long ago that the garbage collector could be used to improve 
the performance of the mutator. Both copying and compacting garbage collectors move 
objects, thus potentially affecting the mutators' locality patterns. Sliding is generally con
sidered to be best order for mark-compact algorithms since it reserves the order of layout 
of objects established by the allocator. This is a safe, conservative policy, but can we do bet
ter? Mark-compact algorithms condense the heap in place, either by moving objects into 
holes (arbitrary order compactors) or by sliding live data (overwriting only garbage or ob
jects that have already been moved), and thus have no opportunity for more locality-aware 
reorganisation. However, any collector that evacuates live objects to a fresh region of the 
heap without destroying the original data can rearrange their layout in order to improve 
the performance of the mutator. 

Unfortunately there are two reasons why we cannot find an optimal layout of objects, 
that minimises the number of cache misses suffered by the program. First of all, the collec
tor cannot know what the pattern of future accesses to objects will be. But worse, Petrank 
and Rawitz [2002] show that the placement problem is NP-complete: even given a perfect 



50 CHAPTER 4. COPYING GARBAGE COLLECTION 

Algorithm 4.4: Approximately depth-first copying [Moon, 1984) (we assume that objects 
do not span pages) 

i n i t i a l i s e (work l i s t ) : 

s c an f- free  

p a r t i a l S can f- free  

5 i s Emp t y (work l i s t ) : 

return s c an = f ree 

a remove (w o rk l i s t ) : 

if  (part i a l S c an < free ) 
w r e f  f- part i a l S can 

n p a r t i a l S c an f- part i a l S c a n  

1 2  else 
1 3  re f f- s c an 

14 s c an f- s c an + s i z e ( s c an ) 
1 5  return r e f  

16 

I* as per Cheney *I 

I* prefer secondary scan *f 
+ s i z e (p a r t i a l S can ) 

I* primary scan *I 

1 1  add ( w o rk l i s t ,  re f ) : I* secondary scan on the most recently allocated page *f 
1 s  p a r t i a l S can f- max (part i a l S can ,  s t a r t O f P age ( r e f ) )  

knowledge of future accesses, there is no efficient algorithm to compute a n  optimal place
ment. The only solution is to use heuristics. One possibility is to use past behaviour as a 
predictor of future behaviour. Some researchers have used either profiling, on the assump
tion that programs behave similarly for different inputs [Calder et al, 1998] ,  or online sam
pling, assuming that behaviour remains unchanged from one period to the next [Chilimbi 
et al, 1999 ] .  Another heuristic is to preserve allocation order, as sliding compaction does. 
A third strategy is to try to place children close to one of their parents, since the only way 
to access a child is by loading a reference from one of its parents. Cheney's algorithm uses 
breadth-first traversal, but its unfortunate consequence is that it separates related data, 
tending to co-locate distant cousins rather than parents and children. Depth-first traversal 
(row one), on the other hand, tends to place children closer to their parents. 

Early studies of the locality benefits of different copying orders focused on trying to 
minimise page faults: the goal was to place related items on the same page. Stamos found 
that simulations of Smalltalk systems suggested that depth-first ordering gave a modest 
improvement over breadth-first ordering but worse paging behaviour than the original ob
ject creation order [Stamos, 1982; Blau, 1983; Stamos, 1984] .  However, Wilson et al [1991 ] ar
gue that these simulations ignore the topology of real Lisp and Smalltalk programs which 
tended to create wide but shallow trees, rooted in hash tables, designed to spread their 
keys in order to avoid clashes. 

If we are prepared to pay the cost of an auxiliary last-in, first-out marking stack, then 
the Fenichel and Yochelson algorithm leads to a depth-first traversal. However, it is possi
ble to obtain a pseudo-depth-first traversal without paying the space costs that come from 
using a stack. Moon [1984) modified Cheney's algorithm to make it 'approximately depth
first' . He added a second, p a r t i a l S c an pointer in addition to the primary s c an pointer 
(see Figure 4.3) .  Whenever an object is copied, Moon's algorithm starts a secondary scan 
from the last page of tospace that has not been completely scanned. Once the last tospace 
page has been scanned, the primary scan continues from the first incompletely scanned 
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page 
,-------, 

. IIJ D IIJ D liJ  
scan  J partialScan J L free 

Figure 4.3: Moon's approximately depth-first copying. Each block represents 
a page. As usual, scanned fields are black, and copied but not yet scanned 
ones are grey. Free space is shown in white. 
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Figure 4.4: A FIFO prefetch buffer (discussed in Chapter 2) does not improve 
locality with copying as distant cousins (C, Y, Z), rather than parents and 
children, tend to be placed together. 
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page (Algorithm 4.4) . In  effect, the work list i s  implemented as  a pair of Cheney queues. 
The advantage of this hierarchical decomposition scheme is that it is more effective than pure 
breadth-first search at depositing parents on the same page as their children. The hierar
chical decomposition line of Figure 4.2b shows how this algorithm would copy the tree, 
assuming a page size of three objects. 

The disadvantage of Moon's algorithm is that objects may be scanned twice since he 
records only a pair of scan pointers, thus forgetting blocks between s c a n  and free that 
have already been partially scanned; indeed, Wilson et al [1991] suggest that around 30% 
may be rescanned. They modified this algorithm to provide each page with its own scan 
and free pointers, making the work list now a list of partially scanned blocks to complete. 
This means that the primary scan does not have to revisit objects on pages already pro
cessed by a secondary scan. 

When we discussed how to improve the marking loop of a mark-sweep collector in 
Section 2.6, we mentioned that Cher et al [2004] argued that using a stack to guide tracing 
leads to a depth-first traversal of the graph but cache lines are fetched breadth-first. A 
natural question to ask is can we combine stack-based, depth-first copying with the first
in, first-out prefetch queue suggested by Cher et al [2004]? Unfortunately it seems not, 
because although first-in, first-out helps the copying loop avoid cache miss stalls, it sep
arates parents from children since it visits an object to follow its references only when it 
is removed from the queue, not from the stack.2 Imagine that a string object S is popped 

2Tony Printezis, personal communication. 
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Algorithm 4.5: Online object reordering 

1 atomic c o l lect ( ) : 

f l i p ( )  
i n i t i a l i se (hot L i s t ,  coldL i s t ) 
for each fld in Root s 

a dv i cePro c e s s ( f l d) 
repeat 

while not i s Empt y (hot L i s t ) 
adv i ce S c a n ( remove (hot L i s t ) )  

while not i s Empty (coldL i s t ) 
10 advi ceP r o c e s s ( remove ( c o ldL i s t ) )  
u until  i sEmpt y (h o t L i st ) 
1 2  

1 3  i n i t i a l i s e (hotLi s t ,  c o ldL i s t ) : 

1 4  hot L i s t  +-- empt y 

1 s  c o l dL i s t  +-- emp t y 

1 6  

1 7  adv i ceP r o c e s s ( f l d ) : 

1 s  f romRe f +-- * f l d  

1 9  if f r omRe f =F nul l  
20 * f l d  +-- fo r w a r d ( fromRe f ) 
2 1  

22 adv i c e S can (ob j ) : 

23 for each fld in P o i nt e r s ( ob j ) 
24 if  i s Hot ( f l d ) 
a adv i ceP r o c e s s ( fld) 
26 else 
27 add( co ldLi  s t ,  fld) 

from the stack . Desirably, S should be placed adjacent to its associated character array C 
in tospace, as the depth-first algorithm would do. Using the first-in, first-out queue, after 
S is popped from the stack, it is added to the queue. Suppose that the queue is full, so the 
oldest entry X is removed, copied and its references Y and Z pushed on the stack, as illus
trated in Figure 4.4. Unfortunately, Y and Z will be removed from the queue and copied 
after S but before C. 

The reorganisations above are static: the algorithms pay no attention to the behaviour 
of individual applications. However, it is clear that the benefits of layout reordering 
schemes depend on the behaviour of the mutator. Lam et al [1992] found that both al
gorithms were sensitive to the mix and shape of program data structures, giving disap
pointing performance for structures that were not tree-like. Siegwart and Hirzel [2006] 
also observed that a parallel hierarchical decomposition collector led to benefits for some 
benchmarks but little improvement overall for others. Huang et al [2004] address this by 
dynamically profiling the application and trying to copy 'hot' fields of objects alongside 
their parent. Their online object reordering scheme and its effect are shown in Algorithm 4.5 
and the last row of Figure 4 .2b .  The main scanning loop of their algorithm (line 6) pro
cesses all hot fields in its work lists before any cold fields .  Piggybacking on the method 
sampling mechanism of an adaptive dynamic compiler allows these fields to be identified 
comparatively cheaply (Huang et al report less than 2% of total execution time) . Their 
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implementation also accommodates changes of behaviour in different program phases by 
allowing the 'heat' of fields to decay and be resampled . They find that the performance of 
their system matches or improves that of static reorderings such as breadth-first. 

Chen et al [2006] and Chilimbi and Larus [ 1998] proactively invoke the collector to im
prove locality in a generational collector. Their mechanism is expensive so is not always 
on. Instead, they use changes in allocation rates as their primary trigger to collection in 
order to improve locality; changes in data translation lookaside buffer (TLB) or Level 2 cache 
miss rate are used as a secondary trigger. They record object accesses in a fixed-size, cir
cular buffer (they argue that profiling at the node level rather than the field level leads 
to overheads less than 5%, since most nodes in object-oriented programs are smaller than 
32 bytes). An expensive (but aggressively optimised) read barrier3 operates during bursty 
sampling phases to identify hot objects as the mutators load references to them. Their 
collector copies hot objects in two phases. First, contemporaneously accessed objects are 
copied to a temporary buffer. Then, to improve paging, the collector appends hot objects 
to this buffer, using hierarchical decomposition [Wilson et al, 1991 ] .  The original locations 
of copied objects are marked free, and the rearranged group of objects is moved from the 
temporary buffer to one end of the heap. The scheme aims to improve both cache perfor
mance and paging behaviour: the benefit of combining both optimisations was found to 
be greater than the sum of either applied on its own, and gave an average improvement 
in execution time for a range of large C# applications. Although it is possible that some 
garbage objects may be preserved, in practice the volume is very small . 

Other authors have also suggested custom, static reordering by object type [Wilson et al, 
1991 ;  Lam et al, 1992], particularly for system data structures. By allowing class authors to 
specify the order in which fields are copied, Novark et al [2006] reduce the cache miss rate 
significantly for certain data structures. Shuf et al [2002] use off-line profiling to identify 
prolific types. The allocator is modified so that, when a parent is created, adjacent space 
is left for its children, thus both improving locality and encouraging clustering of objects 
with similar lifetimes. This approach may address to some extent the problem identified 
on page 51 of combining a first-in, first-out prefetch queue with depth-first copying. 

4.3 Issues to consider 

Copying collection offers two immediately attractive advantages over non-moving collec
tors like mark-sweep : fast allocation and the elimination of fragmentation (other than to 
satisfy alignment requirements) .  Simple copying collectors are also easier to implement 
than mark-sweep or mark-compact collectors. The trade-off is that copying collection uses 
twice as much virtual memory as other collectors in order to match their frequency of 
collections. 

Allocation 

Allocation in a compacted heap is fast because it is simple. In the common case, it simply 
requires a test against a heap or block limit and that a free pointer be implemented . If a 
block-structured rather than a contiguous heap is used, occasionally the test will fail and a 
new block must be acquired. The slow path frequency will depend on the ratio of the aver
age size of objects allocated and the block size. Sequential allocation also works well with 
multithreaded applications since each mutator can be given its own local allocation buffer 
in which to allocate without needing to synchronise with other threads. This arrange
ment is simpler and requires little metadata, in contrast with local allocation schemes for 

3We discuss barriers in Chapter 1 1 .  
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non-moving collectors where each thread might need its own size-class data structures for 
segregated-fits allocation. 

The code sequence for such a bump-a-pointer allocation is short but, even better, it is 
well behaved with respect to the cache as allocation advances linearly through the heap. 
Although the combination of sequential allocation, typically short object lifetimes and 
semispaces means that the next location to be allocated is likely to be the one least re
cently used, the prefetching abilities of modern processors are likely to hide the latency 
that might otherwise result. If this behaviour conflicts with the operating system's least 
recently used (LRU) page eviction policy to the extent that paging becomes a problem, it is 
time to reconsider the configuration of the system. Either it requires more physical mem
ory to run the application satisfactorily, or another collection policy - maybe one of the 
generational collectors we discuss in Chapter 9 - should be used. 

Blackburn et al [2004a] found that although sequential allocation had an 1 1% advan
tage over free-list allocation in a micro-benchmark limit study, allocation itself accounted 
for less than 10% of overall running time in real applications. Thus, the difference in cost 
between bump-a-pointer allocation and free-list allocation may not be significant. How
ever, allocation is only part of the picture for the mutator since the cost of creating a new 
object is likely to be dominated by its initialisation, certainly in systems that distinguish 
these actions. Furthermore, objects share similar life-cycles in many applications.  The mu
tator creates some semantically related objects at around the same time, uses them, and 
finally tends to abandon them all at once. Here, compacted heaps offer good spatial local
ity, with related objects typically allocated on the same page and maybe in the same cache 
line if they are small. Such a layout is likely to lead to fewer cache misses than if related 
objects are allocated from different free-lists. 

Space and locality 

The immediate disadvantage of semispace copying is the need to maintain a second semi
space, sometimes called a copy reserve. For a given memory budget and ignoring the data 
structures needed by the collector itself, semispace copying provides only half the heap 
space of that offered by other whole heap collectors. The consequence is that copying col
lectors will perform more garbage collection cycles than other collectors. Whether or not 
this translates into better or worse performance depends on trade-offs between the muta
tor and the collector, the characteristics of the application program and the volume of heap 
space available. 

Simple asymptotic complexity analyses might prefer copying over mark-sweep collec
tion. Let M be the total size of the heap, and L be the volume of live data . Semispace 
collectors must copy, scan and update pointers in live data. Mark-sweep collectors must 
similarly trace all the live objects but then sweep the whole heap . Jones [1996] defines the 
time complexities for copying and mark-sweep collection as, respectively: 

tcopy = cL tMs = m L + sM 

The amount of memory reclaimed by each collector is: 

mcopy = M/2 - L mMs = M - L  

Let r = L/ M be the proportion of live memory, which we assume to be constant. The 
efficiency of an algorithm can be described by its mark/ cons ratio, e, the amount of work 
done by the collector per unit allocated. The efficiency of these two algorithms is therefore: 

2cr 
ecopy = 

1 - 2r 

mr + s  
eMs = ---1 - r  
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The mark/ cons ratio curves presented in Figure 4.5 show that copying collection can 
be made more efficient that mark-sweep collection, provided that the heap is large enough 
and r is small enough. However, such a simple analysis ignores several matters. Modem 
mark-sweep collectors are likely to use lazy sweeping, thus reducing the constant s and 
lowering mark-sweep's mark/cons ratio . Complexity analyses need to be treated with 
some caution since they ignore implementation details, although Hertz and Berger [2005] 
confirm experimentally the general shape of the curves (for example, that the cost of mark
sweep collection is inversely proportional to the size of the heap) .  However, pragmatic 
details are important for real collectors . These are not captured by complexity analyses. 
One example is the locality benefit of sequential allocation [Blackburn et al, 2004a] .  

So, sequential allocation tends to  lay out contemporaneously accessed objects contigu
ously, which helps to improve the mutator 's cache miss rate. But copying collection then 
reorders surviving objects in the heap. Although Cheney-style collectors need no aux
iliary stack to guide the trace, their breadth-first traversal tends to separate parents and 
children. Hierarchical decomposition offers a compromise between paying the costs of a 
tracing stack and improving the layout of objects in the heap. However, although careful 
reordering has benefits for some programs, it often has negligible effects. Why is this? 
Most objects have short lifetimes and do not survive a collection. Moreover, many appli
cations concentrate accesses, and especially writes, on these young objects [Blackburn and 
McKinley, 2003] .  Collector traversal policies cannot affect the locality properties of objects 
that are never moved. 

Printezis has also pointed out that whether parallel collector threads are used or not 
will influence the choice of copying mechanism. It may be simpler to do very fine-grained 
load-balancing by work stealing from per-thread stacks as opposed to using a Cheney 
queue.4 We discuss these issues in depth in Chapter 14. 

Moving obj ects 

The choice of a copying collector will depend in part on whether it is possible to move ob
jects and the cost of doing so. In some environments objects cannot be moved. One reason 
is that lack of type accuracy means that it would not be safe to modify the slot holding 
a reference to a putative object. Another is that a reference to the object has been passed 
to unmanaged code (perhaps, as an argument in a system call) that does not expect the 
reference to change. Furthermore, the problem of pointer finding can often be simpler in 

4Tony Printezis, personal communication. 
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a mark-sweep context than that of a moving collector. It suffices to find at least one refer
ence to a live object with a non-moving collector. On the other hand, a moving collector 
must find and update all references to an evacuated object. As we will see in Chapter 17, 
this also makes the problem of concurrent moving collection much harder than concur
rent non-moving collection since all the references to an object must appear to be updated 
atomically. 

It is expensive to copy some objects. Although copying even a small object is likely 
to be more expensive than marking it, the cost and latency of doing so is often absorbed 
by the costs of chasing pointers and discovering type information. On the other hand, 
repeatedly copying large, pointer-free objects will lead to poor performance. One solution 
is simply not to copy them but instead devolve the management of large objects to a non
moving collector. Another is to copy them virtually but not physically. This can be done 
either by holding such objects on a linked list maintained by the collector, or by allocating 
large objects on their own virtual memory pages which can be remapped. We consider 
such techniques in Chapters 8 to 10 .  



Chapter 5 

Reference counting 

The algorithms considered so far have all been indirect. Each has traced the graph of live 
objects from a set of known roots to identify all live objects . In this chapter, we consider 
the last class of fundamental algorithms, reference counting [Collins, 1960] . Rather than 
tracing reachable objects and then inferring that all unvisited objects must be garbage, 
reference counting operates directly on objects as references are created or destroyed . 

Reference counting maintains a simple invariant: an object is presumed to be live if 
and only if the number of references to that object is greater than zero. 1 Reference counting 
therefore associates a reference coun t  with each object managed; typically this count is stored 
as an additional slot in the object's header. In its most nai"ve implementation, shown in 
Algorithm 5.1,  reference counts are incremented or decremented as references to objects 
are created or destroyed. Procedure W r i t e  increments the reference count of the new 
target and then decrements the count of the old target. Note that it is called even for 
updates of local variables. We also assume it is called to write null into local variables 
before each procedure returns. The operations addRe fe rence and de leteRe f e r e n c e  

increment and decrement respectively the reference counts o f  their object argument. Note 
that it is essential that the reference counts are adjusted in this order (lines 9-10) to prevent 
premature reclamation of the target in the case when the old and the new targets of the 
pointer are the same, that is, s r c [i ] = re f . Once a reference count is zero (line 20), the 
object can be freed and the reference counts of all its children decremented, which may in 
turn lead to their reclamation and so on recursively. 

The W r i t e  method in Algorithm 5 .1  is an example of a write barrier. For these, the 
compiler emits a short code sequence around the actual pointer write. As we shall see 
later in this book, mutators are required to execute barriers in many systems. More pre
cisely, they are required whenever collectors do not consider the liveness of the entire object 
graph, atomically with respect to the mutator. Such collectors may execute concurrently, ei
ther in lock-step with the mutator as for reference counting or asynchronously in another 
thread . Alternatively, the collector may process different regions of the heap at different 
frequencies, as do generational collectors. In all these cases, mutator barriers must be exe
cuted in order to preserve the invariants of the collector algorithm. 

1 Reference listing algorithms, commonly used by distributed systems such as Java's RMI libraries, modify this 
invariant so that an object is deemed to be live if and only if the set of clients believed to be holding a reference 
to the object is non-empty. This offers certain fault tolerance benefits, for example, set insertion or deletion is 
idempotent, unlike counter arithmetic. 
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Algorithm 5.1: Simple reference counting 

1 New ( ) : 

ref  t-- a l locate ( )  
i f  r e f  = null 

e r r o r  " Out o f  memo ry " 

rc ( re f ) t-- 0 
return r e f  

atomic W r i t e ( s rc, i ,  r e f ) : 

addRe f e r e n ce ( re f ) 
1 0  de l e t e Re f e rence ( s r c [ i ] )  
n s r c [i ] t-- r e f  

1 2  

1 3  addRe f e r e n c e ( ref ) : 

1 4  if re f "I null 
1 s  r c ( r e f ) t-- r c ( r e f ) + 1 

1 6  

v de leteRe f e rence ( r e f ) : 

1 s  if r e f  "I null 
1 9  r c ( re f ) t-- r c ( r e f ) - 1 

20 if r c ( ref ) = 0 
21 for each f l d  in P o i nt e r s ( r e f ) 
n de leteRe f e rence ( • f l d ) 
23 f ree ( ref ) 

5.1 Advantages and disadvantages of reference counting 

There are a number of reasons why reference counting might be an attractive option. Mem
ory management costs are distributed throughout the computation. Potentially, reference 
counting can recycle memory as soon as an object becomes garbage (but we shall see below 
why this may not always be desirable) . Consequently, it may continue to operate satisfac
torily in a nearly full heap, unlike tracing collectors which need some headroom. Since 
reference counting operates directly on the sources and targets of pointers, the locality of 
a reference counting algorithm may be no worse than that of its client program. Client 
programs can use destructive updates rather than copying objects if they can prove that 
an object is not shared. Reference counting can be implemented without assistance from 
or knowledge of the run-time system. In particular, it is not necessary to know the roots of 
the program. Reference counting can reclaim some memory even if parts of the system are 
unavailable: this is particularly useful in distributed systems [Rodrigues and Jones, 1998] . 

For these reasons, reference counting has been adopted for many systems including 
programming language implementations (early versions of Smalltalk and Lisp; also awk, 
peri and python); applications such as Photoshop, Real Networks' Rhapsody Music Ser
vice, Oce printers, scanners and document management systems; as well as operating sys
tems' file managers. Libraries to support safe reclamation of objects are widely available 
for languages like C++ that do not yet require automatic memory management. Such 
libraries often use smart pointers to access objects . Smart pointers typically overload con
structors and operators such as assignment, either to enforce unique ownership of objects 
or to provide reference counting. Unique pointers ensure that an object has a single 'owner' .  
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When this owner is destroyed, the object also can be destroyed. For example, the next 
C++ standard is expected to include a uni que_pt r template . Many C++ programmers 
use smart pointers to provide reference counting to manage memory automatically. The 
best known smart pointer library for C++ is the Boost library/ which provides reference 
counting through shared pointer objects. One drawback of smart pointers is that they have 
semantics different from those of the raw pointers that they imitate [Edelson, 1992] . 

Unfortunately, there are also a number of disadvantages to reference counting. First, 
reference counting imposes a time overhead on the mutator. In contrast to the tracing al
gorithms we considered in earlier chapters, Algorithm 5.1 redefined all pointer Read and 
W r i t e  operations in order to manipulate reference counts. Even non-destructive opera
tions such as iteration require the reference counts of each element in the list to be incre
mented and then decremented as a pointer moves across a data structure such as a list. 
From a performance point of view, it is particularly undesirable to add overhead to opera
tions that manipulate registers or thread stack slots. For this reason alone, this naive algo
rithm is impractical for use as a general purpose, high volume, high performance memory 
manager. Fortunately, as we shall see, the cost of reference counted pointer manipulations 
can be reduced substantially. 

Second, both the reference count manipulations and the pointer load or store must be a 
single atomic action in order to prevent races between mutator threads which would risk 
premature reclamation of objects. It is insufficient to protect the integrity of the reference 
count operation alone. For now, we simply assert that actions are atomic, without explain
ing how this might be achieved. We reconsider this in Chapter 18 when examine reference 
counting and concurrency in detail. Some smart pointer libraries that provide reference 
counting require careful use by the programmer if races are to be avoided. For example, 
in the Boost library, concurrent threads can read the same s h a r e d_pt r  instance simul
taneously, or can modify different s h a red_pt r instances simultaneously, but the library 
enforces atomicity only upon reference count manipulations. The combination of pointer 
read or write and reference count increment is not a single atomic action. Thus, the appli
cation programmer must take care to prevent races to update a pointer slot, which might 
lead to undefined behaviour. 

Third, na'ive reference counting turns read-only operations into ones requiring stores 
to memory (to update reference counts) . Similarly, it requires reading and writing the old 
referent of a pointer field when changing that field to refer to a different object. These 
writes 'pollute' the cache and induce extra memory traffic. 

Fourth, reference counting cannot reclaim cyclic data structures (that is, data structures 
that contain references to themselves) .  Even if such a structure is isolated from the rest of 
the object graph - it is unreachable - the reference counts of its components will never 
drop to zero. Unfortunately, self-referential structures are common (doubly-linked lists, 
trees whose nodes hold a back pointer to the root, and so on), although their frequency 
varies widely between applications [Bacon and Rajan, 2001 ] .  

Fifth, i n  the worst case, the number of references t o  an object could be equal t o  the num
ber of objects in the heap. This means that the reference count field must be pointer sized, 
that is, a whole slot. Given that the average size of nodes in object-oriented languages is 
small (for example, Java instance objects are typically 20--64 bytes long [Dieckmann and 
Holzle, 1999, 2001; Blackburn et al, 2006a], and Lisp cons cells usually fit into two or three 
slots), this overhead can be significant. 

Finally, reference counting may still induce pauses. When the last reference to the head 
of a large pointer structure is deleted, reference counting must recursively delete each de
scendant of the root. Boehm [2004] suggests that thread-safe implementations of reference 

2The Boost libraries for C++, www . b o o s t . o rg.  
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counting may even lead to longer maximum pause times than tracing collectors. Weizen
baum [1969] suggested lazy reference counting: rather than immediately freeing garbage 
pointer structures, de leteRe f e r e n c e  adds an object with a zero reference count to a 
to-be-freed list, without destroying its contents. When the object is later acquired by the 
allocator, its children can be processed similarly, without recursive freeing. Unfortunately, 
this technique allows large garbage structures to be hidden by smaller ones, and hence 
increases overall space requirements [Boehm, 2004] . 

Let us now see the extent to which we can resolve two of the major problems facing 
reference counting: the cost of reference count manipulations and collecting cyclic garbage. 
It turns out that common solutions to both of these problems involve a stop-the-world 
pause. We mention these in this chapter but examine how this requirement can be relaxed 
in Chapter 18. 

5.2 Improving efficiency 

There are two ways in which the efficiency of reference counting can be improved. Either 
the number of barrier operations must be reduced or expensive synchronised operations 
must be replaced by cheaper, unsynchronised ones. Blackburn and McKinley [2003] define 
a useful taxonomy of solutions. 

Deferral Deferred reference counting trades fine grained incrementality (the immediate re
covery of all garbage) for efficiency. The identification of some garbage objects is 
deferred to a reclamation phase at the end of some period. These schemes eliminate 
some barrier operations. 

Coalescing Many reference count adjustments are temporary and hence 'unnecessary'; 
programmers often remove them by hand. In some special cases, this can also be 
done by the compiler. However, it is also possible to do this more generally at run 
time by tracking only the state of an object at the beginning and end of some period. 
This coalesced reference counting ignores all but the first modification to a field of an 
object in each period. 

Buffering Buffered reference counting also defers identification of garbage. However, unlike 
deferred or coalesced reference counting, it buffers all reference count increments 
and decrements for later processing. Only the collector thread is allowed to apply 
reference count modifications. Buffering considers when to apply reference count 
modifications not whether to. 

One fundamental obstacle to efficiency is that object reference counts are part of the 
global state of the program, but operations on (thread) local state are usually more effi
cient. The three classes of solution above share a common approach to this problem: they 
divide execution into periods or epochs. Within an epoch, some or all synchronised refer
ence counting operations can be either eliminated or replaced by unsynchronised writes 
(to thread-local buffers) . Identification of garbage is performed only at the end of an 
epoch, either with mutator threads halted, or concurrently by a separate collector thread 
(or threads). In all cases, changes to local reference count state are not revealed (that is, 
applied to the global state using an atomic action) until an epoch boundary. 

In this chapter, we consider two sequential approaches, deferred and coalesced refer
ence counting. Here, collection epochs are separated by stop-the-world pauses to repair 
reference counts. In Chapter 18, we shall see first how buffered reference counting de
volves responsibility for reference count manipulations to a concurrent thread, and then 
how we can coalesce reference counts concurrently. 
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Manipulating reference counts is expensive compared with the cost to the mutator of sim
ple tracing algorithms. Although, as we shall see in later chapters, generational and con
current algorithms also impose a small overhead on the mutator, these are much lower 
than the overhead of safely manipulating reference counts. To overwrite a pointer, Wr i t e  

in Algorithm 5.1 executed a dozen or so instructions (though in some cases the compiler 
could statically elide some tests) .  The reference count adjustments must be atomic opera
tions and be kept consistent with pointer updates. Furthermore, W r i t e  modifies both the 
old and new targets of the field in question, possibly polluting the cache with dirty words 
that will not be reused soon. Optimisation to remove matching increments and decrements 
is error prone if done by hand, but has proved effective as a compiler optimisation [Cann 
and Oldehoeft, 1988] .  

Most high-performance reference counting systems (for example, that of Blackburn and 
McKinley [2003]) use deferred reference counting. The overwhelming majority of pointer 
loads are to local and temporary variables, that is, to registers or stack slots. Long ago, 
Deutsch and Bobrow [1976] showed how to remove reference count manipulations from 
these operations by adjusting counts only when pointers are stored into heap objects. Fig
ure 5 .1  shows an abstract view of deferred reference counting in which operations on heap 
objects are performed immediately but those involving stacks or registers are deferred. 
There is, of course, a cost to pay. If reference count manipulations on local variables are 
ignored, then counts will no longer be accurate. It is therefore no longer safe to reclaim 
an object just because its reference count is zero. In order to reclaim any garbage, deferred 
reference counting must periodically correct counts during stop-the-world pauses. Fortu
nately, these pauses are likely to be short compared with those of tracing collectors, such 
as mark-sweep [Ungar, 1984] . 

Algorithm 5.2 loads object references using the simple, unbarriered implementation of 
Read from Chapter 1. Similarly, references can also be written to roots using an unbarri
ered store (line 14). In contrast, writes to heap objects must be barriered. In this case, the 
reference count of the new target is incremented as usual (line 17) .  However, if decrement
ing the reference count of the old target causes it to drop to zero, the W r i t e  barrier adds 
the object whose reference count is zero to a zero count table (ZCT) rather than immediately 
reclaiming it (line 26) . The zero count table can be implemented in a variety of ways, for 
example with a bitmap [Baden, 1983] or a hash table [Deutsch and Bobrow, 1976] .  An ob
ject with a reference count of zero cannot be reclaimed at this point because there might be 
an uncounted reference to it from the program stack. Conceptually, the zero count table 
contains objects whose reference counts are zero but may be live. Depending on the im-
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Algorithm 5.2: Deferred reference counting 

1 New( ) : 
ref  +- a l locat e ( )  
i f  re f = null 

c o l l e c t ( )  
re f +- al locat e ( )  
i f  ref  = null  

e r ror  " Out  o f memory " 
rc ( r e f )  +- 0 
add ( z c t ,  ref )  

1 0  return ref  
I I  
1 2  Write ( s rc ,  i ,  ref) : 
13 if s r c = Root s 
1 4  s r c [i ]  +--- re f 
1 s  else 
1 6  atomic 
v addRe fe r e n c e ( ref )  
1s remove ( z c t ,  r e f )  
1 9  de leteRe fe re n ceToZCT ( s rc [i ] ) 
20 s rc [i ]  +--- re f 
2 1  

u deleteRe fe renceTo ZC T ( re f ) : 
23 if re f ":1 null 
24 r c ( re f )  +--- rc ( re f )  1 

2s if  r c ( ref )  = 0 
26 add( zct ,  re f )  
27 

28 atomic c o l lect ( ) : 
29 for each fld in Ro o t s  
3o addRe ference ( * f l d) 
3 1  sweep Z C T ( )  
32 for each fld in Ro ot s 
D de l e t eRefere n c e To ZCT( * fld )  
34 
3s sweepZCT ( ) : 
� while not i sEmpt y ( z ct )  
37 re f +- remove ( z c t )  
38 if  r c ( ref )  = 0 
39 

40 

41 

for each f l d  in Point e r s ( ref )  
delet eRe fe rence ( * f l d) 

f ree (ref )  

I* defer freeing 4 

I* mark the stacks 4 

I* unmark the stacks 4 

I* now reclaim garbage 4 
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plementation of the zero count table and whether it is desirable to limit the size of the zero 
count table, we can also choose to remove the new target from the zero count table when 
writing a reference into a heap object, as its true reference count must be positive (line 19) .  

However, at  some point garbage objects must be collected if  the program is not to run 
out of memory. Periodically, for example when the allocator fails to return memory to 
New, all threads are stopped while each object in the zero count table is scrutinised to de
termine whether its true reference count should be zero . An object in the zero count table 
with reference count zero can only be live if there are one or more references to it from the 
roots. The simplest way to discover this is to scan the roots and 'mark' any objects found 
by incrementing their reference counts (line 29) . After this, no object referenced from the 
stack can have a reference count of zero, so any object with a zero count must be garbage. 
We could now sweep the entire heap, as with mark-sweep collection (for example, Al
gorithm 2.3), looking for and reclaiming 'unmarked'  objects with zero reference counts. 
However, it is sufficient to confine this search to the zero count table. The entries in the 
zero count table are scanned and any objects with zero counts are immediately processed 
and freed, in the same way as in the simple Algorithm 5 . 1 .  Finally, the 'mark' operations 
must be reversed: the stack is scanned again and the reference counts of any objects found 
are decremented (reverted to their previous value) . If an object's reference count becomes 
zero, it is reinstated in the zero count table. 

Deferred reference counting removes the cost of manipulating reference counts on local 
variables from the mutator. Several, older, studies have suggested that it can reduce the 
cost of pointer manipulations by 80% or more [Ungar, 1984; Baden, 1983) . Given the in
creased importance of locality, we can speculate that its performance advantage over na'ive 
reference counting will be even larger on modem hardware. However, reference count ad
justments due to object field updates must still be performed eagerly rather than deferred, 
and must be atomic. Next, we explore how to replace expensive atomic reference count 
manipulations caused by updates to objects' fields with simple instructions, and how to 
reduce the number of modifications necessary. 

5.4 Coalesced reference counting 

Deferred reference counting addresses the problem of the cost of applying reference count 
operations to local variables. This leaves the question of how to reduce the reference count
ing overhead of writing to objects' pointer fields. Levanoni and Petrank [1999] observed 
that, in any period and for any object field, only the values of the field at the start and the 
end of the period need be considered; intermediate operations can be ignored. Thus sev
eral states of the object can be coalesced to just these two. For example, suppose an object X 
has a field f which originally refers to object Oo, and that this field is repeatedly modified 
to refer to objects 01 , Oz, . . .  , On .  This would incur the reference counting operations 

rc (Oo ) - -, 1 rc (01 ) + + , r c (Ol ) -- � �  r c (Oz ) + +,. . .  � r c (On ) + + . 

The pairs of intermediate operations (shown boxed) cancel each other and can be omit
ted. Levanoni and Petrank eliminate them by copying objects to a local log before their first 
modification in an epoch. When a pointer slot of a clean object is updated, Algorithm 5.3 
logs the object by saving its address and the values of its pointer fields to a local update 
buffer (line 5) .  The modified object is marked as dirty. 

The log  procedure attempts to avoid duplicating entries in the thread's local log by 
first appending the original values of the object's pointer fields to the log (line 1 1 ) .  Next 
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Algorithm 5.3: Coalesced reference counting: write barrier 

1 me f- myThreadid  

3 Writ e ( s rc ,  i ,  ref ) : 
if  not d i rty ( s r c )  

l o g ( s rc )  
s r c [ i ]  f- ref  

s log (ob j ) : 
for each fld in P o i nt e r s ( ob j )  

1 0  if * fld  =F null  
1 1  append(updat e s [me ] ,  * f ld )  
1 2  if not d i rty ( ob j )  
1 3  s l ot f- appendAndCommit ( up dat e s [me] , ob j )  
1 4  s e t D i rty ( ob j ,  s l ot ) 
1 5  

1 6  dirty ( ob j ) : 
1 1  return l ogPo int e r (ob j )  =F C LEAN 
1 8  

1 9  setD i rt y ( ob j ,  s l o t )  
20 logP o i nt e r ( ob j )  f- s l ot /* address of entry for ob j in updat e s  [ me ]  */ 

it checks that s rc is still not dirty, and only then is the entry committed by writing src  to 
the log (appendAndCommi t ) ,  tagged so that it can be recognised as an object entry rather 
than a field entry, and the log's internal cursor is advanced (line 13). The object is marked 
dirty by writing a pointer to this log entry in its header. Note that even if a race leads 
to records being created in more than one thread's local buffer, the algorithm guarantees 
that all these records will contain identical information so it does not matter to which log's 
entry the header points. Note that, depending on the processor 's memory consistency 
model, this write barrier may not require any synchronisation operations. 

Later, we will discuss how coalesced reference counts can be processed concurrently 
with mutator threads, but here we simply stop the world periodically to process the logs. 
At the start of each collection cycle, Algorithm 5.4 halts every thread, transfers their up
date buffers to the collector 's log, and allocates fresh ones. As we noted above, race con
ditions mean that an entry for an object may appear in more than one thread's update 
buffer. This is harmless provided the collector processes each dirty object only once. The 
proce s sRe fe r enceCount s procedure tests whether an object is still dirty before updat
ing the reference counts. The counts of the children of an object before its first modification 
in this epoch are decremented, and then those of its children at the time of the collection 
are incremented.  In a simple system, any object whose reference count drops to zero could 
be freed recursively. However, if reference counting on local variables is deferred, or if for 
efficiency the algorithm does not guarantee to process all increments before decrements, 
we simply remember any object whose count has dropped to zero. The algorithm cleans 
the object so that it will not be processed again in this cycle. Pointers to an object's previous 
children can be found directly from the log entry. Its current children can be found from 
the object itself (recall that the log contains a reference to that object) . Notice that there 
is opportunity for prefetching objects or reference count fields in both the increment and 
decrement loops [Paz and Petrank, 2007] . 
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Algorithm 5.4: Coalesced reference counting: update reference counts 

1 atomic c o l l e ct ( ) : 
c o l le ctBu ffe r s ( )  
proces sRe fe renceCount s ( )  
sweepZCT ( )  

6 c o l l e ctBuffe r s ( ) : 
c o l le ct o rLog f- � 
for each t in Threads  

c o l l e c t o rLog f- c o l l e ct o rLog + updates [t ]  
1 0  

u p r o c e s sRe fere nceCount s ( ) : 
1 2  for each ent ry in c o l l e ct o rLog 
1 3  ob j f- ob j F romLog ( e n t ry )  
14 if d i r t y ( ob j )  
1 s  logP o i n t e r ( ob j )  f- CLEAN 
� inc rementNew (ob j )  
1 1  de c rementOld (ent ry )  
1 8  

19 de c rementOld (ent ry) : 

I* Do not process duplicates */ 

20 for each fld  in P o i nt e r s (entry )  f* use the values in the collector's log 4 
21 ch i l d  f- * f ld  
22 if c h i l d  -:/:- null 
23 r c (  chi l d) f- r c (  ch i ld )  - 1 

24 if r c (  ch i l d) = 0 
zs add( z ct ,  chi l d) 
26 

21 i n c rementNew ( ob j ) : 
2s for each fld  in P o i nt e r s ( ob j )  
29 ch i l d  f- * f ld  
JO if ch i l d -:/:- null 
31 r c ( c h i l d) f- r c ( c h i l d) + 1 

/* use the values in the object */ 
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Figure 5.2: Coalesced reference counting: if A was modified in the previous 
epoch, for example by overwriting the reference to C with a reference to D, 
A's reference fields will have been copied to the log. The old referent C can be 
found in the collector's log and the most recent new referent D can be found 
directly from A. 

Let us look at the example in Figure 5.2. Suppose that A was modified in the previous 
epoch to swing its pointer from C to D. The old values of the object's fields (B and C) will 
have been recorded in a log which has been passed to the collector (shown on the left of 
the figure) . The collector will therefore decrement the reference counts of B and C and 
increment those of B and D. This retains the original value of B's reference count since the 
pointer from A to B was never modified. 

Thus, through a combination of deferred reference counting and coalescing, much of 
reference counting's overhead on the mutator has been removed. In particular, we have 
removed any necessity for mutator threads to employ expensive synchronisation opera
tions. However, this benefit has come at some cost. We have reintroduced pauses for 
garbage collection although we expect these to be shorter than those required for tracing 
collection. We have reduced the promptness of collection (since no object is reclaimed until 
the end of an epoch) and added space overheads for the buffers and zero count table. Coa
lesced reference counting may also require the collector to decrement and then increment 
the same children of unmodified slots. 

5.5 Cyclic reference counting 

Because the reference counts of objects making up a cyclic data structure must necessarily 
be at least one, reference counting on its own cannot reclaim such structures. However, 
cycles are common, created both by application programmers and by the run-time system. 
Applications often use doubly-linked lists and circular buffers. Object-relation mapping 
systems may require that databases know their tables and vice versa. Some real-world 
structures are naturally cyclic, such as roads in geographical information systems. Lazy 
functional language implementations commonly use cycles to express recursion [Turner, 
1979, the Y combinator]. A number of techniques have been proposed to solve the cycle 
problem; we review some of these now. 

The simplest approach is to combine reference counting with occasional, backup trac
ing collection. The hope is that most objects will not be reachable from cycles and hence 
will be reclaimed promptly by reference counting; the remaining cyclic structures will be 
handled by the tracing collector. This simply reduces the frequency of full, tracing col
lections. At the language level, Friedman and Wise [1979] observed that cycles can only 
be created in pure functional languages by recursive definitions, and hence can be treated 
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specially provided certain restrictions are observed. Bobrow [1980] required the program
mer to identify reference counted groups of cells, which are then collected en masse. 

Several authors have suggested distinguishing writes of pointers that close cycles from 
those of other pointers [Friedman and Wise, 1979; Brownbridge, 1985; Salkild, 1987; Pe
pels et al, 1988; Axford, 1990] .  Normal references are denoted strong and cycle-closing 
ones weak. If strong pointers are never allowed to form a cycle, then the strong-pointer 
graph will be amenable to standard reference counting. Brownbridge's algorithm has been 
widely cited . In brief, each object is given a strong and a weak reference count. The write 
barrier checks the strength of pointers and targets, and weakens any pointer that would 
close a cycle. Reference deletion may require the strength of pointers to be modified in 
order to preserve the invariants that all reachable objects are strongly reachable without 
creating any cycles of strong references.  Unfortunately, this algorithm is unsafe and may 
reclaim objects prematurely: see Salkild's counter-example [Jones, 1996, Chapter 6.5 ] .  Salk
ild [1987] amended the algorithm to make it safe but at the cost of non-termination in some 
cases. Pepels et al [1988] provided a very complex solution but it is expensive both in terms 
of space, with double the space overheads of normal reference counting, and in terms of 
performance, having twice the cost of standard reference counting in most cases and being 
exponential in the worst case. 

The most widely adopted mechanisms for handling cycles through reference counting 
use a technique called trial deletion .  The key observation is that it is not necessary for a 
backup tracing collector to visit the whole live object graph. Instead, its attention can be 
confined to those parts of the graph where a pointer deletion might have created a garbage 
cycle. Note that: 

• In any garbage pointer structure, all reference counts must be due to internal pointers 
(that is, pointers between objects within the structure) .  

• Garbage cycles can arise only from a pointer deletion that leaves a reference count 
greater than zero. 

Partial tracing algorithms take advantage of these observations by tracing the subgraph 
rooted at an object suspected of being garbage. These algorithms trial-delete each reference 
encountered by temporarily decrementing reference counts, in effect removing the contri
bution of these internal pointers. If the reference count of any object remains non-zero, 
it must be because there is a pointer to the object from outside the subgraph, and hence 
neither the object nor its transitive closure is garbage. 

The Recycler [Bacon et al, 2001; Bacon and Rajan, 2001; Paz et al, 2007] supports con
current cyclic reference counting. In Algorithm 5.5, we show the simpler, synchronous, 
version, deferring the asynchronous collector to Chapter 15. The cycle collection algorithm 
operates in three phases .  

1 .  First, the collector traces partial graphs, starting from objects identified as possible 
members of garbage cycles, decrementing reference counts due to internal pointers 
(ma rkCandidat e s ) .  Objects visited are coloured grey. 

2. Second, the reference count of each node in these subgraphs is checked: if it is non
zero, the object must be live due to a reference external to the sub graph being traced, 
and so the effect of the first phase must be undone ( s can), recolouring live grey 
objects black. Other grey objects are coloured white. 

3. Finally, any members of the subgraph that are still white must be garbage and are 
reclaimed (co l l e c tCandidate s ) .  
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Algorithm 5.5: The Recycler 

1 New ( ) : 

10 

ref  t--- a l l o c a t e ( )  
i f  r e f  = null 

c o l lect ( )  
ref  t--- a l l o ca t e ( )  
if r e f  = null  

error  " Ou t  o f  memo r y "  
r c ( ref ) t--- 0 
return ref  

n addRe fe rence ( re f ) : 
1 2  if ref f= null 
I 3  rc ( ref ) t--- r c ( ref ) + 1 
14 c o l ou r ( re f ) t--- black  
1 5  

1 6  de let eRe fe rence ( re f ) : 
1 1  if ref  f= null 
1s r c (ref ) t--- r c ( re f ) - 1 
19 if rc (re f ) = 0 
w re l e a s e ( r e f ) 
21 else 
n candi dat e ( ref ) 
23 

24 re l e a s e ( ref ) : 
� for each fld  in P o i nt e r s ( r e f ) 
� de let eRe fe rence ( fld ) 
21 c o l o u r (ref ) t--- b l ack  
� if not re f in candidat e s  
29 free (re f ) 
30 

31 candidate ( ref ) : 
32 if co lour ( r e f ) f= purple  
33 co lour ( r e f ) t--- purple 

I* the cycle collector 4 

I* cannot be in a garbage cycle 4 

I* might isolate a garbage cycle 4 

I* objects on the free-list are black 4 
I* deal with candidates later 4 

I* colour as a candidate and add to the set 4 

34 candidat e s  t--- candida t e s  U { re f } 
35 

36 atomic collect ( ) : 
� ma rkCandida t e s ( )  
� for each r e f  in candidat e s  
39 scan (ref ) 
4o c o l l e ctCandida t e s ( )  
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Algorithm 5.5 (continued): The Recycler 

41 markCandidat e s ( )  
� for re f in candidat e s  
� if c o l ou r ( re f )  = purp l e  
� ma rkGre y ( r e f )  
45 else 
46 

47 

48 

49 

remove (candidates ,  r e f )  
if  c o l o u r ( r e f )  = b l a c k  && r c ( re f ) 

free (  re f )  

5o markGre y ( re f ) : 
51 if  c o l o u r ( ref )  "I grey 
52 c o l o u r ( ref )  f- grey 
53 for each fld  in P o i nt e r s ( ref)  
� ch i l d  f- * f l d  
s5 if ch i l d  "I null 
56 r c (  ch i l d)  f- r c (  c h i l d) - 1 
57 markGrey (  child )  
58 

59 s ca n (  r e f ) : 
60 if  c o l o u r ( re f )  = grey 
&I if r c ( ref )  > 0 

0 

69 

f* trial deletion *f 

� s canBl ack ( ref )  f* there must be a n  external reference *I 
63 else 
64 c o l ou r ( re f )  f- wh i t e  
&5 for each f l d  in P o i nt e rs ( r e f )  
66 ch i l d  f- * f ld  
&7 if ch i l d  "I null 
68 s c a n (  ch i l d) 

/* looks like garbage. . . *f 
/* . . .  so continue *f 

10 s canB l a c k ( re f ) : f* repair the reference counts of live data *f 
71 c o l o u r ( re f )  f- black  
n for each fld  in P o inte r s ( r e f ) 
� ch i l d  f- * f l d  
74 if ch i l d  "I null 
75 r c (  ch i l d) f- r c (  ch i l d) + 1 /* undo the trial deletion *f 
n if  c o l o u r ( ch i l d) "I b l ack  
n scanBlack ( ch i ld )  
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Algorithm 5.5 (continued): The Recycler 

78 co l l e c t C andidat e s ( ) : 
79 while not i sEmp t y ( candidat e s ) 
ao r e f  +-- remove ( c andidate s ) 
� c o l lectWh i t e ( re f ) 
82 

83 co l l ect  White ( ref ) : 
84 if c o l ou r (ref ) = white && not ref 
8s c o l ou r (ref ) +-- b l ack 
86 for each f l d  in Point e r s ( re f ) 
87 chi ld  +-- * f l d  
88 if chi l d  i= null 
� co l l e c t White (chi l d) 
90 free ( ref ) 

in c a n didates 
/*free-list objects are black 4 

In its synchronous mode, the Recycler uses five colours to identify nodes . As usual, 
black means live (or free) and white is garbage. Grey is now a possible member of a 
garbage cycle, and we add the colour purple to indicate objects that are candidates for 
roots of garbage cycles. 

Deleting any reference other than the last to an object may isolate a garbage cycle. In 
this case, Algorithm 5.5 colours the object purple and adds it to a set of candidate members 
of garbage cycles (line 22) . Otherwise, the object is garbage and its reference count must be 
zero. Procedure re lease  resets its colour to black, processes its children recursively and, 
if it is not a candidate, frees the object. The reclamation of any objects in the c andidate s 
set is postponed to the ma r k C andidat e s  phase. For example, in Figure 5 .3a, some refer
ence to object A has been deleted. A's reference count was non-zero, so it has been added 
to the candi dat e s  set. 

In the first phase of collecting cycles, the ma rkCandida t e s  procedure establishes the 
extent of possible garbage structures, and removes the effect of internal references from 
the counts . It considers every object in the set of garbage c andidat e s .  If the object is 
still purple (hence, no references to the object have been added since it was added to the 
set), its transitive closure is marked grey. Otherwise it is removed from the set and, if it is 
a black object with reference count zero, it is freed. As markGrey traces a reference, the 
reference count of its target is decremented . Thus, in Figure 5 .3b, the subgraph rooted at A 
has been marked grey and the contribution of references internal to the sub graph has been 
removed from the reference counts. 

In the second phase of collection, each candidate and its grey transitive closure is 
scanned for external references. If a reference count is non-zero, it can only be because 
there is a reference to this object from outside the grey sub-graph. In this case, the effect 
of markGrey  is undone by s c anBl ack:  reference counts are incremented and objects are 
reverted to black. On the other hand, if the reference count is zero, the object is coloured 
white and the scan continues to its children. Note that at this point we cannot say that 
a white object is definitely garbage as it might be revisited later by s c a n B l ack  starting 
from another node in the sub graph. For example, in Figure 5 .3b, objects Y and Z have zero 
reference counts but are externally reachable via X. When s c an reaches X, which has a 
non-zero reference count, it will invoke s c anBl ack on the grey transitive closure of X, 
restoring reference counts, leaving the graph in the state shown in Figure 5 .3c. 
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ca n d id ates 
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(a) Before ma rkGrey.  

-t--;�1 0 

(b) After ma r k G r e y, all objects reachable from a can
didate object have been marked grey and the effect of 
references internal to this grey subgraph have been 
removed. Note that X, which is still reachable, has a 
non-zero reference count. 

(c) After s ca n ,  all reachable objects are black and 
their reference counts have been corrected to reflect 
live references. 

Figure 5.3: Cyclic reference counting. The first field of each object is its refer
ence count. 
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Figure 5.4: The synchronous Recycler state transition diagram, showing mu
tator and collector operations and the colours of objects . 

With kind permission from Springer Science+ Business Media: Bacon and Rajan [2001] ,  
figure 3, page 214. 

Finally, the third, c o l l e ctWhite  phase reclaims white (garbage) objects . The set of 
candi dat e s  is emptied, and the colour of each object inspected . Each white object found 
is freed (its colour reset to black) and its children inspected recursively. Note that the algo
rithm does not process child objects found to be in the candidates set, but defers reclaiming 
these to a subsequent iteration of the inner loop of c o l l e c t Candi dat e s  in this cycle. 

The asynchronous Recycler algorithm improves over earlier trial deletion algorithms, 
such as that of Martinez et al [1990], which performed the trial deletion eagerly as soon as 
a candidate was discovered . Lins [1992] also processed candidates lazily like the Recycler 
in the hope that candidates will be eliminated by later mutator actions, which might either 
remove the last reference so that the object can be freed immediately or add a fresh refer
ence to it. Unfortunately, Lins performed all three phases of the collection cycle separately 
on each object, which led to complexity quadratic in the size of the graph in the worst case . 
In contrast, the complexity of the Recycler is O(N + E ) ,  where N is the number of nodes 
and E the number of edges. This seemingly small change made a substantial difference 
to performance, reducing the garbage collection time for moderately sized Java programs 
from minutes (Lins) to a maximum of a few milliseconds (Recycler) . 

Further improvements can be gained by recognising statically that certain classes of 
object, including but not limited to those that contain no pointers, can never be members 
of cycles. The Recycler allocates objects of these types as green rather than black, and never 
adds them to the candidate set nor traces through them. Bacon and Rajan [2001]  found that 
this reduced the size of the candidate set by an order of magnitude. Figure 5.4 illustrates 
the full state transition system of the synchronous Recycler, including green nodes. 

5.6 Limited-field reference counting 

The remaining concern is the space overhead incurred by storing reference counts in object 
headers. In theory, the reference count field of an object should be large enough to hold 
a pointer-sized value since an object may be referenced by every other object in the heap. 
An additional field of this size represents a significant overhead to small objects. However, 
only contrived applications will cause counts to grow so large; in practice most objects 
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have small reference counts. Indeed, most objects are not shared at all and so the space 
they use could be reused immediately the pointer to them is deleted [Clark and Green, 
1977; Stoye et al, 1984; Hartel, 1988] . In functional languages, this allows objects such as 
arrays to be updated in place rather than having to modify a copy of the object. Given 
a priori knowledge of the upper bound on reference counts, it would be possible to use a 
smaller field for the reference count. Unfortunately, it is common for some objects to be 
very popular [Printezis and Garthwaite, 2002] . 

However, it is still possible to limit the size of the reference count field provided that 
some backup mechanism is occasionally invoked to deal with reference count overflow. 
Once a reference count has been incremented to the maximum permissible value, it be
comes a sticky reference count, not changed by any subsequent pointer updates. The most 
extreme option is to use a single bit for the reference count, thus concentrating reference 
counting on the common case of objects that are not shared. The bit can either be stored in 
the object itself [Wise and Friedman, 1977] or in the pointer [Stoye et al, 1984] . The corol
lary of limited-field reference counts is that once objects become stuck they can no longer 
be reclaimed by reference counting. A backup tracing collector is needed to handle such 
objects . As the tracing collector traverses each pointer, it can restore the correct reference 
counts (wherever this is no greater than the sticky value); Wise [1993a] shows that, with 
some effort, a mark-compact or copying collector can also restore uniqueness information . 
Such a backup tracing collector would be needed to reclaim garbage cycles in any case. 

5.7 Issues to consider 

Reference counting is attractive for the promptness with which it reclaims garbage objects 
and its good locality properties. Simple reference counting can reclaim the space occupied 
by an object as soon as the last pointer to that object is removed. Its operation involves only 
the targets of old and new pointers read or written, unlike tracing collection which visits 
every live object in the heap . However, these strengths are also the weaknesses of simple 
reference counting. Because it cannot reclaim an object until the last pointer to that object 
has been removed, it cannot reclaim cycles of garbage. Reference counting taxes every 
pointer read and write operation and thus imposes a much larger tax on throughput than 
tracing does. Furthermore, multithreaded applications require the manipulation of refer
ence counts and updating of pointers to be expensively synchronised. This tight coupling 
of mutator actions and memory manager risks some fragility, especially if 'unnecessary' 
reference count updates are optimised away by hand. Finally, reference counts increase 
the sizes of objects. 

The environment 

Despite these concerns, it would be wrong to dismiss reference counting without further 
thought. Certainly, its drawbacks make simple reference counting uncompetitive as a gen
eral purpose memory management component of a virtual machine, especially if the ma
jority of objects managed are small, cycles are common and the rate of pointer mutation is 
high. However, there are environments which are favourable to reference counting. Ref
erence counting can play well in a mixed ecology where the lifetimes of most objects are 
sufficiently simple to be managed explicitly. It can be restricted to managing a smaller 
number of resources with more complex owner relationships. Often such resources will 
be large, in which case the overhead for an additional reference count field in the header 
will be negligible . Data such as bitmaps for images and so on will not contain any point
ers, so the problem of reclaiming cyclic structures does not arise. Furthermore, reference 
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counting can be implemented as part of a library rather than being baked into the lan
guage's run-time system. It can therefore give the programmer complete control over its 
use, allowing her to make the decision between performance overhead and guarantees of 
safety. Nevertheless, it is essential that reference counting be used carefully. In particu
lar, the programmer must ensure that races between pointer modifications and reference 
count updates are avoided.  If reference counting is implemented through smart pointers, 
he must also be aware that the semantics of pointers and smart pointers differ. As Edelson 
[1992] wrote, 'They are smart, but they are not pointers' .  

Advanced solutions 

Sophisticated reference counting algorithms can offer solutions to many of the problems 
faced by na'ive reference counting but, paradoxically, these algorithms often introduce be
haviours similar to those of stop-the-world tracing collectors. We examine this duality 
further in the next chapter. 

Garbage cycles can be reclaimed by a backup, tracing collector or by using the trial dele
tion algorithms we discussed in Section 5.5. In both cases, this requires mutator threads to 
be suspended while we reclaim cyclic data (although we show how these stop-the-world 
pauses can be removed in later chapters) .  

Although the worst case requires reference count fields to  be  almost as  large as  pointer 
fields, most applications hold only a few references to most objects. Often, it is possible 
for the reference count to hij ack a few bits from an existing header word (for example, 
one used for object hashing or for locks) . However, it is common for a very few objects to 
be heavily referenced. If limited-field reference counting is used, these objects will either 
leak - which may not be a serious problem if they are few in number or have very long 
lifetimes - or must be reclaimed by a backup tracing collector. Note, however, that in 
comparing the space overhead of reference counting and, say, mark-sweep collection it 
is not sufficient simply to measure the cost of the reference count fields. In order not to 
thrash, tracing collectors require some headroom in the heap . If the application is given 
a heap of, say, 20% larger than its maximum volume of live data, then at least 10% of the 
heap will be 'wasted' on average. This fraction may be similar to the overhead of reference 
counting (depending on the average size of objects it manages) . 

The throughput overhead of reference counting can be addressed by omitting to count 
some pointer manipulations and by reducing the cost of others . Deferred reference count
ing ignores mutator operations on local variables. This allows the counts of objects reach
able from roots to be lower than their true value, and hence prevents their prompt reclama
tion (since a reference count of zero no longer necessarily means that the object is garbage) . 
Coalesced reference counting accounts for the state of an object only at the beginning and 
end of an epoch: it ignores pointer manipulations in between. In one sense, this automates 
the behaviour of programmers who often optimise away temporary adjustments to ref
erence counts (for example, to an iterator as it traverses a list) . However, once again, one 
consequence of deferred and coalesced reference counting is to reintroduce stop-the-world 
pauses during which reference counts are corrected. 

As well as removing some reference counting operations, both deferred and coalesced 
reference counting reduce the synchronisation cost of other operations. Deferred reference 
counting does so simply by omitting to manipulate reference counts on local variables. 
Coalesced reference counting does not need synchronisation because races are benign: at 
worst, the same values might be written to the logs of two different threads. However, 
both solutions add space overhead to the cost of reference counting, either to store the 
zero count table or to store update logs. 
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A further attraction of these advanced reference counting techniques is that they scale 
well with large heaps. Their cost is proportional only to the number of pointer writes 
made, and not to the volume of live data . As we shall see in Chapter 10, hybrid collec
tors are possible, combining tracing collection for short-lived, heavily mutated data with 
reference counting for longer-lived, more stable data . 

In the next chapter, we compare all four forms of collection we have examined so far: 
mark-sweep, mark-compact, copying and reference counting. We then consider a remark
able abstraction of tracing and advanced reference counting collection that reveals that 
they are surprisingly similar in many ways. 





Chapter 6 

Comparing garbage collectors 

In the preceding chapters, we presented four different styles of garbage collection. In this 
chapter, we compare them in more detail. We examine the collectors in two different ways. 
First, we consider criteria by which we may assess the algorithms and the strengths and 
weaknesses of the different approaches in different circumstances . We then present ab
stractions of tracing and reference counting algorithms due to Bacon et al [2004] . These 
abstractions reveal that while the algorithms exhibit superficial differences they also bear 
a deep and remarkable similarity. 

It is common to ask: which is the best garbage collector to use? However, the tempta
tion to provide a simple answer needs to be resisted. First, what does 'best' mean? Do we 
want the collector that provides the application with the best throughput, or do we want 
the shortest pause times? Is space utilisation important? Or is a compromise that com
bines these desirable properties required? Second, it is clear that, even if a single metric 
is chosen, the ranking of different collectors will vary between different applications. For 
example, in a study of twenty Java benchmarks and six different collectors, Fitzgerald and 
Tarditi [2000] found that for each collector there was at least one benchmark that would 
have been at least 15% faster with a more appropriate collector. And furthermore, not 
only do programs tend to run faster given larger heaps, but also the relative performance 
of collectors varies according the amount of heap space available. To complicate matters 
yet further, excessively large heaps may disperse temporally related objects, leading to 
worsened locality that may slow down applications. 

6.1 Throughput 

The first item on many users' wish lists is likely to be overall application throughput. This 
might be the primary goal for a 'batch' application or for a web server where pauses might 
be tolerable or obscured by aspects of the system such as network delays. Although it is 
important that garbage collector actions be performed as quickly as possible, employing 
a faster collector does not necessarily mean that a computation will necessarily execute 
faster. In a well configured system, garbage collection should account for only a small 
fraction of overall execution time. If the price to be paid for faster collection is a larger 
tax on mutator operations, then it is quite possible for the application's execution time to 
become longer rather than shorter. The cost to the mutator may be explicit or implicit. Ex
plicit actions include read and write barrier actions, such as those that reference counting 
requires. However, the performance of the mutator may also be affected implicitly, for ex
ample because a copying collector has rearranged objects in such a way as to affect cache 
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behaviour adversely, or because a reference count decrement has touched a cold object. It 
is also important to avoid wherever possible any need to synchronise operations. Unfortu
nately, reference count modifications must be synchronised in order not to miss updates. 
Deferred and coalesced reference counting can eliminate much of these synchronisation 
costs. 

One can consider the algorithmic complexity of different algorithms. For mark-sweep 
collection, we would need to include the cost of the tracing (mark) and the sweep phases, 
whereas the cost of copying collection depends only on tracing . Tracing requires visiting 
every live object whereas sweeping requires visiting every object (live and dead) . It is 
tempting to assume that the cost of mark-sweep collection must therefore necessarily be 
greater than copying collection. However, the number of instructions executed to visit an 
object for mark-sweep tracing are fewer than those for copying tracing. Locality plays a 
significant part here as well . We saw in Section 2 .6 how prefetching techniques could be 
used to hide cache misses. However, it is an open question as to whether such techniques 
can be applied to copying collection without losing the benefits to the mutator of depth
first copying. In either of these tracing collectors, the cost of chasing pointers is likely to 
dominate. Furthermore, if marking is combined with lazy sweeping, we obtain greatest 
benefit in the same circumstances that copying performs best: when the proportion of live 
data in the heap is small. 

6.2 Pause time 

The next item for many users is the extent to which garbage collection interrupts program 
execution. Low pause times are important not only for interactive applications but also 
for others such as transaction processors for which delays may cause backlogs of work to 
build up. The tracing collectors considered so far have all been stop-the-world : all mutator 
threads must be brought to a halt before the collector runs to completion. Garbage collec
tion pause times in early systems were legendary but, even on modem hardware, stop
the-world collectors may pause very large applications for over a second. The immediate 
attraction of reference counting is that it should avoid such pauses, instead distributing 
the costs of memory management throughout the program. However, as we have seen, 
this benefit is not realised in high performance reference counting systems. First, the re
moval of the last reference to a large pointer structure leads to recursive reference count 
modifications and freeing of components . Fortunately, reference count modifications on 
garbage objects are not contended, though they may cause contention on the cache lines 
containing the objects. More importantly, we saw that deferred and coalesced reference 
counting, the most effective ways to improve reference counting performance, both rein
troduce a stop-the-world pause to reconcile reference counts and reclaim garbage objects 
in the zero count table. As we shall see in Section 6 .6, high performance reference counting 
and tracing schemes are not so different as they might first appear. 

6.3 Space 

Memory footprint is important if there are tight physical constraints on memory, if appli
cations are very large, or in order to allow applications to scale well . All garbage collection 
algorithms incur space overheads. Several factors contribute to this overhead .  Algorithms 
may pay a per-object penalty, for example for reference count fields. Semispace copying 
collectors need additional heap space for a copy reserve; to be safe, this needs to be as large 
as the volume of data currently allocated, unless a fall-back mechanism is used (for exam
ple, mark-compact collection) . Non-moving collectors face the problem of fragmentation, 
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reducing the amount of heap usable to the application . It is important not to ignore the 
costs of non-heap, metadata space. Tracing collectors may require marking stacks, mark 
bitmaps or other auxiliary data structures. Any non-compacting memory manager, in
cluding explicit managers, will use space for their own data structures, such as segregated 
free-lists and so on. Finally, if a tracing or a deferred reference counting collector is not 
to thrash by collecting too frequently, it requires sufficient room for garbage in the heap . 
Systems are typically configured to use a heap anything from 30% to 200% or 300% larger 
than the minimum required by the program. Many systems also allow the heap to expand 
when necessary, for example in order to avoid thrashing the collector. Hertz and Berger 
[2005] suggest that a garbage collected heap three to six times larger than that required by 
explicitly managed heaps is needed to achieve comparable application performance. 

In contrast, simple reference counting frees objects as soon as they become unlinked 
from the graph of live objects. Apart from the obvious advantage of preventing the ac
cumulation of garbage in the heap, this may offer other potential benefits . Space is likely 
to be reused shortly after it is freed, which may improve cache performance. It may also 
be possible in some circumstances for the compiler to detect when an object becomes free, 
and to reuse it immediately, without recycling it through the memory manager. 

It is desirable for collectors to be not only complete (to reclaim all dead objects eventu
ally) but also to be prompt, that is, to reclaim all dead objects at each collection cycle. The 
basic tracing collectors presented in earlier chapters achieve this, but at the cost of tracing 
all live objects at every collection. However, modern high-performance collectors typically 
trade immediacy for performance, allowing some garbage to float in the heap from one 
collection to a subsequent one. Reference counting faces the additional problem of being 
incomplete; specifically, it is unable to reclaim cyclic garbage structures without recourse 
to tracing. 

6.4 Implementation 

Garbage collection algorithms are difficult to implement correctly, and concurrent algo
rithms notoriously so. The interface between the collector and the compiler is critical. 
Errors made by the collector often manifest themselves long afterwards (maybe many col
lections afterwards), and then typically as a mutator attempts to follow a reference that 
is no longer valid . It is important, therefore, that garbage collectors be constructed to be 
robust as well as fast. Blackburn et al [2004a] have shown that this performance-critical 
system component can be designed with respect for good software engineering practices 
of modularity and composability, leading to maintainable code. 

One advantage of simple tracing collectors is that the interface between the collector 
and the mutator is simple: when the allocator exhausts memory, the collector is called. 
The chief source of complexity in this interface is determining the roots of collection, in
cluding global variables, and references held in registers and stack slots . We discuss this 
in more detail in Chapter 1 1 .  However, we note here that the task facing copying and 
compacting collectors is more complex than that facing non-moving collectors. A moving 
collector must identify every root and update the reference accordingly, whereas a non
moving collector need only identify at least one reference to each live object, and never 
needs to change the value of a pointer. So-called conservative collectors [Boehm and Weiser, 
1988] can reclaim memory without accurate knowledge of mutator stack or indeed object 
layouts . Instead they make intelligent (but safe, conservative) guesses about whether a 
value really is a reference . Because non-moving collectors do not update references, the 
risk of misidentifying a value as a heap pointer is confined to introducing a space leak :  the 
value itself will not be corrupted. A full discussion of conservative garbage collection can 
be found in Jones [1996, Chapters 9 and 10] . 
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Reference counting has both the advantages and disadvantages of being tightly cou
pled to the mutator. The advantages are that reference counting can be implemented in a 
library, making it possible for the programmer to decide selectively which objects should 
be managed by reference counting and which should be managed explicitly. The disad
vantages are that this coupling introduces the processing overheads discussed above and 
that it is essential that all reference count manipulations are correct. 

The performance of any modem language that makes heavy use of dynamically allo
cated data is heavily dependent on the memory manager. The critical actions typically 
include allocation, mutator updates including barriers, and the garbage collector 's inner 
loops. Wherever possible, the code sequences for these critical actions needs to be inlined 
but this has to be done carefully to avoid exploding the size of the generated code. If 
the processor 's instruction cache is sufficiently large and the code expansion is sufficiently 
small (in older systems with much smaller caches, Steenkiste [1989] suggested less than 
30%), this blowup may have negligible effect on performance. Otherwise, it will be nec
essary to distinguish in these actions the common case which needs to be small enough 
to be inlined (the 'fast path'), whilst calling out to a procedure for the less common 'slow 
path' [Blackburn and McKinley, 2002] . There are two lessons to be learnt here.  The output 
from the compiler matters and it is essential to examine the assembler code produced. The 
effect on the caches also has a major impact on performance. 

6.5 Adaptive systems 

Commercial systems often offer the user a choice of garbage collectors, each of which 
comes with a large number of tuning options. To complicate matters further, the tun
ing levers provided with these collectors tend not to be independent of one another. A 
number of researchers have suggested having systems adapt to the environment at hand. 
The Java run-time developed by Soman et al [2004] adapts dynamically by switching col
lectors at run time, according to heap size available. Their system either requires off-line 
profiling runs to annotate programs with the best collector /heap-size combination, or it 
can switch based on comparing the current space usage of the program with the maxi
mum heap available. Singer et al [2007a], in contrast, apply machine learning techniques 
to predict the best collector from static properties of the program (and thus require only 
a single training run) . Sun's Ergonomic tuning1 attempts to tune their HotSpot collector 's 
performance against user-supplied throughput and maximum pause time goals, adjusting 
the size of spaces within the heap accordingly. 

The best, and possibly the only, advice that we can offer to developers is, know your 
application. Measure its behaviour, and the size and lifetime distributions of the objects it 
uses. Then experiment with the different collector configurations on offer. Unfortunately 
this needs to be done with real data sets . Synthetic and toy benchmarks are likely to mis
lead. 

6.6 A unified theory of garbage collection 

In the preceding chapters, we considered two styles of  collection: direct, reference counting 
and indirect, tracing collection. Bacon et al [2004] show that these collectors share remark
able similarities. Their abstract framework allows us to express a wide variety of different 
collectors in a way that highlights precisely where they are similar and where they differ. 

1 h t t p : / / j av a . s un . com / do c s / h ot spot / g c 5 . 0 / e r g o 5 . html . 
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Abstract garbage collection 

In place of concrete data structures, the following abstract framework makes use of sim
ple abstract data structures whose implementations can vary. We start by observing that 
garbage collection can be expressed as a fixed-point computation that assigns reference 
counts p (n ) to nodes n E Node s .  Reference counts include contributions from the root 
set and incoming edges from nodes with non-zero reference counts : 

Vre f E Node s : 
p ( re f ) l { fld  E Root s : * f l d  = ref } I (6 .1) 

+ l { fld  E P o i nt e r s (n ) : n E Node s /\ p (n ) > 0 1\  * f l d  = re f } I 
Having assigned reference counts, nodes with a non-zero count are retained and the rest 
should be reclaimed. Reference counts need not be precise, but may simply be a safe ap
proximation of the true value. Abstract garbage collection algorithms compute such fixed
points using a work list W of objects to be processed. When W is empty these algorithms 
terminate. In the following, W is a multiset, since every entry in W represents a distinct 
source for each reference. 

Tracing garbage collection 

The abstraction casts tracing collection as a form of reference counting. Abstract tracing 
collection is illustrated by Algorithm 6.1, which starts with the reference counts of all nodes 
being zero. At the end of each collection cycle sweepT r a c i ng resets the count of all nodes 
to zero, and New initialises new nodes with a zero reference count. The col lect  T r a c ing 
procedure accumulates all non-null root pointers using root s T r a c i ng and passes them 
to s canTracing  as the work list W. 

Collection proceeds as we would expect by tracing the object graph to discover all 
the nodes reachable from the roots. The procedure s canT r a c i n g  accomplishes this by 
tracing elements from the work list, reconstructing the reference count of each node, by 
incrementing its reference count each time it is encountered (recall how we suggested in 
Section 5.6 that a tracing collector could be used to correct sticky reference counts) .  When 
a reachable node s rc is discovered for the first time (when p ( s r c ) is set to 1, line 10), the 
collector recurses through all the out-edges of s r c  by scanning its fields and adding the 
(pointers to) child nodes found in those fields to the work list W.2 

Termination of the while loop yields all the live nodes, each of which has a non-zero 
reference count equal to the number of its in-edges. The sweepT r a c i ng procedure then 
frees unused nodes, and resets the reference counts for the next round of collection. Note 
that a practical implementation of tracing can use a single-bit value for each node's refer
ence count, in other words a mark-bit rather than a full-sized reference count, to record 
whether the node has already been visited. The mark-bit is thus a coarse approximation of 
the true reference count. 

The tracing collector computes the least fixed-point solution to Equation 6 .1 :  the refer
ence counts on the nodes are the lowest counts that satisfy it. 

We can interpret garbage collection algorithms in terms of the tricolour abstraction 
discussed in Section 2.2. In Algorithm 6.1, nodes with reference count 0 are white, while 
nodes with non-zero reference count are black. The transition of a node from white via 
grey to black occurs as that node is first traced and then scanned. Thus, we can re-cast the 
abstract tracing algorithm as partitioning the nodes into two sets, black being reachable 
and white being garbage. 

2 Alternatively, the object could be added to the log in order to trade the size of the log for improved cache 
performance in the tracing loop (see Section 2.6) but this does not match so well the reference counting abstraction 
of Algorithm 6.2 . 
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Algorithm 6.1:  Abstract tracing garbage collection 

atomic c o l l ectTrac i n g ( ) : 
root s T r a c ing(W)  
scanT r a c ing(W)  
sweepTra c i ng ( )  

s canTrac i n g ( W) : 
while not i sEmpt y ( W) 

s r c f- remove ( W )  
p ( s rc )  +- p ( s r c ) + l  

w if p ( s rc )  = 1 
I I  

1 2  

for each f l d  in Point e r s ( s rc )  
r ef  +- * f l d  

1 3  if re f =/:. null 
1 4  W f- W + [ ref] 
1 5  

1 6  sweepTra c i ng ( ) : 
17 for each node in Node s  
1 s  if p ( n o de )  = 0 
1 9  f ree (node ) 
20 else 
2 1  p ( node )  +- 0 
22 
23 New( ) : 
24 ref +- a l locat e ( )  
25 if ref  = null 
26 col l e ctTrac i n g ( )  
27 ref  +- allocat e ( )  
2s if r e f  = null 
B e r r o r  " Out  o f  memory " 
30 p(re f )  +- 0 
3 1  return re f 
32 

33 root sTra c i ng (R ) : 
� for each fld  in Root s 
35 ref  +- * fld  
� if r e f  =/:. null  
37 R f- R + [ re f ]  

Reference counting garbage collection 

I* shade s rc 4 
I* s r c was white, now grey *I 

I* node is white 4 

I* node is black 4 
I* reset node to white 4 

I* node is white 4 

The abstract reference counting collection Algorithm 6.2 shows reference count operations 
being buffered by the mutator 's i n c  and de c procedures rather than performed immedi
ately, in order to highlight the similarity with tracing. This buffering technique turns out to 
be very practical for multithreaded applications; we consider it further in Chapter 18. This 
logging of actions also shares similarities with coalesced reference counting, discussed in 
Section 5.4. The garbage collector, c o l lectCount  ing, performs the deferred increments 
I with apply I n c rement s and the deferred decrements D with s c anCount i ng .  
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Algorithm 6.2: Abstract reference counting garbage collection 

1 atomic c o l l e ctCount ing ( I,D) : 
apply i n c rement s ( I )  
s canCoun t i ng(D)  
sweepC ount ing ( )  

6 s c anCount ing (W) : 
while not i sEmpt y ( W) 

s rc f- remove (W) 
p ( s r c )  f- p ( s r c ) - 1  

t o  if p ( s rc )  = 0 
1 1  

1 2  

for each f l d  in P o inte r s ( s r c )  
re f f- * f l d  

13 if ref  ":1 null 
1 4 W f- W + [ r ef] 
1 5  

t 6  sweepCount ing ( ) : 
11 for each node in Node s 
t s  if p (node)  = 0 
t 9  free (node)  
20 

2 1  

22 

23 New ( ) : 
24 ref  f- a l locat e ( )  
zs if re f = null 
26 c o l l e ctCount ing ( I,D) 
21 re f f- a l locat e ( )  
28 if r e f  = null 
� e r r o r  " Out of  memo ry "  
30 p ( ref )  f- 0 
3t return ref  
32 

n de c (  ref ) : 
34 if re f ":1 null 
35 D f- D + [ re f] 
36 
37 i n c (  ref ) : 
38 if re f ":1 null 
39 I f- I + [ ref] 
40 

4t atomic Wri t e ( s rc, i, ds t ) : 
42 inc (ds t )  
43 dec ( s rc [ i ] ) 
44 s rc [ i ]  f- dst  
45 

46 app l y i n c rement s ( I) : 
47 while not i sEmpt y ( I ) 
48 re f f- remove ( I )  
49 p ( r e f )  f- p ( re f ) + l  
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Algorithm 6.3: Abstract deferred reference counting garbage collection 

atomic co l l e ctDrc ( I,D ) : 
root s T r a c ing(I )  
apply i n c rement s ( I )  
scanCount ing(D)  
sweepC ount ing( )  
root s T r a c ing(D)  
app l yD e c rement s ( D )  

9 New() : 
w ref f- a l locat e ( )  
n if re f = null 
1 2  co l l e ctDrc ( I, D) 
1 3  ref +-- a l l ocat e ( )  
1 4  if r e f  = null 
1 s  e r ro r  "Out of memory " 
1 6  p (ref )  +-- 0 
1 1  return r e f  
1 8  

1 9  atomic Wr i t e ( s rc, i ,  ds t ) : 
20 if s r c  f= Root s 
ll i n c ( d s t )  
22 de c ( s r c [i ] ) 
23 s rc [i ]  +-- dst  
24 

25 applyDec reme nt s (D) : 
26 while not i sEmpt y ( D )  
21 re f f- remove ( D )  
28 p ( re f )  f- p (re f ) - 1  

Mutation, using the Wri t e  procedure, stores a new destination reference d s t  into a 
field s rc [ i ] .  In doing so, it buffers an increment for the new destination, i n c  ( d s  t ) , and 
buffers a decrement for the old referent, dec ( s r c [ i ] ) ,  before storing the new destination 
to the field, s rc [ i ]  +--dst .  

Each collection begins by applying all deferred increments to  bring them up to  date. 
The deferred decrements are applied in the next phase. The s c a nCount ing procedure 
begins with reference counts that over-estimate the true counts. Thus, it must decrement 
the counts of nodes in the work list as it encounters them. Any source node whose count, 
p (  s rc ) , is decremented to zero in this phase is treated as garbage, and its child nodes are 
added to the work list. Finally, the procedure sweepCount i ng frees the garbage nodes. 

The tracing and reference counting algorithms are identical but for minor differences. 
Each has a scan procedure: the s canTrac i ng collector uses reference count increments 
whereas the s c anCount ing collector uses decrements. In both cases the recursion condi
tion checks for a zero reference count. Each has a sweep procedure that frees the space oc
cupied by garbage nodes. In fact, the outline structures of the first 31 lines in Algorithm 6.1 
and Algorithm 6.2 are identical. Deferred reference counting, which defers counting refer
ences from the roots, is similarly captured by this framework (see Algorithm 6.3) .  
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Figure 6.1: A simple cycle 

Finally, we noted earlier that computing reference counts is tricky when it comes to 
cycles in the object graph. The trivial object graph in Figure 6 . 1  shows a simple isolated 
cycle, where assuming A has reference count zero allows B also to have reference count 
zero (since only source nodes with a non-zero count contribute to the reference counts 
of their destinations) .  But there is a chicken-and-egg problem here, since the reference 
counts of A and B are mutually dependent. It is just as feasible for us to claim that A 
has reference count 1, because of its reference from B, leading us to claim that B also has 
reference count 1 .  

This seeming anomaly arises generally for fixed-point computations, where there may 
be several different feasible solutions. In Figure 6 .1  we have the case that Node s = {A, B } 
and Root s = { } . There are two fixed-point solutions of Equation 6 . 1  for this simple graph: 
a least fixed-point p (A) = p ( B ) = 0 and a greatest fixed-point p (A ) = p (B ) = 1 .  Tracing 
collectors compute the least fixed-point, whereas reference counting collectors compute 
the greatest, so they cannot (by themselves) reclaim cyclic garbage. The difference be
tween these two solutions is precisely the set of objects reachable only from garbage cy
cles . We saw in Section 5.5 that reference counting algorithms can use partial tracing to 
reclaim garbage cycles. They do so by starting from the greatest fixed-point solution and 
contracting the set of unreclaimed objects to the least fixed-point solution. 





Chapter 7 

Allocation 

There are three aspects to  a memory management system: (i) allocation of memory in  the 
first place, (ii) identification of live data and (iii) reclamation for future use of memory 
previously allocated but currently occupied by dead objects. Garbage collectors address 
these issues differently than do explicit memory managers, and different automatic mem
ory managers use different algorithms to manage these actions.  However, in all cases 
allocation and reclamation of memory are tightly linked: how memory is reclaimed places 
constraints on how it is allocated . 

The problem of allocating and freeing memory dynamically under program control 
has been addressed since the 1950s. Most of the techniques devised over the decades 
are of potential relevance to allocating in garbage collected systems, but there are several 
key differences between automatic and explicit freeing that have an impact on desirable 
allocation strategies and performance. 

• Garbage collected systems free space all at once rather than one object at a time. 
Further, some garbage collection algorithms (those that copy or compact) free large 
contiguous regions at one time. 

• Many systems that use garbage collection have available more information when 
allocating, such as static knowledge of the size and type of object being allocated. 

• Because of the availability of garbage collection, users will write programs in a dif-
ferent style and are likely to use heap allocation more often. 

We proceed by describing key allocation mechanisms according to a taxonomy similar to 
that of Standish [1980], and later return to discuss how the points above affect the choices 
a designer might make in constructing the allocators for a garbage collected system. 

There are two fundamental strategies, sequential allocation and free-list allocation. We 
then take up the more complex case of allocation from multiple free-lists. After that we de
scribe a range of additional, more practical, considerations, before summarising the factors 
to take into account in choosing an allocation scheme. 

7.1 Sequential allocation 

Sequential allocation uses a large free chunk of memory. Given a request for n bytes, it 
allocates that much from one end of the free chunk. The data structure for sequential 
allocation is quite simple, consisting of a free pointer and a limit pointer. Algorithm 7.1 
shows pseudocode for allocation that proceeds from lower addresses to higher ones, and 
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Algorithm 7.1: Sequential allocation 

s e quent i a lAl l ocate (n ) : 
res u l t  +- free 

"0 I � ttl u 
.2 
tij 

newF r e e  +- result  + n 
if newFree  > l imit  

return null 
free +- newFree 
return r e s ult  

avai lab le  I 

/* signal 'Memory exh a u s t ed ' */ 

a l ignment "j:, 
"C "0 2 � ttl "' ava i l able u u .2 .2 ro iii 

f r e ej Llimit 
(a) Before (b) After 

Figure 7.1: Sequential allocation: a call to s e quent ia lAl l ocate (n ) which 
advances the free pointer by the size of the allocation request, n, plus any 
padding necessary for proper alignment. 

Figure 7.1 illustrates the technique. Sequential allocation is colloquially called bump pointer 
allocation because of the way it 'bumps' the free pointer. It is also sometimes called linear 
allocation because the sequence of allocation addresses is linear for a given chunk. See 
Section 7.6 and Algorithm 7.8 for details concerning any necessary alignment and padding 
when allocating. The properties of sequential allocation include the following. 

• It is simple. 

• It is efficient, although Blackburn et al [2004a] have shown that the fundamental per
formance difference between sequential allocation and segregated-fits free-list allo
cation (see Section 7.4) for a Java system is on the order of 1% of total execution time. 

• It appears to result in better cache locality than does free-list allocation, especially for 
initial allocation of objects in moving collectors [Blackburn et al, 2004a] .  

• I t  may be  less suitable than free-list allocation for non-moving collectors, i f  uncol
lected objects break up larger chunks of space into smaller ones, resulting in many 
small sequential  allocation chunks as opposed to one or a small number of large ones. 

7.2 Free-list allocation 

The alternative to sequential allocation is free-list allocation. In free-list allocation, a data 
structure records the location and size of free cells of memory. Strictly speaking, the data 
structure describes a set of free cells, and some organisations are in fact not list-like, but 
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Algorithm 7.2: First-fit allocation 

f i r s t F itAl locate (n ) : 
prev f- addre s sOf (head) 
loop 

curr  f- next (prev ) 
if cu r r  = null 
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return null /* signal 'Memo ry exha u s t e d ' 4 

1 0  

1 1  

else if  s i z e (curr ) < n 
prev f- curr  

else 
return l i s tAl l o ca t e (prev, cu r r, n ) 

12 l i s tAl locate (prev, curr ,  n ) : 
13 result  f- curr  
1 4  if shoul dSpl it ( s i z e ( c u r r ) , n ) 
1s remai nde r f- re s u l t  + n 
1 6  next ( rema inde r ) f- next (curr ) 
1 1  s i ze ( rema inde r ) f- s i z e (curr ) - n 
1s next (prev ) f- rema i nde r 
19 else 
20 next (prev ) f- next ( c u r r ) 
21 return re s u l t  

Algorithm 7.3: First fit allocation: an alternative way to split a cell 

l i s tAl locat eAlt (prev, cu r r, n ) : 
if shou ldSp l i t ( s i z e ( c u r r ) , n ) 

s i z e ( cu r r ) f- s i z e ( c u r r ) - n ;  
re sult  f- curr  + s i z e (curr ) 

else 
next (prev ) f- next ( c u r r ) 
result  f- curr  

return r e s u l t  

w e  will use the traditional term 'free-list' for them anyway. One can think of sequential 
allocation as a degenerate case of free-list allocation, but its special properties and simple 
implementation distinguish it in practice. 

We consider first the case of organising the set as a single list of free cells. The allocator 
considers each free cell in turn, and according to some policy, chooses one to allocate. This 
general approach is called sequential fits allocation, since the algorithm searches sequentially 
for a cell into which the request will fit . The classical versions of sequential fits are first-fit, 
next-fit and best-fit [Knuth, 1973, Section 2.5], which we now describe in turn. 

First-fit allocation 

When trying to satisfy an allocation request, a first-fit allocator will use the first cell it finds 
that can satisfy the request. If the cell is larger than required, the allocator may split the 
cell and return the remainder to the free-list. However, if the remainder is too small (allo-
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cation data structures and algorithms usually constrain the smallest allocatable cell size), 
then the allocator cannot split the cell. Further, the allocator may follow a policy of not 
splitting unless the remainder is larger than some absolute or percentage size threshold. 
Algorithm 7.2 gives code for first-fit. Notice that it assumes that each free cell has room 
to record its own size and the address of the next free cell . It maintains a single global 
variable head that refers to the first free cell in the list. 

A variation that leads to simpler code in the splitting case is to return the portion at 
the end of the cell being split, illustrated in Algorithm 7.3. A possible disadvantage of this 
approach is the different alignment of objects, but this could cut either way. First-fit tends 
to exhibit the following characteristics [Wilson et al, 1995a, page 31 ] :  

• Small remainder cells accumulate near the front of the list, slowing down allocation. 

• In terms of space utilisation, it may behave rather similarly to best-fit since cells in 
the free-list end up roughly sorted from smallest to largest. 

An interesting issue with first-fit is the order of cells in the list. When supporting ex
plicit freeing, there are a number of options as to where in the list to enter a newly freed 
cell. For example, the allocator can insert the cell at the head, at the tail, or according to 
some order such as by address or size. When supporting garbage collection with a sin
gle free-list, it is usually more natural to build the list in address order, which is what a 
mark-sweep collector does . 

Next-fit allocation 

Next-fit is a variation of first-fit that starts the search for a cell of suitable size from the 
point in the list where the last search succeeded [Knuth, 1973 ] .  This is the variable p rev in 
the code sketched by Algorithm 7.4. When it reaches the end of the list it starts over from 
the beginning, and so is sometimes called circular first-fit allocation . The idea is to reduce 
the need to iterate repeatedly past the small cells at the head of the list. While next-fit is 
intuitively appealing, in practice it exhibits drawbacks. 

• Objects from different phases of mutator execution become mixed together. Because 
they become unreachable at different times, this can affect fragmentation (see Sec
tion 7.3) .  

• Accesses through the roving pointer have poor locality because the pointer cycles 
through all the free cells . 

• The allocated objects may also exhibit poor locality, being spread out through mem
ory and interspersed with objects allocated by previous mutator phases . 

B est-fit allocation 

Best-fit allocation finds the cell whose size most closely matches the request. The idea is 
to minimise waste, as well as to avoid splitting large cells unnecessarily. Algorithm 7.5 
sketches the code. In practice best-fit seems to perform well for most programs, giving 
relatively low wasted space in spite of its bad worst-case performance [Robson, 1977] . 
Though such measurements were for explicit freeing, we would expect the space utilisa
tion to remain high for garbage collected systems as well. 
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Algorithm 7.4: Next-fit allocation 

nextF itAl locate (n ) : 
s t a rt f- p rev 
loop 

curr  f- next (prev ) 
if curr  = null 

prev  f- addre s s O f (head) /* res tart from the beginning of the free- list 4 
cu r r  f- next (prev ) 

if prev  = s t a rt 
return null 

else if s i z e (curr ) < n 
prev  f- curr  

else 

I* signal 'Memo ry exha u s t ed ' 4 

return l i stAl l o c a t e (prev, c u r r, n ) 

Algorithm 7.5: Best-fit allocation 

be s t F i tAl l o c a t e (n ) : 
be st  f- null 
be s t S i z e  f- oo 
prev f- addre s sof (head) 
loop 

curr  f- next (prev ) 
if curr  = null I I  s i z e (curr ) = n 

if curr  f= null 
be s t P rev f- p rev 
best  f- c u r r  

else if be st  = null 
return null /* signal 'Memo ry exha u s t e d ' 4 

return l i stAl l o c a t e (bes t P rev, best ,  n ) 
else if  s i z e (curr ) < n I I  be s t S i z e < s i z e ( c u r r ) 

prev  f- curr  
else 

be s t  f- curr  
be s t P rev f- prev  
be s t S i z e  f- s i z e ( c u r r ) 
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Algorithm 7.6: Searching in Cartesian trees 

firstFitAl l ocateCa rt e s i an (n ) : 
parent +- null 
cur r  +- root 
loop 

if  l e ft (cur r )  "I null && max ( left ( cu r r ) )  :2: n 
p a rent +- c u r r  
c u r r  +- le ft ( c u r r )  

e l s e  if  prev < curr  && s i z e (curr )  :2: n 
p rev +- curr  

1 0  return t re eAl l ocate ( cu r r, parent ,  n )  
n else if  right ( c u r r )  "I null  && max ( r i gh t (curr ) ) :2: n 
1 2  p a rent +- c u r r  
1 3  c u r r  +- r i gh t (curr )  
u else 
1 5  return null  

Speeding free-list allocation 

/* signal 'Memory exha u s t ed ' */ 

Allocating from a single sequential list may not scale very well to large memories . There
fore researchers have devised a number of more sophisticated organisations of the set of 
free cells, to speed free-list allocation according to various policies. One obvious choice is 
to use a balanced binary tree of the free cells. These might be sorted by size (for best-fit) or 
by address (for first-fit or next-fit) . When sorting by size, it saves time to enter only one cell 
of each size into the tree, and to chain the rest of the cells of that size from that tree node. 
Not only does the search complete faster, but the tree needs reorganisation less frequently 
since this happens only when adding a new size or removing the last cell of a given size. 

To use balanced trees for first-fit or next-fit, one needs to use a Cartesian tree [Vuillemin, 
1980] . This indexes by both address (primary key) and size (secondary key) . It is totally 
ordered on addresses, but organised as a 'heap' for the sizes, which allows quick search for 
the first or next fit that will satisfy a given size request. This technique is also known as fast
fits allocation [Tadman, 1978; Standish, 1980; Stephenson, 1983 ] .  A node in the Cartesian tree 
must record the address and size of the free cell, the pointers to the left and right child, and 
the maximum of the sizes of all cells in its subtree. It is easy to compute this maximum from 
the maximum values recorded in the node's children and it own size. Hence the minimum 
possible size for a node is larger than for simple list-based schemes. While we omit code 
for inserting and removing nodes from the tree, to clarify the approach we give sample 
code for searching under the first-fit policy, in Algorithm 7.6. The code uses the single 
global variable r o o t, which refers to the root of the binary tree. Each node n maintains a 
value max (n )  that gives the maximum size of any nodes in that node's subtree. Next-fit is 
only slightly more complicated than first-fit. 

Balanced binary trees improve worst-case behaviour from linear to logarithmic in the 
number of free cells. Self-adjusting (splay) trees [Sleator and Tarjan, 1985] have similar 
(amortised time) benefits. 

Another useful approach to address-ordered first-fit or next-fit allocation is bitmapped
fits allocation. A bitmap on the side has one bit for each granule of the allocatable heap. 
Rather than scanning the heap itself, we scan the bitmap. We can scan a byte at a time by 
using the byte value to index pre-calculated tables giving the size of the largest run of free 
granules within the eight-granule unit represented by the byte. The bitmap can also be 
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augmented with run-length information that speeds calculating the size of larger free or 
allocated cells, in order to skip over them more quickly. Bitmaps have several virtues: 

• They are 'on the side' and thus less vulnerable to corruption. This is especially im
portant for less safe languages such as C and C++, but also helpful in improving the 
reliability and debuggability of collectors for other, more safe, languages. 

• They do not require information to be recorded in the free and allocated cells, and 
thus minimise constraints on cell size. This effect can more than pay back the 3% 
storage overhead of one bit per 32-bit word. However, other considerations may 
require headers in objects, so this does not always hold. 

• They are compact, so scanning them causes few cache misses, thereby improving 
locality. 

7.3 Fragmentation 

At the beginning an allocation system generally has one, or a small number, of large cells 
of contiguous free memory. As a program runs, allocating and freeing cells, it typically 
produces a larger number of free cells, which can individually be small . This dispersal 
of free memory across a possibly large number of small free cells is called fragmentation.  
Fragmentation has at least two negative effects in an allocation system: 

• It can prevent allocation from succeeding. There can be enough free memory, in 
total, to satisfy a request, but not enough in any particular free cell . In non-garbage 
collected systems this generally forces a program to terminate. In a garbage collected 
system, it may trigger collection sooner than would otherwise be necessary. 

• Even if there is enough memory to satisfy a request, fragmentation may cause a pro
gram to use more address space, more resident pages and more cache lines than it 
would otherwise. 

It is impractical to avoid fragmentation altogether. For one thing, the allocator usually 
cannot know what the future request sequence will be. For another, even given a known 
request sequence, optimal allocation - that is, using the smallest amount of space neces
sary for an entire sequence of allocate and free requests to succeed - is NP-hard [Robson, 
1980] .  However, some approaches tend to be better than others; while we cannot eliminate 
fragmentation, we have some hope of managing it. Generally speaking, we should expect 
a rough trade-off between allocation speed and fragmentation, while also expecting that 
fragmentation is quite difficult to predict in any given case. 

For example, best-fit intuitively seems good with respect to fragmentation, but it can 
lead to a number of quite small fragments scattered through the heap. First-fit can also 
lead to a large number of small fragments, which tend to cluster near the beginning of the 
free-list. Next-fit will tend to distribute small fragments more evenly across the heap, but 
that is not necessarily better. The only total solution to fragmentation is compaction or 
copying collection. 

7.4 Segregated-fits allocation 

Much of the time consumed by a basic free-list allocator is spent searching for a free cell 
of appropriate size . Hence, using multiple free-lists whose members are segregated by 
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size can speed allocation [Comfort, 1964] . In Chapter 9 we describe collectors that manage 
multiple spaces .  While multiple spaces will almost always be managed using multiple 
allocators, when we speak of segregated-fits we mean multiple lists being used for allocat
ing for the same (logical) space . The distinction is not always precise. For example, some 
collectors segregate large objects, or large objects that contain no outgoing references (such 
as images or other binary data) .  They do this partly for performance reasons, and perhaps 
also partly because such objects have different lifetime characteristics. The large objects 
may be in a different space, receiving different treatment during collection. Alternatively, 
each space may have a segregated set of large objects. The latter is more like segregated
fits, though smaller objects might be allocated sequentially rather than from a free-list. 
There are many ways to combine approaches . 

The basic idea behind segregated-fits is that there is some number k of size values, 
s0 < s1 < · · · < sk- l · The number k might vary, but is often fixed. There are k + 1 free
lists, fo, . . .  , fk · The size b of a free cell on list f; is constrained by s;_1 < b :::;; s ; ,  where we 
set s_ 1 = 0 and sk = +oo. Since the point is to avoid searching for a cell of suitable size, 
we restrict the condition further: the size of a free cell on list f; must be exactly s ; .  The one 
exception is fkl which holds all cells larger than sk_ 1 , the largest size of the single-size lists. 
Thus, when requesting a cell of size b � sk_ 1 , the allocator rounds the request size up to 
the smallest s; such that b :::;; s; . The sizes s; are called size classes, and the size class for a 
cell size b is therefore that s; such that s;_ 1 < b :::;; s ; .  

List /b for cells larger than sb is organised to use one of the basic single-list algorithms 
we previously presented. In this case a Cartesian tree or other data structure with good 
expected-time performance is probably a good choice. For one thing, larger objects are 
usually allocated less frequently. Even if that is not the case, just initialising them takes the 
application longer, so if the per-ceil overheads are a bit higher for these larger cells than 
for allocating from the one-size lists, it will still not impact total execution time much as a 
percentage. 

There are a variety of ways to speed the calculation of the size class s; when given the 
desired object size b. For example, size classes so through sk- l might be evenly spaced, 
that is, s; = so + c · i, for some suitable c > 0. Then the size class is sk if b > sk- l and 
otherwise Sj where j = l ( b - s0 + c - 1 ) /cJ (using linear fit, where adding c - 1  does the 
appropriate rounding up) .  For example, an allocation scheme might have so = 8, c = 8 
and k = 16, giving size classes as multiples of eight from eight to 128 and using a general 
free-list algorithm for b > 128. The typical unit here is one byte, which makes sense for 
byte-addressed machines, as would a unit of one word for word-addressed machines . Still, 
even when bytes are the unit for describing size, a granule is more likely the size of a word, 
or even larger. Having c be a power of two speeds the division in the formula by allowing 
substitution of a shift for the generally slower division operation. 

In addition to a very dense range of small size classes, a system might provide one or 
more ranges of somewhat larger sizes, less densely packed, as opposed to switching imme
diately to a general free-list mechanism. For example, the Boehm-Demers-Weiser collector 
has separate lists for each size from the minimum up to eight words, and then for even 
numbers of words up to 16, and for multiples of four words up to 32 [Boehm and Weiser, 
1988] . Above that size it determines size classes somewhat dynamically, filling in an array 
that maps requested size (in bytes) to allocated size (in words) .  It then directly indexes an 
array of free-lists using the allocated size. Only those sizes used will be populated. 

If the set of size classes is built in to a system (that is, fixed at system build time), then a 
compiler can in principle determine the appropriate free-list in advance for any allocation 
call whose size is known at compile time. This can substantially improve the common case 
cost for most allocations. 
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Algorithm 7.7: Segregated-fits allocation 

1 segregat e dF i tAl l ocat e ( j ) : 
re s u l t  f- remove ( freeLi st s [ j ] )  
i f  re s u l t  = null 

l a rge f- a l l o c ateBlock ( )  
i f  l a rge = null 

return null 
in i t i a l i se ( l arge, s i z e s [ j ] )  
re s u l t  f- remove ( f reeLi s t s [ j ] )  

return resu lt  

/* j is the index of a size class Sj *f 

/* signal 'Memory exh a u s t e d ' *f 

To sum up concerning the time required to allocate a cell, schemes with single free-lists 
may search sequentially (first-fit, best-fit, and so on), which can take a long time to find 
a cell satisfying a given request. They may also use a balanced tree to attain worst-case 
or amortised logarithmic time. The particular advantage of segregated-fits is that for size 
classes other than Skf allocation typically requires constant time, as shown in Algorithm 7.7; 
see also the lazy sweeping variant in Algorithm 2.5 .  

Fragmentation 

In the simpler free-list allocators we discussed previously, there was only one kind of frag
mentation: free cells that were too small to satisfy a request. This is known as external 
fragmentation, because it is unusable space outside any allocated cell . When we introduce 
size classes, if the sizes are at all spread out then there is also internal fragmentation, where 
space is wasted inside an individual cell because the requested size was rounded up. The 
need for specific alignment may introduce fragmentation in a similar way, although strictly 
speaking it is external fragmentation (between allocated cells) . Segregated-fits introduces 
a trade-off between internal fragmentation and the number of size classes. 

Populating size classes 

It should now be reasonably dear how segregated-fits allocation works, except for the 
important consideration of how to populate each free-list. We discuss two approaches: 
dedicating whole blocks to particular sizes, also called big bag of pages, and splitting. 

Big bag of pages block-based allocation. In this approach, we choose some block size 
B, a power of two. We provide an allocator for blocks, designed also to support requests 
for objects larger than one block by allocating multiple contiguous blocks. For a size class 
s < B, when we need more cells of size s we allocate a block and then immediately slice 
it into cells of size s, putting them on that free-list. Typically we also associate with the 
block the fact that it is dedicated to cells of size s. While that information might be stored 
in the block itself, along with other metadata such as mark bits for the cells in the block, 
Boehm and Weiser [1988] suggest that it is better to store this information in a separate 
area. Using a separate area results in fewer translation lookaside buffer misses or page 
faults when consulting or updating only the metadata, and it also avoids aligning every 
block's metadata so that they compete for the same cache sets . 
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When we discussed lazy sweeping in Section 2.5, we described basic block-based allo
cation. Block-based allocation complicates the issue of fragmentation. Because we dedicate 
a whole block to cells of a given size, we will waste (on average) half a block, and we could 
waste up to the fraction (B - s ) I B of the storage for a given size (if we have exactly one cell 
used in each block) . However, we reduce the per-cell metadata . There is also some space 
waste if there is an unused portion of size less than s at the end of the block. 1 Whether we 
call these cases of unusable space internal or external fragmentation depends on our point 
of view: they are internal to a block, but external to cells . 

In some systems the metadata associated with a cell includes not just the size s, but 
also the type of object allocated into the cell. While such segregation of types can result 
in greater fragmentation (since two types might be of the same size, but we must allocate 
them from separate blocks and maintain separate free-lists for them), for small objects the 
savings (by not having to record type information in each object) can be great. Examples 
include Lisp cons cells. 

Beyond the combining of small cells' metadata across an entire block, block-based al
location has the virtue of making the recombining of free cells particularly simple and 
efficient: it does not recombine unless all cells in a block are free, and then it returns the 
block to the block pool. Its common case for allocation, grabbing an available cell from a 
known list, is quite efficient, and if the list is empty, populating it is straightforward . Its 
primary disadvantage is its worst-case fragmentation . 

Splitting. We have already seen cell splitting as a way to obtain cells of a given size s :  
the various simple free-list schemes will split a larger cell if that is the only way to satisfy 
a request. If we use a fairly dense collection of size classes, then when we split a cell, we 
will be likely to have a suitable free-list to receive the portion not allocated. There are 
some particular organisations of less dense size classes that also have that property. One 
such scheme is the buddy system, which uses sizes that are powers of two [Knowlton, 1965; 
Peterson and Norman, 1977] . It is clear that we can split a cell of size i+l into two cells of 
size 2i . We can also recombine (or coalesce) two adjacent cells of size i into one cell of size 
i+ 1 . A buddy system will only recombine that way if the cells were split from the same 
cell of size 2i+l originally. Hence cells of size i come in pairs, that is, are buddies. Given 
the high internal fragmentation of this approach (its average is 25% for arbitrarily chosen 
allocation requests), it is now largely of historical as opposed to practical interest. 

A variation of the i buddy system is the Fibonacci buddy system [Hirschberg, 1973; Bur
ton, 1976; Peterson and Norman, 1977], in which the size classes form a Fibonacci sequence: 
si+2 = si+l + si , with a suitable so and SJ to start. Because the ratio of adjacent sizes is 
smaller than in the power-of-two buddy system, the average internal fragmentation will 
be lower (as a percentage of allocated memory) . However, locating adjacent cells for re
combining free cells after collection is slightly more complicated, since a buddy can have 
the next size larger or smaller depending on which member of a buddy pair is under con
sideration. 

Other variations on the buddy system have been described by Wise [1978] ,  Page and 
Hagins [1986] and Wilson et al [1995b ] .  

7.5 Combining segregated-fits with first-, best- and next-fit 

We can use segregated-fits as an accelerating front end to the schemes that use a single 
free-list. In this case, we place a cell that falls into a given size class onto the list for that 

1 Boehm and Weiser [1988] place this portion at the start of the block rather than its end, presumably to reduce 
competition for cache lines near the beginning of blocks. This helps more for small cache lines, since it is effective 
only for (some) cell sizes large than a cache line. 
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class. If a request finds that the free-list for its size class is empty, we can implement best
fit by searching the larger size classes in order of increasing size looking for a non-empty 
free-list. Having a segregated-fits front end modifies first- and next-fit, leading to a design 
choice of what to do when the free-list for the desired size class is empty. But in any case, 
if we end up searching list fkf the list of all cells of size greater than sk_ 1 ,  then we apply 
the single-list scheme (first-fit, best-fit or next-fit) . 

Another way of seeing this is that we really have a segregated-fits scheme, and are 
simply deciding how we are going to manage [k .  To summarise, we can manage it in these 
ways: 

• As a single free-list, using first-fit, best-fit, next-fit or one of the variations on them 
previously discussed, including Cartesian trees or other data structures that reduce 
search time. 

• Using block-based allocation. 

• Using a buddy system. 

7.6 Additional considerations 

Actual allocators often must take into account some additional considerations. We now 
discuss these: alignment, size constraints, boundary tags, heap parsability, locality, wilder
ness preservation and crossing maps. 

Alignment 

Depending on constraints of the underlying machine and its instruction set, or for better 
packing and improved memory hierarchy performance (cache, translation lookaside buffer 
or paging), an allocated object may require special alignment. For example, consider a 
Java array of double. On some machines, the double-word floating point values must be 
aligned on double-word boundaries, that is, their addresses must be 0 modulo 8 (with the 
three low bits of the address equal to zero) . One way to address the overall problem is 
to make double-words the granule of allocation. In that case, all allocated and free cells 
are a multiple of eight bytes in size, and are aligned on an eight-byte boundary. This 
is simple, but perhaps slightly wasteful . Further, when allocating an array of double, 
there is still some special work that might be required. Suppose that the Java heap design 
requires two header words for scalar (non-array) objects, one to refer to the object's class 
information (for virtual method dispatch, type determination and so on) and one for the 
object's hash code and Java synchronisation (locking) . This is a typical design. Array 
objects require a third word, giving the number of elements in the array. If we store these 
three header words at the start of the allocated space and follow them immediately by the 
array elements, the elements will be aligned on an odd word boundary, not an even one 
as required. If we use double-words as the granule, then we simply use four words (two 
double-words) for the three-word header and waste a word. 

But suppose our granule is one word, and we wish to avoid wasting a word whenever 
we can. In that case, if a free cell we are considering is aligned on an odd word boundary 
(that is, its address is 4 modulo 8), we can simply use the cell as is, putting the three 
header words first, immediately followed by the array element, which will be double
word aligned as required. If the cell starts on an even word boundary, we have to skip 
a word to get the proper alignment. Notice that this complicates our determination of 
whether a request will fit in a given cell: it may or may not fit, depending on the required 
and actual alignment - see Algorithm 7.8. 
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Algorithm 7.8: Incorporating alignment requirements 

f i t s (n, a, m, b1k ) : 
/* need n bytes, alignment a modulo m, m a power of2 .  Can b l k  satisfy this request?  4 
z +--- b l k  - a I* back up 4 
z +--- ( z + m - 1 )  & - ( m - 1 )  /* round up 4 
z +--- z + a /* go forward 4 
pad +--- z - b1k 
return n + pad < s i z e (  curr ) 

Size constraints 

Some collection schemes require a minimum amount of space in each object (cell) for man
aging the collection process. For example, basic compacting collection needs room for the 
new address in each object. Some collectors may need two words, such as a lock/status 
word plus a forwarding pointer. This implies that even if the language needs only one 
word, the allocator will still need to allocate two words. In fact, if a program allocates 
some objects that contain no data and serve only as distinct unique identifiers, for some 
languages they could in principle consume no storage at all ! In practice this does not work 
since the address of the object forms its unique identity (or else you must calculate a unique 
value and store it in the object), so the object must consume at least one byte. 

Boundary tags 

In order to support recombination when freeing objects, many allocate-free systems asso
ciate an additional header or boundary tag with each cell, outside the storage available to 
the program [Knuth, 1973] . The boundary tag indicates the size of the cell and whether it 
is allocated or free. It may also indicate the size of the previous cell, making it easier to 
find its flag indicating whether it is free, and its free-list chaining pointers if it is free. Thus, 
a boundary tag may be two words long, though with additional effort and possibly more 
overhead in the allocation and freeing routines, it may be possible to pack it into one word . 

Using bit tables on the side to indicate which granules are allocated and free avoids the 
need for boundary tags, and may be more robust as we previously observed . Which ap
proach uses less storage depends on the average object size and the allocation granularity. 

We further observe that because garbage collection frees objects all at once, a given 
algorithm may not need boundary tags, or may need less information in them. Further, in 
managed languages we will generally know the size of a cell by examining its type and so 
do not need to record that information separately. 

Heap parsability 

The sweeping phase of a mark-sweep collector must be able to advance from cell to cell in 
the heap. This capability is what we call heap parsability. Other kinds of collectors may not 
requ ire parsability, but it can be a great help in debugging collectors so it is good to support 
parsability if possible and the cost is not too high. 

Generally we need parsability only in one direction, most commonly in order of in
creasing address . A typical language will use one or two words to record an object's type 
and other necessary information. We call this the object's header. For example, many Java 
implementations use one word to record what amounts to a type (a pointer to type infor
mation, including a vector of addresses of methods of the object's class) and one word for 
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word 
.------,

offset 
type word -3 
sync word -2 
length (2) -1 

object -- - - - - - - - - -

refere� element 0 0 
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type word -3 
sync word -2 
first field -1 

--- second field 0 
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(a) Array (b) Scalar (non-Array) 
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sync word -2 
type word ! -1 

- - - - - - - - - - - J 

-- sync word ! o 
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first field ! 1 
next object · · · · · ·d· � · ;d· ·: refere� secon e : 2 - - - - - - - - - - - -. 

third field ! 3 
(c) No-Fields 

Figure 7.2: A Java object header design for heap parsability. Grey indicates 
the words forming the referent object. Neighbouring objects are shown with 
dashed lines. 
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a hash code, synchronisation information, garbage collection mark bit and so on. In order 
to make indexing into arrays efficient on most machines, it helps if the object reference 
refers to the first element of the array, with successive elements at successively higher ad
dresses. Since the language run-time and the collector need to find the type of an object 
in a uniform way given a reference to the object, we place the header immediately before 
the object data. Thus, the object reference points not to the first allocated byte, but into the 
middle of the allocated cell, after the header. Having the header come before the object 
contents therefore facilitates upward parsing of the heap. 

Again using a Java system as an example, array instances need to record the length of 
the individual array. For easy parsability, it helps if the le ngth field comes after the two
word header used for every object. Therefore the first array element falls at the third word 
of the allocated cell, the length is at word - 1  and the rest of the header is at words -2 
and -3 . A scalar (non-array) object needs to place its header a t  words -2  and -3 as well. 
This would appear to leave word -1 as a 'hole', but in fact there is no problem placing 
the first (scalar) field of the object there (assuming that the machine can index by a small 
negative constant just as well as by a small positive one, and most can). Further, if the 
object has no additional fields, there is still no problem: the header of the next object can 
legally appear at the address to which the object reference points! We illustrate all this in 
Figure 7.2. 

A particular issue arises if an implementation desires to over-write one object with an
other (necessarily smaller) one, as a number of functional language implementations do in 
replacing a closure with its evaluated value. If the implementation takes no further action, 
a scan that parses the heap may land in the middle of 'unformatted' bits and get quite con
fused. Non-Stop Haskell solves this problem by inserting filler objects [Cheadle et al, 2004] . 
In the usual case they need only to insert a reference to metadata indicating a pointer
free object of the appropriate size; they pre-construct metadata for sizes one through eight 
words. Larger fillers are quite rare, but would require creating metadata dynamically.2 

One final consideration arises from alignment requirements. If an individual object 
needs to be shifted one or more words from the beginning of its cell for proper alignment, 

2They do not offer details, but it seems reasonable to us to place the metadata in the filler in that case, thus 
avoiding any run-time allocation to restore heap parsability. 
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we need to record something in the gap so that in heap parsing we will know to skip. If 
ordinary object headers cannot begin with an all-zero word, and if we zero all free space 
in advance, then when parsing we can simply skip words whose value is zero. A simple 
alternative is to devise a distinct range of values to write at the start of gap, identifying it as 
a gap and giving its length. For example, Sun have long used what they call a 'self-parsing' 
heap. When they free an object (in a non-moving space), they overwrite its memory with 
a filler object, which includes a field giving its size (think of it as an array of words) . This 
is particularly useful for skipping ahead to the next real object when sweeping the heap. 

A bit map on the side, indicating where each object starts, makes heap parsing easy and 
simplifies the design constraints on object header formats. However, such bits consume 
additional space and require additional time to set during allocation. Allocation bitmaps 
are useful in many collectors, especially parallel and concurrent ones. 

While we mentioned a design for Java, similar considerations apply to other languages. 
Furthermore, block-based allocation offers simple parsing for the small cells, and it is also 
easy to handle the large blocks. For improved cache performance, the location of a large 
object inside a sequence of one or more blocks is something we might randomise, that 
is, we randomise how much of the wasted space comes before, and how much after, the 
application object. It is easy to record at the start of the block where the object is, in order 
to support parsability. 

Locality 

Locality issues come up several ways in allocation. There is locality of the allocation pro
cess itself, and of freeing. Other things being equal, an address-ordered free-list may im
prove locality of allocator memory accesses .  Sequential allocation also leads naturally to 
sequential accesses with good locality. In fact, software prefetching a bit ahead of the allo
cator can help [Appel, 1994], though for certain hardware that is unnecessary [Diwan et al, 
1 994] . But there is an entirely different notion of locality that is also useful to consider: 
objects that may become unreachable at about the same time. If some objects become 
unreachable at the same time, and they are allocated adjacent to one another, then after 
collection their space will coalesce into a single free chunk, thus minimising fragmenta
tion. Empirically, objects allocated at about the same time often become unreachable at 
about the same time. This makes non-moving systems less problematic than might be 
presumed [Hayes, 1991; Dimpsey et al, 2000; Blackburn and McKinley, 2008] .  It also sug
gests applying a heuristic of trying to allocate next to, or at least near, the most recently 
allocated object. Specifically, if the previous allocation request was satisfied by splitting a 
larger chunk, then it can help reduce fragmentation to prefer splitting the same chunk for 
requests in the near future, if the future request cannot be satisfied directly from a free-list 
for objects of the appropriate size . 

Wilderness preservation 

A typical heap organisation consists of a large contiguous part of the machine's address 
space, often bounded at the low end by the program's static code and data areas. The 
other end is often not occupied, but rather is open for expansion. This boundary in Unix 
systems is called the 'break' and the sbrk call can grow (or shrink) the available space 
by adjusting the boundary. Space beyond the boundary may not even be in the virtual 
memory map. The last free chunk in the heap is thus expandable. Since it begins what 
could be called 'unoccupied territory,' it is called the wilderness, and Korn and Vo [1985] 
found that wilderness preservation - allocating from the wilderness only as a last resort -
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helped reduce fragmentation. It also has the salutary effect of tending to defer the need to 
grow the heap, and thus conserves overall system resources . 

Crossing maps 

Some collection schemes, or their write barriers, require the allocator to fill in a crossing 
map. This map indicates, for each aligned segment of the heap of size 2k for some suit
able k, the address (or offset within the 2k segment) of the last object that begins in that 
segment. Combined with heap parsability, this allows a barrier or collector to determine 
fairly quickly, from an address within an object, the start of the object, and thus to access 
the object's headers, and so on. We discuss crossing maps in more detail in Section 1 1 .8. 

7.7 Allocation in concurrent systems 

If multiple threads attempt to allocate simultaneously, then since most steps in allocation 
need to be atomic to preserve the integrity of the allocation data structures, they will need 
to use atomic operations or locks. Allocation can thus become a serial bottleneck. The ba
sic solution is to give each thread its own allocation area. If a thread runs out, it can obtain 
another chunk of free space in which to allocate from a global pool. Only interactions with 
the global pool need to be atomic. Individual threads may vary in their allocation rates, so 
to improve both time and space performance it can help to employ an adaptive algorithm 
to adjust the size of the free space chunks handed out to each thread - a slowly allocat
ing thread might receive a small chunk while a rapidly allocating one gets a large chunk. 
Dimpsey et al [2000] noted substantial performance improvement in a multiprocessor Java 
system using a suitably organised local allocation buffer (LAB) for each thread .3 They fur
ther note that since the local allocation buffers absorb almost all allocation of small objects, 
it was beneficial to retune the global free-list-based allocator since its typical request was 
for a new local allocation buffer chunk. 

Garthwaite et al [2005] discussed adaptive sizing of local allocation buffers, and found 
benefit from associating them with processors rather than threads . They describe the origi
nal mechanism for sizing per-thread local allocation buffers as follows. Initially a thread 
requests a 24-word (96 byte) local allocation buffer. Each time it requests another local allo
cation buffer, it multiplies the size by 1 .5. However, when the collector runs, it decays each 
thread's local allocation buffer size by dividing by two. The scheme also involves adjust
ment to the young generation's size according to the number of different threads allocat
ing. The per-processor local allocation buffer scheme relies on multiprocessor restartable 
critical sections, which Garthwaite et al introduced. This mechanism allows a thread to 
determine whether it has been preempted and rescheduled, which implies that it may be 
running on a different processor. By having such preemption modify a register used in ad
dressing the per-processor data, they can cause stores after preemption to produce a trap, 
and the trap handler can restart the interrupted allocation. Even though per-processor 
local allocation buffers involve more instructions, their latency was the same, and they re
quired less sophisticated sizing mechanisms to work well. They also found that for small 
numbers of threads, per-thread local allocation buffers were better (consider especially the 
case where there are fewer threads than processors), and per-processor local allocation 
buffers were better when there are many allocating threads. Therefore, they designed their 
system to support switching between the two approaches dynamically. 

3Some authors use the term 'thread-local heap'. We use local allocation buffer when the point is separate 
allocation, and reserve use of 'thread-local heap' for the case where the local areas are collected separately. Thus, 
while a 'thread-local heap' is almost certainly a local allocation buffer, the reverse need not be true. 
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A typical local allocation buffer is used for sequential allocation. Another design is for 
each thread (or processor) to maintain its own set of segregated free-lists, in conjunction 
with incremental sweeping. When a thread sweeps a block incrementally during alloca
tion, it puts the free cells into its own free-lists. This design has certain problems that arise 
when it is used for explicit storage management, as addressed by Berger et al [2000] .  For 
example, if the application uses a producer-consumer model, then the producer allocates 
message buffers and the consumer frees them, leading to a net transfer of buffers from 
one to the other. In the garbage collected world, the collection process may return buffers 
to a global pool . However, incremental sweeping that places free cells on the sweeper 's 
free-lists naturally returns free buffers to threads that allocate them most frequently. 

7.8 Issues to consider 

There are some particular issues to consider when designing an allocator for a garbage 
collected system: Allocation cannot be considered independently of the collection algo
rithm. In particular, non-moving collectors such as mark-sweep more or less demand a 
free-list approach as opposed to sequential allocation - but see Section 10.3 for contrary 
views on this, and some local allocation buffer approaches also use sequential allocation 
in conjunction with mark-sweep collection. Conversely, sequential allocation makes the 
most sense for copying and compacting collectors, because it is fast and simple. It is not 
necessarily much faster than segregated-fits free-list allocation, but its simplicity may offer 
better overall reliability. 

If a collector uses mark-sweep but offers occasional or emergency compaction to elim
inate fragmentation, then it needs to provide for updating the allocation data structures to 
reflect the state of the world after compaction. 

Bit tables on the side for recording free/ allocated granules and where cells or objects 
start add robustness and simplify object header design. They can also speed collector 
operations and improve the collector's memory hierarchy performance. Their space cost 
is modest, but they do add some time cost during allocation, even in the common case. 

Block-based allocation can reduce per-object overheads, both for the language imple
mentation (for example, if a block is dedicated to objects of a single type) and for collector 
meta data. This may be offset by the space consumed by unallocated cells and the unusable 
space within some blocks. Block-based allocation may also fit well with organisations that 
support multiple spaces with different allocation and collection techniques. 

Segregated-fits is generally faster than single free-list schemes . This is of greater im
portance in a garbage collected context since programs coded assuming garbage collection 
tend to do more allocation than ones coded using explicit freeing. 

Because a collector frees objects in batches, the techniques designed for recombining 
free cells for explicit freeing systems are less relevant. The sweep phase of mark-sweep can 
rebuild a free-list efficiently from scratch. In the case of compacting collectors, in the end 
there is usually just one large free chunk appropriate for sequential allocation. Copying 
similarly frees whole semispaces without needing to free each individual cell. 



Chapter 8 

Partitioning the heap 

So far we have assumed a monolithic approach to garbage collection: all objects are man
aged by the same collection algorithm and all are collected at the same time. However 
there is no reason why this should be so and substantial performance benefits accrue from 
a more discriminating treatment of objects. The best known example is generational col
lection [Lieberman and Hewitt, 1983; Ungar, 1984], which segregates objects by age and 
preferentially collects younger objects. There are many reasons why it might be beneficial 
to treat different categories of object in different ways. Some but not all of these reasons are 
related to the collector technology that might be used to manage them. As we saw in earlier 
chapters, objects can be managed either by a direct algorithm (such as reference counting) 
or by an indirect, tracing algorithm. Tracing algorithms may move objects (mark-compact 
or copying) or not (mark-sweep) . We might therefore consider whether or not we wish 
to have the collector move different categories of object and, if so, how we might wish 
to move them. We might wish to distinguish, quickly by their address, which collection 
or allocation algorithm to apply to different objects. Most commonly, we might wish to 
distinguish when we collect different categories of object. 

8.1 Terminology 

It is useful to distinguish the sets of objects to which we want to apply certain memory 
management policies from the mechanisms that are used to implement those policies effi
ciently. We shall use the term space to indicate a logical set of objects that receive similar 
treatment. A space may use one or more chunks of address space. Chunks are contiguous 
and often power-of-two sized and aligned. 

8.2 Why to partition 

It is often effective to split the heap into partitions, each managed under a different pol
icy or with a different mechanism. These ideas were first explored in Bishop's influential 
thesis [1977] . These reasons include object mobility, size, lower space overheads, easier 
identification of object properties, improved garbage collection yield, reduced pause time, 
better locality, and so on. We examine these motivations now, before considering partic
ular models of garbage collection and object management that take advantage of heap 
partitioning. 
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Partitioning by mobility 

In a hybrid collector it may be necessary to distinguish objects that can be moved from 
those that either cannot be moved or which it is costly to move. It may be impossible to 
move objects due to lack of communication between the run-time system and the compiler, 
or because an object is passed to the operating system (for example, an 1/0 buffer) . Chase 
[1987, 1988] suggests that asynchronous movement may also be particularly detrimental 
to compiler optimisations. In order to move an object, we must be able to discover every 
reference to that object so that each can be updated to point to the object's new location. 
In contrast, if collection is non-moving, it suffices that a tracing collector finds at least one 
reference. Thus, objects cannot be moved if a reference has been passed to a library (for 
example, through the Java Native Interface) that does not expect garbage collection. Either 
such objects must be pinned or we must ensure that garbage collection is not enabled for 
that space while the object is accessible to the library. 1 

The references that must be updated in order to move objects include the root set. 
Determining an accurate map of root references is one of the more challenging parts of 
building the interface between a managed language and its run-time. We discuss this in 
detail in Chapter 1 1 .  One commonly chosen route, sometimes to an initial implementa
tion, is to scan roots (thread stacks and registers) conservatively rather than construct a 
type-accurate map of which stack frame slots and so on contain object references. This 
tactic is inevitable if the compiler does not provide type-accurate information (for exam
ple, compilers for languages like C and C++) . Conservative stack scanning [Boehm and 
Weiser, 1988] treats every slot in every stack frame as a potential reference, applying tests 
to discard those values found that cannot be pointers (for example, because they 'point' 
outside the range of the heap or to a location in the heap at which no object has been al
located) . Since conservative stack scanning identifies a superset of the true pointer slots 
in the stack, it is not possible to change the values of any of these (since we might inad
vertently change an integer that just happened to look like a pointer) . Thus, conservative 
collection cannot move any object directly referenced by the roots. However, if appropriate 
information (which need not be full type information) is provided for objects in the heap, 
then a mostly-copying collector can safely move any object except for one which appears 
to be directly reachable from ambiguous roots [Bartlett, 1988a] .  

Partitioning by size 

It may also be undesirable (rather than impossible) to move some objects . For example, the 
cost of moving large objects may outweigh the fragmentation costs of not moving them. A 
common strategy is to allocate objects larger than a certain threshold into a separate large 
object space (LOS). We have already seen how segregated-fits allocators treat large and small 
objects differently. Large objects are typically placed on separate pages (so a minimum size 
might be half a page), and are managed by a non-moving collector such as mark-sweep. 
Notice that, by placing an object on its own page, it can also be 'copied' virtually, either by 
Baker's Treadmill [1992a] or by remapping virtual memory pages [Withington, 1991 ] .  

Partitioning for space 

It may be useful to segregate objects in order to reduce overall heap space requirements . 
It is desirable to create objects in a space managed by a strategy that supports fast alloca-

1 An alternative to passing a direct object reference into the library is to pass an indirect reference (or handle), 
which can be registered with the collector for updating as necessary. This is the typical solution for the Java 
Native Interface. 
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tion and offers good spatial locality (as a sequence of objects is allocated and initialised) .  
Blackburn et al [2004a] showed that the difference in cost between sequential and free-list 
allocation is small (accounting for only 1% of total execution time) and is dominated by 
the second order effect of improved locality, particularly for young objects which benefit 
from being laid out in allocation order. 

Both copying and sliding collectors eliminate fragmentation and allow sequential allo
cation. However, copying collectors require twice the address space of non-moving col
lectors and mark-compact collection is comparatively slow. It is therefore often useful to 
segregate objects so that different spaces can be managed by different memory managers . 
Those objects that are expected to live for some time, and for which fragmentation is not 
likely to be an immediate concern, can be kept in a space that is primarily non-moving 
but visited by occasional compaction passes. Those objects with higher rates of allocation 
and higher expected mortality can be placed in a space managed by a copying collector 
for fast allocation and cheap collection (proportional to the number of survivors, which is 
expected to be low). Note that the expense of reserving copy space for large objects is a 
further reason for managing large object spaces with a non-copying collector. 

Partitioning by kind 

Physically segregating objects of different categories also allows a particular property, such 
as type, to be determined simply from the address of the object rather than by retrieving 
the value of one of its field or, worse, by chasing a pointer. This has several benefits. First, it 
offers a cache advantage since it removes the necessity to load a further field (particularly 
if the placement of objects of a particular category is made statically and so the address 
comparison is against a compile-time constant). Second, segregation by property, whereby 
all objects sharing the same property are placed in the same contiguous chunk in order to 
allow a quick address-based identification of the space, allows the property to be associ
ated with the space rather than replicated in each object's header. Third, the kind of the 
object is significant for some collectors. Objects that do not contain pointers do not need to 
be scanned by a tracing collector. Large pointer-free objects may benefit from being stored 
in their own space, whereas the cost of processing a large array of pointers is likely to be 
dominated by the cost of tracing the pointers rather than, say, the cost of moving the ob
ject. Conservative collectors benefit particularly from placing large compressed bitmaps 
in areas that are never scanned as they are a frequent source of false pointers [Boehm, 1993 ] .  
Cycle-collecting tracing collectors can also benefit from segregating inherently acyclic ob
jects which cannot be candidate roots of garbage cycles. 

Virtual machines often generate and store code sequences in the heap. Moving and re
claiming code has special problems such as identifying, and keeping consistent, references 
to code, or determining when code is no longer used and hence can be unloaded (note 
that class reloading is generally not transparent since the class may have state) . Code ob
jects also tend to be large and long lived . For these reasons, it is often desirable not to 
relocate code objects [Reppy, 1993], and to consider unloading code as an exceptional case 
particular to certain applications. 

Partitioning for yield 

The best known reason for segregation is to exploit object demographics. It is common for 
some objects to remain in use from the moment they are allocated to the end of the program 
while others have very short lives. As long ago as 1976 Deutsch and Bobrow noted that 
"statistics show that a newly allocated datum is likely to be either 'nailed down' or aban
doned within a relatively short time". Indeed, it is even common for a significant fraction 
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of allocation points in Java programs to create objects with a bimodal lifetime distribu
tion Uones and Ryder, 2008] . Numerous studies have confirmed that the object lifetime 
behaviour of many (but not all) applications supports the weak generational hypothesis that 
"most objects die young" [Ungar, 1984] .  The insight behind a range of strategies, both gen
erational and quasi-generational, is that the best way to reclaim the most storage space for 
the least effort is to concentrate collection effort on those objects most likely to be garbage. 

If the distribution of object lifetimes is sufficiently skewed, then it is worth repeatedly 
collecting a subset (or subsets) of the heap rather than the entire heap [Baker, 1993] .  

For example, generational collectors typically collect a single space of the heap (the 
young generation or nursery) many times for every time that they collect the entire heap. 
Note that there is a trade-off here. By not tracing the whole heap at every collection, the 
collector allows some garbage to go unreclaimed (to float in the heap) .  This means that 
the space available for the allocation of new objects is smaller than it would have been 
otherwise, and hence that the collector is invoked more often. Furthermore, as we shall 
see later, segregating the heap into collected and uncollected spaces imposes more book
keeping effort on both the mutator and the collector. Nevertheless, provided that the space 
chosen for collection has a sufficiently low survival rate, a partitioned collection strategy 
can be very effective. 

Partitioning to reduce pause time 

The cost of collection to a tracing collector is largely dependent on the volume of live ob
jects to be traced. If a copying collector is used, the cost of the scavenge depends only on 
the volume of live objects; even in a mark-sweep collector, the cost of tracing dominates 
the cost of sweeping. By restricting the size of the condemned space that the collector traces, 
we bound the volume of objects scavenged or marked, and hence the time required for a 
garbage collection. In a stop-the-world collector, this means shorter pause times. Unfortu
nately, collecting a subset of the heap improves only expected times. Since collection of a 
single space may return insufficient free space for computation to continue, it may still be 
necessary to collect the whole heap . Thus, in general, partitioned collection cannot reduce 
worst-case pause times. 

The extreme case for partitioning is to allow a space to be reclaimed in constant time. 
If no objects within a condemned region are reachable from outside that region, then there 
is no tracing work for a collector to do to reclaim the region: the memory occupied by that 
region can be returned en masse to the allocator. Determining that a region is unreachable 
requires the combination of appropriate object access disciplines and heap structures (such 
as stacks of scoped regions) . The responsibility for correct usage is typically placed entirely 
on the programmer (as for example with the Real-time Specification for Java). However, 
given a suitably tractable language, such as ML, regions can also be inferred automatically 
[Tofte and Talpin, 1994] . The Cyclone extension to C reduces the burden on programmers 
though a complex type system which allows some type and region inference [Grossman 
et al, 2002] .  

Partitioning for locality 

The importance of locality for good performance continues to increase as the memory hi
erarchy becomes more complex (more levels, multiple CPU cores and sockets, and non
uniform memory access) . Simple collectors tend to interact poorly with virtual memory 
and caches. Tracing collectors touch every live object as part of the trace. Mark-sweep 
collectors may touch dead objects as well. Copying collectors may touch every page of the 
heap even though only half of it is in use for live objects at any time. 
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Researchers have long argued that a collector should not be used simply to reclaim 
garbage but should also be used to improve the locality of the system as a whole [Fenichel 
and Yochelson, 1969; White, 1980] . We saw in Chapter 4 how the traversal order of copying 
collectors can be varied in order to improve mutator locality by co-locating parents and 
children. Generational collectors can obtain further locality improvements for both the 
collector the mutator. The collector benefits from concentrating most effort on a subsection 
of the heap likely to return the most free space for the least effort. The mutator benefits 
from reducing its working set size, since younger objects typically have higher mutation 
rates than older ones [Blackburn et al, 2004b ] .  

Partitioning by thread 

Garbage collection requires synchronisation between mutator and collector threads. On
the-fly collection, which never pauses more than one mutator thread at a time, may re
quire a complex system of handshakes with the mutator threads but even stop-the-world 
collection requires synchronisation to bring all mutator threads to a halt. This cost can be 
reduced if we halt just a single thread at a time and collect only those objects that were 
allocated by that thread and which cannot have escaped to become reachable by other 
threads. To achieve this, the collector must be able to distinguish those objects that are ac
cessible from only one thread from those that may be shared, for example by allocating in 
thread-local heaplets [Doligez and Leroy, 1993; Doligez and Gonthier, 1994; Steensgaard, 
2000; Jones and King, 2005] .  

At  a larger granularity, i t  may be desirable to  distinguish the objects accessible to  partic
ular tasks, where a task comprises a set of cooperating threads. For example, a server may 
run multiple managed applications, each of which usually requires its own complete vir
tual machine to be loaded and initialised. In contrast, a multi-tasking virtual machine (MVM) 
allows many applications (tasks) to run within a single invocation of the multi-tasking vir
tual machine [Palacz et al, 1994; Soman et al, 2006, 2008; Wegiel and Krintz, 2008 ] .  Care is 
clearly needed to ensure that different tasks cannot interfere with one another, either di
rectly (by obtaining access to another's data) or indirectly (through denying another task 
fair access to system resources such as memory, CPU time, and so on) . It is particularly 
desirable to be able to unload all the resources of a task when it has completed without 
having to disturb other tasks (for example, without having to run the garbage collector) . 
All these matters are simplified by segregating unshared data owned by different threads. 

Partitioning by availability 

One reason for not wishing to touch objects that are accessible to other threads is to reduce 
synchronisation overheads. However, we may also wish to partition objects by their usage 
because their geography leads to different demographic behaviours. Xian et al [2007] ob
served that remotable objects instantiated as part of client requests in an application server 
tend to live longer than local objects; extending Sun's HotSpot generational collector to 
recognise this allowed the server to handle larger workloads. More generally, in a system 
managed by distributed garbage collection, it will be desirable to manage local and remote 
objects and references with different policies and mechanisms, since the cost of accessing 
a remote object will be many orders of magnitude more expensive than accessing a local 
object. 

Distribution is not the only reason why the cost of object access may not be uniform. 
Earlier we paid particular attention to how tracing collectors might minimise the cost of 
cache misses . The cost of a cache miss may be a few hundred cycles whereas accessing 
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an object on a page that is swapped out will incur millions of cycles. Avoiding frequent 
page misses was a priority for an earlier generation of collectors whereas today a config
uration that leads to heavy paging might be considered irredeemably broken.2 Physical 
page organisation (in memory or swapped-out) can be considered as another form of heap 
partitioning, and indeed one that can be exploited .  The Bookmarking collector [Hertz et al, 
2005] cooperates with the virtual memory system in order first of all to improve the choice 
(from the collector 's point of view) of the page to be swapped out and, second, to allow a 
collector's trace to complete without access to objects on non-resident pages. 

Similarly, non-uniform memory access machines have some banks of memory closer 
to particular processors than others. Sun's HotSpot collector recognises this property and 
will preferentially allocate objects in 'near' memory to minimise latency on large servers 
where access times to memory vary significantly. 

Partitioning by mutability 

Finally, we might wish to partition objects according to their mutability. Recently cre
ated objects tend to be modified more frequently (for example to initialise their fields) 
than longer lived objects [Wolczko and Williams, 1992; Bacon and Rajan, 2001; Blackburn 
and McKinley, 2003; Levanoni and Petrank, 2006] .  Memory managers based on reference 
counting tend to incur a high per-update overhead and thus are less suitable for objects 
that are modified frequently. On the other hand, in very large heaps, only a comparatively 
small proportion of objects will be updated in any period but a tracing collector must nev
ertheless visit all objects that are candidates for garbage. Reference counting might be 
better suited to this scenario. 

Doligez and Gonthier segregate ML objects by mutability (and by thread) in order to 
allow each thread to have its own space of immutable, unshared objects, as well as a single 
shared space [Doligez and Leroy, 1993; Doligez and Gonthier, 1994] .  Their scheme requires 
a strong property from references: there must be no pointers to objects inside a thread's 
local heap from objects outside that local heap (that is, from other threads' local heaps 
or from the shared space) . References into a thread's private heap are prevented from 
escaping to the shared heap by a copy on write policy; this is semantically transparent since 
the target of the reference is immutable. Together, these properties allow each thread's 
private heap to be collected asynchronously. A further advantage of this approach is that, 
unlike most schemes in which spaces are collected independently, it is not necessary to 
track pointers that cross spaces (though the mutator must still detect them) . 

8.3 How to partition 

Probably the most obvious, and the most common, way to partition the heap is by divid
ing it into non-overlapping ranges of addresses . At its simplest, each space occupies a 
contiguous chunk of heap memory so this mapping is one to one. It is more efficient to 
align chunks on power of two boundaries. In that case an object's space is encoded into 
the highest bits of its address and can be found by a shift or mask operation. Once the 
space identity is known, the collector can decide how to process the object (for example, 
mark it, copy it, ignore it and so on) . If the layout of the spaces is known at compile time, 
this test can be particularly efficient - a comparison against a constant. Otherwise, the 
space can be looked up, using these bits as an index into a table. 

20n the other hand, many current generation netbooks have limited memory and page thrashing is a concern. 
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However, contiguous areas may not make efficient use of memory in 32-bit systems, 
as the range of virtual address space they may occupy must be reserved in advance. Al
though this does not commit physical memory pages, which can be mapped in and out of 
the contiguous space on demand, contiguous spaces are nevertheless inflexible and may 
lead to virtual memory exhaustion even though there are sufficient physical pages avail
able. An additional difficulty in many cases is the tendency of the operating system to 
map code segments for libraries in unpredictable places - sometimes intentionally un
predictable in order to improve security. This makes it difficult to reserve large contiguous 
ranges of virtual address space. For the most part, these problems can be eliminated in a 
64-bit address space. 

The alternative is to implement spaces as discontiguous sets of chunks of address space. 
Typically, a discontiguous space comprises a list of fixed size frames of contiguous virtual 
address space. As before, operations on frames are more efficient if frames are aligned on 
2n boundaries and are a multiple of the operating system's page size. Again, the disad
vantage is that an object's space may need to be looked up in a table . 

It is not always necessary to implement spaces by segregating objects physically. In
stead, an object's space may be indicated by some bits in its header [Domani et al, 2002] . 
Although this precludes determining its space through a fast address comparison, this 
approach nevertheless has some advantages . First, it allows objects to be partitioned ac
cording to properties that vary at run time, such as age or thread reachability, even in the 
case where the collector does not move objects . Second, it may facilitate handling objects 
that need to be pinned temporarily, for example because they are accessible to code that 
is not collector aware. Finally, run-time partitioning may be more accurate than choices 
made statically. For example, static escape analyses provide only a conservative estimate 
of whether an object may be shared. Static analyses do not yet scale to the very largest 
programs, and the presence of dynamic class loading commonly necessitates excessively 
conservative analysis, although Jones and King [2005] show how to obtain a more accurate 
static estimate of escapement in the context of thread-local allocation. If object escapement 
is tracked dynamically, then the distinction is between objects that are currently thread
local and those that are (or have been) accessible to more than one thread.3 The downside 
of dynamic segregation is that it imposes more work on the write barrier. Whenever a 
pointer update causes its referent to become potentially shared, then the referent and its 
transitive closure must be marked as shared. 

Finally in this section, we note that collecting only a subset of the partitions of the 
heap necessarily leads to a collector that is incomplete: it cannot reclaim any garbage in 
partitions that are not collected .  Even if the collector takes care to scavenge every partition 
at some time, say on a round-robin basis, garbage cycles that span partitions will not be 
collected. In order to ensure completeness, some discipline must be imposed on the order 
in which partitions are collected and the destination partition to which unreclaimed objects 
are moved . A simple, and widely used, solution is to collect the entire heap when other 
tactics fail . However, more sophisticated strategies are possible as we shall see when we 
consider Mature Object Spaces (also called the Train collector) [Hudson and Moss, 1992] . 

8.4 When to partition 

Partitioning decisions can be made statically (at compile time) or dynamically - when an 
object is allocated, at collection time or by the mutator as it accesses objects. 

The best known partitioning scheme is generational, whereby objects are segregated 
by age, but this is just one form of age related partitioning. Age related collectors segre-

3We do not know of any system that reverts objects that were once shared, but are no longer, back to local. 
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gate objects by their age into a number of spaces .  In this case, partitioning is performed 
dynamically, by the collector. As an object's age increases beyond some threshold, it is 
promoted(moved physically or logically) into the next space. 

Objects may also be segregated by the collector because of constraints on moving ob
jects. For example, mostly-copying collectors may not be able to move some objects while 
they are considered pinned - accessible by code that is not aware that objects' locations 
may change. 

Partitioning decisions may be also made by the allocator. Most commonly, allocators 
determine from the size of an allocation request whether the object should be allocated 
in a large object space. In systems supporting explicit memory regions visible to the pro
grammer or inferred by the compiler (such as scoped regions), the allocator or compiler 
can place objects in a particular region . Allocators in thread-local systems place objects in 
a heaplet of the executing thread unless they are directed that the object is shared. Some 
generational systems may attempt to co-locate a new object in the same region as one that 
will point to it, on the grounds that eventually it will be promoted there anyway [Guyer 
and McKinley, 2004] .  

An object's space may also be decided statically, by its type, because it  is code, or 
through some other analysis . If it is known a priori that all objects of a particular kind 
share a common property, such as immortality, then the compiler can determine the space 
in which these objects should be allocated, and generate the appropriate code sequence. 
Generational collectors normally allocate in a nursery region set aside for new objects; 
later, the collector may decide to promote some of these objects to an older generation. 
However, if the compiler 'knows' that certain objects (for instance, those allocated at a par
ticular point in the code) will usually be promoted, then it can pretenure these objects by 
allocating them directly into that generation [Cheng et al, 1998; Blackburn et al, 2001 ,  2007; 
Marion et al, 2007] . 

Finally, objects may be repartitioned by the mutator as it runs if the heap is managed by 
a concurrent collector (Chapter 15) .  Mutator access to objects may be mediated by read or 
write barriers, each of which may cause one or more objects to be moved or marked. The 
colouring of objects (black, grey, white) and the old/new space holding the object may 
be thought of as a partitioning. The mutator can also dynamically discriminate objects 
according to other properties. As we saw above, the write barrier used by Domani et al 
[2002] logically segregates objects as they escape their allocating thread. Collaboration 
between the run-time system and the operating system can repartition objects as pages are 
swapped in and out [Hertz et al, 2005] .  

In the next two chapters, we investigate a variety of partitioned garbage collectors. 
Chapter 9 looks at generational collectors in detail, while Chapter 10  examines a wide va
riety of other schemes, including both those based on different ways of exploiting object's 
ages and those based on non-temporal properties . 



Chapter 9 

Generational garb age collection 

The goal of a collector is to find dead objects and reclaim the space they occupy. Tracing 
collectors (and copying collectors in particular) are most efficient if the space they manage 
contains few live objects. On the other hand, long-lived objects are handled poorly if the 
collector processes them repeatedly, either marking and sweeping or copying them again 
and again from one semispace to another. We noted in Chapter 3 that long-lived objects 
tend to accumulate in the bottom of a heap managed by a mark-compact collector, and 
that some collectors avoid compacting this dense prefix. While this eliminates the cost of 
relocating these objects, they must still be traced and all references they contain must be 
updated. 

Generational collectors extend this idea by not considering the oldest objects whenever 
possible. By concentrating reclamation effort on the youngest objects in order to exploit 
the weak generational hypothesis that most objects die young, they hope to maximise yield 
(recovered space) while minimising effort. Generational collectors segregate objects by age 
into generations, typically physically distinct areas of the heap . Younger generations are 
collected in preference to older ones, and objects that survive long enough are promoted 
(or tenured) from the generation being collected to an older one. 

Most generational collectors manage younger generations by copying. If, as expected, 
few objects are live in the generation being collected, then the mark/ cons ratio between 
the volume of data processed by the collector and the volume allocated for that collection 
will be low. The time taken to collect the youngest generation (or nursery) will in general 
depend on its size. By tuning its size, we can control the expected pause times for collec
tion of a generation. Young generation pause times for a well configured collector (running 
an application that conforms to the weak generational hypothesis) are typically of the or
der of ten milliseconds on current hardware. Provided the interval between collections is 
sufficient, such a collector will be unobtrusive to many applications . 

Occasionally a generational collector must collect the whole heap, for example when 
the allocator runs out of space and the collector estimates that insufficient space would be 
recovered by collecting only the younger generations. Generational collection therefore 
improves only expected pause times, not the worst case. On its own, it is not sufficient for 
real-time systems. We consider the requirements for garbage collection in a hard real-time 
environment and how to achieve them in Chapter 19. 

Generational collection can also improve throughput by avoiding repeatedly process
ing long-lived objects. However, there are costs to pay. Any garbage in an old generation 
cannot be reclaimed by collection of younger generations: collection of long-lived objects 
that become garbage is not prompt. In order to be able to collect one generation without 
collecting others, generational collectors impose a bookkeeping overhead on mutators in 
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Figure 9.1: Intergenerational pointers. If live objects in the young generation 
are to be preserved without tracing the whole heap, a mechanism and a data 
structure are needed to remember objects S and U in the old generation that 
hold references to objects in the young generation. 

order to track references that span generations, an overhead hoped to be small compared to 
the benefits of generational collection. Tuning generational collectors to meet throughput 
and pause-time goals simultaneously is a subtle art. 

9.1 Example 

Figure 9.1 shows a simple example of generational collection. This collector is using two 
generations. Objects are created in the young generation. At each minor collection (or nurs
ery collection), objects in the young generation are promoted to the old generation if they 
are sufficiently old. Before the first collection, the young generation in this example con
tains four objects, N, P,  V and Q, and the old generation three objects, R, S and U. R and N 
are reachable from outside the generational space; maybe some roots point to them. The 
collector is about to collect the young generation. Suppose that N, P and V were allocated 
some time ago but Q was created only shortly before the collector was invoked. The ques
tion of which objects should be promoted raises important issues. 

A generational collector will promote objects it discovers from the young generation 
to the old one, provided they are old enough. This decision requires that a generational 
collector has a way of measuring time and a mechanism for recording ages. In our example, 
no objects in the young generation other than N are directly reachable from the roots, but 
P and Q are also clearly live since they are reachable from the roots via R and S .  Most 
generational collectors do not examine the whole heap, but trace only the generation(s) 
being collected. Since the old generation is not to be traced here, a generational system 
must record inter-generational pointers such as the one from S to P in order that the collector 
may discover P and Q. 

Such inter-generational pointers can arise in two ways. First, the mutator creates a 
pointer that requires tracking whenever it writes a pointer to an object in a generation G1 
into a field of an object in a generation G2 that will be collected later than G1 . Second, the 
collector itself may create inter-generational pointers when it promotes an object. In the 
example, the collector will create such a pointer if it promotes P but not Q. In both cases, 
the inter-generational pointer can be detected with a write barrier. The mutator requires 
a barrier on pointer writes that records whether a pointer between generations has been 
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written. A generational collector needs a similar copy write barrier to detect any inter
generational references created by promotion. In the example, the remembered set (remset) 
records the location of any objects (or fields) that may contain an inter-generational pointer 
of interest to the garbage collector, in this case S and U .  

Unfortunately, treating the source o f  inter-generational pointers a s  roots for a minor col
lection exacerbates the problem of floating garbage. Minor collections are frequent but do 
not reclaim garbage in the old generation, such as U .  Worse, U holds an inter-generational 
pointer so must be considered a root for the young generation. This nepotism will lead to 
the young garbage child V of the old garbage object being promoted rather than reclaimed, 
thus further reducing the space available for live objects in the older generation. 

9.2 Measuring time 

Before objects can be segregated by their age, we need to decide how time is to be mea
sured. There are two choices : bytes allocated or seconds elapsed . Wall-dock time is useful 
for understanding a system's external behaviour. How long does it run? What are the 
pause times for garbage collection and how are they distributed? Answers to these ques
tions determine whether a system is fit for purpose: will it complete its task in sufficient 
time and will it be sufficiently responsive? One requirement might be that it does not 
disturb an interactive human user. Another requirement might be to meet a hard real
time guarantee (say, in an embedded system) or a soft one (where occasionally missing a 
deadline is not disastrous but missing many is) . On the other hand, internally, object life
times are better measured by the number of bytes of heap space allocated between their 
birth and their death. Space allocated is a largely machine-independent measure, although 
clearly a system with 64-bit addresses or integers will use more space than a 32-bit one. 
Bytes-allocated also directly measures the pressure placed upon the memory manager; it 
is closely related to the frequency with which the collector must be called. 

Unfortunately measuring time in terms of bytes allocated is tricky in multithreaded 
systems (where there are multiple application or system threads) . A simple global measure 
of the volume of allocation may inflate the lifetime of an object, since the counter will 
include allocation by threads unrelated to the object in question [Jones and Ryder, 2008] . 

In practice generational collectors often measure time in terms of how many collections 
an object has survived, because this is more convenient to record and requires fewer bits, 
but the collections survived is appropriately considered to be an approximate proxy for 
actual age in terms of bytes allocated. 

9.3 Generational hypotheses 

The weak generational hypothesis, that most objects die young, appears to be widely valid, 
regardless of programming paradigm or implementation language. Foderaro and Fateman 
[ 1981 ] found that, for a computer algebra system written in MacLisp, 98% of the volume 
of data recovered by a collection had been allocated since the previous one. Zorn [ 1989] re
ported that between 50% and 90% of Common Lisp objects survive less than ten kilobytes 
of allocation. The story is similar for functional languages. For Haskell, between 75% and 
95% of heap data died before they were ten kilobytes old and only 5% lived longer than one 
megabyte [Sansom and Peyton Jones, 1993] . Appel [1992] observed that Standard ML/NJ 
reclaimed 98% of any given generation at each collection, and Stefanovic and Moss [1994] 
found that only 2% to 8% of heap allocated data survived the 100 kilobyte threshold. 
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It also holds for many programs written in object-oriented languages. Ungar [1986] 
found that less than 7% of Smalltalk lived beyond 140 kilobytes. Dieckmann and Holzle 
[ 1999] reported that the volume of Java objects in the SPECjvm98 benchmark suite sur
viving 100 kilobytes varied between 1% and 40%, and that less than 21% lived beyond 
one megabyte although the proportion varied significantly from one application to an
other. Blackburn et al [2006a] found that on average less than 9% of objects allocated by 
the SPECjvm98 and DaCapo benchmark suites escaped from a four megabyte nursery, al
though there was wide variation between benchmarks; note that this is an upper bound 
on the volume of objects living longer than four megabytes since some escapees may have 
been allocated only shortly before the nursery was collected. Jones and Ryder [2008] found 
bimodal lifetime distributions common in Java applications; between 65% and 96% of Da
Capo objects survived no longer than 64 kilobytes, with 3% to 16% being immortal or liv
ing longer than four megabytes. Even in imperative languages without automatic memory 
management support, the lifetimes of many objects are short. Barrett and Zorn [ 1993] re
ported that more than 50% of heap allocated data died within ten kilobytes and less than 
10% survived 32 kilobytes. 

On the other hand, there is much less evidence for the strong generational hypothesis that, 
even for objects that are not newly-created, younger objects will have a lower survival 
rate than older ones [Hayes, 1991 ] .  Simple models like the weak generational hypothesis 
account adequately in many programs for the behaviour of objects overall. However, once 
the shortest lived objects are discounted, objects' demographics over a longer timescale are 
more complex. Object lifetimes are not random. They commonly live in clumps and die 
all at the same time, because programs operate in phases [Dieckmann and Holzle, 1999; 
Jones and Ryder, 2008] . A significant number of objects may never die. The lifetime of 
objects may be correlated with their size, although opinion has differed on this [Caudill 
and Wirfs-Brock, 1986; Ungar and Jackson, 1988; Barrett and Zorn, 1993] . However, as we 
saw above, there are other reasons why we might want to treat large objects specially. 

9.4 Generations and heap layout 

A wide variety of strategies have been used to organise generations. Collectors may use 
two or more generations, which may be segregated physically or logically. Each generation 
may be bounded in size or the size of one space may be traded against that of another. The 
structure within a generation may be flat or it may comprise a number of age-based sub
spaces, called steps or buckets . Generations may also hold their own large object subspaces. 
Each generation may be managed by a different algorithm. 

The primary goals of generational garbage collection are reduced pause times and im
proved throughput. Assuming that the youngest generation is processed by copying col
lection, expected pause times depend largely on the volume of data that survives a minor 
collection of that generation, which in turn depends on the size of the generation. How
ever, if the size of the nursery is too small, collection will be fast but little memory will be 
reclaimed as the objects in the nursery will have had insufficient time to die. This will have 
many undesirable consequences . 

First, young generation collections will be too frequent; as well as its copying cost pro
portional to the volume of surviving objects - which will be higher since object have had 
less time to die - each collection must also bear the cost of stopping threads and scanning 
their stacks. 

Second, the older generation will fill too fast and then it too will have to be collected. 
High promotion rates will cause time-consuming older generation or full heap collections 
to take place too frequently. In addition, premature promotion will increase the incidence 
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of nepotism, as 'tenured' garbage objects in the old generation preserve their offspring in 
the young generation, artificially inflating the survivor rate as those dead children will also 
be promoted. 

Third, there is considerable evidence that newly created objects are modified more fre
quently than older ones. If these young objects are promoted prematurely, their high mu
tation rate will put further pressure on the mutator 's write barrier; this is particularly 
undesirable if the cost of the write barrier is high. Any transfer of overheads between 
mutator and collector needs careful evaluation with realistic workloads. Typically, the col
lector will account for a much smaller proportion of execution time than the mutator in 
any well configured system. For example, suppose a write barrier comprises just a few 
instructions in its fast path yet accounts for 5% of overall execution time; suppose further 
that the collector accounts for 10% of overall run time. It would be quite easy for an al
ternative write barrier implementation to double the cost of the barrier, thus adding 5% to 
overall execution time. To recover this, garbage collection time must be reduced by 50%, 
which would be hard to do. 

Finally, by promoting objects the program's working set may be diluted. Generational 
organisation is a balancing act between keeping minor collections as short as possible, 
minimising the number of minor and the much more expensive full, major collections, and 
avoiding passing too much of the cost of memory management to the mutator. We now 
look at how this can be achieved. 

9.5 Multiple generations 

Adding further generations is one solution to the dilemma of how to preserve short pause 
times for nursery collections without incurring excessively frequent full heap collections, 
because the oldest generation has filled too soon. The role of the intermediate genera
tions is to filter out objects that have survived collection of the youngest generation but 
do not live much longer. If a collector promotes all live objects en masse from the youngest 
generation, the survivors will include the most recently allocated objects despite the expec
tation that most of these will die very soon. By using multiple generations, the size of the 
youngest generation can be kept small enough to meet expected pause time requirements 
without increasing the volume of objects dying in the oldest generation shortly after their 
promotion. 

Using multiple generations has a number of drawbacks. Most systems will collect all 
younger generations when any older generation is collected. This offers the benefit that 
pointers need to be tracked in one direction only: old to young, which occur less fre
quently than young to old. Although the time taken to collect an intermediate generation 
will be less than that required to collect the full heap, pause times will be longer than 
those for nursery collections. Multiple generation collectors are also more complex to im
plement and may introduce additional overheads to the collector 's tracing loop, as this 
performance critical code must now distinguish between multiple generations rather than 
just two (which can often be accomplished with a single check against an address, maybe 
a compile-time constant) . Increasing the number of generations will tend to increase the 
number of inter-generational pointers created, which in turn may increase the pressure on 
the mutator 's write barrier, depending on implementation. It will also increase the size of 
the root set for younger generations since objects have been promoted that would not have 
been if some of the space used for the intermediate generations had been used to increase 
the size of the young generation. 

Although many early generational collectors for Smalltalk and Lisp offered multiple 
generations, most modem generational collectors for object-oriented systems provide just 
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two.  Even where collectors provide more than two generations, such as those for func
tional languages where allocation and death rates are prodigiously high, often only two 
generations are used by default [Marlow et al, 2008] .  Instead, mechanisms within genera
tions, especially the youngest generation, can be used to control promotion rates. 

9.6 Age recording 

En masse promotion 

Age recording and promotion policy are tightly coupled. Multiple generations provide an 
imprecise way of recording objects' ages. Figure 9.2 shows four ways in which a young 
generation can be structured to control object promotion. We discuss each of these in tum. 
The simplest arrangement is for each generation except the oldest to be implemented as a 
single semispace (see Figure 9.2a) . When that generation is collected all surviving objects 
are promoted en masse to the next. This structure has the advantages of simplicity and 
optimal utilisation of the memory devoted to the young generation. There is neither any 
need to record per-object ages nor is there any necessity for copy reserve space in each gen
eration (except for the last if indeed it is managed by copying) . The generational collectors 
used by the MMTk memory manager in the Jikes RVM Java virtual machine use en masse 
promotion in this way [Blackburn et al, 2004b] .  However, Zorn [1993] has suggested that 
en masse promotion of every live object (in a Lisp system) may lead to promotion rates 50% 
to 100% higher than can be achieved by requiring objects to survive more than one minor 
collection before they are promoted. 

Figure 9.3, due to Wilson and Moher [1989b] ,  illustrates the survival rates from the 
youngest generation that might be obtained by delaying promotion for one or two collec
tions. The curves show the fraction of objects that survive a future scavenge if they were 
allocated at time t, assuming that most objects die young. The closer an object is born to 
a collection the more likely it is to survive that collection. Let us focus on the area of the 
graph between scavenges n and n + 1 .  Curve (b) shows the proportion of objects that will 
survive one scavenge: most objects will die without being collected: these are the data in 
the light grey area.  The data in the black area below curve (c) will survive two scavenges. 
If the policy is to promote en masse all objects that survive the collection, then the data in 
the dark grey and black areas below curve (b) will be promoted . However, if promotion 
is restricted to those objects that survive two collections, then only the data in the black 
area below curve (c) will be tenured . By requiring a copy count greater than one, the very 
youngest objects (which we can expect to die soon) are denied tenure, and the promotion 
rate is substantially reduced. In general, increasing the copy count for promotion beyond 
two is likely to pay diminishing returns [Ungar, 1984; Shaw, 1988; Ungar and Jackson, 
1988]; Wilson [ 1989] suggests that it may be necessary to increase the count by a factor of 
four or more to reduce the number of remaining survivors by half. 

Aging semis paces 

Promotion can be delayed by structuring a generation into two or more aging spaces . This 
allows objects to be copied between the fromspace and tospace an arbitrary number of 
times within the generation before they are promoted. In Lieberman and Hewitt's original 
generational collector [1983] ,  a generation is collected several times before all survivors 
are eventually promoted en masse. In terms of the aging semispaces of Figure 9.2b, ei
ther all live objects in fromspace are evacuated to tospace within this generation or all 
are promoted to the next generation, depending on the age of the generation as a whole. 
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Figure 9.2: Semispace organisation in a generational collector. Dark grey indicates newly allocated data, light 
grey copied or promoted data. In each case, the x-axis is time and the y-axis is the volume of allocation. 
(a) en masse promotion; (b) aging semispaces (records per space age); (c) aging semispaces (records per object 
age); (d) survivor spaces promotion (records per object age) . 
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Figure 9.3: Survival rates with a copy count of 1 or 2. The curves show the 
fraction of objects that will survive a future collection if they were born at 
time x. Curve (b) shows the proportion that will survive one collection and 
curve (c) the proportion that will survive two. The coloured areas show the 
proportions of objects that will be not be copied or will be promoted (copied) 
under different copy count regimes. 

Wilson and Moher [1989b], doi: 1 0 . 1 1 4  5 / 7 4 8 7 7 . 7  4 8 8 2 .  
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While this arrangement allows the older members of the generation time to die, the very 
youngest will still be promoted, possibly prematurely. 

Sun's ExactVM1 also implemented the younger of two generations as a pair of semis
paces (see Figure 9.2c) but controlled promotion of an individual object by stealing five 
bits from one of two header words to record its age. In this case, individual live objects 
can either be evacuated to tospace or promoted to the next generation. While this throttles 
the promotion of the youngest objects, it adds a test and an addition operation to the work 
done to process live objects in the young generation. 

Bucket brigade and step systems allow a somewhat finer discrimination between object 
ages without maintaining per-object ages. Here, a generation is divided into a number of 
subspaces and objects are advanced from one bucket or step to the next at each collection. 
Some step systems advance all surviving objects from one step to the next at each collec
tion: live objects from the oldest step are promoted to the next generation. Here, an n-step 
system guarantees that objects will not reach the next generation until they have survived 
n scavenges. Glasgow Haskell allows an arbitrary number of steps in each generation (al
though the default is two in the young generation and one in others), as does the UMass 
GC Toolkit Hudson et al [1991 ] .  Shaw [1988] further divides each step into a pair of semis
paces in his bucket brigade scheme. Survivors are copied between each pair of semispaces 
b times before advancing to the next step. Thus, the two-bucket scheme guarantees that 
objects will not reach the next generation until they have survived between 2b and 2b - 1 
scavenges. Shaw arranged his scheme to simplify promotion. Figure 9.4 shows an in
stance of his scheme with two buckets: n = 3 so objects are copied up to three times within 
a bucket before being evacuated to the aging bucket or promoted. Because Shaw's gener
ations are contiguous, he can merge the aging bucket with the old generation by delaying 

1 Later called the Sun Microsystems Laboratories Virtual Machine for Research, http : I I r e s e a r ch . sun . 
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Figure 9.4: Shaw's bucket brigade system. Objects are copied within the 
young generation from a creation space to an aging semispace. By placing 
the aging semispace adjacent to the old generation at even numbered collec
tions, objects can be promoted to the old generation simply by moving the 
boundary between generations. 
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the promotion step until the oldest bucket's tospace is adjacent to the old generation. At 
this point the bucket is promoted by adjusting the boundary between the generations. The 
aging spaces of Figure 9.2c have some similarities with a two-bucket scheme but pay the 
cost of manipulating age bits in the headers of survivors. 

It is important to understand the differences between steps and generations. Both 
segregate objects by age, but different generations are collected at different frequencies 
whereas all the steps of a generation are collected at the same time. Generations also differ 
in how pointers that span spaces are concerned. Because one generation may be collected 
later than another it is essential to track pointers from an older generation to a younger 
one. On the other hand, there is no need to track inter-step pointers. By using steps in 
the youngest generation (where most mutation occurs), and by reducing premature col
lection, the load on the write barrier can be reduced while also controlling promotion, 
without need for per-object age records. 

Survivor spaces and flexibility 

All the semispace organisations described above are wasteful of space since they reserve 
half the space in the generation for copying. Ungar [1984] organised the young generation 
as one large creation space (sometimes called eden) and two smaller buckets or survivor 
semispaces (see Figure 9.2d) . As usual, objects are allocated in eden, which is scavenged 
alongside the survivor fromspace at each minor collection. All live eden objects are pro
moted to the survivor tospace. Live objects in survivor fromspace are either evacuated to 
tospace within the young generation or promoted to the next generation, depending on 
their age. This organisation can improve space utilisation because the eden region is very 
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Figure 9.5: High water marks. Objects are copied from a fixed creation space 
to an aging semispace within a younger generation and then promoted to 
an older generation. Although all survivors in an aging semispace are pro
moted, by adjusting a 'high water mark', we can choose to copy or promote 
an object in the creation space simply through an address comparison. 
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much larger than the two semispaces. For example, Sun's HotSpot Java virtual machine 
[Sun Microsystems, 2006] has a default eden versus survivor space ratio of 32:1,  thus using 
a copy reserve of less than 3% of the young generation.2 HotSpot's promotion policy does 
not impose a fixed age limit for promotion but instead attempts to keep the survivor space 
half empty. In contrast, the other semispace schemes waste half of the nursery space on 
copy reserve. 

The Opportunistic garbage collector [Wilson and Moher, 1989b] used a bucket brigade 
system with the space parsimony of survivor spaces and some flexibility in promotion 
age. The age at which objects are promoted can be varied down to the granularity of an 
individual object without the overhead of having to store or manipulate each object's age. 
As before, the young generation is divided into a creation space and a pair of aging spaces. 
The aging spaces are not semispaces but simply act as steps. At each minor collection, 
survivors from the creation space are evacuated to one of the aging spaces; survivors of 
the other aging space are promoted. With just this organisation, promoted objects would 
have a copy count of two. However, Wilson and Moher observe that objects are placed 
in the creation space in allocation order. By drawing a high water mark across creation 
space, younger objects (above the line in Figure 9.5) can be distinguished from older ones 
by a simple address comparison. Younger members of the creation space are treated as 
members of bucket 0. Older members and all of the aging space are become bucket 1; 
survivors of this bucket are promoted. 

2It is interesting to observe the development of hardware and configurations. Ungar (1984) used an eden of 
just 140 kilobytes with 28 kilobyte survivor spaces, and a 940 kilobyte old generation. HotSpot's default size 
for the young generation is 2228 kilobytes on the 32-bit Solaris operating system. We have even heard of a real 
configuration as extreme as a 3 gigabyte eden, 128 kilobyte survivor spaces and a 512 megabyte old generation. 
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This scheme limits the promotion age to a maximum of two minor collections, and so 
does not offer as wide a range of promotion age as those that explicitly store ages in objects 
or associate them with spaces (such as the semispace organisations we considered earlier) .  
However, any non-integral promotion threshold between one and two can be selected, and 
modified at any time, including during scavenges. We can see the effect in Figure 9.3. Any 
data in the dark grey or black regions to the left of the dashed white high water mark line 
will be promoted at their first collection . Those to the right of the high water mark line 
will be promoted if they are in the black area below curve (c), or evacuated to die later in 
the aging space if they are in the grey area above the curve. Wilson and Moher used this 
scheme with three generations for the byte-coded Scheme-48; it was also used in Standard 
ML with up to 14 generations [Reppy, 1993] .  

9.7 Adap�ing to program behaviour 

The Opportunistic collector is an example of a garbage collector that can adapt its promo
tion policy as a program runs. It provides a particularly fine-grained and simple mech
anism. Adaptation is needed because objects' lifetime demographics are neither random 
nor stationary. Instead real programs (unlike toy ones or synthetic benchmarks) tend to 
operate in phases. There are a wide range of common patterns of behaviour. A set of 
live objects may gradually accumulate and then die all at once. Alternatively, its size may 
reach a plateau after which the objects live for a long time. Ungar and Jackson [1988] cite 
the example of objects born in a clump that slowly diminishes, 'rather like a pig that has 
been swallowed by a python' . Demographics that do not adhere strictly to the weak gen
erational hypothesis can cause problems for generational collectors. If a large volume of 
data lives for sufficient time to reach an older generation and then dies, performance will 
suffer. To deal with this, Ungar and Jackson have argued for flexible mechanisms that 
control tenuring [1988; 1992] . 

It is useful to be able to adapt garbage collectors in general to the mutator 's behaviour, 
for example to reduce expected pause time or to improve overall throughput. The sim
plest scheduling mechanism is to invoke the collector only when the allocator runs out of 
space, but a generational memory manager can control pause times by adjusting the size 
of the youngest generation: smaller nurseries reduce the volume of objects that must be 
scavenged by young generation collection. The size of the space also affects the rate of 
promotion from one generation to another. If a space is too small to give young objects 
sufficient time to die, then the promotion rate will be higher. Conversely, if the nursery is 
very large, the interval between collections will be greater and a smaller fraction of objects 
will survive to reach the older generation. 

Appel-style garbage collection 

Appel [1989a] introduced an adaptive generational layout for Standard ML that gives as 
much room as possible to the young generation for a given memory budget, rather than 
using fixed size spaces. This scheme is designed for environments where infant mortality 
is high: typically only 2% of ML's young generation survived a collection. The heap is 
divided into three regions: the old generation, a copy reserve, and the young generation 
(see Figure 9.6a) . Nursery collections promote all young survivors en masse to the end 
of the old generation (Figure 9.6b) .  After the collection, any space not needed for old 
generation objects is split equally to create the copy reserve and a new young generation. 
If the space allocatable to the young generation falls below some threshold, the full heap 
is collected. 
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(c) After a minor collection and before a major collection. Only objects in the oldest 
region, old, will be evacuated into the copy reserve. After the evacuation, all live old 
objects can be moved to the beginning of the heap. 

Figure 9.6: Appel's simple generational collector. Grey areas are empty. 

As in any scheme managed by copying, Appel must ensure that the copy reserve is 
sufficient to accommodate the worst case, that all old and young objects are live. The most 
conservative way is to ensure that old + young ::; reserve. However, Appel can initiate full 
heap collections less frequently, requiring only that old ::; reserve 1\ young ::; reserve for 
safety, arguing as follows. Before a minor collection, the reserve is sufficient even if all 
young objects survive. Immediately after a minor collection, all newly promoted objects 
in old' are live: they do not need to be moved. The reserve is sufficient to accommodate 
all previously promoted objects in old (Figure 9.6c). Following the scavenge of old, all 
surviving data (now at the top of the heap) can be block moved to the bottom of the heap. 
We note that in this collect-twice approach any cycle of dead objects that lies partly in the 
nursery and partly in the old generation will be preserved. However, it will be collected 
during the next full collection since it is then contained entirely in the old generation. 

The entire generational universe in Appel was contiguous, but Appel-style collectors 
can also be implemented in block structured heaps, which avoids the necessity of sliding 
the live data to the start of the heap after a major collection. Shrinking nurseries can also 
be used in conjunction with an old generation managed by a non-moving algorithm, such 
as mark-sweep. 

The advantage of Appel-style collection is that by dynamically adapting the size of 
the copy reserve it offers good memory utilisation and reduces the number of collections 
needed compared with configurations that use en masse promotion and fix the size of the 
young generation. However, some caution is necessary to avoid thrashing the collector. 
Benchmarks that have high allocation rates but promote little data from the young genera
tion are common: indeed this was one of the motivations for Appel's design. This can lead 
to the situation where the space allotted to the nursery shrinks to become so small that it 
leads to overly frequent minor collections but never enough data is promoted to trigger 
a major collection. To combat this, the old generation should be collected whenever the 
young generation's size falls below a minimum. 
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Feedback controlled promotion 

Other schemes for controlling promotion rate are more directly related to pause time goals. 
Demographic feedback-mediated tenuring [Ungar and Jackson, 1988, 1992] attempts to smooth 
out long pauses incurred by bursts of promotion of objects that die soon after promotion. 
The volume of objects promoted at one collection is used as a predictor for the length 
of the next collection, and to throttle or accelerate promotion. The excess of survivors 
above a desired maximum becomes an index into a table indicating the age threshold for 
promotion that should be used at the next collection. Although this mechanism can control 
promotion rates, it cannot demote objects from an older to a younger generation. Barrett 
and Zorn [1995] vary a threatening boundary between two generations in both directions. 
The cost is that they must track more pointers as they cannot predict where the inter
generational boundary will lie. 

In version 1 .5 .0, Sun's HotSpot family of collectors introduced Ergonomics, an adaptive 
mechanism for resizing generations based on user provided goals .  Ergonomics focuses 
on three soft goals rather than attempting to provide hard real time guarantees. It first 
attempts to meet a maximum pause time goal. Once that is met, it targets throughput 
(measured as the fraction of overall time spent in garbage collection) and finally, once other 
goals are satisfied, it shrinks the footprint. Pause time goals are addressed by shrinking the 
size of generations, one at a time, starting with the one whose pause time is longest, based 
on statistics acquired at each collection. Throughput is improved by increasing the size 
of the heap and the generations, the latter in proportion to the time taken to collect each 
generation. By default, sizes are increased more aggressively than they are decreased. 

Vengerov [2009] offers an analytical model for the throughput of HotSpot. From this 
model he derives a practical algorithm for tuning the collector by adjusting the relative 
sizes of HotSpot's two generations and the promotion threshold, the number of collections 
that a young object must survive before it is promoted. He makes an important observa
tion that it is insufficient to consider whether to adjust the promotion threshold simply on 
the basis of whether it would reduce the number of objects promoted. Instead, it is essen
tial also to consider the ratio of free space in the old generation after a major collection to 
the volume promoted into it at each minor collection. His ThruMax algorithm provides 
a co-evolutionary framework for alternately adjusting the size of the young generation 
and the promotion threshold. In brief, ThruMax is invoked after the first major collection 
and once the volume of data in HotSpot's survivor spaces reaches a steady state (between 
75% and 90% of the young generation's survivor space for two consecutive minor collec
tions) .  ThruMax first increases the nursery size S until it reaches the neighbourhood of 
an optimum value (discovered by observing that S has been decreased and so it is proba
bly oscillating around this value) . Then ThruMax adjusts the tenuring threshold until the 
model shows that a further change would decrease throughput. After this, a new episode 
of adjustments is begun provided that there is no pressure to decrease S and sufficient 
minor collections are expected before the next major collection. 

Overall, sophisticated collectors like HotSpot present the user with a large number of 
tuning knobs, each of which is likely to be interdependent. 

9.8 Inter-generational pointers 

A generation's roots must be discovered before it can be collected. As we saw in the ex
ample in Figure 9 . 1 ,  the roots for a generation consist not only of pointer values held in 
registers, stacks and globals but also any references to objects in this generation from ob
jects in other parts of the heap that are not being collected at the same time. These typically 
include older generations and spaces outside the generational heap, such as large object 
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spaces and spaces that are never collected, including those for immortal objects and pos
sibly code. As we noted above, inter-generational pointers are created in just three ways, 
by initialising writes as an object is created, by other mutator updates to pointer slots and 
when objects are moved to different generations. In general such pointers must be detected 
as they are created and recorded so that they can be used as roots when a generation is col
lected. We shall call any pointer that must be recorded an interesting pointer. 

An interesting case of objects outside the generational heap are objects in the boot image: 
those objects present when the system starts . A generational system can handle them in 
at least three ways: it can trace through the boot image objects, which has the benefit of 
not retaining objects reachable only from boot image objects that have become unreach
able; it can scan the boot image objects to find references from them into the generational 
heap; or it can remember the interesting pointers that reside in boot image objects. Trac
ing can be expensive, and might be applied only during full collections. Thus it would 
be applied in conjunction with scanning or remembered sets. Scanning has the virtue of 
not requiring a write barrier on updates to boot image objects, but the down side that the 
collector must consider more field to find the interesting pointers. If used in conjunction 
with tracing, then after a trace the collector should zero the fields of unreachable boot im
age objects, to prevent misinterpretation of pointers that may refer to old garbage now 
reclaimed. Remembered sets have their usual virtues and costs, and also do not require 
zeroing of unreachable boot image objects' fields. 

Remembered sets 

The data structures used to record inter-generational pointers are called remembered sets.3 

Remembered sets record the location of possible sources of pointers (for example, U and the 
second slot of 5 in the example) from one space of the heap to another. The source rather 
than the target of an interesting pointer is recorded for two reasons. It allows a moving col
lector to update the source field with the new address of an object that has been copied or 
promoted. A source field may be updated more than once between successive collections, 
so remembering the source ensures that the collector processes only the object that is refer
enced by the field at the time of the collection, and not the targets of any obsolete pointers. 
Thus, the remembered set for any generation holds those locations at which a potentially 
interesting pointer to an object in this generation has been stored. Remembered set im
plementations vary in the precision with which they record these locations. The choice of 
precision is a trade-off between overhead on the mutator, space for the remembered sets 
and the collector 's cost of processing them. Note that the term remembered 'set' is some
times a misnomer because an implementation may allow duplicate entries (and hence be 
a multiset) . 

Clearly it is important to detect and record as few pointers as possible. Pointer writes 
by the collector as it moves objects are easily identified . Pointer stores by the mutator can 
be detected by a software write barrier, emitted by the compiler before each pointer store. 
This may not be possible if an uncooperative compiler is used . In this case, the locations 
where writes have occurred can often be determined from the operating system's virtual 
memory manager. 

The prevalence of pointer stores will vary between different programming languages 
and their implementations. From a static analysis of a suite of SPUR Lisp programs, Zorn 
[1990] found the frequency of pointer stores to be 13% to 15%, although Appel found a 

30ur terminology di ffers from that of Jones [1996) who distinguished card table schemes from other remem
bered set implementations. 
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lower static frequency of 3% for Lisp [ 1987] and a dynamic, run-time frequency of 1% for 
ML [1989a] . State-based languages can be expected to have a higher incidence of destruc
tive pointer writes. Java programs vary widely in terms of the frequency of pointer stores: 
for example, Dieckmann and Holzle [1999] found that between 6% and 70% of heap ac
cesses were stores (the latter was an outlier, the next highest was 46%) . 

Pointer direction 

Fortunately, not all stores need to be detected or recorded . Some languages (such as im
plementations of ML) store procedure activation records in the heap. If these frames are 
scanned as part of the root set at every collection, the pointer slots they contain can be dis
covered by the techniques we discuss later in Chapter 1 1 .  If stack writes can be identified 
as such by the compiler, then no barrier need be emitted on writes to these stack frames . 
Furthermore, many stores will refer to objects in the same partition. Although such stores 
will probably be detected, the pointers are not interesting from a generational point of 
view, and need not be recorded. 

If we impose a discipline on the order in which generations are collected then the num
ber of inter-generational pointers that need to be recorded can be reduced further. By guar
anteeing that younger generations will be collected whenever an older one is, young-to-old 
pointers need not be recorded (for example, the pointer in N in Figure 9 . 1 ) .  Many pointer 
writes are initialising stores to newly created objects - Zorn [1990] estimated that 90% 
to 95% of Lisp pointer stores were initialising (and that of the remaining non-initialising 
stores two-thirds were to objects in the young generation) . By definition, these pointers 
must refer to older objects .  Unfortunately, many languages separate the allocation of ob
jects from the initialisation of their fields, making it hard to separate the non-initialising 
stores that may create old-young pointers . Other languages provide more support for the 
compiler to identify pointer stores that do not require a write barrier. For example, the ma
jority of pointer writes in a pure, lazy functional language like Haskell will refer to older 
objects; old-new pointers can arise only when a thunk (a function applied to its arguments) 
is evaluated and overwritten with a pointer value. ML, a strict language with side-effects, 
requires the programmer to annotate mutable variables explicitly; writes to these objects 
are the only source of old-to-young references. 

Object-oriented languages like Java present a more complex scene. Here the program
ming paradigm centres on updating objects' states, which naturally leads to old-young 
pointers being more frequent. Nevertheless, many programmers write in a somewhat 
functional style, eschewing side effects, and for many applications the overwhelming ma
jority of pointer stores will be to initialise objects in the young generation. However, Black
bum et al [2006a] demonstrate that there is considerable variation in behaviour not only 
between applications but also within individual ones. Their report strikingly contrasts 
pointer stores - in terms of their direction and distance (between the time the source and 
target objects were created) - and pointers discovered in the graph. One cause of these 
differences is that there may be many writes to the same location: this has implications for 
how remembered sets are implemented. 

Different pointer filtering will be necessary in heaps with multiple independently col
lected spaces. For example, a collector may apply heuristics to decide which space to 
scavenge with the intention of prioritising those spaces containing the smallest volume of 
live objects . In this case, the write barrier must remember pointers in both directions, al
though if the policy decision is made always to collect the young generation at the same 
time, we can ignore writes to the nursery (which we expect to be prevalent) . Because this 
design is likely to increase the number of pointers to be remembered, it is best used with 
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an implementation where the size of the remembered set does not depend on the number 
of pointers remembered. We discuss implementation of write barriers and remembered 
sets in Chapter 1 1 .  

9.9 Space management 

Young generations are usually managed by evacuation, either copying surviving objects 
to a fresh semispace in the same generation or to a space in an older generation. Young 
generation collections are expected to be frequent and brief, on the assumption of few 
survivors and hence little to trace. Collections of older generations, on the other hand, 
are expected to be infrequent, but when they do occur, they are expensive as all younger 
generations must also be collected unless we are willing to pay the cost of a bidirectional 
write barrier. Commonly, a collection of the oldest generation will also collect all other 
spaces in the heap except any immortal spaces or the boot image, although references held 
in these spaces must be used as roots and may be updated. A full heap collection will not 
use remembered sets (except for locations in the immortal space or boot image, and even 
these are unnecessary if those spaces are scanned). 

A wider range of strategies can be used to manage the oldest generation. One possibil
ity is semispace copying but this may not be the best choice. It requires a copy reserve of 
half the generational heap, and so limits the room available for its own fromspace and to 
younger generations, thus increasing the frequency of collections at all levels . It also leads 
to long lived data being moved repeatedly. Mark-sweep collection offers better utilisation 
of memory, especially in small heaps [Blackburn et al, 2004a] .  The argument against free
list allocation has been that is slower than sequential allocation and its locality is not so 
predictable. But this is more a problem for object creation, where allocation rates are high, 
allocation order provides good spatial locality for young objects [Blackburn et al, 2004a] . 
The drawback of of mark-sweep collection is that it is non-moving and may eventually 
degrade as the old generation fragments. The solution is to run an additional compacting 
pass over the old generation, not necessarily every time but certainly when fragmentation 
is damaging performance. Compaction can also treat very long lived data specially. As we 
noted in Chapter 3, these will tend to end up compacted into a 'dense prefix' at the bottom 
of the old generation. The HotSpot mark-compact collector, for example, avoids moving 
this sediment at the cost of some (user-specified) degree of fragmentation. 

Generational collectors almost always distinguish generations by physical segregation. 
This requires younger generations to be managed by copying collection. A copying collec
tor such as Appel's conservatively requires copy reserve space equal to the size of genera
tion being collected as all objects may survive in the worst case. However, in practice most 
objects do not survive a young generation collection. 

Better space utilisation can be obtained with a smaller copy reserve and switching from 
copying to compacting collection whenever the reserve is too small [McGachey and Hosk
ing, 2006] . Here, the collector must be able to switch between copying and marking on 
the fly because it will only discover that the copy reserve is too small during a collection. 
Figure 9.7a shows the state of the heap once all survivors have been identified: copied ob
jects are shown in black and the remaining live young objects are marked grey. The next 
step is to compact the marked objects to one end of the nursery (Figure 9.7b); as usual this 
takes several passes . Unfortunately compaction will destroy the forwarding addresses left 
in the black objects in the young generation. McGachey and Hosking solve this problem 
by requiring the first pass over the grey young generation objects to fix up references to 
copied objects . Next, they move the marked objects with Jonkers's sliding compactor (see 
Section 3.3 in Chapter 3) because this threaded algorithm does not require additional space 
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Figure 9.7: Switching between copying and marking the young generation. 
(a) The copy reserve is full. Black objects from the young generation have 
been copied into the old generation. Grey objects have been marked but not 
copied. All other new objects are dead. (b) The compaction pass has slid the 
grey objects into the old generation. 
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in object headers. A better solution might be to adapt Compressor for this purpose (dis
cussed in Section 3.4), since it neither requires extra space in object headers nor overwrites 
any part of live objects. With a copy reserve of 10% of the heap, they gained improvements 
in performance of 4% on average - but some times up to 20% - over MMTk collectors 
that manage the old generation by either copying or mark-sweep collection. 

9.10 Older-first garbage collection 

Generational garbage collection has proved to be a highly effective way of managing short
lived objects for a wide range of applications. However, as we saw in Section 9.7, longer
lived objects may be more problematic. Generational collectors operate by collecting a 
youngest prefix of the set of objects in the heap and ignoring other objects. This prefix may 
be one or more generations depending on whether a collection is a nursery collection, an 
intermediate collection (in a configuration that uses more than two generations) or a full 
heap collection. Adaptive techniques that control the promotion of objects can be thought 
of as ways of varying the age boundary of the young (to be collected) prefix in order to 
give young objects more time to die. However, generational garbage collection is but one 
design that avoids collecting the whole heap (we look at schemes outside an age-based 
context in the next chapter). Possibilities for age-based collection include: 

Youngest-only (generational) collection: The collector condemns only the youngest ob
jects in the heap. 

Oldest-only collection: Similarly, we could imagine a collector that only considered the 
oldest objects in the heap, that is, those that have had the longest opportunity to 
die. However, it is unlikely that such a strategy would be effective as it would spend 
much of its time repeatedly processing immortal or very long-lived objects. We noted 
earlier that some collectors deliberately avoid processing this ancient sediment for 
precisely this reason. 

Older-first collection: The collector aims to focus effort on middle-aged objects. It gives the 
youngest objects sufficient time to die but reduces the time spent considering very 
long-lived objects (although these are examined from time to time). 
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Figure 9.8: Renewal Older First garbage collection. At each collection, the 
objects least recently collected are scavenged and survivors are placed after 
the youngest objects. 

Older-first collection presents two challenges: how to identify those objects considered to 
be 'older ' and the increased complexity of managing pointers into the condemned set since 
interesting pointers may point in either direction (oldest to older, or youngest to older). In 
the rest of this section we consider two different solutions to these problems. 

Renewal Older-First garbage collection. One approach is to consider the 'age' of an ob
ject to be the time since it was created or last collected, whichever is most recent [Clinger 
and Hansen, 1997; Hansen, 2000; Hansen and Clinger, 2002 ] .  Renewal Older-First always 
collects the 'oldest' prefix of the heap. To simplify remembered set management, the heap 
is divided into k equally sized steps. Allocation is always into the lowest-numbered empty 
step. When the heap is full, the oldest k - j steps (the grey window in Figure 9.8) are con
demned, and any survivors are evacuated to a copy reserve at the youngest end of the heap 
(the black region in the figure) .  Thus, survivors are 're-newed' and the youngest steps j to 
1 are now the oldest. In the figure, the heap advances rightwards through virtual address 
space. This simplifies the write barrier: only pointers from right to left in the figure, and 
whose source is an address larger than j, need to be remembered by the mutator. Although 
this arrangement might be feasible for some programs in a 64-bit address space, it would 
soon exhaust a 32-bit address space. In this case, Renewal Older-First must renumber all 
the steps in preparation for the next cycle, and its write barrier must filter pointers by com
paring the step numbers of the source and targets; this requires table lookups rather than 
simple address comparisons. A second potential disadvantage of Renewal Older-First is 
that it does not preserve the order of objects in the heap by their true ages but irreversibly 
mixes them. Although Hansen filters out many pointers in the Larceny implementation of 
Scheme by adding a standard generational nursery (and using Renewal Older-First only 
to manage the old generation), his remembered sets are large. 

Deferred Older-First garbage collection. The alternative does preserve the true age or
der of objects in the heap [Stefanovic, 1999; Stefanovic et al, 1999] .  Deferred Older-First 
slides a fixed size collection window (the grey region in Figure 9.9) from the oldest to the 
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Figure 9.9: Deferred Older First garbage collection. A middle-aged window 
of the heap is selected for collection. Survivors are placed after the survivors 
of the previous collection. The goal is that the collector will discover a sweet 
spot, where the survival rate is very low and the window advances very 
slowly. 
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youngest end of the heap. When the heap is full the window is collected, ignoring any 
older or younger objects (the white regions). Any survivors (the black region) are moved 
to immediately after the oldest region of the heap and any space freed is added to the 
youngest (rightmost) end of the heap. The next collection window is immediately to the 
right (younger end) of the survivors. The intuition behind Deferred Older-First is that will 
seek out a sweet spot in the heap where the collection window finds few survivors. At 
this point, the collector 's mark-cons ratio will be low and the window will move only very 
slowly (as in the lower rows of the figure). However, at some point the window will reach 
the youngest end of the heap, where the collector must reset it to the oldest end of the heap. 
Although objects are stored in true-age order, Deferred Older-First requires a more com
plicated write barrier. The mutator 's write barrier must remember all pointers from the 
oldest region into either the collection window or the youngest region and all young-old 
pointers (except those whose source is in the condemned window). Similarly, the collec
tor 's copy write barrier must remember all pointers from survivors to other regions and 
all young survivor-old survivor pointers. Once again, Deferred Older-First collectors typi
cally divide the heap into blocks; they associate a 'time of death' with each block (ensuring 
that older blocks have a higher time of death than younger ones). Barriers can be imple
mented through block time-of-death comparisons and care will be needed to handle time 
of death overflow [Stefanovic et al, 2002] . 

Although Deferred Older-First was found to improve over other generational schemes 
on maximum pause time, like Renewal Older-First it too needed to track more pointers. 
It appears that in smaller address spaces older-first algorithms have difficulty competing 
with the best of other schemes because of the cost of the more complex write barrier for 
remembering in older-first heap layouts. However, in larger address spaces, such as for 64 
bits, its write barrier is much simplified and it may be more competitive. 



9.11 Beltway 

In this chapter we have looked at a wide range of designs for age-based collection. Five 
key insights have shaped most of these.  

• 'Most objects die young': the weak generational hypothesis [Ungar, 1984] . 

• As a corollary, generational collectors avoid repeatedly collecting old objects. 

• Response times have been improved by exploiting incrementality. Generational col
lectors commonly use small nurseries; other techniques such as the Mature Object 
Space (often called the 'Train') collector [Hudson and Moss, 1992] also bound the 
size of spaces collected. 

• Small nurseries managed by sequential allocators improve data locality [Blackburn 
et al, 2004a] .  

• Objects need sufficient time to die. 

The Beltway garbage collection framework [Blackburn et al, 2002] combines all these in
sights. It can be configured to behave as any other region-based copying collector. The 
Beltway unit of collection is called an increment. Increments can be grouped into queues, 
called belts. In Figure 9 . 10  each row represents a belt with increments shown as 'trays' on 
each belt. Increments on a belt are collected independently first-in, first-out, as also are 
belts, although typically the increment selected for collection is the oldest non-empty in
crement on the youngest belt. A promotion policy dictates the destination of objects that 
survive a collection: they may be copied to another increment on the same belt or they 
may be promoted to an increment on a higher belt. Note that Beltway is not just another 
generational collector and belts are not generations. A generational collector would collect 
all increments on a belt; Beltway collects each increment independently. 

Figure 9 . 10  shows examples of existing and new collectors. A simple semispace collec
tor comprises a single belt with two increments (Figure 9 . 1  Oa): each increment is half of the 
heap. All survivors from the first increment (fromspace) on the belt are copied to the sec
ond (tospace) increment. Generational collectors use a belt per generation. Fixed-size nurs
ery collectors limit the size of belt 0 increment (Figure 9 . 1  Ob) whereas A ppel-style collectors 
allow both increments to grow to consume all usable memory (Figure 9 . 10c) . Aging semis
paces can be modelled by increasing the number of increments on belt 0 (Figure 9 . 10d). 
However, unlike the aging semispace discussed in Section 9.6, this design trades increased 
space for reduced collection time: unreachable objects in the second increment are not re
claimed in this collection cycle. Renewal Older-First and Deferred Older-First can also be 
modelled. Figure 9 .10e shows clearly how objects of different ages are mixed by Renewal 
Older-First collectors. Deferred Older-First collectors use two belts, whose roles are flipped 
when the collection window reaches the youngest end of the first belt. Blackburn et al also 
used the Beltway framework to introduce new copying collection algorithms. Beltway.X.X 
(Figure 9 . 10g) adds incrementality to an Appel-style collector: when belt 1 is full, i t  collects 
only the first increment. In this configuration X is the maximum size of the increment as 
a fraction of usable memory: thus, Beltway. 100.100 corresponds to a standard Appel-style 
generational collector. If X < 100, Beltway.X.X is not guaranteed to be complete since 
garbage cycles may span belt 1 increments. Beltway.X .X.lOO provides completeness by 
adding a third belt that contains only one increment, which is allowed to grow sufficiently 
large to hold the whole heap . 

Assuming that every configuration collects only oldest increments on youngest belts 
implies that Beltway's write barrier needs to remember references from older to younger 
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Figure 9.10: Beltway can be configured as any copying collector. Each figure 
shows the increment used for allocation, the increment to be collected and 
the increment to which survivors will be copied for each configuration. 

Blackburn et al [2002), doi: 1 0 .  1 1 4 5 / 5 1 2 5 2 9 . 5 1 2 5 4  8 .  

© 2002 Association for Computing Machinery, Inc. Reprinted by permission. 

belts, and younger to older increments on the same belt. If we number belts upwards 
from 0 (youngest), and increments in each belt in the order in which they are created, an 
increment can be identified by the pair (b, i) where b is its belt number and i its creation 
order in belt b. In that numbering a pointer from (b;, i) to (bj, j) is interesting if bi < 
b; V (bj = b; 1\ i < j. However, the collector can associate a unique small number n; with 
each increment i such that a pointer from i to j is interesting exactly when ni < n; .  It may 
need to renumber occasionally, such as when fresh increments are added to belts. A typical 
implementation breaks up the address space using frames, assigning each increment a 
disjoint set of frames. In a large address space it may be possible to lay increments out such 
that direct address comparisons work rather than having to map to increment numbers 
first, similar to such layouts for older-first algorithms. 

The performance of Beltway collectors is sensitive to their configuration. The layout of 
belts in the heap and the implementation of write barriers is crucially important, not only 
to determine whether pointers need to be remembered but also to decide whether objects 
need to be copied and if so, to where. 
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9.12 Analytic support for generational collection 

Generational collectors handle short-lived objects well but do not manage longer lived 
ones optimally. There are two problems. First, collection of garbage in older generations 
is not prompt: unfortunately there are no solutions as yet that schedule old generation 
collection as soon as possible after the death of significant volumes of old objects . Sec
ond, long-lived objects must be copied from the young generation to the old generation. 
Collectors that are concerned about objects dying soon after they reach an older generation 
require objects to have been copied several times before they are promoted. This copying is 
wasted work: it would be better if long lived objects were directly allocated or pretenured 
into the generation that they will eventually reach. 

Several researchers have tackled this problem by analysing the lifetime distributions 
of objects allocated by particular points in a program. Sometimes this can be done by the 
virtual machine implementer who may know that certain virtual machine data structures 
are permanent, or that certain libraries or code objects cannot or at least are unlikely to be 
unloaded. Pretenuring of these objects can be baked into the virtual machine. 

Researchers have also used profiling to identify longevity. Cheng et al [ 1998] recorded 
which allocation sites consistently created objects that were promoted. Blackburn et al 
[2001 ;  2007] used lifetime metrics that compared the longevity of objects allocated at a par
ticular program point with some fraction of the program's largest heap footprint in order 
to discriminate between short lived, long lived and immortal objects . Both techniques ne
cessitated the time consuming gathering of off-line traces. This information was then used 
to optimise the code so that new objects were allocated in the most appropriate generation 
or the immortal space. Some pretenuring decisions may be specific to a single program 
although Blackburn et al computed generic advice for allocation sites used by all programs 
(that is, those in the boot image or library code). The effectiveness of such generic advice 
make the necessary profiling more reasonable. 

In contrast, the approach used by Marion et al [2007] is generic, and provides true pre
diction rather than self-prediction: they obtain pretenuring advice by syntactic comparison 
of programs' micro-patterns [Gil and Maman, 2005] against a pre-existing knowledge bank 
(derived by using machine learning techniques on a large set of program traces to predict 
lifetimes from micro-patterns) .  Harris [2000] and Jump et al [2004] obtain modest per
formance improvements by pretenuring through online sampling. All these approaches 
obtained most benefit from the identification of those program points which allocated ob
jects that tended to be immortal rather than those that were simply long-lived. Gains for 
medium lived objects were modest. 

Guyer and McKinley [2004] sought to co-locate connected objects, on the basis that they 
are likely to share similar lifetimes.  They combined a compiler analysis, that identifies the 
object to which a new object might be connected, with a specialised allocator, that places 
the new object in the same space as the connectee. The analysis is neither required to be 
sound nor did it rely on a site tending to allocate objects with similar lifetimes. As well as 
reducing copying and obtaining significant reductions in collection time, co-location also 
reduced pressure on the write barrier. 

Generational collectors for lazy functional languages require write barriers only on up
dates to suspended computations (or thunks) as all other stores must refer to younger 
objects . Thunks are updated at most once; all other objects are immutable. In a step-based 
generational collector, Marlow et al [2008] take advantage of this observation to promote an 
object eagerly to the same generation or step as an object referring to it: ideally this would 
be to the oldest from which the target is reachable. Even for mutable objects, no write to 
a newly created object can be interesting. Zee and Rinard [2002] used a static analysis for 
Java to eliminate write barriers on these objects, obtaining small improvements in overall 
execution time for some programs. 
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9.13 Issues to consider 

Generational garbage collection has proved to be a highly effective organisation, offering 
significant performance improvements for a wide range of applications. By limiting the 
size of the youngest generation, and concentrating collection effort on that generation, 
expected pause times can be reduced to a point where they are usually unnoticeable in 
many environments. This tactic can also increase overall throughput in two ways. First, 
it reduces the frequency with which long lived data is processed, and thereby not only 
reduces processing effort but also gives older objects more time to die (so that they need not 
be traced at all) . Second, generational collectors usually allocate young objects sequentially 
in a nursery area. Sequential allocation obtains cache locality benefits because the memory 
consumption pattern is predictable and, furthermore, with generational collectors most 
writes are made to the youngest objects, 

Generational collection is not a universal panacea, however. Its effectiveness depends 
strongly on the lifetime demographics of the application program. The cost of more fre
quent collections of the nursery and of write barriers must be amortised by obtaining a 
much better than average pay-back from collecting young generations. If object mortality 
statistics are not heavily skewed in favour of the young generation - in other words, if 
the overwhelming majority of objects do not die young - then generational collection will 
not be an appropriate solution. 

Furthermore, generational collection improves only expected pauses times; eventually 
the collector must collect the full heap and generational collection on its own cannot solve 
the problem of the worst-case pause time, which may be excessive for large heaps. Conse
quently, generational collection cannot provide the guarantees required for hard real-time 
collection where deadlines must always be met. 

It is simpler to implement generational collection if the collector can move objects in 
order to segregate young and old objects. Physical segregation not only offers the locality 
benefits noted above, but can also offer more efficient space tests, needed by the write 
barrier or while tracing a young generation. Nevertheless, objects can also be segregated 
virtually, maybe by the value of a bit in their header or in a bitmap. 

Generational collectors raise many tuning questions, both for the implementer and for 
the end user. Not only are there a wide variety of design choices but also any given gen
erational collector needs careful configuration to match a given application. Generational 
collectors offer many more tuning parameters than the simple choice of heap size. 

The first implementation decision is likely to be whether to offer more than two gen
erations. The choice depends largely upon the anticipated lifetime distributions of the 
applications that the collector is expected to support. If a significant fraction of objects are 
expected to survive the young generation but to die shortly after promotion to an older 
generation, then the addition of intermediate generations may be worthwhile. However, 
in our experience, most systems offer only two generations plus an immortal generation, at 
least as the default configuration. The problem that the use of multiple generations seeks 
to solve is that of premature promotion, and there are other ways to deal with this. 

In the first place, promotion rate depends on the size of the young generation: larger 
nurseries allow objects more time to die. Some generational collectors may allow the user 
to set a fixed size for the youngest generation. Others allow the young generation to ex
pand on demand until it fills all of the heap except that required by other spaces (including 
the old generation and any necessary reserve for copying) .  More sophisticated collectors 
may vary the young generation size in order to meet particular throughput of pause time 
goals, making resizing decisions based on profiling the collector 's behaviour. 

Second, promotion can be limited by controlling the age at which objects are tenured. 
One approach is en masse promotion in which all survivors of the generation being col
lected are evacuated to an older generation. This is the simplest promotion to implement, 
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since remembered set for the young generation can be discarded after collection. Alterna
tively, a collector may require an object to survive more than one collection before being 
promoted. In this case, we need a mechanism to record object ages . Either some bits 
in the header of each object in the younger generations must be used to hold its age, or 
the generation must be divided into subspaces each of which holds objects of a particular 
age, or both. Common configurations include step-based schemes and eden plus survivor 
semispaces. In all cases, the subspaces of a generation are collected together. 

Finally, it is often possible to avoid having to promote certain objects. Many collectors 
reserve an immortal space for objects that will survive until the end of the program. Often 
the objects placed in an immortal area can be recognised either at the time the collector 
is built or by the compiler. Such objects might include the collector 's own data structures 
or objects representing the code being executed (assuming that it will not be necessary to 
unload code). 

Promotion rates may also affect the cost of the write barrier and size of remembered 
sets . Higher rates of promotion may lead to more inter-generational pointers that must 
be recorded. Whether or not this affects the performance of the write barrier depends on 
its implementation, a subject considered in more detail in Section 1 1 .8 .  Write barriers may 
record pointer writes unconditionally or they may filter out writes of no interest to the 
collector. The space requirements for card tables are independent of the number of writes 
recorded, in contrast to remembered sets implemented as sequential store buffers or hash 
tables . 

The frequency with which write barriers are invoked also depends on whether genera
tions can be collected independently. Independent collection requires all inter-generational 
pointers to be recorded. However, if we are prepared to give up this flexibility in favour 
of collecting all younger generations whenever an older one is collected, then the write 
barrier needs to record only old-young pointers, which we can expect to be far fewer. The 
number of pointers recorded also depends on whether we record the field or the object into 
which a pointer is written. For card tables, the choice is likely to be irrelevant. However, 
by noting in the object whether it has already been recorded as a possible source of an 
inter-generational pointer, we can reduce the size of the remembered set if we use object
remembering rather than field-remembering. 

The different mechanisms used by the mutator to record the possible sources of inter
generational pointers affect the cost of collection. Although less precise recording mech
anisms may reduce the cost of the write barrier, they are likely to increase the amount 
of work done by the collector. Field-recording with sequential store buffers may be the 
most precise mechanism, although the buffer may contain duplicate entries. Both object
recording and card tables require the collector to scan the object or card to find any inter
generational pointers. 

In conclusion, generations are but one way of partitioning the heap to improve garbage 
collection. In the next chapter, we look at other partitioning methods . 

9.14 Abstract generational garbage collection 

Finally, let us see how the abstract collection framework we introduced in Section 6.6 can 
be applied to generational collection. Recall that Bacon et al [2004] cast abstract tracing 
as a form of reference counting, incrementing the count of each object as it is marked. 
An abstract representation of a conventional, two generation, en masse promotion, nursery 
collection algorithm is shown in Algorithm 9 . 1 .  

For analogy to  the previous abstract collection algorithms, this algorithm maintains a 
multiset I of 'deferred' reference count increments to nursery objects . Recall that a remem-
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Algorithm 9.1: Abstract generational garbage collection: collector routines 

1 atomic co l l e ctNu r s e ry ( I ) : 
root sNu r s e ry ( I )  
s canNu r s e ry ( I) 
sweepNu r s e ry ( )  

6 s canNu r s e r y (W) : 
while not i sEmpt y ( W) 

s r c  f- remove (W)  
p ( s r c )  f- p ( s rc ) + l  

10 if p ( s r c )  = 1 
n for each f l d  in P o i nt e r s ( s r c )  
1 2  

1 3  

1 4  

1 5  

r e f  f- * f l d  
i f  r e f  i n  Nu r sery  

W f- W + [re f]  

1 o  sweepNu r s e r y ( ) : 
1 7  while not i sEmpt y ( Nu r s e ry)  
1 s  node f- remove (Nu r s ery )  
1 •  if p ( node )  = 0 
w f ree (node) 
21 

22 root sNu r s e r y ( I )  
23 for each f l d  E Ro ot s 
24 

25 

26 

r e f  f- * f ld  
if ref  � null and r e f  E Nu r s e r y  

I f- I + [ re f ]  

I* shade s rc *f 
I* s r c  was white, now grey *f 

I* en ma s s e  promotion *I 
I* node is white *f 

bered set is a set of fields that together include all references from the older generation(s) 
to the nursery. The multiset I contains exactly the nursery references from those locations, 
which is why decNu r s e ry removes elements from the multiset: a (possibly) remembered 
slot is being overwritten. The result is that if a nursery object n appears in I then n will be 
retained by the generational collector. The number of times n appears in I is n's reference 
count, not counting references from the nursery or roots . A tracing algorithm summarises 
in a single mark bit the truth of n E I .  

When co l le c t Nu r sery  is  invoked, multiset I is the set of non-zero reference counts, 
restricted to the nursery, counting only references from old objects. It is the complement of 
deferred reference counting's zero count table. After adding references from roots to the 
nursery (root sNu r s e ry}, the nursery is traced from I ( s canNu r s e r y} and is then swept, 
removing survivors from Nur s e r y, which implicitly adds them to the older generation, 
and freeing unreachable nursery objects, that is, those whose abstract reference count is 
zero. Note that the statement in line 18 performs en masse promotion of all the live nursery 
objects: it would be straightforward to modify this to model other promotion policies . 
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Algorithm 9.1 (continued): Abstract generational garbage collection: mutator routines 

27 New( ) : 
28 
29 

30 

31 

32 

re f +-- a l locat e ( )  
i f  r e f = null 

c o l l ectNu r s e r y ( I )  
r e f +-- a l l o c a t e ( )  
i f  r e f  = null  

33 c o l lect ( )  /* tracing, counting, o r  other full-heap G C  4 
34 

35 

36 
37 

38 

r e f  +-- a l l o c a t e ( )  
if ref  = null 

error  " Out  of memo ry " 
p( r e f )  +-- 0 
Nur s e ry +-- Nur s e ry U { re f }  

39 return ref  
40 

41  incNu r s e ry (node ) : 
u if node  in Nur s e ry 
43 I +-- I + [node]  
44 
45 decNu r s e ry (node) : 
46 if n o de in Nu r s e ry 
47 I +-- I - [node]  
48 
49 Writ e ( s rc ,  i, ref ) : 
� if s r c � Root s and src  � Nu r s e ry 
51 i n cNursery ( re f )  
52 de cNursery ( s r c [ i ] ) 
53 s r c [i ]  +-- re f 

/* node is black 4 
I* allocate in nursery */ 



Chapter 10 

Other partitioned schemes 

In the previous chapter we looked at generational and other age-based collection schemes. 
Those algorithms partitioned objects by their age and chose a partition to collect based on 
some age-related property. For example, generational collectors preferentially collect the 
youngest partition (or generation) . Although this strategy in particular is highly effective 
for a wide range of applications, it does not address all the problems facing the collector. 
In this chapter we examine schemes outside the age-based collection framework but still 
based on partitioning the heap. 

We start by considering one of the commonest forms of segregation, allocating large 
objects in a separate space. We then examine collectors that partition the heap based on 
the topology of the object graph, before looking at possibilities for allocation on thread 
stacks or into scoped regions. We conclude by discussing hybrid algorithms that partition 
the heap and collect different spaces at different times or using different algorithms, or 
both. 

10.1 Large object spaces 

Large object spaces are one of the most common ways to partition the heap. The definition 
of 'large' can be chosen on the basis of either the absolute size of an object (say, greater 
than 1024 bytes [Ungar and Jackson, 1988] or its size relative to that of the blocks used by 
the allocator [Boehm and Weiser, 1988]), or relative to the heap [Hosking et al, 1992] . Large 
objects meet several of the criteria for segregation that we identified in Chapter 8. They 
are more expensive to allocate and more likely to induce fragmentation, both internal and 
external. It is therefore worthwhile using policies and mechanisms to manage them that 
would be inefficient if applied to smaller ones. Allocation in a copying space is particu
larly expensive since additional space must also be reserved so that they can be copied. 
Performing the copy may also be expensive, although that cost is likely to be dominated 
by the cost of updating the object's fields processing child pointers if the object is a large 
array of pointers . For these reasons, large object spaces are often managed by collectors 
that usually do not physically move their objects, although the trade-off between the per
formance advantages of not moving objects and the costs of fragmentation make it likely 
that even large objects may need to be compacted occasionally [Lang and Dupont, 1987; 
Hudson and Moss, 1992] . 

There are a number of ways in which large object spaces might be implemented and 
managed. The simplest is to use one of the free-list allocators described in Chapter 7 and 
to reclaim objects with a mark-sweep collector. It is also possible to combine a non-moving 
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Tospace 

new objects 

From space 

Figure 10.1: The Treadmill collector: objects are held on a double-linked list. 
Each of the four segments hold objects of a different colour, so that the colour 
of an object can be changed by 'unsnapping' it from one segment and 'snap
ping' it into another. The pointers controlling the Treadmill are the same as 
for other incremental copying collectors [Baker, 1978] : scanning is complete 
when s c a n  meets T, and memory is exhausted when f ree  meets B. 

Jones [ 1996]. Reprinted by permission. 

large object space with a wider range of algorithms including copying. Several implemen
tations have separated large objects into a small (possibly fixed-size) header and a body 
[Caudill and Wirfs-Brock, 1986; Ungar and Jackson, 1988, 1992; Hosking et al, 1992) . The 
body is kept in a non-moving area, but the header is managed in the same way as other 
small objects. The header may also be handled by a generational garbage collector; opin
ions differ on whether large object headers should be promoted by the collector [Hudson 
et al, 1991] or not (so that the large amount of space that they occupy can be reclaimed 
as soon as possible after the object's death [Ungar and Jackson, 1992]) . Other Java vir
tual machines, including Sun's ExactVM [Printezis, 2001 ] ,  Oracle's JRockit and Microsoft's 
Marmot [Fitzgerald and Tarditi, 2000], have not used a separate space but allocated large 
objects directly into the old generation. Since large objects are by their nature likely to 
survive for some time, this approach saves copying them from the young generation. 

The Treadmill garbage collector 

It is also possible to copy or move objects logically without moving them physically. In this 
section we discuss the Treadmill; in the next section we consider how to move objects with 
operating system support. In terms of the tricolour abstraction, a tracing garbage collector 
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partitions heap objects into four sets: black (scanned), grey (visited but not fully scanned), 
white (not yet visited) and free; it processes the grey set until it is empty. Each collection 
algorithm provides a different way to represent these sets . The Treadmill [Baker, 1992a] 
provides some of the advantages of semispace copying algorithms but in a non-moving 
collector. Although it was intended as an incremental collector its virtues have also led it 
to be used in stop-the-world configurations for managing large objects . 

The Treadmill is organised as a cyclic, double-linked list of objects (Figure 10.1) so that, 
considered anticlockwise, the black segment is followed by the grey segment then the 
white segment and finally the free segment. The black and grey segments comprise the 
tospace, and the white segment the fromspace of the heap. Four pointers are used to 
operate the Treadmill . Just as with Cheney's algorithm, s c an  points to the start of the grey 
segment and divides that segment from the black one. B and T point to the bottom and top 
of the white fromspace list respectively, and f ree divides the free segment from the black 
segment. 

Before a stop-the-world collection, all objects are black and in tospace. An object is 
allocated by advancing the f ree  pointer clockwise, thus removing it from the free seg
ment and adding it to the start of black segment. When the f ree  pointer meets the B 

pointer at the bottom of fromspace, free memory is exhausted and it is time to flip. At this 
point, the Treadmill contains at most two colours, black and white. The black segment is 
reinterpreted as white and the T and B pointers are swapped. The collector then behaves 
much as any semispace copying collector. As grey objects are scanned, the s c an pointer is 
moved anticlockwise to add the object to the end of black segment. When a white object in 
fromspace is visited by the collector, it is evacuated to tospace by unsnapping it from the 
white segment and snapping it into the grey segment. When the scan pointer meets the T 

pointer, the grey segment is empty and the collection is complete. 
The Treadmill has several benefits . Allocation and 'copying' are fairly fast. A concur

rent Treadmill can allocate objects of any colour simply by snapping them into the appro
priate segment. As objects are not moved physically by snapping, allocation and 'copying' 
are constant time operations not dependent on the size of the object. Snapping simpli
fies the choice of traversal order compared with other techniques discussed in Chapter 4 .  
Snapping objects to  the end of  the grey segment (before the T pointer) gives breadth-first 
traversal. Snapping objects at the start of the segment (at the s can pointer) gives depth
first traversal without needing an explicit auxiliary stack, although effectively a stack is 
embedded in the links of the Treadmill for all traversal orders. 

One disadvantage of the Treadmill for general purpose collection is the per-object over
head of the two links. However, for copying collection, this overhead is offset by removing 
the need for any copy reserve as the Treadmill does not physically copy objects. Another 
issue for the Treadmill is how to accommodate objects of different sizes (see [Brent, 1989; 
White, 1990; Baker et al, 1985] ) .  One solution is to use separate Treadmills for each size 
class [Wilson and Johnstone, 1993] . However, these disadvantages are less of an issue for 
large objects . Large object Treadmills (for example, as used in Jikes RVM) keep each object 
on its own page (or sequences of pages) .  If links are kept in the pages themselves, they 
may simply consume some of the space otherwise wasted when rounding up the size to 
an integral number of pages. Alternatively, the links can be stored together, outside the 
pages . The best reason for keeping links separate from user data is to reduce the risk of 
rogue code corrupting the collector 's metadata, but doing so may also reduce cache and 
paging overheads. 

Moving obj ects with operating system support 

It is also possible to 'copy' or 'compact' large objects without physically moving them, 
using support from the operating system. In this case, each large object must again be 
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allocated to its own set of pages. Instead of copying the object word by word, its pages 
can be re-mapped to fresh virtual memory addresses [Withington, 1991 ] .  It is also possible 
to use operating system support to initialise large objects incrementally. 1 Rather than zero 
the space for the whole object in one step, the object's pages can be memory protected. Any 
attempt to access uninitialised sections of the object will spring this trap, at which point 
the page in question can be zeroed and unprotected; see also our discussion of zeroing in 
Section 1 1 . 1 .  

Pointer-free obj ects 

There are good reasons for segregating typically large objects not directly related to their 
size. If an object does not contain any pointers, it is unnecessary to scan it. Segregation 
allows knowledge of whether the object is pointer-free to be derived from its address. If 
the mark-bit for the object is kept in a side table, then it is not necessary to touch the object 
at all. Allocating large bitmaps and strings in their own area, managed by a specialised 
scanner, can lead to significant performance improvements, even if the size of the area is 
modest. For example, Ungar and Jackson [ 1988] obtained a fourfold pause time reduction 
by using a separate space of only 330 kilobytes, tiny by today's standards.  

10.2 Topological collectors 

One way of arranging objects in the heap is to relate their placement to the topology of 
pointer structures in the heap. This arrangement offers opportunities for new garbage 
collection algorithms, which we consider in this section. 

Mature obj ect space garbage collection 

One of the goals of generational garbage collection is to reduce pause times . By and large 
the pause to collect the youngest generation can be bounded by controlling the size of 
the youngest generation. However, the amount of work done to collect the oldest gener
ation is limited only by the volume of live data in the heap. As we saw in Chapter 9, the 
Beltway.X.X generational configuration [Blackburn et al, 2002] attempted to address this 
by collecting each belt in fixed-size increments. However, this approach trades one prob
lem for another: cycles of garbage too large to be accommodated in a single increment 
cannot be reclaimed. Both Bishop [1977] and Beltway.X .X. lOO add a further area/incre
ment of unlimited size to provide a collector that is complete but that no longer bounds 
the work done in each collection cycle. 

Hudson and Moss [ 1992] seek to manage a mature object space (MOS) outside an age
based scheme. They too divide this space into a number of fixed-size areas. At each col
lection, a single area is condemned and any survivors are copied to other areas. Hudson 
and Moss resolve the cycle problem by structuring the areas, which they call cars, into a 
number of first-in, first-out lists called trains: hence, the algorithm is colloquially known 
as the 'Train collector ' .  As might be expected, at each collection they condemn a single car 
but they also impose a discipline on the destination cars to which they copy any survivors. 
This ensures that a garbage cycle will eventually be copied to a train of its own, all of which 
can be reclaimed in isolation from other trains. The algorithm proceeds as follows. 

1 .  Select the lowest numbered car c of the lowest numbered train t as the from-car. 

1 h t t p : / / www . memo rymanageme n t . o rg / .  
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2 .  If there are no root references to t and if t 's remembered set is empty, then reclaim 
this train as a whole as its contents are unreachable. Otherwise . . .  

3. Copy any object in c that is referenced by a root to a to-car c' in a higher numbered 
train t', possibly a fresh one. 

4. Recursively copy objects in c that are reachable from to-car c' to that car; if c' is full, 
append a fresh car to t' . 

5. Move any object promoted from the generational scheme to a train holding a refer
ence to it. 

6. Scan the remembered set of from-car c. If an object o in c is reachable from another 
train, copy it to that train. 

7. Copy any other object reachable from other cars in this train t to the last car of t, 
appending a new car if necessary. 

Step 2 reclaims whole trains that contain only garbage, even if this includes pointer 
structures (such as cycles) that span several cars of the train. As the train's remembered 
set is empty, there can be no references to it from any other train. Steps 3 and 4 move into a 
different train all objects in the from-car that are reachable from roots via reference chains 
contained in this car. These objects are certainly live, and this step segregates them from 
any possibly-garbage objects in the current train. For example, in Figure 10.2, objects A 
and B in car Cl, train Tl are copied to the first car of a new train T3. The last two steps 
start to disentangle linked garbage structures from other live structures . Step 6 removes 
objects from this train if they are reachable from another one: in this example, P is moved 
to train 2, car 2. Finally, step 7 moves the remaining potentially live objects in this car (for 
example, X) to the end of its train. It is essential that these steps are done in this order since 
a single object may be reachable from more than one train. Following step 7, any objects 
remaining in car c are unreachable from outside it and so this from-car is discarded, just as 
a semispace collector would do. 

The Train algorithm has a number of virtues. It is incremental and bounds the amount 
of copying done at each collection cycle to the size of a single car. Furthermore, it attempts 
to co-locate objects with those that refer to them. Because of the discipline imposed on the 
order in which trains and cars are collected, it requires only references from high to low 
numbered trains/cars to be remembered. If it is used with a young generation collector 
so that all spaces outside the mature object space are collected at each cycle, no references 
from outside that space need be remembered. 

Unfortunately, the Train collector can be challenged by several common mutator be
haviours.2 Isolating a garbage structure into its own train may require a number of garbage 
collection cycles quadratic in the number of cars over which the structure is distributed.  As 
presented above, the algorithm may fail to make progress in certain conditions. Consider 
the example in Figure 1 0.3a where there is insufficient room for both objects (or pointer 
structures) to fit in a single car. Object A will be moved to a fresh car at the end of the 
current train when the first car is collected. Provided that none of the pointers in this ex
ample are modified, the next collection will find an external reference to the leading car, 
so B will be evacuated to a higher numbered train. Similarly, the third collection will find 
a reference to A from B's  train and so move A there. There are no cars left in this train, so 
we can dispose of it. The next cycle will collect the first car of the next train, as desired. 
However, now suppose that, after each collection cycle, the mutator switches the external 

21t was superseded as the ' low pause' collector in Sun Microsystems' JDK after Java 5 in favour of a concurrent 
collector. 
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T2Cl T2C2 

(a) Before collecting car 1, train 1 {TlCl) .  

T1C2 

T3Cl 

(b) After collecting car 1, train 1. X moved to the same car as its referent Y, A and 8 
to a fresh train T3. The next collection cycle will isolate T2 and reclaim it wholesale. 
Numbered labels show the copies made in each algorithm step. 

Figure 10.2: The Train copying collector. 

Jones [1996). Reprinted by permission. 



10.2. TOPOLOGICAL COLLECTORS 

A B 

(a) Before collecting the first car (b) Before collecting the next car 

Figure 10.3: A 'futile' collection. After a collection which moves A to a fresh 
car, the external reference is updated to refer to A rather than B. This presents 
the same situation to the collector as before, so no progress can be made. 
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reference to the object in the second car, as in Figure 10.3b. The Train collector never dis
covers an external reference to the object in the leading car, and so the object will forever be 
moved to the last car of the current train, which will never empty. The collector can never 
progress to collect other trains. Seligmann and Grarup [ 1995] called these 'futile' collec
tions. They solve the problem by remembering external pointers further down the train 
and using these in futile collections, thereby forcing progress by eventually evacuating the 
whole train. 

The Train algorithm bounds the amount of copying done in each collection cycle but 
does not bound other work, such as remembered set scanning and updating references. 
Any 'popular ', highly referenced objects will induce large remembered sets and require 
many referring fields to be updated when they are moved to another car. Hudson and 
Moss suggest dealing with such objects by moving them to the end of the newest train, 
into their own car, which can be moved logically rather than physically in future collections 
without need to update references. Unfortunately this does not guarantee to segregate a 
garbage cycle that spans popular cars. Even if a popular car is allowed to contain more 
than one popular item, it may still be necessary to disentangle these to separate cars unless 
that are part of the same structure. Both Seligmann and Grarup [1995] and Printezis and 
Garthwaite [2002] have found popular objects to be common in practice. The latter address 
this by allowing remembered sets to expand up to some threshold (say 4,096 entries) after 
which they coarsen a set by rehashing its entries into a set of the same size but using a 
coarser hashing function. Seligmann and Grarup tune the frequency of train collections by 
tracking a running estimate of the garbage collected (a low estimate allows the collection 
frequency to be reduced) . But Printezis and Garthwaite found it to be common for an 
application to have a few very long trains of long lived data; this defeats such a tuning 
mechanism. 

Connectivity-based garbage collection 

Management of remembered sets can contribute significantly to the time and space costs of 
the Train algorithm. The performance of a partitioned collector would be improved if the 
number of inter-partition pointers that need to be remembered could be reduced or even 
eliminated. In the previous chapter, we saw how Guyer and McKinley [2004] used a static 
analysis to place new objects in the same generation as the object to which they would 
be connected, and Zee and Rinard [2002] eliminated write barriers for the initialisation 
of the newest object in a generational collector. Hirzel et al [2003] explored connectivity
based allocation and collection further. They observed that the lifetimes of Java objects are 
strongly correlated with their connectivity. Those reachable only from the stack tend to 
be short-lived whereas those reachable from globals tend to live for most of the execution 
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of the program (and they note that this property is largely independent of the precise 
definition of short- or long-lived) . Furthermore, objects connected by a chain of pointers 
tend to die at the same time. 

Based on this observation, they proposed a new model of connectivity-based collection 
(CBGC) [Hirzel et al, 2003] . Their model has four components. A conservative pointer 
analysis divides the object graph into stable partitions: if an object a may point to an object 
b then either a and b share a partition or there is an edge from a's partition to b's partition in 
the directed acyclic graph (DAG) of partitions. Although new partitions may be added (for 
example, as classes are loaded), partitions are never split. The collector can then choose 
any partition (or set of partitions) to collect provided it also collects all its predecessor par
titions in the DAG. Partitions in the condemned set are collected in topological order. This 
approach has two benefits . The collector requires neither write barriers nor remembered 
sets . Partitions can be reclaimed early. By collecting in topological order, as soon as the 
collector has finished tracing objects in a partition, any unvisited (white) objects in that 
partition or earlier ones must be unreachable and so can be reclaimed. Note that this also 
allows popular child partitions to be ignored. 

Hirzel et al suggest that the performance of connectivity-based garbage collectors de
pends strongly on the quality of partitioning, their estimate of the survivor volume of each 
partition and their choice of partitions to collect. However, they obtained disappointing 
results (from simulation) for a configuration based on partitioning by the declared types of 
objects and their fields, estimating a partition's chance of survival from its global or stack 
reachability, moderated by a partition age based decay function, and using a greedy al
gorithm to choose partitions to collect. Although mark/ cons ratios were somewhat better 
than those of a semis pace copying collector, they were much worse than those of an Appel
style generational collector. On the other hand, worst-case pause times were always better. 
Comparison with an oracular collector, that received perfect advice on the choice of par
tition, suggested that there was a performance gap that might be exploited by a better 
configuration. Dynamic partitioning based on allocation site also improved performance 
of the collector at the cost of re-introducing a write barrier to combine partitions . 

Thread-local garb age collection 

One way to reduce garbage collection pause times is to run the collector concurrently with 
the mutator threads . A variation on this is to perform collection work incrementally, inter
leaving the mutator and collector. Both approaches increase the complexity of implemen
tations, chiefly by requiring greater synchronisation between collectors and mutators; we 
defer discussion of incremental and concurrent garbage collection to later chapters. How
ever, if we can prove that a set of objects can only ever be accessed by a single thread, 
and if these objects are stored in their own thread-local heaplet, then these heaplets can 
be managed without synchronisation: the problem is reduced to stop-the-world collection 
for each thread. In this section, we investigate different designs for thread-local collection. 
Of course, thread-local approaches cannot deal with objects that may be shared; they must 
still be dealt with by halting all mutator threads during collection or by more complex 
concurrent or incremental techniques . 

The key to thread-local collection is to segregate objects that can be reached by just one 
thread from those that are potentially shared. Typically, heaps configured for thread-local 
collection use a single shared space and a set of per-thread heaplets . This requires strict 
regulation on the direction of pointers. An object in a thread-local heaplet may point to 
another object in the same heaplet or to a shared object. Shared objects may not refer
ence thread-local ones, nor may thread-local objects refer to objects in other thread-local 
heaplets .. The segregation of objects may be made statically, using a pointer analysis, or 
it may be dynamic, requiring infringements of the pointer direction rule to be detected 



1 0.2. TOPOLOGICAL COLLECTORS 

0 
G 

thread 1 thread 2 

Figure 10.4: Thread-local heaplet organisation, indicating permitted pointer 
directions between purely local (L}, optimistically-local (OL) and shared 
heaplets (G) [Jones and King, 2005] .  

145 

at run time. Note that any organisation can be used within a heaplet (for example, a flat 
arrangement or with generations). However, it is also possible to mark objects as shared 
on an object by object basis. 

Steensgaard [2000] used a fast but conservative pointer analysis similar to that of Ruf 
[2000] to identify Java objects potentially reachable from a global variable and by more 
than one thread. The goal of his flow-insensitive, context-sensitive escape analysis is to 
allow methods that create objects to be specialised in order to allocate the object in either 
the thread's local heaplet or the shared heaplet. Each heaplet comprises an old and a 
young generation. His collector is only mostly thread-local. Because Steensgaard treats 
all static fields as roots for a local heaplet, each collection requires a global rendezvous. A 
single thread scans the globals and all thread stacks in order to copy any directly reachable 
objects, before Cheney-scanning the shared heaplet. The local threads are released only 
after the shared scan is complete in order to finish independent collections of their own 
heaplets . These threads may encounter uncopied objects in the shared heaplet: if so a 
global lock must be acquired before the object is copied. 

Static segregation of shared and thread-local objects requires a whole program analy
sis. This is a problem for any language that permits classes to be loaded dynamically, since 
polymorphic methods in sub-classes loaded after the analysis is complete may 'leak' refer
ences to local objects by writing references into fields of globally reachable ones. Jones and 
King address this problem and provide a design for a truly thread-local collector [King, 
2004; Jones and King, 2005] .  Their escape analysis builds on Steensgaard's but is com
positional: it supports Java's dynamic class loading, dealing safely with classes loaded 
after the analysis is complete. Designed for long running Java applications, the analy
sis was sufficiently fast to be deployed at run time in a background thread, with Sun's 
ExactVM Java virtual machine running on a multiprocessor under Solaris. They provide 
each thread with two local heaplets: one for objects that are guaranteed to be reachable 
by only the thread that allocated them, no matter what further classes may be loaded, and 
one for optimistically-local objects: those that are accessible by no more than one thread at 
the time of the analysis but which may become shared if an antagonistic class is loaded. 
Purely thread-local objects turn out to be comparatively rare: these are mostly objects 
that do not escape their allocating method. Optimistically-local objects are fairly com
mon, however. The rules for pointer directionality are extended. Local objects may also 
point to optimistically-local ones, but not vice-versa; optimistically-local objects may refer 
to global ones. A schematic of permissible pointers is shown in Figure 10.4. Jones and King 
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collect each thread independently, with no global rendezvous. Both a thread's local and 
optimistically-local heaplets are collected together, provided no classes have been loaded 
that compromise the analysis. Whenever a class is loaded dynamically, it is analysed both 
to specialise its methods, and to discover whether it extends a class already loaded and 
whether any of its methods potentially cause an allocation site marked optimistically
local to become shared. If so - and such 'non-conforming' methods are very rare - the 
optimistically-local heaplets of all threads that may use this method are marked shared 
and no longer collected thread-locally, but instead are collected alongside the shared heap. 

Steensgaard segregated objects statically, at the cost of a global rendezvous; Jones and 
King also used a static escape analysis but collect purely thread-locally, with a dynamic 
class loading check to handle non-conforming methods. However, it is also possible to 
detect objects dynamically as they escape from their allocating thread. Domani et al [2002] 
created objects in thread-local allocation buffers but detect escapement precisely, using a 
write barrier. Because shared and local objects are intermingled in the heap, each object 
is associated with a global bit (held in a separate bitmap) which is set by the write barrier 
just before a thread creates a reference to an object it did not allocate. The barrier must 
also set this bit for every object in the transitive closure of the target object. The parallel 
mark-sweep collector of Domani et al collects threads independently. It stops all threads 
only if it is unable to allocate a large object or a fresh allocation buffer. They also allocate 
objects known to be always global (such as thread and class objects or those identified as 
global by off-line profiling) into a separate shared region. Co-existence of global and local 
collections requires some synchronisation to ensure that a global collection is not initiated 
while a local one is in progress; we discuss the handshakes necessary in later chapters. 

Collecting thread-locally is simpler if all objects are immutable. Erlang [Armstrong et al, 
1996] is a strict, dynamically typed, functional programming language. Erlang programs 
typically use very large numbers of extremely light-weight processes which communicate 
with each other through asynchronous message passing. The original Erlang/OTP run
time system was process-centric, with each process managing its own private memory 
area.  Because Erlang does not allow destructive assignment, message passing uses copy
ing semantics and thread-local heaps can be collected independently. The costs of this 
design are that message passing is an 0( n ) operation (where n is the size of the message) 
and message data are replicated between processes .  

Sagonas and Wilhelmsson add to this architecture a shared area for messages and one 
for binaries, in order to reduce the cost of message passing [Johansson et al, 2002; Sagonas 
and Wilhelmsson, 2004; Wilhelmsson, 2005; Sagonas and Wilhelmsson, 2006] . They impose 
the usual restrictions on pointer direction between the process-local areas and the shared 
messages area. Their shared message area does not contain any cyclic data and the binaries 
do not contain references. A static message analysis guides allocation: data that is likely 
to be part of a message is allocated speculatively on the shared heap and otherwise in a 
process's local heap . All message operands are wrapped in a copy-on-demand operation 
that checks that the operand is indeed in the shared heap and otherwise copies it; often this 
test can be eliminated by the compiler. Note that the copying semantics of Erlang message 
passing allow the analysis to both over-approximate and under-approximate sharing. Lo
cal heaps are managed with a generational, stop-and-copy Cheney-style collector, using 
generational stack scanning [Cheng et al, 1998] . As they contain no clcles, the shared bi
naries are reference counted. Each process maintains a remembered list of pointers to bina
ries .  When a process dies, the reference counts of binaries in this list are decremented. The 
shared message area is collected by an incremental mark-sweep collector, which requires 
global synchronisation. We discuss incremental mark-sweep algorithms in Chapter 16. 

3Not to be confused with reference lists used by distributed reference counting systems where the target main
tains a list of processes that it believes hold references to it. 
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Doligez and Leroy [1993] were the first to introduce the thread-local/shared region 
memory architecture . In their case, the local/shared regions also served as the young/old 
generations of their collector. Their target was Concurrent Caml Light, ML with concur
rency primitives . Unlike Erlang, ML does have mutable variables. In order to allow threads 
to collect their young generations independently, mutable objects are stored in the shared 
old generation. If a mutable object is updated to refer to an object in a thread-local young 
generation, then the transitive closure of the young object is copied to the old generation. 
As in the Erlang case, making two copies of the data structure is safe since young ob
jects are guaranteed to be immutable. As well as copying the young objects, the collector 
updates a forwarding address in each object header to refer to its shared replica.  These 
addresses are used by subsequent thread-local, young generation collections; the mutator 
write barrier has done some of the collector 's work for it. Note that the forwarding pointer 
must be stored in a reserved slot in the object's header rather written destructively over 
user data since the young copy is still in use. This additional header word is stripped from 
the old generation copy as it is not required by the shared heap's concurrent mark-sweep 
collector. While this additional word imposes a space overhead in the young generations, 
this overhead may be acceptable since young generation data will usually occupy a much 
smaller fraction of total heap size than old generation data. 

Stack allocation 

Several researchers have proposed allocating objects on the stack rather than in the heap, 
wherever possible. A wide variety of mechanisms have been suggested, but fewer have 
been implemented, especially in production systems. Stack allocation has some attrac
tions. It potentially reduces the frequency of garbage collection, and expensive tracing or 
reference counting is unnecessary for stack allocated data. Thus, stack allocation should 
in theory be gentler on caches . On the down side, it may prolong the lifetime of objects 
allocated in frames that persist on the stack for a long time. 

The key issue is to ensure that no stack allocated object is reachable from another object 
with a longer lifetime. This can be determined either conservatively through an escape 
analysis (for example, [Blanchet, 1999; Gay and Steensgaard, 2000; Corry, 2006] ) or by run
time escape detection using a write barrier. Baker [1992b] was the first to suggest (but not 
implement) stack allocation in the context of an otherwise garbage collected heap . Laying 
out the stack to grow away from the heap could use an efficient address-based write bar
rier to detect references to objects on the stack from locations that might outlive them. In 
such a case, the object would be copied ('lazily allocated')  into the heap. He also required 
a read barrier to handle the forwarding addresses that copying introduced. Others have 
suggested allocating objects in a stack of frames separate from the call stack. Cannarozzi 
et al [2000] used a write barrier to partition the heap, with each partition associated with 
the oldest activation record that might refer to it. Unfortunately the cost (in Sun's handle
based JDK 1 . 1 .8) was large: an extra four 32-bit words per object. Qian and Hendren [2002] 
allocated frames lazily to avoid allocating any empty ones. They used a write barrier to 
mark such a frame as global if any of its objects escaped. In this case, the write buffer also 
marked the site in the method allocating the object as non-local but this requires storing a 
site identity in the object's header. They share the lock word for this purpose at the cost of 
making the frame global if an object is ever locked; unfortunately, library code often con
tains redundant (that is, local) locking (which is why biased locking is so effective). Corry 
[2006] used a cheaper intraprocedural escape analysis that associates object frames with 
loops rather than method invocations and hence works well with dynamic class loading, 
reflection, factory methods and so on. 

Azul Systems' multicore, multiprocessor Java appliances provide hardware-supported 
object-by-object escape detection . When an object is allocated on the stack, some pointer 
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bits are used to store the frame's depth in the stack. These bits are ignored by pointer 
loads but checked by stores: storing a reference to an object in a new frame into an object 
in an old frame causes a trap which moves the object and fixes up references to it (which 
can only be held by objects in newer frames) . The fixup is expensive so needs to be rare 
for stack allocation be be effective. If stack allocating an object would cause the frame to 
become too large, Azul place the object in an overflow area to the side. Azul find that they 
still need occasional thread-local collections to deal with dead stack allocated objects in 
long lived frames .  

Overall, most of these schemes have either not been implemented, are reported with in
sufficient detail of comparative systems, or do not offer significant performance improve
ments. While it is likely that for many applications a large fraction of objects might be stack 
allocatable, most of these are likely to be short-lived . Azul find that over half of all objects 
may be stack allocated in large Java applications. However, this scenario is precisely the 
one in which generational garbage collection excels. It is not clear that stack allocation 
reduces memory management costs sufficiently to make it worthwhile. Another rationale 
for stack allocation is that it can reduce memory bandwidth by keeping these objects en
tirely in the cache, given a sufficiently large cache. One related strategy that is effective is 
scalar replacemen t or object inlining whereby an object is replaced by local variables repre
senting its fields [Dolby, 1997; Dolby and Chien, 1998, 2000; Gay and Steensgaard, 2000] . 
A common application of scalar replacement is for iterators in object-oriented programs. 

Region inferencing 

Stack allocation is a restricted form of more general region-based memory management. 
The key idea behind region-based memory is that objects are allocated into regions and that 
entire regions are reclaimed as soon as none of their contents is required by the program. 
Typically, region reclamation is a constant time operation. The decisions as to when to 
create a region, into which region to place an object and when to reclaim a region may 
fall to the programmer, the compiler, the run-time system or a combination of these. For 
example, the programmer may be required to add explicit instructions or annotations to 
create and destroy regions or to indicate the region into which an object must be allocated . 
Possibly the best known explicit system is the Real-Time Specification for Java (RTSJ). In 
addition to the standard heap, the RTSJ provides an immortal region and scoped regions. 
The RTSJ enforces strict rules on pointer directionality: an object in an outer scoped region 
cannot refer to one in an inner scope .  

Other region-based systems may relax the requirements on pointer direction, allowing 
regions to be reclaimed even if there are references into that region from other, live regions. 
To be safe, such systems require a guarantee that the mutator will never follow a dangling 
pointer into a deallocated region. These systems require compiler support, either for in
ferring the region to which an object should be allocated and when it is safe to reclaim the 
region, or to check programmer annotations (possibly in the form of non-standard type 
systems) . The best known, fully automatic, region inferencing system is that for Standard 
ML [Tofte et al, 2004] . Used with care, their system can lead to programs that are efficient 
and use less memory. However, this is very dependent on program style, often requiring 
the programmer to have a deep understanding of the inferencing algorithm (although not 
its implementation) . Region inferencing can also make programs harder to understand 
and more difficult to maintain as small changes can have significant effects on the infer
encing decisions . The ML Kit inferencing algorithm was also very expensive for large 
programs (for example a 58,000 line program took one and a half hours to compile). Tofte 
et al report that it was often best to restrict region inferencing to well understood coding 
patterns and manage other parts of the program by garbage collection. 
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Figure 10.5: A continuum of tracing collectors. Spoonhower et al contrast 
an evacuation threshold - sufficient live data to make a block a candidate for 
evacuation - with an allocation threshold - the fraction of a block's free space 
reused for allocation. 
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10.3 Hybrid mark-sweep, copying collectors 
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When considering how the volume of live objects in a block can be used to make evacu
ate or mark decisions, Spoonhower et al [2005] contrast an evacuation threshold - whether 
the block contains sufficiently little live data to make it a candidate for evacuation - with 
an allocation threshold - how much of the block's free space should be reused for alloca
tion. These thresholds determine when and how fragmentation is reduced. For example, 
a mark-sweep collector has an evacuation threshold of zero (it never copies) but an allo
cation threshold of 100% (it reuses all free space in a block), whereas a semispace copying 
collector has an evacuation threshold of 100% but an allocation threshold of zero (from
space pages are not used for allocation until after the next collection); these two collectors 
are shown in Figure 10.5. Overly passive memory managers with low evacuation and allo
cation thresholds can suffer from fragmentation; overly aggressive managers, where both 
thresholds are high, have high overheads either because they replicate data or because 
they require more passes to collect the heap. 

The performance of a large or long running application may eventually suffer from 
fragmentation unless the heap is managed by a compacting collector. Unfortunately, com
paction is likely to be expensive in time or space compared with non-moving collection. 
Semispace copying requires a copy reserve but mark-compact algorithms require several 
passes over the heap in addition to the cost of moving objects . To address these prob
lems, Lang and Dupont [1987] proposed combining mark-sweep collection with semispace 
copying to compact the heap incrementally, one region at a time. The heap is divided into 
k + 1 equally sized windows, one of which is empty. At collection time, some window is 
chosen to be the fromspace and the empty window is used as the tospace. All other win
dows are managed by a mark-sweep collector. As the collector traces the heap, objects are 
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Figure 10.6: Incremental incrementally compacting garbage collection. One 
space (fromspace) is chosen for evacuation to an empty space (tospace), 
shown as grey; the other spaces are collected in place. By advancing the 
two spaces, the whole heap is eventually collected. 

Jones (1996]. Reprinted by permission. 

evacuated to the tospace window if they are in the fromspace window, otherwise they are 
marked (see Figure 10.6). References in any window to fromspace objects must be updated 
with their tospace replicas. 

By rotating the window chosen to be the fromspace through the heap, Lang and Dupont 
can compact the whole heap in k collections at a space overhead of 1 I k of the heap. Unlike 
mark-compact algorithms, no extra passes or data structures are required. They observe 
that this algorithm can provide flexibility in tracing order, especially if tospace is managed 
by a Cheney algorithm. At each tracing step, the collector can choose whether to take the 
next item from the mark-sweep or the copying work list: Lang and Dupont advocate pre
ferring the mark-sweep collector in order to limit the size of its stack. There is also a locality 
argument here since mark-sweep tends to have better locality than Cheney copying. 

The Spoonhower et al [2005] collector for C# takes a more flexible approach. It uses 
block residency predictions to decide whether to process a block in place to tospace or to 
evacuate its contents. Predictions may be static (for example, large object space pages), use 
fixed evacuation thresholds (generational collectors assume few young objects survive) or 
dynamic ones (determined by tracing). Spoonhower et al use residency counts from the 
previous collection to determine whether to evacuate or mark objects in a block (blocks 
containing pinned objects are processed in place) in order not to need an extra pass at each 
collection. In a manner similar to Dimpsey et al [2000] (discussed below), they maintain a 
free-list of gaps, and bump allocate into these. 

Garbage-First 

Garbage-First [Detlefs et al, 2004) is a sophisticated and complex incrementally compact
ing algorithm, designed to meet a soft real-time performance goal that collection should 
consume no more than x milliseconds of any y millisecond time slice. It was introduced 
in Sun Microsystems' HotSpot VM in JDK 7 as a longer term replacement to a concurrent 
mark-sweep collector in order provide compaction with more predictable response times. 
Here we focus on how it treats partitions. 

Like the Lang and Dupont collector, Garbage-First divides the heap into equal sized 
windows of contiguous virtual memory. Allocation is made into a current allocation win
dow, taken from a list of empty windows. To minimise synchronisation between muta
tor threads, each thread has its own bump-a-pointer local allocation buffer. Thread-local 
buffers are acquired from the current allocation window with an atomic CompareAnd
Swap operation; larger objects may similarly be allocated directly in the allocation win-
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dow. 'Humongous' objects, larger than three-quarters of a window, are allocated in their 
own sequence of windows. 

Unlike Lang and Dupont, Garbage-First allows an arbitrary set of windows to be cho
sen for collection. It therefore requires the mutator 's write barrier to record any inter
window pointers that it writes. Almost all such pointers must be remembered unlike, say, 
the Train collector which requires only unidirectional remembered sets since cars are col
lected in a predetermined order. Garbage-First uses a filtering write barrier that records 
interesting pointers in card tables (we discuss these in Chapter 11 ) .  

A single collector thread marks the heap concurrently with mutator execution (see 
Chapter 16), based on Printezis and Detlefs [2000] bitmap marking (which we saw in Chap
ter 2). Once the heap has been marked, Garbage-First uses the bitmap to select windows 
for evacuation. Regions are compacted in parallel with all mutator threads stopped (see 
Chapter 14). In general, the windows to be evacuated will be those with low fractions of 
live data. However, Garbage-First can also operate generationally. In a pure, 'fully young' 
generational mode, the windows chosen for evacuation are just those used for allocation 
since the last collection. A 'partially young' collector can add further windows to this con
demned set. In either generational mode, the mutator write barrier can filter out pointers 
with young sources. As with other schemes, Garbage-First attempts to identify popular 
objects and to segregate these in their own windows, which are never candidates for evac
uation and so do not require remembered sets . 

Immix and others 

We now examine three collectors that trade off the space-time costs of mark-sweep col
lection and fragmentation. Each takes a different approach to the problems of trying to 
make best use of available heap space, avoiding the need to defragment (whether through 
evacuation or mark-compact), and reducing time overheads in the collector's loops. 

Dimpsey et al [2000] describe a sophisticated parallel mark-sweep (with occasional 
compaction) collector for IBM's server Java virtual machine, version 1 .1 .7. Like Sun's 1 . 1 .5 
collectors, the IBM server used thread-local allocation buffers .4 Small objects were bump
allocated within a buffer without synchronisation; synchronised allocation of buffers and 
other large objects (greater than 0.25 times the buffer size) was performed by searching a 
free-list. Dimpsey et al found that this architecture on its own led to poor performance. Al
though most large object requests were for local allocation buffers, free chunks that could 
not satisfy these requests tended to congregate at the start of the free-list, leading to very 
long searches. To address this, they introduced two further free-lists, one for objects of 
exactly local allocation buffer size (1 .5 kilobytes plus header) and one for objects between 
512 kilobytes and buffer size. Whenever the buffer list became empty, a large chunk was 
obtained from the large object list and split into many buffers . This optimisation substan
tially improved Java performance on uniprocessors and even more so on multiprocessors. 

The IBM server collector marked objects in a side bitmap. Sweeping traversed the 
bitmap, testing bits a byte or a word at a time. Dimpsey et al optimise their sweep by 
ignoring short sequences of unused space; a bit in the object header was used to distinguish 
a large object from a small one followed by garbage, and two tables were used to translate 
arbitrary byte values in the mark bitmap to counts of leading and trailing zeroes. The 
consequence of this is that, after a collection, parts of an allocation buffer may be free but 
not usable for allocation since the server bump-allocates only from fresh buffers. However, 
not only did this approach reduce sweep time but it also reduced the length of the free-lists, 
since they no longer contain any small blocks of free space. 

4Contrary to our conventions, Dimpsey et al call these 'thread-local heaps' . 
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Figure 10.7: Allocation in immix, showing blocks of lines. Immix uses bump 
pointer allocation within a partially empty block of small objects, advanc
ing l i neCu r s o r  to l ineLimi t, before moving onto the next group of un
marked lines. It acquires wholly empty blocks in which to bump-allocate 
medium-sized objects. Immix marks both objects and lines. Because a small 
object may span two lines (but no more), immix treats the line after any se
quence of (explicitly) marked line as implicitly marked: the allocator will not 
use it. 

Blackburn and McKinley [2008], doi: 1 0 . 1 1 4  5 / 1 3 7  5 5 8 1 . 1 3 7  5 5 8 6 . 

© 2008 Association for Computing Machinery, Inc. Reprinted by permission. 

The potential cost of this technique is that some free space is not returned to the allo
cator. However, objects tend to live and die together and Dimpsey et al use this property 
to avoid compaction as much as possible. They follow the advice of Johnstone [1997] by 
using an address-ordered, first-fit allocator in order to increase the chance of creating holes 
in the heap large enough to be useful. Furthermore, they allow local allocation blocks to 
be of variable length. If the first item on the local allocation buffer free-list is smaller than 
a desired size T (they use six kilobytes), it is used as is (note that the item must be larger 
than the minimum size accepted for inclusion in the free-list) . If it is between T and 2T, it 
is split into two evenly sized buffers. Otherwise, the block is split to yield a buffer of size 
T. Dimpsey et al also set aside 5% of the heap beyond the 'wilderness boundary' [Korn 
and Vo, 1985], to be used only if insufficient space is available after a collection. 

Like the Dimpsey et al IBM server, the immix collector [Blackburn and McKinley, 2008] 
attempts to avoid fragmentation. It too is a mostly mark-sweep collector, but it eliminates 
fragmentation when necessary by copying rather compacting collection. Immix employs a 
block-structured heap, just as the other collectors discussed in this section. Its 32 kilobyte 
blocks are the basis for both thread-local allocation and the units for defragmentation. 
At collection time, immix chooses whether to mark a block in place or to evacuate its 
live objects, using liveness estimates gathered from the previous collection cycle (in the 
same way as Spoonhower et al but in contrast to Detlefs who obtain their estimates from 
concurrent marking) . Both the IBM server and immix use fast bump-pointer allocation. 
Whereas Dimpsey et al reduce fragmentation by allocating from variable sized buffers, 
immix can also sequentially allocate into line-sized gaps in partially filled buffers. Immix 
lines are 128 bytes, chosen to roughly match cache line lengths.  Just as Dimpsey et al 
optimise their collector 's sweep by ignoring short sequences of unused space, so Blackburn 
and McKinley reclaim space in recyclable blocks at the granularity of lines rather than 
individual objects. Let us look at the immix collector in detail. 

Immix allocates from either completely free or partially filled ('recyclable') blocks. Fig
ure 10.7 shows the structure of recyclable blocks. For the purpose of allocation, immix 
distinguishes large objects (which are allocated in a large object space), medium sized 
objects whose size is greater than a line, and small objects; most Java objects are small. 
Algorithm 10.1 shows the immix algorithm for small and medium sized objects. Immix 
preferentially allocates into empty line-sized gaps in partially filled blocks using a linear, 
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Algorithm 10.1: Allocation in immix 

1 a l l o c ( s i ze ) : 
addr +- sequent i a lAl locate ( l in e s ) 
if a ddr  f null 

return addr 
if s i z e  � LINE_S I ZE 

return a l l o c S l owHot ( s i z e ) 
else 

return ove r f l owAl l oc ( s i z e ) 

w a l l o cS l owHot ( s i z e ) : 
n l in e s  +- getNe xt L ine l nB l o c k ( )  
1 2 if l ines  = null 
1 3  l i n e s  +--- getNextRe cyc l ab l e B l ock ( )  
w if  l i ne s  = null 
1 s  l i nes  +--- getFreeB l o c k ( )  
16 if l ines  = null 
1 7  
18 

1 9  

return null 
return a l loc ( s i z e ) 

20 ove r f l owAl l o c ( s i z e ) : 
21 addr +- sequent i a lAl l o cat e (b l o c k ) 
22 if addr f null 
23 return addr 
24 b l o c k  +--- get F r e e B l ock ( )  
2s if b l o c k  = null 
26 return null 
27 return s equent i a lAl l o cat e (b l o c k ) 
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/* Out of memory 4 

/* Out of memory 4 

next-fit strategy. In the fast path, the allocator attempts to bump-allocate into the current 
contiguous sequence of free lines (line 2) . If this fails, the search distinguishes between 
small and medium sized allocation requests. 

We consider small requests first. In this case, the allocator searches for the next se
quence of free lines in the current block (line 11 ) .  If this fails, immix tries to allocate from 
free lines in the next partially filled block (line 13) or the next empty block (line 15) .  If 
neither request succeeds, the collector is invoked. Notice that, unlike first-fit allocation, 
the immix allocator never retreats even though this may mean that some lines are only 
partially filled. 

In most applications, a small number of Java objects are likely to be larger than a line but 
not 'large' . Blackburn and McKinley found that treating these like the small objects above 
led to many lines being wasted. To avoid fragmenting recyclable blocks, these medium 
sized objects are bump-allocated into empty blocks {ove r f l owAl l oc) .  They found that 
the overwhelming proportion of allocation was into blocks that were either completely free 
or less than a quarter full. Note that allocation of both small and medium sized objects is 
into thread-local blocks; synchronisation is required only to acquire a fresh block (either 
partially filled or completely empty). 

The immix collector marks both objects (to ensure correct termination of the scan) and 
lines - the authors call this 'mark-region' .  A small object is by definition smaller than 
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a line, but it may still span two lines. Immix marks the second line implicitly (and con
servatively): the line following any sequence of marked lines is skipped by the allocator 
(see Figure 10 . 7) even though, in the worst case, this might waste nearly a line in every 
gap . Blackburn and McKinley found that tracing performance was improved if a line was 
marked as an object was scanned rather than when it was marked and added to the work list, 
since the more expensive scanning operation better hid the latency of line marking. Im
plicit marking improved the performance of the marker considerably. In contrast, medium 
sized objects are marked exactly (a bit in their header distinguishes small and medium ob
jects). 

Immix compacts opportunistically, depending on fragmentation statistics, and in the 
same pass as marking. These statistics are recorded at the end of each collection by the 
sweeper, which operates at the granularity of lines. Immix annotates each block with the 
number of gaps it contains and constructs histograms mapping the number of marked 
lines as a function of the number of gaps blocks contain. The collector selects the most
fragmented blocks as candidates for compaction in the next collection cycle. As these 
statistics can provide only a guide, immix can stop compacting early if there is insufficient 
room to evacuate objects. In practice, compaction is rare for many benchmarks. 

Copying collection in a constrained memory space 

As we have seen, these incremental techniques require a copy reserve of just one block 
but take many collections to compact the whole heap. Sachindran and Moss [2003] adopt 
this approach for generational collection in memory constrained environments, dividing 
the old generation into a sequence of contiguous blocks. Rather than evacuate a single 
block at each collection, Mark-Copy collects the whole heap one block at a time at each full 
heap collection. Like any other generational collector, objects are allocated into the nursery 
which is collected frequently, with any survivors being copied to the old generation . If the 
space remaining drops to a single block, a full heap collection is initiated. 

Independent collection of each block requires a remembered set for each one, but this 
would complicate the generational write barrier since it would have to record not only 
inter-generational pointers but also inter-block ones. Instead, Mark-Copy's first phase 
marks all live objects, and also constructs per-block unidirectional remembered sets and 
counts the volume of live data for each block. Two advantages arise from having the 
marker rather than the mutator construct the remembered sets: the remembered sets are 
precise (they contain only those slots that actually hold pointers from higher numbered 
to lower numbered blocks at the time of collection) and they do not contain any dupli
cates. Windows of consecutive blocks are evacuated one at a time, starting with the lowest 
numbered (to avoid the need for bidirectional remembered sets), copying live data to the 
free block. Because the marker has counted the volume of live data in each block, we can 
determine how many blocks can be evacuated in each pass . For example, the second pass 
in Figure 10.8 was able to evacuate a window of three blocks. At the end of each pass, the 
space consumed by the evacuated blocks is released (unmapped) .  

By evacuating blocks one a t  time i f  necessary, collectors like Mark-Copy effectively 
increase the space available compared with a standard semispace collector, which may lead 
to fewer collections given the same space budget. Mark-Copy may also be incremental, 
interleaving collections of blocks in the old generation with nursery collections. However, 
it has disadvantages . Each full collection scans every object twice, once to mark and once to 
copy. Marking requires space for a mark-stack and for the remembered sets . Each copying 
pass may require thread stacks and global data to be rescanned. Still, under some useful 
range of conditions it performs well compared with copying generational collectors that 
must reserve more of the available space for copying into. 
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(a) After marking (live objects are shown grey). 

(b) After the first copying pass. B has been evacuated and the first block has been 
unmapped.  

c)  After the second copying pass. Note that there was sufficient room to evacuate 
three blocks. 

Figure 10.8: Mark-Copy divides the space to be collected into blocks. Af
ter the mark phase has constructed a remembered set of objects containing 
pointers that span blocks, the blocks are evacuated and unmapped, one at a 
time. 

Sachindran and Moss [2003), doi: 1 0 . 1 1 4 5 / 9 4 9 3 0 5 . 94 9 3 3 5 . 

© 2003 Association for Computing Machinery, Inc. Reprinted by permission. 
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The MC2 collector [Sachindran et al, 2004] relaxes Mark-Copy's requirement for blocks 
to occupy contiguous locations by numbering blocks logically rather than by their (vir
tual) address. This has several advantages. It removes the need for blocks to be remapped 
at the end of each pass (and hence the risk of running out of virtual address space in a 
32-bit environment). It also allows blocks to be evacuated logically simply by changing 
their block number, which is useful if the volume of live data in the block is sufficiently 
high to outweigh the benefit of copying and compacting it. Numbering the blocks logi
cally also allows the order of collection of blocks to be modified at collection time. Unlike 
Mark-Copy, MC2 spreads the passes required to copy old generation blocks over multiple 
nursery collections; it also marks the old generation incrementally using a Steele insertion 
barrier (we discuss incremental marking in Chapter 15). Because of its incrementality it 
starts collecting the old generation somewhat before space runs out, and adaptively ad-
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justs the amount of work it does in each increment to try to avoid a large pause that might 
occur if space runs out. Like other approaches discussed in this chapter, MC2 segregates 
popular objects into a special block for which it does not maintain a remembered set (thus 
treating them as immortal although this decision can be reverted) .  Furthermore, in order 
to bound the size of remembered sets, it also coarsens the largest ones by converting them 
from sequential store buffers to card tables (we explain these techniques in Chapter 11 ) .  
Large arrays are also managed by card tables, in this case by allocating space for their own 
table at the end of each array. Through careful tuning of its combination of techniques, it 
achieves high space utilisation, high throughput, and well-balanced pauses. 

10.4 Bookmarking garbage collection 

These incremental compaction techniques have allowed the heap to be compacted (even
tually) without the time overhead of traditional mark-compact algorithms or the space 
overhead of standard semispace collection. Nevertheless, programs will still incur a sig
nificant performance penalty if the number of pages occupied by the heap is sufficiently 
large that either mutator activity or garbage collector tracing leads to paging. The cost of 
evicting and loading a page is likely to be of the order of millions of cycles, making it worth 
expending considerable effort to avoid page faults . The Bookmarking collector [Hertz et al, 
2005] mitigates the total cost of mutator page faults and avoids faults during collection. 

The collector cooperates with the operating system's virtual memory manager to guide 
its page eviction decisions. In the absence of such advice, the manager is likely to make 
a poor choice of which page to evict. Consider a simple semispace collector and a virtual 
memory manager which always evicts the least recently used page. Outside collection 
time, the page chosen will always be an as yet unused but soon to be occupied tospace 
page. Indeed, if most objects are short-lived, it is quite likely that the least recently used 
page will be the very next one to be used by the allocator - the worst possible paging 
scenario from its point of view! A fromspace page would be a much better choice: not 
only will it not be accessed (and hence reloaded) until the next collection but its contents 
do not need to be written out to the backing store . 

The Bookmarking collector can complete a garbage collection trace without faulting in 
non-resident pages . The trace conservatively assumes that all objects on a non-resident 
page are live but it also needs to locate any objects reachable from that page. To support 
this, if a live page has to be scheduled for eviction, the run-time system scans it, looking 
for outgoing references, and 'bookmarks' their targets. When this page is reloaded, its 
bookmarks are removed. These bookmarks are used at collection time to propagate the 
trace. 

The virtual memory manager is modified to send a signal whenever a page is scheduled 
for eviction. The Bookmarking collector always attempts to choose an empty page. If this 
is not possible it calls the collector and then selects a newly emptied page. This choice 
can be communicated to the virtual memory manager through a system call, for example 
madv i s e  with the MADV_DONTNE E D  flag. Thus Bookmarking attempts to shrink the heap 
to avoid page faults . It never selects pages in the nursery or those containing its metadata . 
If Bookmarking cannot find an empty page, it chooses a victim (often the scheduled page) 
and scans it for outgoing references, setting a bit in their targets' headers. Hertz et al 
extend the Linux kernel with a new system call allowing user processes to surrender a list 
of pages. 

If the whole heap is not memory resident, full heap collections start by scanning the 
heap for bookmarked objects, which are added to the collector 's work list. While this is 
expensive, it is cheaper in a small heap than a single page fault. Occasionally it is necessary 
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to compact the old generation. The marking phase counts the number of live objects of 
each size class and selects the minimum set of pages needed to hold them. A Cheney pass 
then moves objects to these pages (objects on the target page are not moved). Bookmarked 
objects are never moved in order to avoid having to update pointers held in non-resident 
pages . 

10.5 Ulterior reference counting 

So far we have seen a number of different partitioned organisations of the heap . Each 
partitioning scheme allows different spaces of the heap to be managed by different policies 
or algorithms, collected either at the same or at different times. Segregation has been used 
to distinguish objects by their expected lifetimes, by their size or in order to improve heap 
utilisation. In the final section of this chapter, we consider segregation of objects according 
to the rate at which they are mutated . 

There is ample evidence that for a wide range of applications young objects are allo
cated and die at very high rates; they are also mutated frequently (for example to initialise 
them) [Stefanovic, 1999] . Evacuation is an effective technique for such objects since it al
lows fast bump pointer allocation and needs to copy only live data, little of which is ex
pected. Modern applications require increasingly large heaps and live sets. Long lived 
objects tend to have lower mortality and update rates . All these factors are inimical to 
tracing collection: its cost is proportional to the volume of live data and it is undesirable 
to trace long lived data repeatedly. On the other hand, reference counting is well suited to 
such behaviour as its cost is simply proportional to the rate at which objects are mutated. 
Blackburn and McKinley [2003] argue that each space, young and old, should be managed 
by a policy appropriate to its size, and to the expected lifetimes and mutation rate of the 
objects that it contains . 

Their ulterior reference counting collector therefore manages young objects by copying 
and older ones by reference counting. It allocates young objects into a bounded-size nurs
ery space, using bump pointer allocation. Any young objects that survive a nursery col
lection are copied to a mature space, managed with segregated fits free-lists. The mutator 
write barrier is responsible both for managing reference counts of objects in the mature 
space and for remembering pointers from that space to young objects. Reference counting 
is deferred for operations involving stacks or registers, and the collector coalesces reference 
count updates made to other heap objects. Whenever a pointer field of an unlogged object 
is updated, the object is logged. Logging records the address of the object and buffers a 
decrement for each of the object's referents in the reference counted mature space.5 

At garbage collection time, the collector moves surviving young objects into the ref
erence counted world, and reclaims unreachable data in both spaces. It increments the 
count of each reference counted child in the mutation log; any targets in the nursery are 
marked as live, and added to the nursery collector 's work list. As surviving young objects 
are promoted and scavenged, the collector increments the reference counts of their targets . 
As with many other implementations of deferred reference counting, the counts of ob
jects directly reachable from the roots are also incremented temporarily during collection. 
All the buffered increments are applied before the buffered decrements . Cyclic garbage is 
handled using by the Recycler algorithm [Bacon and Rajan, 2001 ] .  However, rather than 
invoking it at each collection on all those decremented objects whose count did not reach 
zero, Blackburn and McKinley trigger cycle detection only if the available heap space falls 
below a user-defined limit. 

5 In contrast, the write barrier of Levanoni and Petrank [2001 ]  records a snapshot of the mutated object (see 
Chapter S). 
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Figure 10.9: Ulterior reference counting schematic: the heap is divided into 
a space that is managed by reference counting and one that is not. The 
schematic shows whether reference counting operations on pointer loads or 
stores should be performed eagerly, deferred or ignored. 

Blackburn and McKinley [2003], doi: 1 0 . 1 1 4 5 / 9 4 9 3 0 5 . 9 4 9 3 3 6 . 

© 2003 Association for Computing Machinery, Inc. Reprinted by permission. 

An abstract view of Ulterior Reference Counting is shown in Figure 10.9: compare this 
with standard deferred reference counting shown in Figure 5.1 in Chapter 5 .  

10.6 Issues  to consider 

As we have seen in this chapter, there are several reasons other than age to segregate ob
jects in the heap. We partition the set of objects in the heap so that we can manage different 
partitions or spaces under different policies and with different mechanisms: the policies 
and mechanisms adopted will be those most appropriate to the properties of the objects 
in the space. Partitioning by physical segregation can have a number of benefits including 
fast address-based space membership tests, increased locality, selective defragmentation 
and reduced management costs. 

One of the most common policies is to manage large objects differently from small 
objects. Large objects are placed in their own space, which is typically a non-moving space 
in order to avoid the cost of copying or compacting these objects. Typically, large objects 
are allocated to their own sequence of pages, which are not shared with other objects. It 
can be worthwhile distinguishing objects that do not contain pointers (such as bitmaps 
representing images) from large arrays of pointers: it is not necessary to trace the former 
and, if they are marked in a separate bitmap, it is never necessary for the collector to access 
them, thus avoiding page and cache faults. 

Partitioning can also be used to allow the heap to be collected incrementally rather 
than as a whole. Here, we mean that the collector can choose to collect only a subset of 
the spaces in the heap in the same way that generational collectors preferentially collect 
only the nursery generation. The benefit is the same: that the collector has a more tightly 
bounded amount of work to do in any single cycle and hence that it is less intrusive. 

One approach is to partition the graph by its topology or by the way in which the 
mutator accesses objects. One reason for doing this is to ensure that large pointer structures 
are eventually placed in a single partition that can be collected on its own. Unless this is 
done, garbage cyclic structures that span partitions can never be reclaimed by collecting a 
single partition on its own. Collectors like the Train algorithm [Hudson and Moss, 1992] 
or connectivity-based garbage collection [Hirzel et al, 2003] used the topology of objects. 
The Train algorithm collects a small space at a time and relocates survivors into the same 
spaces as other objects that refer to them. Connectivity-based collection uses a pointer 
analysis to place objects into a directed acyclic graph of partitions, which can be collected in 
topological order. Objects can also be places into regions that can be reclaimed in constant 
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time, once it is known that all the objects in a region are dead. Placement can either be 
done explicitly, as for example by the Real-Time Specification for Java, or automatically 
guided by a region inferencing algorithm [Tofte et al, 2004] . 

Pointer analyses have also been used to partition objects into heap lets that are never ac
cessed by more than one thread [Steensgaard, 2000; Jones and King, 2005] .  These heaplets 
can then be collected independently and without stopping other threads. Blackburn and 
McKinley [2003] exploit the observation that mutators are likely to modify young objects 
more frequently than old ones. Their Ulterior collector thus manages young objects by 
copying and old ones by reference counting. High mutation rates do not impose any over
head on copying collection which is also well suited to spaces with high mortality rates . 
Reference counting is well suited to very large, stable spaces which would be expensive to 
trace. 

Another common approach is to divide the heap into spaces and apply a different col
lection policy to each space, chosen dynamically [Lang and Dupont, 1987; Detlefs et al, 
2004; Blackburn and McKinley, 2008]. The usual reason for this is to allow the heap to 
be defragmented incrementally, thus spreading the cost of defragmentation over several 
collection cycles . At each collection, one or more regions are chosen for defragmentation; 
typically their survivors are evacuated to another space whereas objects in other spaces 
are marked in place. Copying live data space by space also reduces the amount of space 
required to accommodate the survivors compared with standard semispace collection. At 
the extreme, the Mark-Copy collector [Sachindran and Moss, 2003],  designed for collection 
in restricted heaps, copies the whole of its old generation in a single collection cycle, but 
does so block by block in order to limit the space overhead to a single block. Its succes
sor, MC2 [Sachindran et al, 2004], offers greater incremental ity working to achieve good 
utilisation of available memory and CPU resources while also avoiding large or clustered 
pauses. 





Chapter 11 

Run-time interface 

The heart of an automatic memory management system is the collector and allocator, their 
algorithms and data structures, but these are of little use without suitable means to access 
them from a program or if they themselves cannot appropriately access the underlying 
platform. Furthermore, some algorithms impose requirements on the programming lan
guage implementation, for example to provide certain information or to enforce particular 
invariants. The interfaces between the collector (and allocator) and the rest of the system, 
both the language and compiler above and the operating system and libraries beneath, are 
the focus of this chapter. 

We consider in turn allocating new objects; finding and adjusting pointers in objects, 
global areas and stacks; actions when accessing or updating pointers or objects (barriers) ;  
synchronisation between mutators and the collector; managing address space; and using 
virtual memory. 

11.1 Interface to allocation 

From the point of view of a programming language, a request for a new object returns 
an object that is not only allocated, but also initialised to whatever extent the language 
and its implementation require. Different languages span a large range of requirements . 
At one end of the spectrum is C, which requires only a freshly allocated cell of storage of 
the requested size - the values in that cell are arbitrary and initialising the cell is entirely 
the programmer's responsibility. At the other end of the spectrum lie pure functional lan
guages such as Haskell, where at the language level one must provide values for all the 
fields of a new object, and it is not possible to perceive an uninitialised object. Languages 
more concerned with type safety require proper initialisation of all fields, either by requir
ing the programmer to provide (or assign) values, or by using safe defaults for each type 
or through some combination of these techniques. 

For our purposes we break allocation and initialisation down into three steps, not all of 
which apply in every language or case. 

1 .  Allocate a cell of the proper size and alignment. This is the job of the allocation 
subsystem of the memory manager. 

2. System initialisation. By this we mean the initialisation of fields that must be prop
erly set before the object is usable in any way. For example, in object-oriented lan
guages this might include setting the method dispatch vector in the new object. It 
generally also includes setting up any header fields required by either the language, 
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the memory manager or both. For Java objects this might include space for a hash 
code or synchronisation information, and for Java arrays we clearly need to record 
their length somewhere. 

3. Secondary initialisation. By this we mean to set (or update) fields of the new object 
after the new object reference has 'escaped' from the allocation subsystem and has 
become potentially visible to the rest of the program, other threads and so on. 

Consider the three example languages again. 

• C: All the work happens in Step 1 ;  the language neither requires nor offers any sys
tem or secondary initialisation - the programmer does all the work (or fails to) . No
tice, though, that allocation may include setting up or modifying a header, outside 
of the cell returned, used to assist in freeing the object later. 

• Java: Steps 1 and 2 together provide an object whose method dispatch vector, hash 
code and synchronisation information are initialised, and all fields set to a default 
value (typically all zeroes) .  For arrays, the length field is also filled in. At this point 
the object is type safe but 'blank'. This is what the new bytecode returns. Step 3 in 
Java happens in code provided inside a constructor or static initialiser, or even after
wards, to set fields to non-zero values. Even initialisation of f i n a l  fields happens in 
Step 3, so it can be tricky to ensure that other threads do not see those fields change 
if the object is made public too soon. 

• Haskell: The programmer provides the constructor with values for all fields of the re
quested object, and the compiler and memory manager together guarantee complete 
initialisation before the new object becomes available to the program. That is, every
thing happens in Steps 1 and 2, and Step 3 is disallowed. ML works the same way 
for object creation, even though it offers mutable objects as a special case, and Lisp 
is likewise biased towards functional creation of objects even though it also supports 
mutation. 

If a language requires complete initialisation, like Haskell and ML, then there is a bit of a 
problem defining the interface to allocation: there is an essentially infinite variety of signa
tures for allocating, depending on the number of fields and their types . The implementers 
of Modula-3, which allows functional-style initialisation of new objects but does not re
quire it, solved the problem by passing an initialising closure to the allocation subroutine. 
Allocation then acquires the necessary storage and invokes the initialising closure to fill in 
the new object. The closure has access to the values to insert and code to copy those val
ues into the object. Given the static scoping of Modula-3, such closures do not themselves 
require heap allocation, but only a static chain pointer (reference to the enclosing envi
ronment's variables) - a good thing, since otherwise there might be an infinite regress. 
However, if the compiler generates the initialisation code for these languages, whether the 
initialisation happens 'inside' the allocation routine or outside does not matter. 

The Glasgow Haskell Compiler solves the problem a different way: it inlines all of 
Steps 1 and 2, calling the collector if memory is exhausted. It uses sequential allocation so 
obtaining the cell is simple, and initialisation proceeds by setting the header word and the 
object's fields, whose values were already calculated. This is an example of tight integra
tion of a compiler and a particular approach to allocation (and collection) .  

Note that functional initialisation has two strong advantages: i t  helps ensure complete 
initialisation of objects and, provided that the initialisation code is effectively atomic with 
respect to possible garbage collection, it allows the initialising stores to avoid some write 
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barriers. In particular one can omit generational write barriers in the functional initialisa
tion case because the object being initialised must be younger than any objects to which it 
refers. In contrast, this is not generally true in Java constructors [Zee and Rinard, 2002] .  

A language-level request for a new object will eventually translate into a call to an 
allocation routine, which may sometimes be inlined by a compiler, to accomplish Step 1 
and possibly some or all of Step 2. The key property that allocation needs to satisfy is that 
Steps 1 and 2 are effectively atomic with respect to other threads and to collection. This 
guarantees that no other component of the system will perceive an object that lacks its 
system initialisation. However, if we consider the interface to the allocator (Step 1 ) ,  there 
remains a range of possibilities depending on the division of labour between Steps 1, 2 and 
3. Arguments to an allocation request may include: 

The size requested, generally in bytes, but possibly in words or some other granule size. 
When requesting an array, the interface may present the element size and the number 
of elements separately. 

An alignment constraint. Typically there is a default alignment and a way to request an 
alignment that is more strict. These constraints may consist of only a power of two 
indication (word, double-word, quad-word alignment, and so on) or a power of two 
and an offset within that modulus (such as aligned on word two of a quad-word) . 

The kind of obj ect to allocate. For example, managed run-time languages such as Java 
typically distinguish between array and non-array objects . Some systems distinguish 
between objects that contain no pointers and ones that may contain pointers [Boehm 
and Weiser, 1988]; objects containing executable code may also be special. In short, 
any distinction that requires attention by the allocator needs to appear at the inter
face. 

The specific type of object to allocate, in the sense of programming language types. This 
is different from 'kind' in that it may not of itself be interesting to the allocator. 
Rather, the allocator may use it in initialising the object, and so forth. Passing this 
value in may simplify making Step 2 atomic (by moving the burden to Step 1 )  and 
may also reduce code size by avoiding one or more extra instructions at each alloca
tion site. 

Which of these arguments we need depends somewhat on the language we are support
ing. Furthermore, we may present information somewhat redundantly at the interface to 
avoid forcing additional computation at run time. While it is possible to provide a sin
gle rich allocation function that takes many arguments and handles all cases, for speed 
and compactness we might provide a number of allocation functions, tailored to different 
kinds of object. Considering Java as an example, we might break it down into: scalar ob
jects (non-arrays), arrays of byte /boolean (one-byte elements) ,  arrays of short /char 
(two-byte elements), arrays of int / float (four-byte elements), arrays of references and 
arrays of long/double (eight-byte elements) .  Beyond this there may be internal things 
such as the objects that represent classes, method dispatch tables, method code and so on, 
depending on whether they are held in the collected heap. Even if they are not part of the 
collected, one still needs an interface to the explicit-free allocator that creates them. 

Here are some of the possibilities for the post-condition that the allocator guarantees at 
the end of Step 1 if it succeeds. 

• The referenced cell has the requested size and alignment - but is not otherwise 
prepared for use. 
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• Beyond having correct size and alignment, the cell is zeroed.  Zeroing helps to guar
antee that the program cannot treat old pointers - or non-pointer bit patterns for 
that matter - as valid references. Zero is a good value because it typically repre
sents the null pointer and is otherwise a bland and legal value for most types. Some 
languages, such as Java, require zeroing or something similar for their security and 
type-safety guarantees. It can also be helpful in debugging a system if non-allocated 
memory has a specific non-zero bit pattern, such as Oxdeadbe e f  or O x c a f ebabe, 
which are values we have actually seen. 

• The allocated cell appears to be an object of the requested type. This is a case where 
we present the type to the allocator. The difference between this and the weakest 
post-condition (the first one in this list) is that the allocator fills in the object header. 

• The allocator guarantees a fully type-safe object of the requested type. This involves 
both zeroing and filling in the object header. This is not quite the same as a fully 
initialised object in that zeroing provides a safe, but bland, default value, while a 
program will generally initialise at least one field to a non-default value. 

• The allocator guarantees a fully initialised object. This may be less common, since the 
interface must provide for passing the initial value(s) . A good example is the cons  
function in Lisp, which we  might provide a s  a separate allocation function because 
calls to it are so common and need to be fast and simple from the program's side. 

What is the most desirable post-condition? Some aspects, such as zeroing, may be dictated 
by the language semantics. Likewise, some may be dictated by the level of concurrency in 
the environment and whether and how objects might 'leak' from an allocating thread and 
become visible to other threads or the collector. Generally, the more concurrent or leaky 
the setting, the stronger the post-condition we need.  

What happens if the allocator cannot immediately satisfy the request? In most systems 
we want to trigger collection internally and avoid revealing this case to the caller. There is 
generally little that a caller can do, and it is wasteful to insert retry loops everywhere the 
program tries to allocate an object. 1 However, especially in the presence of inlining, we 
might inline the common (successful) case and call a collect-and-retry function out of line. 
Of course if we inline Step 1, then there remains little distinction between Steps 1 and 2 
- the overall code sequence must be effectively atomic. Later on we discuss handshaking 
between mutators and collectors, so as to achieve such atomicity. We note that for purposes 
of atomicity it is generally more appropriate to view allocation as a mutator activity. 

Speeding allocation 

Since many systems and applications tend to allocate at a high rate relative to the rest 
of their computation, it is important to tune allocation to be fast. A key technique is to 
inline the common case code (the 'fast path') and call out to 'slow path' code that handles 
the rarer, more complex cases . Making good choices here requires careful comparative 
measurements under suitable workloads. 

An apparent virtue of sequential allocation is its simplicity, which leads to a short code 
sequence for the common case . This is especially true if the target processor provides 
enough registers to dedicate one to hold the bump pointer, and possibly one more to hold 
the heap limit. In that case the typical code sequence might be: move the bump pointer to 

1 In principle a Java program can catch the exception and try nulling some pointers and restarting a computa
tion, but we are not aware of that strategy in real programs. Besides, Java's soft references are an arguably better 
way to do the same thing. 
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the result register; add-immediate the needed size to the bump pointer; compare the bump 
pointer against the limit; conditionally branch to a slow path call. Notice that putting the 
bump pointer into a register assumes per-thread sequential allocation areas. Some ML 
and Haskell implementations further combine multiple allocations in a straight line (basic 
block) of code into one larger allocation, resulting in just one limit test and branch. The 
same technique can work for code sequences that are single-entry but multiple-exit by 
allocating the maximum required along any of the paths, or at least using that as the basis 
for one limit test on entry to the code sequence. 

It might seem that sequential allocation is necessarily faster than free-list techniques, 
but segregated fits can also be quite efficient if partially inlined and optimised . If we know 
the desired size class statically, and we keep the base pointer to the array of free-list point
ers in a dedicated register, the sequence is: load the desired list pointer; compare it with 
zero; branch if zero to a slow path call; load the next pointer; store the next pointer back 
to the list head. In a multithreaded system the last step may need to be atomic, say a 
C ompa reAndSwap with branch back to retry on failure, or we can provide each thread 
with a separate collection of free-list heads. 

Zeroing 

Some system designs require that free space contain a distinguished value, often zero, for 
safety, or perhaps some other value (generally for debugging) .  Systems offering a weak 
allocation guarantee, such as C, may not do this, or may do it only as an option for debug
ging. Systems with a strong guarantee, such as functional languages with complete initial
isation, do not need zeroing - though optionally setting free space to a special value may 
aid in system debugging. Java is the typical example of a language that requires zeroing. 

How and when might a system zero memory? We could zero each object as we allocate 
it, but experience suggests that bulk zeroing is more efficient. Also, zeroing with explicit 
memory writes at that time may cause a number of cache misses, and on some architec
tures, reads may block until the zeroing writes drain from a hardware write buffer I store 
queue. Some ML implementations, and also Sun's HotSpot Java virtual machine, prefetch 
ahead of the (optimised) bump pointer precisely to try to hide the latency of fetching newly 
allocated words into the cache [Appel, 1994; Gonc;alves and Appel, 1995] . Modern proces
sors may also detect this pattern and perform the prefetching in hardware. Diwan et al 
[1994] found that write-allocate caches that can allocate on a per-word basis offered the 
best performance, but these do not seem to be common in practice. 

From the standpoint of writing an allocator, it is often best to zero whole chunks using 
a call to a library routine such as b z e ro .  These routines are typically well optimised for 
the target system, and may even use special instructions that zero directly in the cache 
without fetching from memory, such as dcbz (Data Cache Block Zero) on the PowerPC. 
Notice that direct use of such instructions may be tricky since the cache line size is a model
specific parameter. In any case, a system is likely to obtain best performance if it zeroes 
large chunks that are power-of-two aligned. 

Another technique is to use demand-zero pages in virtual memory. While these are 
fine for start up, the overhead of the calls to remap freed pages that we are going to reuse, 
and of the traps to obtain freshly zeroed real memory from the operating system, may be 
higher than zeroing pages ourselves . In any case, we should probably remap pages in bulk 
if we are going to use this technique, to amortise some of the cost of the call. 

Another question is when to zero .  We might zero immediately after collection. This has 
the obvious disadvantage of lengthening the collection pause, and the less obvious disad
vantage of dirtying memory long before it will be used. Such freshly zeroed words will 
likely be flushed from the cache, causing write-backs, and then will need to be reloaded 
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during allocation. Anecdotal experience suggests the best time to zero from the standpoint 
of performance is somewhat ahead of the allocator, so that the processor has time to fetch 
the words into the cache before the allocator reads or writes them, but not so far ahead 
of the allocator that the zeroed words are likely to be flushed. Given modern cache miss 
times, it is not clear that the prefetching technique that Appel described will work; at least 
it may need tuning to determine the proper distance ahead of the allocator that we should 
prefetch. For purposes of debugging, zeroing or writing a special value into memory should 
be done as soon as we free cells, to maximise the range of time during which we will catch 
errors. 

11.2 Finding pointers 

Collectors need to find pointers in order to determine reachability. Some algorithmic tactics 
require precise knowledge of pointers. In particular, safely moving an object at location x 
to a new location x' and reusing its original cell requires us to update all pointers to x 
to refer to x' . However, safely reclaiming an object demands certainty that the program 
will no longer use it, but the converse is not true: it is safe to retain an object that the 
program will never use again, although it is space-inefficient (which admittedly could 
cause a program to fail for lack of available heap) .  Thus a collector can estimate references 
to non-moving objects, as long as its estimates are conservative - it may only over-estimate 
the references to an object, not under-estimate them. Reference counting without cycle 
collection is conservative, but another way conservatism arises in some schemes is because 
they lack precise knowledge of pointers. Thus they may treat a non-pointer value as if 
it is a pointer, particularly if it appears to refer to an allocated object. We consider first 
techniques for conservative pointer finding, and then ones for accurately finding pointers 
in various locations . 

Conservative pointer finding 

The foundational technique for conservative pointer finding is to treat each contiguous 
pointer-sized and aligned sequence of bytes as a possible pointer value, called an ambigu
ous pointer. Since the collector knows what memory regions compose the heap, and even 
which parts of those regions are allocated, it can discriminate possible pointers from val
ues that cannot be pointers. For speed the collector 's algorithm for testing a pointer value's 
'pointer-ness' needs to be efficient. A typical approach works in two steps. First it filters 
out values that do not refer to any heap area in memory. It might do this with a range 
test if the heap is one contiguous area, or by taking the value's upper bits, obtaining a 
chunk number and looking in a table of heap chunks. The second step is to see if the ref
erenced storage in the heap is actually allocated . It might check that by consulting a bit 
table of allocated words. For example, the Boehm-Demers-Weiser conservative collector 
[Boehm and Weiser, 1988] works in terms of blocks, with each block dedicated to cells of 
a particular size. A block has associated metadata giving the cell size, and also a bitmap 
indicating allocated versus free cells. After doing a range check using the heap bounds, 
this algorithm next checks to see of the referenced block is allocated at all, and if the block 
is allocated it checks whether the particular object is allocated. Only then will it set a mark 
bit in its marking phase. The whole process, illustrated in Figure 1 1 . 1 ,  has a typical path 
length of about 30 RISC instructions. 

Some languages require that pointers refer to the first word of their referent object, or 
some standard offset into the object, such as after some header words (see Figure 7.2) . This 
allows a conservative collector to ignore possible interior pointer values as opposed to 
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To determine whether a value p is a pointer to an allocated object: 

1. Does p point between the lowest and highest plausible heap ad
dresses? 

2. Use high order bits of p as an index into the first-level table to 
obtain the second-level table. In a 64-bit address space, the top
level table is a chained hash table rather than an array. 

3. Use middle order bits of p as an index into the second-level table 
to get the block header. 

4. Is the offset of the supposed object a multiple of hb_s i z e  from the 
start of the block? 

5. Consult the object map for blocks of this size; has the slot corre
sponding to this object in this block been allocated? 

Figure 11.1: Conservative pointer finding. The two-level search tree, block 
header and map of allocated blocks in the Boehm-Demers-Weiser conserva
tive collector. 

Jones [1996] . Reprinted by permission. 
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their canonical reference pointer. It is fairly easy to build conservative pointer finding al
gorithms in both cases; the Boehm-Demers-Weiser collector can be configured either way.2 

One caution concerning conservative collection for C is that it is legal for an 'interior ' ref
erence to an array to point one element beyond the end of the array. Therefore, conservative 
collectors for C may need to retain two objects in that case, or else over-allocate arrays by 
one word to avoid possible ambiguity. An explicit-free system may interpose a header be
tween objects, which also solves the problem. In the presence of compiler optimisations, 
pointers may be even further 'mangled'; see page 183 for a discussion of this topic. 

Since a non-pointer bit pattern may cause the collector to retain an object that is in fact 
not reachable, Boehm [1993] devised a mechanism called black-listing, which tries to avoid 
using regions of virtual address space as heap when their addresses correspond to these 
kinds of non-pointer values. In particular, if the collector encounters a possible pointer 
that refers to memory in a non-allocated block, it black-lists the block, meaning it will 
not allocate the block. Were it to allocate the block (and an object at that address), future 
traces would mistakenly recognise the false pointer as a true pointer. The collector also 
supports blocks used for strictly non-pointer objects, such as bitmaps. Distinguishing this 
data not only speeds the collector (since it does not need to scan the contents of these ob
jects), but it also prevents excessive black-listing that can result from the bit patterns of 
the non-pointer data. The collector further refines its black-listing by discriminating be
tween invalid pointers that may be interior, and those that cannot be interior, because they 
are from the heap in the configuration that disallows heap-stored interior pointers. In the 
possibly-interior case, the referenced block is black-listed from any use, while in the other 
case the collector allows the block to be used for small non-pointer objects (this cannot 
cause much waste) .  To initialise the black-list, the collector does a collection immediately 
before the first heap allocation. It also avoids using blocks whose address ends in many 
zeroes, since non-pointer data in the stack often results in such values . 

Accurate pointer finding using tagged values 

Some systems, particularly ones based more on dynamic typing, include a tag with each 
value that indicates its type. There are two basic approaches to tagging: bit stealing and 
big bags of pages . Bit stealing reserves one or more bits, generally at the low or high end of 
each word, and lays out objects that can contain pointers in a word-oriented fashion. For 
example, on a byte-addressed machine with a word size of four bytes, we might steal two 
bits for tags. We force objects to start on a word boundary, so pointers always have their 
low two bits zero. We choose some other value(s) to indicate (say) integers . Supposing 
that we give integers word values with a low bit of one, we end up with 31-bit integers 
- bit-stealing in this way does reduce the range of numbers we can represent easily. We 
might use a pattern of 1 0  in the low bits to indicate the start of an object in the heap, for 
parsability (Section 7.6) . Table 1 1 . 1  illustrates the sample tag encoding, which is similar to 
one used in actual Smalltalk implementations. 

Dealing with tagged integers efficiently is a bit of a challenge, though arguably the 
common case on modem pipelined processors might not be that bad - one cache miss 
might swamp it. Still, in order to support dynamically typed language implementations 
that use tagged integers, the SPARC architecture includes instructions for adding and sub
tracting tagged integers. These instructions indicate overflow, and there are versions that 
trap as well, on overflow of the operation or if either operand's two lowest bits are not 
zero. For this architecture we might use the tag encoding shown in Table 1 1 .2 .  This encod
ing does require that we adjust references made from pointers, though in most cases that 

2 In either case it allows interior pointers, but in the more restrictive case it requires that any reachable object 
have a reachable pointer that is not interior. Thus in that configuration it ignores interior pointers when marking. 
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I Tag I Encoded value I 
0 0  Pointer 
1 0  Object header 
x1  Integer 

Table 11.1: An example of pointer tag encoding 

I Tag I Encoded value 

0 0  Integer 
0 1  Pointer 
1 0  Other Primitive Value 
1 1  Object header 

Table 11.2: Tag encoding for the SPARC architecture 

adjustment can be included in an offset field of a load or store instruction. The exception 
is in dealing with accesses to arrays, which then require the pointer to the array, the offset 
computed from the index and this additional adjustment. Still, given the hardware sup
port for arithmetic on tagged integers, it seemed a reasonable trade-off. This encoding was 
previously used with the Motorola MC68000, which has a load instruction that adds an 
immediate constant, a base register and another register, all to form the effective address, 
so on the MC68000 there was no big penalty to using the encoding. 

The big bag of pages approach to tagging associates the tag/ type information with an 
entire block. This association is therefore typically dynamic and involves a table lookup. 
The need for memory references is a disadvantage, but the corresponding advantage is that 
numeric and other primitive values have their full native length. This tagging approach 
dedicates whole blocks to hold integers, other blocks to floating point numbers, and so on. 
Since these are pure values and do not change,3 when allocating new ones we might use 
hashing to avoid making new copies of the values already in the table. This technique, 
also called hash cons'ing (from the Lisp cons  function for allocating new pairs) is quite 
venerable [Ershov, 1958; Goto, 1974] . In hash consing Lisp pairs, the allocator maintains 
a hash table of immutable pairs and can avoid allocating a new pair if the requested pair 
is already in the table. This extends in the obvious way to any immutable heap-allocated 
objects, such as those of class I n t eger  in Java. Notice that this is a case where it might be 
good to use weak references (Section 12.2) from the hash table to the objects it contains. 

Accurate pointer finding in obj ects 

Assuming we are not using tagged values, finding pointers in objects generally requires 
knowing each object's type - at least in the sense of which fields of the object are point
ers . In object-oriented languages, that is, those with dynamic method dispatch, where the 
actual run-time type of an object is not entirely determined by the type of the referring 
pointer variable or slot, we need type information associated with the particular object. 
Systems usually accomplish this by adding a header to each object that includes type in
formation. Since object-oriented languages generally have a method dispatch vector for 
each type, and they generally store a pointer to that vector in the header of each object of 
that type, they typically store information about the type in, or pointed to by, the dispatch 

3This is a property of the representational approach, not of the language: in using this form of tagging the 
designer made a choice to represent integers (floats, and so on) as tagged pointers to their full (untagged) values. 
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vector. Thus the collector, or any other part of the run-time that uses type information 
(such as the reflection mechanism in Java), can find the type information quite readily. 
What the collector needs is a table that indicates where pointer fields lie in objects of the 
given type. Two typical organisations are a bit vector, similar to a bit table of mark bits, and 
a vector of offsets of pointer fields. Huang et al [2004] used a vector of offsets to particular 
advantage by permuting the order of the entries to obtain different tracing orders, and thus 
different orders of objects in a copying collector, improving cache performance. With care, 
they did this while the system was running (in a stop-the-world collector) . 

A way to identify pointers in objects that is simpler in some respects than using a table 
is to partition the pointer and non-pointer data. This is straightforward for some languages 
and system designs4 but problematic for others. For example, in ML objects can be poly
morphic. If the system generates a single piece of code for all polymorphic versions, and 
the objects need to use the same field for a pointer in some cases and a non-pointer in oth
ers, then segregation fails. In object-oriented systems that desire to apply superclass code 
to subclass objects, fields added in subclasses need to come after those of superclasses, 
again leading to mixing of pointer and non-pointer fields. One way around that is to place 
pointer fields in one direction from the reference point in the object (say at negative offsets) 
and non-pointer fields in the other direction (positive offsets), which has been called bidi
rectional object layout. On byte-addressed machines with word-aligned objects, the system 
can maintain heap parsability by insuring that the first header word has its low bit set -
preceding words contain pointers, whose two low bits will always be zero (see US Patent 
5,900,001 ) .  In practice the tabular approach does not seem to be a problem, and as Huang 
et al [2004] showed, it can actually be advantageous. 

Some systems actually generate object-oriented style methods for tracing, copying and 
so on [Thomas, 1993; Thomas and Jones, 1994; Thomas, 1995a,b] .  One can view the ta
ble approach as being like an interpreter and the method approach as the corresponding 
compiled code strategy. An interesting idea in Thomas's line of work is the system's ability, 
when copying a closure, to create a tailored version of the closure's environment that omits 
elements of the environment that the particular function does not use. This saves space in 
copied environment objects, and perhaps more significantly, avoids copying unused parts 
of the environment. Cheadle et al [2004] also developed collection code specialised for 
each type of closure . Bartlett [ 1989a] applied the idea of methods for collection to C++ by 
requiring the user to write a pointer-enumerating method for each collected C++ class. 

A managed language can use object-oriented indirect function calls in other ways re
lated to collection. In particular, Cheadle et al [2008] dynamically change an object's func
tion pointer so as to offer a self-erasing read barrier in a copying collector, similar to the 
approach Cheadle et al [2000] used for the Glasgow Haskell Compiler (GHC). That system 
also used a version of stack barriers, implemented in a similar way, and it used the same 
trick again to provide a generational write barrier when updating thunks. A fine point of 
systems that update closure environments is that since they can shrink an existing object, 
in order to maintain heap parsability they may need to insert a 'fake' object in the heap 
after the one that shrank. Conversely, they may also need to expand an object: here the 
old version is overwritten with an indirection node, holding a reference to the new ver
sion. Later collections can short-circuit the indirection node. Collectors can also perform 
other computation on behalf of the mutator such as eager evaluation of applications of 
'well-known' functions to arguments already partially evaluated: a common example is 
the function that returns the head of a list. 

4Bartlett [ 1989b] takes this approach for a Scheme implementation done by translating to C, and Cheadle et a/ 
[2000] take this approach in Non-Stop Haskell. 
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In principle, statically typed languages can avoid object headers and save space. Appel 
[1989b] and Goldberg [1991 ]  explain how to do this for ML, starting from type information 
provided only for roots (we have to start some place) . Later, Goldberg and Gloger [1992] 
observe that this might require full type inference during collection, depending on how 
the program uses polymorphic types; see also [Goldberg, 1992] . 

Accurate pointer finding in global roots 

Finding pointers in global roots is relatively easy by applying almost any of the techniques 
mentioned for finding pointers in objects. Languages differ primarily in whether the set 
of global roots is entirely static or whether it can grow dynamically. Such dynamic growth 
can result from dynamic code loading. Some systems start with a base collection of ob
jects. For example, Smalltalk, and some Lisp and some Java systems start with a base 
system 'image', also called the boot image, that includes a number of classes/functions 
and instances, particularly if they start with an interactive programming environment. A 
running program might modify parts of the system image - usually tables of one kind 
of another - causing image objects to refer to newer objects. A system might therefore 
treat pointer fields in the image as roots. Notice, though, that image objects can become 
garbage, so it may be a good idea sometimes to trace through the image to find what re
mains actually reachable. This is all tied into whether we are using generational collection, 
in which case we may treat the image as a particularly old generation. 

Accurate pointer finding in stacks and registers 

One way to deal with call stacks is to heap allocate activation records, as advocated by Ap
pel [1987], for example. See also [Appel and Shao, 1994, 1996] and a counter-argument by 
Miller and Rozas [ 1994] .  Some language implementations manage to make stack frames 
look like heap objects and thus kill two birds with one stone. Examples include the Glas
gow Haskell Compiler [Cheadle et al, 2000] and Non-Stop Haskell [Cheadle et al, 2004] .  
It is also possible to give the collector specific guidance about the contents of the stack, 
for example as Henderson [2002] does with custom-generated C code for implementing 
the Mercury language, and which Baker et al [2009] improved upon for a real-time Java 
implementation. 

However, most languages give stack frames special treatment because of the need for 
a variety of efficiencies in order to obtain best performance. There are three issues we 
consider: 

1 .  Finding frames (activation records) within the stack. 

2. Finding pointers within each frame. 

3. Dealing with conventions concerning passing as arguments, returning, saving and 
restoring values in registers. 

In most systems it is not just the collector that needs to find frames in the stack. Mecha
nisms such as exception handling and continuations may need to 'parse' the stack, not to 
mention the tremendous value of stack examination in debugging and its requirement in 
some systems, such as Small talk. Of course the view given to the programmer may be one 
very cleaned up from the typically more optimised and 'raw' layout in the actual frames. 
Because stack parsing is generally useful, frame layout conventions generally provide for 
it. For example, many designs include a dynam ic chain field in each frame, which points 
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to the previous frame. Various other fields generally lie at fixed offsets from the refer
ence point of the frame (the address to which the frame pointer or dynamic chain refers) .  
These might include the return address, the static chain and so  on. Systems also generally 
provide a map to determine from a return address the function within which the address 
lies . In non-collected systems this might occur only in debugger symbol tables, but many 
managed systems access this table from the program, so it may be part of the loaded or 
generated information about code, rather than just in auxiliary debugger tables. 

To find pointers within a frame, a system might explicitly add stack map information 
to each frame to help the collector. This metadata might consist of a bitmap indicating 
which frame fields contain pointers, or the system might partition a frame into pointer
containing and non-pointer portions, with metadata giving the size of each. Notice that 
there are likely to be some initial instructions of each function during which the new frame 
exists but is not yet entirely initialised. Collecting during this time might be problematic; 
see our later discussion of garbage collection safe points and mutator handshaking in Sec
tion 1 1 .6. Alternatively we might get by with careful collector analysis of the initial code 
sequence, with careful use of pu s h  instructions on a machine that supports them or some 
other custom-designed approach. Obviously frame scanning is simpler if the compiler 
uses any given frame field always as a pointer or always as a non-pointer. That way the 
whole function needs only one map . 

However, the single-map approach is not always possible. For example, at least two 
language features make it difficult: 

• Generic/polymorphic functions. 

• The Java Virtual Machine j s r instruction. 

We previously observed that a polymorphic function may use the same code for pointer 
and non-pointer arguments. Since a straightforward stack map cannot distinguish the 
cases, the system needs some additional source of information. Fortunately the caller 
'knows' more about the specific call, but it too may be a polymorphic function. So the 
caller may need to 'pass the buck' to its caller. However, this is guaranteed to bottom out, 
at the main function invocation in the worst case. The situation is analogous to typing 
objects from roots [Appel, 1989b; Goldberg, 1991 ;  Goldberg and Gloger, 1992] . 

In the Java Virtual Machine, the j s r  instruction performs a local call, which does not 
create a new frame but rather has access to the same local variables as the caller. It was 
designed to be used to implement the try-finally feature of the Java language, using a 
single piece of code to implement the finally block by calling it using j s r  in both the 
normal and the exceptional case. The problem is that during the j s r call, some local vari
ables' types are ambiguous, in the sense that, depending on which j s r called the finally 
block, a particular variable, not used in the finally block but used later, might contain 
a pointer from one call site and a non-pointer from another. There are two solution ap
proaches to this problem. One is to refer these cases to the calling site for disambiguation. 
In this approach rather than have each stack map entry be just 'pointer ' or 'non-pointer ' 
(that is, a single bit), we need an additional case that means 'refer to j s r caller' .  In addition 
we need to be able to find the j s r  return address, which requires some analysis of the Java 
bytecode to track where it stored that value. An alternative, more popular in modern sys
tems, is to transform the bytecode, or dynamically compile code, simply to duplicate the 
finally block. Whilst in pathological cases that might cause exponential blowup in code 
size, it substantially simplifies this part of the system. Anecdotal evidence suggests that 
generating Java stack maps for dynamically compiled code has been a significant source 
of subtle bugs, so managing system complexity here may be important. We note that some 
systems defer generating a stack map until the collector needs it, saving space and time in 
the normal case but perhaps increasing collector pause time. 
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Another reason that a system might choose not to use a single map per frame is that it 
further restricts the register allocator: it must use a given register consistently as a pointer 
or non-pointer. This is particularly undesirable on machines that have few registers in the 
first place. 

Notice that whether we have one map per function, or different ones for different parts 
of a function, the compiler must propagate type information far through the back end. This 
may not be overly difficult if we understand the requirement before we write the compiler, 
but revising existing compilers to do it can be quite difficult. 

Finding pointers in registers. To this point we have ignored the issue of pointers in ma
chine registers . There are several reasons why handling registers is more difficult than 
dealing with stack contents. 

• As we pointed out previously, even if each stack frame field is fixed as a pointer or a 
non-pointer for a whole function, it is less convenient to impose that rule on registers 
- or to be even further restrictive and require that pointers, and only pointers, reside 
in a particular subset of the registers .  It is probably practical only on machines that 
provide a large number of registers .  Thus most systems will have more than one 
register map per function. 

• Even when guaranteeing that no pointer stored in a global root, heap object or local 
variable is an interior (page 182) or derived (page 183) pointer, efficient local code 
sequences may result in a register holding such an 'untidy' pointer. 

• Calling conventions often provide that some registers follow a caller-save protocol, 
in which the caller must save and restore a register if it wants the value to survive 
across a call, and that some other registers follow a callee-save protocol, in which the 
callee must save and restore a register, on behalf of callers deeper in the stack, before 
the callee can use the register. Caller-save registers are not a problem since the caller 
knows what kind of value is in them, but callee-save registers have contents known 
only to some caller up the stack (if any) .  Thus a callee cannot indicate in a register 
map whether or not an unsaved callee-save register contains a pointer. Likewise, if a 
callee saves a callee-save register to a frame field, the callee cannot say whether that 
field contains a pointer. 

A number of systems require a callee-save stack unwinding mechanism as a matter of 
course, in order to reconstruct the frame structure of the stack and call chain, especially for 
systems that do not designate a 'previous frame' register and the like. 

We now introduce an approach to the callee-save registers problem. First, we add meta
data that indicates for each function which callee-save registers it saves, and where in its 
frame it saves them. We assume the more common design where a function saves in one 
go, near the beginning of the function, all callee-save registers that it will use. If the com
piler is more sophisticated and this information varies from place to place within a func
tion, then the compiler will need to emit per-location callee-save information. 

Starting with the top frame, we reconstruct the register state for each frame by 'unsav
ing' a callee's saved callee-save registers to obtain the register state of the caller at the point 
of call. As we go, we record which registers we 'unsaved' and the value that the callee had 
in them, for use as we come back up the stack. When we reach the base of the stack, we 
can ignore any saved callee-save register contents since there is no caller. Therefore, for 
that frame we can produce any pointers for the collector, and allow it to update them. 

As we walk back up the stack, we re-save the callee-save registers. Notice that if the 
collector updated a pointer, then this will update the saved value appropriately. We get 
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from our side memory the value that the callee had in the register. Once we have done 
this for all callee-save registers saved by the callee, we produce pointers for the callee, and 
allow the collector to update them as necessary. However, we should skip any registers 
whose contents we processed in the caller, to avoid processing them a second time. In 
some collectors, processing the same root more than once is not harmful; mark-sweep is 
an example since marking twice is not a problem. However, in a copying collector it is 
natural to assume that any unforwarded referent is in fromspace. If the collector processes 
the same root twice (not two different roots referring to the same object) then it would 
make an extra copy of the tospace copy of the object, which would be bad. 

We offer details of this process in Algorithm 1 1 . 1 ,  and now proceed to describe the 
example illustrated in Figure 11 .2. In the algorithm, June is the function applied to each 
frame slot and register, for example the body of the for each loop in markF romRoot  s 
of Algorithm 2.2 (Mark-Sweep, Mark-Compact) or the body of the root scanning loop in 
c o l lect  of Algorithm 4.2 (Copying) . 

Considering Figure 1 1 .2a, notice first the call stack, which appears shaded on the right. 
The sequence of actions leading to that stack is as follows. 

1. Execution begins at ma in  with rl containing 155 and r2 containing 784. Whatever 
effectively called m a i n  is outside the scope of the collected system, so it cannot refer 
to heap allocated objects and those register contents therefore cannot be references. 
Likewise we are not interested in the return address old i P . As it executed, ma i n  saved 
rl in slot 1 and set local 2 to refer to object p and local 3 to hold 75 . It then called f 
with rl containing p, r2 containing 784 and a return address of m a i n + 52. 

2. Function f saved the return address, saved r2 in slot 1 and rl in slot 2, and set local 3 
to -13 and local 4 to refer to object q .  It then called g with rl containing a reference to 
object r, r2 holding 17 and a return address of f +  178.  

3. Function g saved the return address, saved r2 in slot 1, and set local 2 to refer to 
object r, local 3 to hold -7 and local 4 to refer to object s. 

The register contents above each frame's box indicate the values as execution entered the 
function in question, and the contents below the frame's box the values when that frame 
suspended execution. These are the values that our unwinding procedure should attempt 
to recover. 

We now assume that a garbage collection occurs in the middle of g .  

4. Garbage collection occurs at location g + 36 in g, when register rl contains a reference 
to object r and r2 a reference to object t. One can think of the IP and register values as 
being stored in a suspended thread data structure or perhaps in an actual frame for 
the garbage collection routine. 

At some point garbage collection calls proce s s  s t a c k  on this thread stack, with func 
being the copy function of a copying collector. This is the most interesting case, since a 
copying collector will generally update object references because the target object moved. 
The boxes to the left in Figure 11 .2a show the values of Regs and Re s t o r e  as we proceed 
to examine the frames in the order g, f, ma in .  We show numbered snapshots of Re s t o r e  
and Regs on the left in the figure, labelled with the numbers corresponding to these com
ments: 

5 .  Here proce s s st ack  has retrieved registers from the thread state into Reg s  and 
initialised Re st  o re .  Execution is at line 15 in Algorithm 11 . 1  for the frame for g. 
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Algorithm 11.1: Callee-save stack walking 

1 proce s s St ack ( thre ad, June) : 
Reg s  +- getReg i s t e r s (thre ad)  
Done  +- empt y 
Top +- t opFrame ( t hread) 
p r o c e s s F rame (Top, Regs ,  Done, June) 

I* register contents thread would see *f 
I* no regis ters processed yet *I 

s e t Regi s t e r s (  t h read, Reg s )  I* get corrected register contents back to thread *f 

8 p r o ce s sF rame (Frame, Regs ,  Don e, June) :  
I P  +- get i P (F rame) 

w C a l l e r  +- get C a l l e rF rame ( F r ame) 
I I  

1 2  if C a l l e r  =/=- null 

I* current instruction pointer (IP) *I 

13 Re store  +- empt y I* holds info to restore after doing caller *f 
1 4  

15 

16 

17 

1 8  

1 9  
20 

21  

22 

23 

24 

I* Update Regs to Caller's view at point of call *f 
for each ( reg,s lot )  in c a l leeSavedRegs ( I P )  

add(Re s t o re,  ( reg, Reg s  [ reg] ) )  
Regs [ reg] +- get S l o t C on t ent s (F r ame, s l ot ) 

proce s s F rame ( C a l l e r, Regs ,  Done, June) 

I* Write updated saved callee-save register value back to slots *f 
for each ( reg, s l ot )  in c a l leeSavedRegs ( I P )  

set S lot Content s (F rame, s l ot ,  Reg s [reg] ) 

25 I* Update Regs to our view, adjusting Done *I 
26 for each ( reg, value )  in Restore  
21 Regs [reg] +- value  
28 remove (Done, reg)  
29 

30 I* process our frame's pointer slots *f 
D for each s l ot  in point e r S lot s ( I P )  
32 func(get S l otAddre s s (F rame, s l ot ) )  
33 
34 I* process our frame's pointers in registers *f 
� for each reg  in point e rRe g s ( I P )  
• if reg  � Done 
37 June(  getAddre s  s (Regs  [ reg] ) )  
38 add(Done ,  reg)  

6. Here we have updated Regs ,  and saved information into Res t o re for later use. 
Execution is at line 19 for g's frame. Since g had saved r2 into slot 1 ,  the proper value 
for f to see is 17. We save into Res t o re the fact that g's view of r2 should be t, when 
we get back to handling g after the recursive call of processFrame .  We show the 
pairs returned by c a l leeSavedReg s  for g's IP value in a box to the left of g's frame. 

7. Execution is at line 19 for f's frame. We 'un-saved' both r1 and r2 in this case, from 
slots 2 and 1 respectively. 
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• 

• 

• 

I Restore I Regs 
rl = p 
r2 = 784 

cal leeSaved Regs 

@ main+52 

Restore Regs 
(r1, r) r1 = p 
(r2, 17) r2 = 784 

cal leeSavedRegs 
(r1, 2), (r2, 1) 

@ f+178 

Restore Regs 
(r2, t) rl = r 

r2 = 17 

cal leeSavedRegs 
(r2, 1) 

@ g+36 

Regs 
r1 = r 
r2 = t 

CHAPTER 1 1 .  RUN-TIME INTERFACE 

r1 = 1 55 

r2 = 784 

main() 
old IP: . . .  
saved : 

1: 155 
loca ls: 

2 : p 
3: 75 

r1 = p 
r2 = 784 

f() 
old IP :  main+52 
saved: 

1 : 784 
2: p 

loca ls :  
3 : -13 
4: q 

r1 = r 

r2 = 1 7  

cO 
old IP :  f+l78 
saved: 

1 : 17 
loca ls: 

2: r 
3 : -7 
4: s 

r1 = r 

r2 = t 

GC happens 

• 

I P = g+36 • 
rl = r 
r2 = t 

(a) Stack scanning: walking from the top 

Figure 11.2: Stack scanning 

8. Execution is at line 19 for ma in 's frame. Here we assume that C a l l e r  is null, so we 
do not 'un-save' any callee-saved registers - they cannot contain pointers since their 
values come from outside the managed universe. 

Having reconstructed the register contents that held just as ma in  called f, we can proceed 
to process the frame and registers for m a i n, and likewise handle f and g. Turning to Fig
ure 11 .2b, we illustrate two states for each frame: first the state at line 35 of Algorithm 1 1 . 1  
and then the state after line 38. The frames themselves show the state a t  line 35. Those 
values that are written, though their value is not necessarily changed, are in boldface; those 
not written are grey. 

9. Regs  holds the register values at the point ma in  called f; as yet, Done is empty. 
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ca l leeSavedRegs 

@ main+S2 

Restore 
(r1, r) 
(r2, 17) 

ca l leeSavedRegs 
(r1, 2), (r2, 1) 

@ f+178 

Restore 
(r2, t) 

cal leeSavedRegs 
(r2, 1) 

@ g+36 

r1 = 155 

r2 = 784 

main() 
old IP :  . . .  
saved: 

1 : 155 
locals :  

2 :  p' 
3 : 75 

1 = p 

r1 = 1 55 

r2 = 784 

r1 = p ' r 

r 4 2 = 784 � r2 = 78 

f() 
old IP: main+52 
saved: 

1 : 784 
2: p' 

loca ls :  
3 : -13 
4: q' 

1 = r r 

r 2 =  1 7  

g() 
o ld IP :  f+178 
saved : 

1 : 17 
locals: 

2 :  r' 
3 : -7 
4: s' 

1 = r r 

r 2 = t  

rl = r' 

r2 = 1 7  

rl = r' 

r2 = t' 

GC happens 
IP = g+36 
r1 = r' 
r2 = t' 

• 

Regs LJ r1 = p 
r2 = 784 

pointerSiots: 2 
pointerRegs: r1 
@ main+52 

Regs L:J r1 = p' 
r2 = 784 

1 

Regs LJ r1 = r 
r2 = 17 

pointerSiots: 2, 4 
pointerRegs: r1 
@ f+178 

Regs L:J r1 = r' 
r2 = 17 

1 

Regs L:J r1 = r' 
r2 = t 

pointerSiots : 2, 4 
pointerRegs: r1, r2 
@ g+36 

Regs L[J r1 = r' 
r2 = t' 

(b) Stack scanning: walking back to the top 

Figure 11.2 (continued): Stack scanning 
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• 

• 

• 

• 

10. Register rl was updated by June (because rl is in point e rRegs  for ma in + 52) .  Done 
indicates that rl refers to a (possibly) new location of its referent object. 

1 1 .  Regs  holds the register values at the point where f called g. Notice that the values of 
rl and r2 are saved into slots 2 and 1 of f's frame and their values in Reg s  have been 
set from Re s t o re .  

12 .  Register rl was updated by June and added to D one.  

13 .  Regs  holds the register values at  the point garbage collection occurred in g. Specifi
cally, the value in r2 is saved into slot 1 of g's frame and its value in Regs  has been set 
from Re s t o re .  Since rl has not been set from Re store,  rl remains listed in Done .  
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Algorithm 11.2: Stack walking for non-modifying.fimc 

p roce s s S t a c k (t hread, June) : 
Top +--- t opF rame ( thread )  
proce s s F r ame (Top, June) 
Regs +--- g e t Regi s t e r s ( t hread) 
for each reg  in po i n t e rRegs ( I P )  

June( g e tAddre s s (Re g s  [reg] ) )  

8 p roce s s F r ame ( F rame, June) : 
Done +--- empty  

w loop 
1 1  IP +--- g e t i P (Frame ) 
1 2  

1 3  I* process our frame's pointer slots 4 

I* register contents thread would see 4 
I* trace from registers at GC point 4 

I* current instruction pointer (IP) 4 

1 4  for each s lot in p o i nterS l o t s ( I P )  
15 func ( get SlotAdd r e s s (Frame, s l ot ) )  
1 6  

1 7  I* process our frame's pointers in regis ters *I 
1 8  for each reg in p o i nterReg s ( I P )  
� if  reg  � Done  
20 June( getAddr e  s s (Regs [ r eg] ) )  
21 a dd( Done,  r e g )  
22 

23 

24 

25 

26 

Cal l e r  +--- getC a l l e rF rame ( F r ame ) 
if C a l l e r  = null  

return 

2 7  I* Update Regs to Caller's view at point of call *I 
2s for each (reg, s l o t ) in cal l e e S avedRegs ( I P )  
2• Re g s [reg] +--- get S l otCont e n t s (Frame, s l o t )  
3o r emove (Done, r e g )  
3 1  

3 2  Frame +--- Cal l e r  

14. Register r 1  was skipped (because it was i n  Done), but r 2  was updated b y  June and 
added to Done  

Finally, in step 15 p r o ce s s St a c k  stores the values in  Regs back to  the thread state. 

Variations on Algorithm 11.1. There are a number of reasonable variations on Algo
rithm 11 . 1 .  Here are some of particular interest: 

• If June will not update its argument then one can omit the Done  data structure, the 
statements that update it, and the conditional test on line 36, invoking June uncon
ditionally on line 37. This simplification applies for non-moving collectors and non
moving phases of moving collectors. It also applies if a moving collector 's imple
mentation of June works correctly if invoked on the same slot more than once. 

• Rather than calling func late in proce s s F r ame, one can move the two for loops 
at the end upwards, inserting them after line 9. If combined with variation one, the 



1 1 .2. FINDING POINTERS 179 

Algorithm 11.3: No callee-save stack walking 

1 proce s s St a ck ( thread, June) : 
Top +--- t opF rame ( t h r e ad) 
proce s s F r ame (Top, June) 
Regs +--- getRegi s t e r s ( thread) 
for each reg in p o i n t e rRegs ( I P )  

/* regis ter contents thread would see */ 
/* trace from registers at GC point */ 

June( getAddres s (Regs [reg] ) )  
s etRegi s t e r s (thread, Regs )  I* get corrected reg contents back t o  thread */ 

9 proce s s F rame (F rame, June) :  
w repeat 
u I P  +--- get iP (F rame ) 
u for each s l ot in point e r S l ot s ( I P )  
n func(get S l otAddres s (F rame, s l ot ) )  
14  Frame +--- get Ca l l e rF rame ( F r ame ) 
1 5  until F rame = null 

/* current instruction pointer 4 
/* process frame's pointer slots 4 

resulting algorithm needs to process the stack only in one direction, which allows an 
iterative implementation as opposed to a recursive one, as shown in Algorithm 1 1 .2. 

• If the system does not support callee save registers, and a function desires a register 's 
contents to be preserved across a call, then the function must save and restore the 
register itself (caller-save) .  A saved caller-save register value will have a type known 
in the caller, so one can treat it just like a local or temporary variable. This results in 
the substantially simplified Algorithm 1 1 .3, which is also iterative. 

Compressing stack maps. Experience shows that the space needed to store stack maps 
can be a considerable fraction of the size of the code in a system. For example, Diwan 
et al [1992] found their tables for Modula-3 for the VAX to be 16% of the size of code, and 
Stichnoth et al [ 1999] reported their tables for Java to be 20% of the size of x86 code. Tarditi 
[2000] describes techniques for compressing these tables, and applies them in the Marmot 
Java compiler, achieving a compression ratio of four to five and final table sizes averaging 
3.6% of code size. The approach exploits two empirical observations. 

• While there may be many garbage collection points (GC-points) needing maps, many 
of those maps are the same. Thus a system can save space if multiple GC-points share 
the same map. In the Marmot system this is particularly true of call sites, which tend 
to have few pointers live across them. Tarditi [2000] found that this technique cut 
table space in half. 

• If the compiler works to group pointers close together in stack frames, then even 
more maps tend to be the same. Using live variable analysis and colouring to place 
pointer variables with disjoint lifetimes into the same slot also increases the number 
of identical maps. Tarditi [2000] found this to be important for large programs. 

The overall flow of Tarditi's scheme is as follows. 

1 .  Map the (sparse) set of return addresses to a (smaller, denser) set of GC-point num
bers.5 In this mapping, if table entry t [i ]  equals return address ra,  then r a  maps to 
GC-point i .  

5Tarditi uses the term 'call site' where w e  use 'GC-point'. 
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2. Map the set of GC-point numbers to a (small dense) set of map numbers. This is 
useful because multiple GC-points often have the same map . Given the GC-point i 
above, this can be written as map number mn=mapnum [i ] . 

3. Index into a map array using the map number to get the map information. Given mn 
from the previous step, this can be written as i n fo=map [mn] . 

In Tarditi's scheme the map information is a 32-bit word. If the information fits in 31 bits, 
then that word is adequate and its low bit is set to 0; otherwise, the low bit is set to 1 and the 
remaining bits point to a variable-length record giving the full map . The details probably 
need to be retuned for different platforms (language, compiler, and target architecture), so 
refer to the paper for the exact encoding. 

Tarditi also explored several organisations for mapping IP (instruction pointer) values 
to GC-point numbers. 

• Using the same number for adjacent GC-points whose stack maps are the same, a 
technique also used by Diwan et al [1992 ] .  This records only the first GC-point, and 
subsequent ones whose address is less than the next address in the table are treated 
as being equivalent. 

• Using a two-level table to represent what is conceptually a large array of GC-point 
addresses . This builds a separate table for each 64 kilobyte chunk of code space. 
Since all GC-points in the chunk have the same upper bits, it needs to record only 
the low 16  bits in each table entry. In a 32-bit address space this saves essentially half 
the table space. We also need to know the GC-point number for the first GC-point in 
a chunk; simply adding this to the index of a return address within the chunk's table 
will get the GC-point number for the matching IP. 

• Using a sparse array of GC-points and interpolating by examining the code near the 
IP value. This chooses points roughly k bytes apart in the code, indicating where 
these places are, their GC-point number and their map number. It starts from the 
highest location preceding the IP value, and disassembles code forward . As it finds 
calls (or other garbage collection points) ,  it updates the GC-point number and map 
number. Notice that it must be able to recognise GC-points by inspection. Tarditi 
found that even for the x86 the disassembly process for these purposes was not 
overly complex or slow, though the scheme includes a 16 element cache to reduce 
repeated computation for the same return address values. It was the most compact 
of the schemes examined and the disassembly overhead was small . 

Stichnoth et al [ 1999] described a different stack map compression technique, oriented 
towards being able to produce a map for every instruction. Similar to the sparse array of 
Tarditi [2000] ,  this uses a scheme that records full information for certain reference points 
in the code, and then disassembles forward from the nearest preceding point to the IP 
value of interest. In Stichnoth et al, though, it is the actual map they compute, as opposed 
to the GC-point number. The reference points at which it starts are (roughly) the beginning 
of basic blocks in the code. However, if the map at the end of one block is the same as the 
map at the beginning of the next one - that is, there was no flow merge that affected the 
map - then they treat the two blocks as one large block. Working forward from each 
reference point, they encode the length of the instruction at that point (because the x86 
has variable length instructions) and the delta to the map caused by the instruction. For 
example, the instruction might push or pop a value on the stack, load a pointer into a 
register, and so on. They Huffman code the delta stream to obtain additional compression. 
Across a suite of benchmarks they get an average map size of about 22% of code size. 
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They argue that, as a fraction of code size, the situation should not be worse for machines 
with larger register sets - the instructions increase in size too. Also, the overall space 
used might be somewhat better for machines with fixed-length instructions, since there 
is still a noticeable overhead for recording instruction lengths, even though (like Tarditi 
[2000] )  they use a disassembler in most cases to avoid recording instruction lengths. They 
still need a fraction of a bit to mark those places where they cannot legally allow garbage 
collection, such as in the middle of the sequence for a write barrier. Given that a fixed
length instruction machine probably uses something like four bytes for each instruction, 
and the average instruction length for the x86 may be half that or less, the table size for 
a fixed-length instruction machine using the techniques of Stichnoth et al may be more in 
the range of 5-10% of code size. 

Accurate pointer finding in code 

Code may contain embedded references to heap allocated objects, particularly in managed 
run-time systems that load or generate code dynamically. Even code compiled ahead of 
time may refer to static/ global data, that might lie in an initially loaded heap. There are 
several difficulties around pointers within code: 

• It is not always easy, or even possible, to distinguish code from any data embedded 
within it. 

• As in the case of uncooperative compilers, it is not generally possible to tell embed
ded pointers from non-pointer data that happen to have a value that looks as if it 
refers to a location in the heap. 

• When embedded in instructions, a pointer may be broken into smaller pieces. For 
example, on the MIPS processor, loading a 32-bit static pointer value into a register 
would typically require a load-upper-immediate instruction, which loads a 16-bit 
immediate field into the upper half of a 32-bit register and zeroes the low 16-bits, 
and then an or-immediate of another 16-bit value into the lower half of the register. 
Similar code sequences occur for other instruction sets. This is a particular case of 
derived pointers (page 183). 

• An embedded pointer value may not refer directly to its target object; see our discus-
sions of interior (page 182) and derived (page 183) pointers. 

In some cases one may be able to disassemble code to find embedded pointers, but going 
through all the code each time the collector needs to process the roots may have a large 
overhead. Of course, the program cannot update such embedded pointers, so caching 
their locations would be effective. 

The more general solution is to arrange for the compiler to generate a side table that 
indicates where embedded pointers lie in the code. 

Some systems simply rule out embedded pointers to avoid the issues altogether. The 
impact on code performance will vary according to target architecture, compilation strat
egy, and statistics of programs' accesses. 

Target objects that move. If the target of an embedded reference moves, then the col
lector must update the embedded reference. One possible difficulty is that for safety or 
security reasons code areas may be read-only. Thus the collector must either change the 
permissions temporarily (if possible), which might involve expensive system calls, or the 
system must disallow embedded references to moving objects . Another difficulty is that 
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updating code in main memory generally does not force updates or invalidations of copies 
of that code residing in instruction caches . The solution is to require all processors to in
validate the affected instruction cache lines. Some machines may need to follow this by 
a special synchronisation instruction that guarantees that future instruction fetches occur 
logically after the invalidations. Furthermore, before invalidating instruction cache lines, 
one may need to force modified lines in the data cache (holding the bytes of code that were 
updated) to main memory, and synchronise to make sure that the writes are complete. The 
details are architecture specific. 

Code that moves. A particular case of targets that move is code that a collector moves. 
Not only must this take into account the concerns that we just considered, but it must also 
fix up return addresses that lie in the stack and registers since they might refer to code that 
the collector is moving. Further, it must invalidate all instruction cache lines corresponding 
to the new location of the code and perform the careful code writing steps we enumerated 
above. Clearly it would be more deeply problematic if the code of the collector itself could 
move. Finally, moving code is particularly difficult in the case of concurrent collectors. 
Either the collector must stop the world, or arrange that threads can use either the old or 
the new copy of the code, move them to the new code over a period of time, and reclaim 
the space of the old code only after it knows all the threads have moved over. 

Handling interior pointers 

An interior pointer is a pointer that refers to some location inside an object, but not neces
sarily using the standard reference to the object. More precisely, we consider each object 
to occupy a set of memory locations (addresses), disjoint from those of any other object. 
An interior pointer to an object refers to one of the object's locations. If we consider Fig
ure 7.2 we see that an object's standard reference may not correspond to any of its interior 
pointers ! Also, the set of locations an object occupies may be larger than just the locations 
holding its programmer-visible data . For example C allows pointers one location beyond 
the end of an array and that reference is still a legal interior pointer to the array. 

While it is possible that a system might break a language-level object up into multiple 
pieces (as done by, for example, Siebert [ 1999]), for the purpose of handling interior (and 
derived) pointers we use the term 'object' to mean a contiguous range of locations devoted 
to representing a particular (language-level) object. 

The key problem the collector faces with an interior pointer is determining the object to 
which the pointer refers, that is, how to compute the standard reference to the object from 
the value of the interior pointer. Several approaches are possible. 

• Provide a table that records the start of each object. A system might maintain an 
array of object start addresses, perhaps in two-level form as done by Tarditi [2000] 
for recording GC-point addresses in code (see Section 11 .2) . Another way is to use a 
bit table with one bit per granule (unit of allocation), setting the corresponding bit for 
granules that are the first granules of objects. This might be useful for the allocator 
and collector in any case. 

• If the system supports heap parsability (Section 7.6), then one can scan the heap to 
find the object whose locations contain the target of the interior pointer. It would 
be prohibitively expensive to search from the beginning of the heap every time, so 
typically a system records the first (or last) object-start position within each k-byte 
chunk of the heap, where k is usually a power of two for convenient and efficient 
calculation. This allows parsing to start in the chunk to which the interior pointer 
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refers, or the previous chunk as necessary. There is a trade-off between the space 
used for this side table and the overhead of parsing. For a more detailed discussion 
see Section 11 .8. 

• A big bag of pages organisation can determine object size by looking up the target 
block's metadata. It can compute the offset of the target within the block (simply 
mask so as to keep the appropriate lower bits of the address), and round that down 
using the object size to determine the first location of the object. 

We do assume that given knowledge of the set of locations occupied by the target object, 
the collector can determine the standard reference and work from there. Notice that if the 
object moves, as in a copying collector, then we need to update the interior pointer, moving 
it by the same amount, that is, causing it to refer to the same relative position in the moved 
object as it did in the old copy. Alternatively, the system might support pinning of objects, 
as discussed in Section 1 1 .4. 

The primary objection to dealing with interior pointers is the space and time overhead 
they can add to processing. If interior pointers are relatively rare and distinguished from 
tidy pointers (those that refer to an object's standard reference point), then the time over
head of dealing with the interior pointers themselves may not be great. However, making 
provision for them at all may add space cost for tables - though the particular collector 
design may include the necessary tables or metadata anyway - and add time cost for 
maintaining the tables . 

Return addresses are a particular case of interior pointers into code. They present no 
special difficulty, though for a variety of reasons the tables for looking up the function 
containing a particular return address may be distinct from the tables the collector uses for 
other objects. 

Handling derived pointers 

Diwan et al [1992] identified what they call derived pointers, that is, values that are derived 
from one or more pointers via an arithmetic expression. Interior pointers are a special case 
where the expression has the simple form p + i or possibly p + c where p is a pointer, i 
is a dynamically computed integer offset and c is a statically known constant. However, 
for an interior pointer the resulting expression value must be an address within the set 
of locations of object p, which leads to the simpler solutions already discussed. Derived 
pointers can be much more general, for example: 

• upperk ( p ) or lowerk ( p ) ,  the upper or lower k bits of the pointer p. 

• p ± c such that the resulting address lies outside of the location of p .  

• p - q, the distance between two objects. 

In some cases we can reconstruct a tidy pointer - one that points to the referent's standard 
reference address - from the derived pointer. An example is p + c where c is a compile
time known constant. In the general case we must have access to the base expression from 
which the derived pointer was derived. That expression might itself be a derived pointer, 
but eventually gets back to tidy pointers. 

In a non-moving collector, just having the tidy pointers available as roots is enough. 
Notice, though, that at a GC-point the tidy pointer may no longer be live in the sense of 
compiler live variable analysis, even though the derived pointer is live. Thus the compiler 
must keep at least one copy of the tidy pointer(s) for each live derived pointer. An excep
tion to this rule is the p ± c case since adjusting with a compile-time known value produces 
the tidy pointer without reference to other run-time data. 
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For a moving collector we need additional compiler support: the compiler needs to 
produce extended stack maps that give, for each derived pointer, the locations of the ex
pressions from which it was derived and the operations needed to reconstruct the de
rived pointer. Diwan et al [ 1992] give details on handling derived quantities of the form 
L; p; - Lj qj + E where the Pi and qj are pointers or derived values and E is an expression 
not involving pointers (and thus not affected if any of the p; or qj move) .  The advantage 
of this form is that it can subtract out the p; and add in qj, forming E before moving any 
objects; do any moving; then add back the new p; and subtract off the new qj to produce 

the correct adjusted derived pointer. 
Diwan et al [1992] point out several issues that arise in optimising compilers when 

trying to handle derived pointers, including dead base variables (which we mentioned 
above), multiple derivations reaching the same point in code (for which they add more 
variables to record the path that actually pertains), and indirect references (where they 
record the value in an intermediate location along the chain of references) .  Supporting 
derived pointers sometimes required producing less optimal code, but the impact was 
slight. They achieved table sizes about 15% the size of code for Modula-3 on the VAX. 

11.3 Object tables 

For reasons of mutator speed and space consumption, many systems have represented ob
ject references as direct pointers to their referent objects . A more general approach is to 
give each object a unique identifier and to locate its contents via some mapping mecha
nism. This has been of particular interest when the space of objects is large, and possibly 
persistent, but the hardware's underlying address space is small in comparison. The focus 
here is on heaps that fit into the address space. Even in that case, however, some systems 
have found it helpful to use object tables. An object table is a generally dense array of small 
records, which refer to objects. An object table entry may contain only a pointer to the 
object's data, or it may also contain additional status information. For speed, an object 
reference is typically either a direct index into the object table or else a pointer to an object 
table entry. Using an index makes it easier to relocate the table, but requires adding the 
object table base in order to access an entry - which may not cost additional instructions 
provided that the system dedicates a register to point to the base of the table. 

A significant advantage of object tables is that they permit straightforward compaction, 
or indeed moving of any object, by simply moving the object(s) and then updating its ob
ject table entry to reflect its new location. To simplify this, each object should have a hidden 
self-reference field (or back pointer to its object table entry) ,  to make it possible to find the 
table entry from the object's data. Given that information, a mark-compact collector can 
proceed by marking as usual (modulo the level of indirection imposed by the object table) 
and then doing a simple sliding compaction of the object data. Free object table entries can 
simply be chained into a free-list. Notice that in marking it may be advantageous to keep 
mark bits in object table entries, so as to save a memory reference when checking or setting 
the mark bit. A side mark-bit table has similar benefits. It can also be advanta·geous to keep 
other metadata in the object table entry, such as a reference to class and size information. 

It is also possible to compact the object table itself, for example using the Two-Finger 
algorithm of Section 3. 1 .  This can be done together with compacting the object data, re
quiring only one pass over the data in order to compact both the data and the object table. 

Object tables may be problematic, or simply unhelpful, if the language allows interior 
or derived pointers. Note also the similarity of object table entries to handles as used 
to support references from external code to heap objects, as discussed in Section 11 .4. If 
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a language disallows interior pointers, then whether or not the implementation uses an 
object table should not affect semantics of the implementation. However, there is one lan
guage feature that more or less assumes an object table for its efficient implementation: the 
Smalltalk be c ome : primitive. This operator causes two objects to swap their roles in the 
object universe. This is easy to do with object tables : the system merely swaps the con
tents of two table entries . Without an object table a b e c ome : may require a sweep over 
the entire heap. If used sparingly (Smalltalk typically uses become : to install a new ver
sion of something) this may remain acceptable, particularly because direct object reference 
implementations are generally faster than object table ones. 

11.4 References from external code 

Some languages and systems support use of heap allocated objects from outside of the 
managed environment. A typical example is the Java Native Interface, which allows code 
written in C, C++ or possibly other languages to access objects in the Java heap . More 
generally, just about every system needs to support input/ output, which must somehow 
move data between the operating system and heap objects . Two difficulties arise in sup
porting references from external code and data to objects in a managed heap. The first 
issue is ensuring that the collector continues to treat an object as reachable while external 
code possesses a reference to the object. This is necessary to prevent the object from being 
reclaimed before the external code is done with it. Often we need the guarantee only for 
the duration of a call to external code. We can make that guarantee by ensuring that there 
is a live reference to the object in the stack of the calling thread. 

However, sometimes the object will be used by external code for a period of time that 
extends beyond an initial call. In that case the usual solution is for the collector to maintain 
a table of registered objects . The external code is required to register an object if the code will 
use the object after the current call. The external code must also explicitly deregister the 
object when the code no longer needs the object and will not attempt further use of it. The 
collector simply treats entries in the registered-object table as additional roots. 

The second issue is ensuring that external code knows where an object is. This is rele
vant only to moving collectors . Some interfaces keep external code at arms length by re
quiring all accesses to heap objects to go through collector-provided access routines . This 
makes it easier to support collectors that move objects .  Typically the collector provides 
to external code a pointer to a handle. The handle contains a reference to the actual heap 
object, and possibly some other management data. Handles act as registered-object table 
entries, and thus are roots for collection. The Java Native Interface works this way. Notice 
that handles are similar to entries in object tables. 

While handles offer a clean separation of the managed heap from the unmanaged 
world, and they more easily admit collection techniques that move objects, not all external 
code is prepared to follow the access protocols, notably operating system calls . Thus it 
may be necessary to prevent externally referenced objects from moving. To support this, 
a pinning interface may offer pin and unpin operations, with the meaning that an object 
cannot be moved while it is pinned, and the further implication that pinned objects are 
reachable and will not be reclaimed. 

If we know when allocating an object that it may need to be pinned, then we can allo
cate the object directly into a non-moving space. This may work for buffers for file stream 
1/0 if the buffered-stream code allocates the buffers itself. However, in general it is diffi
cult to determine in advance which objects will need to be pinned. Thus, some languages 
support p i n  and unp i n  functions that the programmer can invoke on any object. 
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Pinning is not a problem for non-moving collectors, but is inconvenient for ones that 
normally move an object. There are several solutions, each with its strengths and weak
nesses. 

• Defer collection, at least of a pinned object's region, while it is pinned. This is simple, 
but there is no guarantee that it will be unpinned before running out of memory. 

• If the application requests pinning an obj�ct, and the object is not in a non-moving 
region, we can immediately collect the object's containing region (and any others 
required to be collected at the same time) and move the object to a non-moving re
gion. This might be acceptable if pinning is not frequent, and the collector is of a 
design such as a generational collector with a nursery whose survivors are copied to 
a non-moving mature space.  

• We can extend our collector to tolerate not moving pinned objects, which complicates 
the collector and may introduce new inefficiencies. 

As a simple example of extending a moving collector to support pinning, consider a basic 
non-generational copying collector. Extending it to support pinned objects requires first 
of all that the collector can distinguish pinned from unpinned objects. It can copy and 
forward unpinned objects as usual. It will trace through pinned objects, updating pointers 
from the pinned object to objects that move, but leaving pinned objects where they are. The 
collector should also record in a table the pinned objects it encounters. When all survivors 
have been copied, the collector reclaims only the holes between pinned objects rather than 
reclaiming all of fromspace. Thus, rather than obtaining a single, large, free region, it may 
obtain an arbitrary number of smaller ones. The allocator can use each one as a sequential 
allocation space. This can lead to a degree of fragmentation, but that is unavoidable in the 
presence of pinning. Notice that a future collection may find that a previously pinned ob
ject is no longer pinned, so the fragmentation need not persist. As we saw in Section 10.3, 
some mostly non-moving collectors take a similar approach, also sequentially allocating in 
the gaps between surviving objects [Dimpsey et al, 2000; Blackburn and McKinley, 2008] .  

Another possible difficulty is that, even though an object is pinned, the collector is 
examining and updating it, which may lead to races with external code that accesses the 
object at the same time. Thus, we may need to pin not only a given object but also some 
of the objects to which it refers . Likewise, if, starting from a given object, external code 
traces through to other objects, or even just examines or copies references to them without 
examining the objects' contents, those other objects also need to be pinned. 

Features of a programming language itself, and its implementation, may require pin
ning. In particular, if the language allows passing object fields by reference, then there may 
be stack references to the interior of objects . The implementation can apply the interior 
pointer techniques described on page 182 in order to support moving the object contain
ing the referent field. However, such support can be complex and the code for handling 
interior pointers correctly may thus be difficult to maintain. Therefore an implementation 
might choose simply to pin such objects. This requires being able to determine fairly easily 
and efficiently which object contains a given referent. Hence it most readily allows interior 
pointers but not more general cases of derived pointers (see page 183) . 

11.5 Stack barriers 

Earlier we described techniques for finding pointers in stacks, but assumed it was accept
able to scan the whole stack of a thread at once, that is, that the system could pause the 
thread long enough to process its entire stack. It is not safe to scan a frame in which a 
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thread is actively running, so we must either pause the thread for some period of time or 
get the thread to scan for us (that is, call a scanning routine, essentially pausing itself) - see 
Section 11 .6 for more discussion of when it is appropriate to scan a thread's registers and 
stack. It is possible to scan a stack incrementally, however, and also mostly-concurrently, 
using a technique called stack barriers . The idea is to arrange for a thread to be diverted if 
it tries to return (or throw) beyond a given frame in its stack. Suppose we have placed a 
barrier in frame F. Then we can asynchronously process the caller of F, its caller, and so 
on, confident that the running thread will not cut the stack back from under our scanning. 

The key step to introduce a stack barrier is to hijack the return address of the frame. 
In place of the actual return address we write the address of the stack barrier handler we 
wish to install. We put the original return address in some standard place that the stack 
barrier handler can find, such as a thread-local variable. The handler can then remove the 
barrier as appropriate. Naturally it must be careful not to disturb any register contents that 
the caller may examine. 

For incremental stack scanning by the thread itself, when it encounters the barrier the 
handler scans some number of frames up the stack and sets a new barrier at the limit of its 
scanning (unless it finished scanning the whole stack). We call this synchronous incremen
tal scanning. For asynchronous scanning by another thread, the barrier serves to stop the 
running thread before it overtakes the scanning thread. For its part, the scanning thread 
can move the barrier down after it scans some number of frames. That way it is possible 
that the running thread will never hit the barrier. If it does hit the barrier, then it merely 
has to wait for the scanning thread to advance and unset that barrier; then it can continue. 

Cheng and Blelloch [2001 ]  introduced stack barriers in order to bound the collection 
work done in one increment and to support asynchronous stack scanning. Their design 
breaks each stack into a collection of fixed size stacklets that can be scanned one at a time. 
That is, returning from one stacklet to another is the possible location of what we call a 
stack barrier. But the idea does not require discontiguous stacklets or predetermination of 
which frames can have a barrier placed on them. 

Stack barriers can also be used in the opposite way from that described above: they 
can mark the portion of the stack that has not changed, and thus that the collector does 
not need to reprocess to find new pointers. In collectors that are mostly-concurrent this 
approach can shorten the 'flip' time at the end of a collection cycle. 

Another use for stack barriers is in handling dynamic changes to code, particularly 
optimised code. For example, consider the situation where routine A calls B, which calls 
C, and there is a frame on the stack for an optimised version of A that inlined B but did not 
further inline C. In this situation there is a frame for A + B and another one for C. If the 
user now edits B, future calls of B should go to the new version. Therefore, when returning 
from C, the system should deoptimise A + B and create frames for unoptimised versions 
of A and B, so that when B also returns, the frame for A supports calling the new version 
of B. It might also be possible to re-optimise and build a new A + B. The point here is that 
returning to A + B triggers the deoptimisation, and the stack barrier is the mechanism that 
supports the triggering. 

11.6 GC-safe points and mutator suspension 

In Section 1 1 .2 we mentioned that a collector needs information about which stack frame 
slots and which registers contain pointers. We also mentioned that this information can 
vary according to the specific code location (we will say IP, for instruction pointer) at which 
garbage collection happens in a function. There are two issues of concern about where 
garbage collection can happen: whether a given IP is safe for garbage collection, and the 
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size of the stack map tables (see Section 11 .2  for details on compressing maps), which tend 
to be large if more IPs are legal for garbage collection. 

What might make a given IP unsafe for garbage collection? Most systems have oc
casional short sequences of code that must be run in their entirety in order to preserve 
invariants relied on by garbage collection. For example, a typical write barrier needs to do 
both the underlying write and some recording. If a garbage collection happens between 
the two steps, some object may be missed by the collector or some pointer not properly 
updated by it. Systems usually have a number of such short sequences that need to be 
atomic with respect to garbage collection (though not necessarily atomic with respect to 
true concurrency) .  In addition to write barriers other examples include setting up a new 
stack frame and initialising a new object. 

A system is simpler in one way if it can allow garbage collection at any IP - there 
is no concern about whether a thread is suspended at a point safe for garbage collection, 
a GC-safe point or GC-point for short. However, such a system is more complex in that it 
must support stack maps for every IP, or else employ techniques that do not require them, 
as for uncooperative C and C++ compilers. If a system allows garbage collection at most 
IPs, then if it needs to collect and a thread is suspended at an unsafe point, it can either 
interpret instructions ahead for the suspended thread until it is at a safe point, or it can 
wake the thread up for a short time to get it to advance (probabilistically) to a safe point. 
Interpretation risks rarely exercised bugs, while nudging a thread gives only a probabilistic 
guarantee. Such systems may also pay the cost of larger maps [Stichnoth et al, 1999] . 

Many systems make the opposite choice and allow garbage collection only at certain 
restricted safe points, and produce maps only for those points . The minimal set of safe 
points needed for correctness includes each allocation (since garbage collection is always 
a possibility there)6 and each call of a routine in which there may be allocation or which 
may cause the thread to suspend in a wait (since if the thread suspends, some other thread 
may cause garbage collection) . 

Beyond the minimal points needed for correctness, a system may wish to allow garbage 
collection at more locations so as to guarantee that garbage collection can proceed with
out an unbounded wait for the thread to reach its next safe point. To make this stronger 
guarantee there needs to be a safe point in each loop; a simple rule is to place a safe point 
at each backwards branch in a function. In addition there needs to be a safe point in each 
function entry or each return, since otherwise functions, especially recursive ones, could 
perform many calls and returns before encountering a safe point. Since these additional 
safe points do not do anything that actually can trigger a garbage collection, they need to 
have an added check for whether garbage collection is needed/requested, so we call them 
GC-check points . This checking adds overhead to normal operation of mutators, though 
perhaps not very much, particularly if the compiler takes some simple measures to reduce 
the overhead. For example, it might omit the checks in methods that are quite short or have 
no loops or calls. Also, by inserting an additional level of looping it can avoid checking 
on every iteration of a loop and check only every nth iteration. If the check itself is cheap 
then these measures will not be necessary. In any case there is a clear trade-off between the 
overhead of frequent checks and the latency of infrequent ones. 

Agesen [ 1998] compared two ways of causing a thread to suspend at a GC-point. One 
is polling, alluded to above, where the thread checks a flag that indicates that a collection 
has been requested. The other technique is patching, and involves modifying the code at 
the next GC-point(s) of the thread so that when the suspended thread is restarted, it will 
stop at the next GC-point. This is similar to placing temporary breakpoints in a debugger. 

6Excepting the possibility of checking for adequate thread-private free space before a sequence of allocations. 
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Agesen found that patching has much lower overhead than polling, but of course it is more 
difficult to implement, and more problematic in a concurrent system. 

In bringing up the idea of GC-check points, notice that we have introduced the notion 
of a handshake mechanism between the collector and a mutator thread. Such handshakes 
may be necessary even if a system does not include true concurrency but merely multi
plexes several mutator threads on one processor - the collector may need to indicate the 
need for garbage collection and then wake up any suspended thread that is not at a safe 
point so that the thread can advance to a safe point. Some systems allow threads to sus
pend only at safe points so as to avoid this additional complexity, but for other reasons a 
system may not control all aspects of thread scheduling, and so may need this handshake. 

For concreteness we mention some particular mechanisms for the handshake. Each 
thread can maintain a thread-local variable that indicates whether the rest of the system 
needs that thread's attention at a safe point. This mechanism can be used for things other 
than signalling for a garbage collection. At a GC -check point, the thread checks that thread
local variable, and if it is non-zero (say) it calls a system routine that uses the exact value 
of the variable to determine what action to take. One particular value will indicate 'time to 
garbage collect' . When the thread notices the request, it sets another thread-local variable 
to indicate it has noticed, or perhaps decrements a global variable on which a collector 
thread is waiting. Systems typically arrange for thread-local variables to be cheap to access, 
so this may be a good approach. 

Another possibility is to set a processor condition code in the saved thread state of the 
suspended thread. A GC-check point can then consist of a very cheap conditional branch 
over a call to the system routine for responding to the request. This approach works only if 
the processor has multiple condition code sets (as for the Power PC) and can be guaranteed 
not to be in external code when awakened. If the machine has enough registers that one 
can be dedicated to the signalling, a register can be used almost as cheaply as a condition 
code flag. If a thread is in external code, the system needs an alternate method of getting 
attention when the thread comes out of that code (unless it is suspended as a safe point 
already). Hijacking the return address (see also Section 1 1 .5) is a way to get attention as 
the external code completes. 

As an alternative to flag setting and return address hijacking, in some cases an oper
ating system-level inter-thread signal, such as those offered by some implementations of 
POSIX threads, may be a viable alternative. This may be problematic for wide portability, 
and it may not be very efficient. It can be slow in part because of the relatively long path 
through the operating system kernel to set up and deliver a signal to a user-level handler. 
It can also be slow because of the need not only for a low-level processor interrupt but 
because of the effect on caches and translation lookaside buffers . 

In sum, there are two basic approaches : synchronous notification, also appropriately 
called polling, and asynchronous notification via some kind of signal or interrupt. Each ap
proach has its own overheads, which vary across platforms. Polling may also require a de
gree of compiler cooperation, depending on the specific technique. Further, asynchronous 
notification will usually need to be turned into synchronous, since scanning the stack, or 
whatever action is being requested, may not be possible at every moment. Thus, the signal 
handler 's main goal may be to set a flag local to its thread where the thread is guaranteed 
to notice the flag soon and act on it. 

We further note that in implementing synchronisation between threads to direct scan
ning of stacks, considerations of concurrent hardware and software crop up, for which 
we offer general background in Chapter 13. Of particular relevance may be Section 13.7, 
which discussed coordinating threads to move from phase to phase of collection, which 
mutator threads may need to do as collection begins and ends. 
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11.7 Garbage collecting code 

While many systems statically compile all code in advance, garbage collection has its roots 
in implementations of languages like Lisp, which can build and execute code on the fly 
originally interpretively but also compiled to native code since early days. Systems that 
load or construct code dynamically, and that optimise it at run time, are if anything more 
common now. Loading and generating code dynamically leads logically enough to the 
desire to reclaim the memory consumed by that code when the code is no longer needed. 
Straightforward tracing or reference counting techniques often will not work, because code 
for many functions is accessible through global variables or symbol tables that will never 
be cleared. In some languages little can be done if the program does not explicitly remove 
such entries - and the language may provide no approved way to do that. 

Two specific cases deserve further mention. First, closures consist of a function and an 
environment of bindings to use when the function runs. Naive construction of a closure, 
say for function g nested within function f, provides g with the full environment of f, 
possibly sharing a common environment object. Thomas and Jones [1994] described a 
system that, upon collection, can specialise the environment to just those items that g uses. 
This may ultimately make some other closure unreachable and thus reclaimable. 

The other case is class-based systems, such as Java. One consideration is that in such 
systems object instances generally refer to their class. It is common to place classes, and 
the code for their methods, in a non-moving, non-collected area. In that way the collector 
can ignore the class pointer in every object. But to reclaim classes, the collector will need 
to trace the class pointer fields - possibly a significant cost in the normal case. It might 
avoid that cost by tracing through class pointers only when invoked in a special mode. 

For Java in particular, a run-time class is actually determined by both the class's code 
and its class loader. Since loading a Java class has side-effects such as initialising static 
variables, unloading a class is not transparent if the class might be reloaded by the same 
class loader. The only way to guarantee that a class will not be reloaded by a given class 
loader is for the class loader itself to be reclaimable. A class loader has a table of the classes 
it has loaded (to avoid reloading them, reinitialising them, and so on) and a run-time 
class needs also to mention its class loader (as part of its identity) . So, to reclaim a class, 
there must be no references to its class loader, any class loaded by that class loader, or any 
instance of one of those classes, from existing threads or global variables (of classes loaded 
by other class loaders) .  Furthermore, since the bootstrap class loader is never reclaimed, 
no class that it loads can be reclaimed. While Java class unloading is something of a special 
case, certain kinds of programs rely on it or else servers will run out of space . 

In addition to user-visible code elements such as methods, functions and closures, a 
system may generate multiple versions of code to be interpreted or run natively, for ex
ample optimised and unoptimised code, or specialised versions of functions. Generating 
a new version of a function may make old versions unreachable for future invocations of 
the function. However, invocations still in process may need the old versions. Thus return 
addresses embedded in the stack or closures may retain old code. In any case, the system 
may need tracing or reference counting rather than immediately reclaiming old versions. 
A related technique is on-stack replacement, in which a system replaces an in-process invoca
tion's code with new code. While this is commonly done more in order to improve the per
formance of the still-running invocation, it also helps make old versions reclaimable. See 
Fink and Qian [2003] and Soman and Krintz [2006] for examples of on-stack replacement 
approaches and applications for Java. While on-stack replacement is most often directed at 
optimising code, some applications, such as debugging, requires deoptimised code, which 
can have the same effect of helping to make old versions of code reclaimable. 
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11.8 Read and write barriers 
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Several classes of garbage collection algorithm require ' interesting' pointers to be detected 
as mutators run. If a collector collects only part of the heap, then any reference to an 
object in that region from outside it is of interest to the collector: in the absence of further 
knowledge, the collector must treat that reference as a root. For example, generational 
collectors must detect any reference to a younger generation object written into an object 
in an older generation. As we shall see in Chapter 15, interleaving mutation and collection 
(whether or not the collector runs in its own thread) presents ample opportunities for the 
mutator to hide pointers from the collector. If these references are not detected and passed 
to the collector, then live objects may be reclaimed prematurely. All these cases require the 
mutator to add references on the fly to the collector's work list. This is achieved through 
read or write barriers. 

Other chapters on specific algorithms address the particular content of read and write 
barriers as needed by those algorithms. However, we offer here some general observa
tions about how to implement barriers. To abstract from particular needs of a collection 
algorithm, such as generational or concurrent collectors, we concern ourselves with the 
detection and recording of 'interesting' pointers. Detection is the determination that a par
ticular pointer is 'interesting' while recording is noting that fact for later use by the collector. 
To some extent detection and recording are orthogonal, though some detection methods 
may lend themselves more to particular recording methods. For example, detection via 
page protection violations lends itself more to recording the location being modified. 

Engineering 

A typical barrier involves one or more checks that guard an action. Typical checks include 
whether a pointer being stored is null and the relationship between the generations of the 
referring object and its referent, and a typical action is to record an object in a remembered 
set. The full code for all the checks and the action may be too large to inline entirely, de
pending on implementation. Even a fairly modest sequence of instructions would create 
very large compiled code and also risk poor instruction cache performance since much of 
the code executes only rarely. Therefore designers often separate the code into what is com
monly called 'fast path' and 'slow path' portions. The fast path is inlined for speed, and 
it calls the slow path part only if necessary; there is one copy of the slow path in order to 
conserve space and improve instruction cache performance. It is critical that the fast path 
code include the most common cases and that the slow path part be less common. How
ever, it sometimes helps to apply the same principle to the slow path code. If the barrier 
involves multiple tests - and they usually do - then it is important to order those tests 
so that the first one filters out the most cases, the second the next larger set of cases, and so 
on, modulo the cost of performing the test. In doing this tuning there is no substitute for 
trying various arrangements and measuring performance on a range of programs, because 
so many factors come into play on modem hardware that simple analytical models fail to 
give good enough guidance. 

Another significant factor in barrier performance is speed in accessing any required 
data structures, such as card tables .  It may be a good trade-off to dedicate a machine 
register to hold a data structure pointer, such as the base of the card table, but this can vary 
considerably by machine and algorithm. 

Also of concern is the software engineering and maintenance of those aspects of the 
garbage collection algorithm - mostly barriers, GC-checks and allocation sequences -
they are built into the compiler(s) of a system. If possible it seems best to arrange for the 
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compiler to inline a routine in which the designer codes the fast path portion of a sequence. 
That way the compiler does not need to know the details and the designer can change 
them freely. However, as we noted before these code sequences may have constraints, 
such as no garbage collection in the middle of them, that require care on the compiler's 
part. The compiler may also have to disable some optimisations on these code sequences, 
such as leaving apparently dead stores that save something useful for the collector and 
not reordering barrier code or interspersing it with surrounding code. To that end the 
compiler might support special pragmas or markers for the designer to use to indicate 
special properties such as uninterruptible code sequences. 

In the remainder of this section we discuss write barriers. We defer the discussion 
of read barriers to later chapters where we discuss incremental and concurrent collection 
since this is the context in which they are used. Write barriers are more complex than read 
barriers since they not only have to detect ' interesting' writes but must also record some 
information for the garbage collector 's later use. In contrast, read barriers typically cause 
an immediate action, such as copying to tospace the target of the reference just loaded. 

Precision of write barriers 

Interesting pointers can be remembered using different policies and mechanisms. Poli
cies dictate the precision with which the location of an interesting pointer is recorded in 
the remembered set. The choice of policy is a trade-off between adding overheads to the 
mutator or to the collector. In general it is better to favour adding overhead to relatively in
frequent collector actions (such as discovering roots) than to very frequent mutator actions 
(such as heap stores). Without a barrier, pointer stores are normally very fast (although 
null pointer or array bounds checks are often required by managed languages) .  Adding 
a write barrier can increase the instruction count for a pointer write by a factor of two or 
more, though some of this cost may be masked if the cache locality of the barrier is better 
than that of the mutator itself (for example, it is probably unnecessary to stall the user code 
while the write barrier records an interesting pointer) . Typically, more precise recording of 
interesting pointers in the remembered set means less work for the collector to do to find 
the pointer but more work for the mutator to filter and log it. At one extreme, in a gener
ational collector, not logging any pointer stores transfers all overheads from the mutator 
to the collector which must scan all other spaces in the heap looking for references to the 
condemned generation. While this is unlikely to be a generally successful policy, linear 
scanning has better locality than tracing, and this may be the only way to collect genera
tionally if there is no support for detecting pointer stores from the compiler or operating 
system [Bartlett, 1989a] .  Swanson [1986] and Shaw [1988] have suggested that this can 
reduce garbage collection costs by two-thirds compared with simple semispace copying. 

There are three dimensions to remembered set policy. First, how accurately should 
pointer writes be recorded? Not all pointers are interesting to a collector, but uncondi
tional logging may impose less overhead on the mutator than filtering out uninteresting 
pointers. The implementation of the remembered set is key to this cost. Remembered sets 
with cheap mechanisms for adding an entry, such as simply writing a byte in a fixed-size 
table, will favour unconditional logging, especially if addition is idempotent. On the other 
hand, if adding an entry is more expensive or the size of the remembered set is a concern, 
then it is more likely to be worthwhile to filter out uninteresting pointers . Filtering is es
sential for concurrent or incremental collectors to ensure that their work lists do eventually 
empty. For a particular filtering scheme, there is a trade-off between how much filtering to 
do inline and when to call an out-of-line routine to complete the filtering and possibly add 
the pointer to a remembered set. The more filtering that is done inline, the fewer instruc
tions that may be executed, but the code size will increase and the larger instruction cache 
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footprint may undermine any performance gains. This requires careful tuning of the order 
of filter tests and which are done inline. 

Second, at what granularity is the location of the pointer to be recorded? The most 
accurate is to record the address of the field into which the pointer was written. However, 
this will increase the size of the remembered set if many fields of an object, such as an 
array, are updated. An alternative is to record the address of the object containing the 
field: this also permits duplicates to be filtered, which field remembering does not (since 
there is generally no room in the field to record that it has been remembered) .  Object 
remembering requires the collector to scan every pointer in the object at scavenge time 
in order to discover those that refer to objects that need to be traced. A hybrid solution 
might be to object-record arrays and field-record scalars on the assumption that if one slot 
of an array is updated then many are likely to be. Conversely, it might be sensible to field
record arrays (to avoid scanning the whole thing) and object-record scalars (since they tend 
to be smaller) . For arrays it may make sense to record only a portion of the array. This is 
analogous to card marking, but specific to arrays and aligned with the array indices rather 
than with the addresses of the array's fields in virtual memory. Whether to store the object 
or one of its slots may also depend on what information the mutator has at hand . If the 
write action knows the address of the object as well as the field, the barrier can choose to 
remember either; if only the address of the field is passed to the barrier, then computing the 
address of the object will incur further overhead. Hosking et al [ 1992] resolve this dilemma 
by storing the addresses of both the object and the slot in their sequential store buffer for 
an interpreted Small talk system. 

Card table techniques (which we discuss below) divide the heap logically into small, 
fixed size cards. Pointer modifications are recorded at the granularity of a card, typically 
by setting a byte in a card table. Note that the card marked can correspond to either the 
updated field or object (these may reside on different cards) . At scavenge time, the collec
tor must first find any dirty cards corresponding to the condemned generation and then 
find all the interesting pointers held in that card. The choice of object or field card marking 
will affect how this search is performed. Coarser than cards, pointer stores can be logged 
at the granularity of a virtual memory page. With help from the hardware and operating 
system, this may impose no direct overhead on the mutator but, like cards, increases work 
for the collector. Unlike cards, marked pages will always correspond to the updated slot 
not to its containing object since the operating system is oblivious to object layout. 

Third, should the remembered set be allowed to contain duplicate entries? The case for 
duplicates is that not checking eases the burden on the mutator; the case against is that du
plicates increase the size of the remembered set and move the cost of handling duplicates 
to the collector. Card and page marking eliminate duplicates since they typically simply 
set a bit or a byte in a table. Object recording can also eliminate most duplicates by marking 
objects as logged, for example by using a bit in their header, regardless of the implementa
tion of the remembered set itself, whereas duplicate elimination is unlikely to be so simple 
if word-sized fields are recorded. The cost to the mutator is that this is an additional check 
which may or may not be absorbed by the reduction in remembered set entries added, and 
that an additional write is performed. Otherwise, remembered sets must be implemented 
as true sets rather than multisets if they are not to contain duplicates. 

In summary, if a card or page based scheme is used then the collector 's scanning cost 
will depend on the number of dirty cards or pages . Otherwise, the cost will depend on the 
number of pointer writes if a scheme without duplicate elimination is used. With dupli
cate elimination, it will depend on the number of different objects modified . In all cases, 
uninteresting pointer filtering will reduce the collector's root scanning cost. Mechanisms 
for implementing remembered sets include hash sets, sequential store buffers, card tables, 
virtual memory mechanisms and hardware support. We consider each of these in turn. 



194 CHAPTER 1 1 .  R UN-TIME INTERFACE 

Hash tables 

The remembered set must truly implement a set if it is to remember slots without duplicat
ing entries. Equally, a set is required for object remembering if there is no room in object 
headers to mark an object as remembered . A further requirement for a remembered set is 
that adding entries must be a fast, and preferably constant time, operation. Hash tables 
meet these requirements. 

Hosking et al [ 1992] implement a remembered set with a circular hash table, using 
linear hashing in their multiple generation memory management toolkit, for a Smalltalk 
interpreter that stores stack frames in generation 0, step 0 in the heap. More specifically, 
a separate remembered set is maintained for each generation. Their remembered sets can 
store either objects or fields. The tables are implemented as arrays of 2i + k entries (they use 
k = 2) .  Hence addresses are hashed to obtain i bits (from the middle bits of the address), 
and the hash is used to index the array. If that entry is empty, the address of the object 
or field is stored at that index, otherwise the next k entries are searched (this is not done 
circularly, which is why the array size is 2i + k) . If this also fails to find an empty entry, the 
table is searched circularly. 

In order not to increase further the work that must be done by the remembering code, 
the write barrier filters out all writes to generation 0 objects and all young-young writes. 
In addition, it adds all interesting pointers to a single scratch remembered set rather than 
to the remembered set for the target generation. Not deciding at mutator time the gen
eration to whose remembered set it should be added might be even more apposite in a 
multithreaded environment; there per-processor scratch remembered sets could be used 
to avoid contention as thread-safe hash tables would be too expensive. In all, Hosking 
et al used 17 inlined MIPS instructions in the fast path of the write barrier, including the 
call to update the remembered set, making it comparatively expensive even on the MIPS, 
a register-rich architecture. At scavenge time, the roots for a given generation may reside 
either in that generation's remembered set or in the scratch remembered set. Duplicates be
tween the remembered sets are removed by hashing the generation's remembered set into 
the scratch remembered set, and the scratch remembered set is processed: any interesting 
pointers encountered are added to the appropriate remembered sets . 

Garthwaite uses hash tables in his implementation of the Train algorithm. The com
mon operations on his hash tables are insertion and iteration, so he uses open addressing. 
Because it is common to map adjacent addresses, he eschews linear addressing (address 
modulo N where N is the size of the hash table) which would tend to map these addresses 
to neighbouring slots in the table. Instead he uses a universal hashing function. He chose 
a 58-bit prime p and assigns to each remembered set hash table two parameters, a and b, 
generated by repeated use of a pseudo-random function [Park and Miller, 1988] so that 
0 < a, b < p. An address r is hashed by the function ( (ar + b) mod p) mod N. Open
addressing requires a tactic for probing alternative slots when a collision occurs . Linear 
and quadratic probing (in which the current slot's index is incremented by an amount d 
and d is incremented by a constant i) suffer from clustering as subsequent insertions fol
low the same probing sequence, so Garthwaite uses double hashing in which the increment 
used in quadratic probing is a function of the key. Given a hash table whose size is a power 
of 2, quadratic probing with any odd increment i applied to the probing step d ensures that 
the entire table will be visited. This scheme doubles the available set of probing sequences 
by checking whether d is odd. If so, i is set to zero (linear probing) .  Otherwise, both d and 
i are set to d + 1 .  Finally, a hash table may need to be expanded when its load becomes too 
high. An alternative may be to rebalance the table by modifying the insertion process. At 
each collision, we must decide whether to continue probing with the item being inserted or 
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Algorithm 11.4: Recording stored pointers with a sequential store buffer 

1 Writ e ( s rc ,  i, r e f ) : 
add % s r c, % i  % f l d  
s t  % r e f, [% f ld] 
s t  % f l d, [ %next ]  
add %next ,  4 ,  %next  

; s r c [ i ]  f- ref  
S S B [next ]  f- fld  

next  f- n e xt + 1 

whether to place it in the current slot and probe with the contents of that slot. Garthwaite 
et al uses robin hood hashing [Celis et al, 1985] .  Each entry is stored in its slot along with its 
depth in the probing sequence, taking advantage of the fact that the least significant bits 
of an item (such as the address of a card) will be zero. If a slot already contains an item, its 
depth is compared with the depth of the new item: we leave which either value is deeper 
in its probing sequence and continue with the other. 

Sequential store buffers 

Pointer recording can be made faster by using a simpler sequential store buffer (SSB), such as 
a chain of blocks of slots. A buffer per thread might be used for all generations to save the 
mutator write barrier from having to select the appropriate one and to eliminate contention 
between threads. 

In the common case, adding an entry requires very few instructions: it is simply neces
sary to compare a next pointer against a limit, store to the next location in the buffer and 
bump the next  pointer. The MMTk [Blackburn et al, 2004b] implements a sequential store 
buffer as a chain of blocks. Each block is power-of-two sized and aligned, and filled from 
high addresses to low. This allows a simple overflow test by comparing the low order bits 
of the next pointer with zero (which is often a fast operation) . 

A number of tricks can be used to eliminate the explicit overflow check, in which case 
the cost of adding an entry to the sequential store buffer can be as low as one or two instruc
tions if a register can be reserved for the next pointer, as in Algorithm 1 1 .4. With a dedi
cated register this might be as low as one instruction on the PowerPC: stwu f l d, 4  (next ) .  

Appel [1989a] ,  Hudson and Diwan [1990] and Hosking e t  a l  [ 1992] use a write-protected 
guard page. When the write barrier attempts to add an entry on this page, the trap han
dler performs the necessary overflow action, which we discuss later. Raising and handling 
a page protection exception is very expensive, costing hundreds of thousands of instruc
tions. This technique is therefore effective only if traps are very infrequent: the trap cost 
must be less than the cost of the (large number of) software tests that would otherwise be 
performed: 

cost of page trap :::; cost of limit test x buffer size 

Appel ensures that his guard page trap is triggered precisely once per collection by storing 
the sequential store buffer as a list in the young generation. The guard page is placed at 
the end of the space reserved for the young generation, thus any allocation - for objects 
or remembered set entries - may spring the trap and invoke the collector. This technique 
relies on the young generation's area being contiguous. It might appear that a system can 
simply place the heap at the end of the data area of the address and use the brk  system 
call to grow (or shrink) the heap. However, protecting the page beyond the end of the heap 
interferes with use of brk by ma l l oc, as noted by Reppy [1993], so it may be better to use 
a higher region of address space and manage it with mmap. 
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Algorithm 11.5: Misaligned access boundary check 

atomic i n s e r t ( f l d) : 
* (next - 4 ) +--- f l d  
tmp +--- next  » (n - 1 ) 
tmp +--- tmp & 6 
next +--- next  + tmp 

Example: n = 4 (4 word buffers) :  

i n s e rt at  3 2 : next = 4 0 ,  
i n s e rt at  3 6 : next = 4 4 ,  
i n sert  at  4 0 : next = 4 8 ,  
i n s e rt at  4 4 :  next = 5 4 ,  
i n sert  at  5 0 : UTRAP ! 

/* add the entry in the previous slot *I 

/* tmp = 4 or 6 4 

next» (n- 1 ) = 4 ,  tmp = 4  
next» (n- 1 ) =5 ,  tmp = 4  
next» (n- 1 ) =5 ,  tmp = 4  
next» (n- 1 ) = 6, tmp = 6  

Architecture-specific mechanisms can also b e  used to eliminate the overflow check. 
One example is the Solaris UTRAP fault, which is designed to handle misaligned accesses 
and is about a hundred times faster than the Unix signal handling mechanism. Detlefs 
et al [2002a] implement their sequential store buffer as a list of 2n -byte buffers, aligned on 
2n +l boundaries but not 2n+2 ones, which sacrifices some space. The insertion algorithm 
is shown in Algorithm 11 .5. The next  register normally points to four bytes beyond the 
next entry, except when the buffer is full (that is, when next points at the slot before a 
2n +2-aligned boundary), in which case the increment on line 5 adds six, causing a UTRAP 
on the next access. 

Sequential store buffers may be used directly as remembered sets or as a fast logging 
front-end to hash tables. A simple, two-generation configuration with en masse promotion 
can discard the remembered set at each minor collection since the nursery is emptied: 
there is no need for more complex remembered set structures (provided the sequential 
store buffer does not overflow before a collection) . However, other configurations require 
remembered sets to be preserved between collections. If multiple generations are used, the 
records of pointers spanning older generations must be preserved regardless of whether 
survivors of the condemned generations are promoted en masse. If the generations being 
collected have steps or other mechanisms for delaying promotion (Section 9.4), then the 
record of older generation pointers to surviving, but not promoted objects, must be kept. 

One solution might be simply to remove entries that are no longer needed from the 
sequential store buffer. An entry for a field will not be needed if the value of the field is 
null, or refers to an object that is only considered at full heap collections (or never) . By 
extension, an entry for an object can be deleted if the object similarly does not contain 
any interesting pointers. However this solution encourages unrestrained growth of the 
remembered set and leads to the collector processing the same long-lived entries from one 
collection to the next. A better solution is to move entries that need to be preserved to 
the remembered set of the appropriate generation. These remembered sets might also be 
sequential store buffers or the information might be more concisely transferred into a hash 
table as we saw above. 

Overflow action 

Hash tables and sequential store buffers may overflow: this can be handled in different 
ways. The MMTk acquires and links a fresh block into the sequential store buffer [Black-
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burn et al, 2004b] .  Hosking et  al [1992] fix the size of  their sequential store buffer by empty
ing it into hash tables whenever it overflows. In order to keep their hash tables relatively 
sparse, they grow a table whenever a pointer cannot be remembered to its natural location 
in the table or one of the k following slots, or when the occupancy of the table exceeds a 
threshold (for example, 60%).  Tables are grown by incrementing the size of the hash key, 
effectively doubling the table's size; a corollary is that the key size cannot be a compile
time constant, which may increase the size and cost of the write barrier. As Appel [1989a] 
stores his sequential store buffer in the heap, overflow triggers garbage collection. The 
MMTk also invokes the collector whenever the size of its metadata (such as the sequential 
store buffer) grows too large. 

Card tables 

Card table (card marking) schemes divide the heap conceptually into fixed size, contiguous 
areas called cards [Sobalvarro, 1988; Wilson and Moher, 1989a,b] . Cards are typically small, 
between 128 and 512 bytes. The simplest way to implement the card table is as an array 
of bytes, indexed by the cards. Whenever a pointer is written, the write barrier dirties an 
entry in the card table corresponding to the card containing the source of the pointer (for 
example, see Figure 1 1 .3) .  The card's index can be obtained by shifting the address of the 
updated field . The motivation behind card tables is to permit a small and fast write barrier 
that can be inlined into mutator code. In addition, card tables cannot overflow, unlike 
hash tables or sequential store buffers. As always, the trade-off is that more overhead is 
transferred to the collector. In this case, the collector must search dirtied cards for fields 
that have been modified and may contain an interesting pointer: the cost to the collector is 
proportional to the number of cards marked (and to card size) rather than the number of 
(interesting) stores made. 

Because they are designed to minimise impact on mutator performance, card marking 
schemes are most often used with an unconditional write barrier. This means that the card 
table is sufficiently large that all locations that might be modified by Wr i t e  can be mapped 
to a slot in the table. The size of the table could be reduced if it were guaranteed that no 
interesting pointers would ever be written to some region of the heap and a conditional 
test was used to filter out such dull pointers. For example, if the area of the heap above 
some fixed virtual address boundary was reserved for the nursery (which is scavenged at 
every collection), then it is only necessary to map the area below that boundary. 

While the most compact implementation of a card table is an array of bits, this is not 
the best choice for several reasons. Modern processor instruction sets are not designed 
to write single bits. Therefore bit manipulations require more instructions than primitive 
operations: read a byte, apply a logical operator to set or clear the bit, write the byte back. 
Worse, this sequence of operations is not atomic: card updates may be lost if threads race 
to update the same card table entry even though they may not be modifying the same 
field or object in the heap. For this reason, card tables generally use arrays of bytes .  Be
cause processors often have fast instructions for clearing memory, 'dirty' is often repre
sented by 0. Using a byte array, the card can be dirtied in just two SPARC instructions 
[Detlefs et al, 2002a] (other architectures may require a few more instructions), as shown 
in Algorithm 1 1 .6. For clarity, we write ZERO to represent the SPARC register %gO  which 
always holds 0 .  A BAS E  register needs to be set up so that it holds the higher order bits of 
CT l - (H»LOG_CARD_S I ZE )  where C T l  and H are the starting addresses of the card table 
and the heap respectively, and both are aligned on a card-size boundary, say 512 bytes. 
Detlefs et al [2002a] use a SPARC local register for that, which is set up once on entry to a 
method that might perform a write, and is preserved across calls by the register window 
mechanism. 



198 CHAPTER 1 1 .  RUN-TIME INTERFACE 

Algorithm 11.6: Recording stored pointers with a card table on SPARC 

1 Wr it e ( s r c, i, re f ) : 
add % s r c, % i , % f l d  
s t  % re f, [% f l d] 
s r l  % f l d, LOG_CARD_S I ZE, % i dx 
s tb  ZERO, [ %BAS E + % i dx] 

; s r c [ i ]  +- re f 
i dx f- f l d  > >  LOG_CARD_S I ZE 

; CT [ i dx] +- D I RTY 

Algorithm 11.7: Recording stored pointers with Holzle's card table on SPARC 

1 Writ e ( s r c, i ,  re f ) : 
s t  % re f, [% s r c  + % i ] 
s r l  % s r c, LOG_CARD_S I ZE, % i dx 
c l rb [ % BASE + % i dx] 

/* calculate approximate byte index *I 
f* clear byte in byte map 4 

Algorithm 11.8: Two-level card tables on SPARC 

1 Writ e ( s rc ,  i ,  re f ) : 
add % s r c, % i , % f l d  
st  % re f, [ % f l d] 
s r l  % f l d, LOG_CARD_S I ZE, % i dx 
stb  ZERO, [ %BASE+ % i dx] 
s r l  % f l d, LOG_SUP ERCARD_S I ZE ,  % i dx 
stb  ZERO, [ %BAS E + % i dx] 

f* do the write *I 
f* get the Ievel l index *f 

f* mark the level 1 card dirty *f 
/* get the level 2 index 4 

f* mark the level 2 card dirty 4 

Holzle [1993] further reduced the cost of the write barrier in most cases by reducing 
the precision with which the modified field is recorded, as in Algorithm 1 1 .7 .  Suppose that 
marking byte i in the card table indicated that any card in the range i . . .  i + L may be dirty. 
Provided that the offset of the updated word is less than L cards from the beginning of the 
object, the byte corresponding to the object's address can be marked instead. A leeway of 
one (L = 1 )  is likely to be sufficient to cover most stores except those into array elements: 
these must be marked exactly in the usual way. With a 128-byte card, any field of a 32-word 
object can be handled. 

Ambiguity arises only when the last object on a card extends into the next card, and in 
that case the collector also scans that object or the necessary initial portion of it . 

The space required for the card table is usually modest, even for small card sizes. For 
example, a byte array for 128-byte cards occupies less than 1% of the heap in a 32-bit archi
tecture. Card size is a compromise between space usage and the collector's root scanning 
time, since larger cards indicate the location of modified fields less precisely but occupy 
smaller tables. 

At collection time, the collector must search all dirty cards for interesting pointers. 
There are two aspects to the search. First, the collector must scan the card table, looking for 
dirty cards. The search can be speeded up by observing that mutator updates tend to have 
good locality, thus clean and dirty cards will tend to occur in clumps. If bytes are used in 
the card table, four or eight cards can be checked by comparing whole words in the table. 

If a generational collector does not promote all survivors en masse, some objects will 
be retained in the younger generation, while others are promoted . If a promoted object 
refers to an object not promoted, then the older-to-younger reference leads unavoidably to 
a dirty card. However, when a promoted object is first copied into the older generation, 
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Figure 11.3: Crossing map with slot-remembering card table. One card has 
been dirtied (shown in black) . The updated field is shown in grey. The cross
ing map shows offsets (in words) to the last object in a card. 
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it may refer to objects in the younger generation, all of which end up being promoted. In 
that case it would be better not to dirty the promoted object's card(s), since doing so will 
cause needless card scanning during the next collection. Hosking et al [1992] take care to 
promote objects to clean cards, which are updated as necessary as the cards are scanned 
using a filtering copy barrier. 

Even so, a collector may spend significant time in a very large heap skipping clean 
cards. Detlefs et a[ [2002a] observe that the overwhelming majority of cards are clean whilst 
cards with more than 16 cross-generational pointers are quite rare. The cost of searching 
the card table for dirty cards can be reduced at the expense of some additional space for 
a two-level card table. The second, smaller card table uses more coarsely grained cards, 
each of which corresponds to 2n fine-grained cards, thus speeding up scanning of clean 
cards by the same factor. The write barrier can be made very similar to that of Algo
rithm 1 1 .6 (just two more instructions are needed) by sacrificing some space in order to 
ensure that the start of the second level card table CT2  is aligned with the first such that 
CT1 - (H»LOG_CARD_S I ZE ) =CT2 - (H»LOG_SUPERCARD_S I ZE ) ,  as in Algorithm 1 1 .8. 

Crossing maps 

As a card table is searched, each dirty card discovered must be processed, which requires 
finding the modified objects and slots somewhere in the card. This is not straightforward 
since the start of the card is not necessarily aligned with the start of an object but in order 
to scan fields we must start at an object. Worse, the field that caused the card to be dirtied 
may belong to a large object whose header is several cards earlier (this is another reason 
for storing large objects separately) . In order to be able to find the start of an object, we 
need a crossing map that decodes how objects span cards. 

The crossing map holds as many entries as cards. Each entry in the crossing map indi
cates the offset from the start of the corresponding card to an object starting in that card. 
Entries in the crossing map corresponding to old generation cards are set by the collector 
as it promotes objects, or by the allocator in the case of cards for spaces outside the genera
tional world. Notice that the nursery space does not need cards since objects there cannot 
point to other object that are still younger - they are the youngest objects in the system. 
Promotion also requires that the crossing map be updated. The design of the crossing map 
depends on whether the card table records objects or slots. 

Used with a slot-recording write barrier, the crossing map must record the offset to the 
last object in each card, or a negative value if no object starts in a card. Because objects can 
span cards, the start of the modified object may be several cards earlier than the dirty one. 
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Algorithm 11.9: Search a crossing map for a slot-recording card table; trace is the collector 's 
marking or copying procedure. 

s earch(  c a rd) : 
start  +-- H + ( card  < <  LOG_CARD_S I ZE)  
end +-- s t a rt + CARD_S I ZE 
o f f s et +-- c ro s s i ngMap [card] 
while o f f s et < 0 

/* start of next card *f 

c a r d  +-- card + o f fset  /* o f f s et is negative: go back *f 
o f f s e t  +-- cro s s i n gMap [card] 

o f f s et +-- CARD_S I Z E - ( o f f s e t  < <  LOG_BYTE S_IN_WORD ) 
next +-- H + ( card < <  LOG_CARD_S I ZE)  + o ff s e t  

w repeat 
n trace ( n e xt,  start ,  e nd) /* trace the object at next */ 
1 2  next +-- nextOb j e c t (next ) 
1 3  until n e x t  > end 

For example, in Figure 11 .3, objects are shown as white rectangles in the heap. We assume 
a 32-bit architecture and 512 byte cards. The last object in the first card starts at an offset of 
408 bytes (102 words) from the end of the card, indicated by the entry in the crossing map. 
This object spans four cards so the next two crossing map entries are negative. A field 
in the fifth object has been updated (shown as grey) so the corresponding card (card 4) is 
marked (shown as black). To find the start of this object, the collector consults the crossing 
map, moving backwards from the dirtied card (to the left) until it finds a non-negative 
offset (Algorithm 1 1 .9) .  Note that the negative value indicates a distance to go back - a 
process that may need to be repeated a number of times if the preceding object is quite 
large. Alternatively, the system can reserve a a single value, such as -1,  to mean 'back up,' 
making backing up slower over a large object. 

Old generations are commonly managed by a non-moving collector which mixes used 
and free blocks in the heap. Parallel collectors are especially likely to create islands of pro
moted data separated by large areas of free space, as each collector thread will promote 
to its own heap area in order to avoid contention. To aid heap parsability, each free area 
can be filled with a self-describing pseudo-object. However, slot-based crossing map al
gorithms are predicated on the assumption that heap usage is dense. If a very large, say 
ten megabyte, free chunk protrudes into a dirty card, the first loop of the s e a r c h  algo
rithm in Algorithm 1 1 .9 will iterate tens of thousands of times to discover the head of the 
pseudo-object describing this free chunk. One way to reduce this search is to store logarith
mic backup values when no object starts in the card. Thus, an entry -k would indicate 'go 
back 2

k
- t cards and then do what it says there' (and similarly for a linear backup scheme). 

Note also that if future allocation starts from the beginning of this free block, then only 
logarithmically many entries (up the 'spine' of this list) have to be changed to restore the 
crossing table to the correct state . 

However, Garthwaite et al [2006] show that a clever encoding of the crossing map can 
usually eliminate the search loop . The simplest way to consider their scheme is to assume 
that each crossing map entry v is a 16-bit unsigned integer (two bytes) . Table 1 1 .3 shows 
their scheme. If the value v of a crossing map entry is zero, then no objects in the corre
sponding card contain any references. A value for v less than 128 indicates the number of 
words between the start of the first object and the end of the card.  Notice that this is dif-
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I Entry v I Encoded meaning 

v = O  The corresponding card contains no references. 
0 < v ::;  128 The first object starts v words before the end of this card. 
256 < v ::; 384 The first v - 256 words of of this card are a sequence of references at 

the end of an object. 
v > 384 Consult the card v - 384 entries before.  

Table 11.3:  The crossing map encoding of Garthwaite et al 

ferent from the scheme above which gives the offset to the last word in a card. Finding the 
first word eliminates the need to search back possibly many cards. Large objects, such as 
arrays, may span cards. The second encoding deals with the case that such an object spans 
two or more cards, and that the first v - 256 words of the second card are all references 
and that this sequence terminates the object. The benefit of this encoding is that the refer
ences can be found directly, without accessing the object's type information. However, this 
encoding would not work if the portion of the object overlapping this card contains both 
references and non-references. In this case, the crossing map entry should be set to a value 
greater that 384 to indicate that collector should consult the entry v - 384 entries earlier. 
Garthwaite et al also include a scheme in which, if an object completely spans two crossing 
map slots, then the four bytes of these slots should be treated as the address of the object. 
In this discussion, we have assumed that a crossing map entry should be two bytes long. 
However, a single byte suffices if, for example, we use 512 byte cards and 64-bit alignment. 

Summarising cards 

Some generational collectors do not promote objects en masse. Whenever the collector scans 
a dirty card and finds an interesting pointer but does not promote its referent, the card 
must be left dirty so that it is found at the next collection and scanned again. It would be 
preferable to discover interesting pointers directly rather than by searching through cards. 
Fortunately, it is common for very few dirty cards to contain more than a small number. 
Hosking and Hudson [ 1993] suggest moving interesting pointers to a hash table as a card 
is cleaned in the same way as Hosking et al [1992] did with sequential store buffers . 

Sun's Java virtual machines optimise card rescanning by having the scavenger sum
marise dirty cards that retain interesting pointers, taking advantage of card map entries 
being bytes not bits [Detlefs et al, 2002a] .  The state of a card may now be 'clean', 'mod
ified' or 'summarised' .  If the scavenger finds up to k interesting pointers in a 'modified' 
card, it marks the card as 'summarised' and records the offsets of these pointer locations 
in the corresponding entry of a summary table. If the card contains more than k interesting 
pointers (for example, k = 2), it is left 'modified' and the summary entry is recorded as 
'overflowed'. The k interesting fields can therefore be processed directly at the next collec
tion (unless the card is dirtied again) rather having to search the card using the crossing 
map. Alternatively, if cards are reasonably small, each byte-sized entry in the card table 
itself can store a small number of offsets directly. 

Reppy [1993] encodes additional generational information in the card table to save 
scanning effort. As it cleans cards, his multi-generational collector summarises a dirty 
card with the lowest generation number of any referent found on it (0 being the nursery) . 
In future, when collecting generation n, cards in the table with values larger than n need 
not be processed. Used with 256-byte cards, this gave an 80% improvement in garbage 
collection times in a five-generation Standard ML heap. 
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Hardware and virtual memory techniques 

Some of the earliest generational garbage collectors relied on operating system and hard
ware support. Tagged pointer architectures allowed pointers and non-pointers to be dis
criminated, and hardware write barriers could set bits in a page table [Moon, 1984] . How
ever, it is possible to use operating system support to track writes without special purpose 
hardware. Shaw [1988] modified the HP-UX operating system to use its paging system for 
this purpose. The virtual memory manager must always record which pages are dirty so 
that it knows whether to write them back to the swap file when they are evicted. Shaw 
modified the virtual memory manager to intercept a page's eviction and remember the 
state of its dirty bit, and added system calls to clear a set of page bits and to return a map 
of pages modified since the last collection. The benefit of this scheme is that it imposes no 
normal-case cost on the mutator. A disadvantage is that it overestimates the remembered 
set since the operating system does not distinguish pages dirtied by writing a pointer or a 
non-pointer, plus there are the overheads of the traps and operating systems calls. 

Boehm et al [ 1991 ]  avoided the need to modify the operating system by write-protecting 
pages after a collection. The first write to a page since it was protected leads to a fault; the 
trap handler sets the dirty bit for the page before unprotecting it to prevent further faults 
in this collection cycle. Clearly, pages to which objects are promoted should be presumed 
dirty during collection to avoid incurring traps. Page protection does impose overhead on 
the mutator but, as for card tables, the cost of the barrier is proportional to the number 
of pages written rather than the number of writes. However, these schemes incur further 
expense. Reading dirty page information from the operating system is expensive. Page 
protection mechanisms are known to incur 'trap storms' as many protection faults are 
triggered immediately after a collection to unprotect the program's working set [Kermany 
and Petrank, 2006] . Page protection faults are expensive, particularly if they are referred 
to user-space handlers. Operating system pages are much larger than cards, so efficient 
methods of scanning them will be important (perhaps summarising them in the same way 
that we summarised cards above) .  

Write barrier mechanisms: in summary 

Studies by Hosking et al [1992] and Fitzgerald and Tarditi [2000] found no clear win
ner amongst the different remembered set mechanisms for generational garbage collec
tors, although neither study explored Sun-style card summarising. Page-based schemes 
performed worst but, if a compiler is uncooperative, they do provide a way to track 
where pointers are written. In general, for card table remembered sets, card sizes around 
512 bytes performed better than much larger or much smaller cards. 

Blackburn and Hosking [2004] examined the overheads of executing different genera
tional barriers alone on a range of platforms. Card marking and four partial barrier mech
anisms were studied: a boundary test, a logging test, a frame comparison and a hybrid 
barrier. They excluded the costs of inserting an entry into remembered set for the par
tial barriers. The boundary test checked whether the pointer crossed a space boundary 
(a compile-time constant). The logging test checked a 'logged' field in the source of the 
pointer 's header. The frame barrier compared whether a pointer spanned two 2n - sized 
and aligned areas of the heap by xo ring the addresses of its source and target: such bar
riers can allow more flexibility in the choice of space to be collected [Hudson and Moss, 
1992; Blackburn et al, 2002] . Finally, a hybrid test chose statically between the boundary 
test for arrays and the logging test for scalars. 

They concluded that the costs of the barrier (excluding the remembered set insertion 
in the case of the partial techniques) was generally small, less than 2%. Even where a 
write barrier 's overhead was much higher, the cost can be more than balanced by improve-
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ments in overall execution time offered by generational collection [Blackburn et al, 2004a] .  
However, there was substantial architectural variation between the platforms used (Intel 
Pentium 4, AMD Athlon XP and Power PC 970), especially for the frame and card barriers. 
For example, the frame barrier was significantly more expensive than the others on x86 but 
among the cheapest on Power PC; Blackburn and Hosking observed that x o r  is required to 
use the e a x  register on x86 which may increase register pressure. On the other hand, card 
marking on the Power PC (their compiler generated a longer instruction sequence than the 
ones shown above) was very much more expensive than the partial techniques. We con
clude that, as always, design decisions must be informed by careful experimentation with 
realistic benchmarks on a range of hardware platforms, and for each platform a different 
technique may be best. 

Chunked lists 

It is common to find list-like data structures in collectors where an array is attractive be
cause it does not require a linked list pointer or object header for each element, and it 
achieves good cache locality, but where the unused part of large arrays, and the possible 
need to move and reallocate a growing array, are problematic .  A remembered set in a gen
erational collector is such an example. A chunked list offers the advantage of high storage 
density but without the need to reallocate, and with relatively small waste and overhead. 
This data structure consists of a linked-list, possibly linked in both directions for a general 
deque, of chunks, where a chunk consists of an array of slots for holding data, plus the one 
or two chaining pointers. This is illustrated in Figure 1 1 .4 .  

A useful refinement of this data structure is to make the size of the chunks a power of 
two, say zk, and align them on zk boundaries in the address space. Then logical pointers 
into a chunk used for scanning, inserting, or removing, do not need a separate 'current 
chunk' pointer and an index, but can use a single pointer. Algorithm 1 1 .10  shows code 
for traversing a bidirectional chunked list in either direction, as a sample of the technique.  
The modular arithmetic can be performed with shifting and masking. 

An important additional motivation for chunking is related to parallelism. If a chunked 
list or deque represents a work queue, then individual threads can grab chunks instead of 
individual items. If the chunk size is large enough, this greatly reduces contention on 
obtaining work from the queue. Conversely, provided that the chunk size is small enough, 
this approach still admits good load balancing. Another application for chunking is for 
local allocation buffers (Section 7.7), though in that case the chunks are just free memory, 
not a dense representation of a list data structure. 

11.9 Managing address space 

In other chapters we have described a variety of algorithms and heap layouts, some of 
which have implications for how a system uses available address space. Some algorithms 
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Algorithm 11.10: Traversing chunked lists 

, /* Assume chunk is of size 2k bytes and aligned on a 2k byte boundary *f 
2 /* Assume pointer size and slot size is 4 here *f 
3 NEXT 0 /* byte offset in a chunk of pointer to data of next chunk *f 
4 PREV 4 /* byte offset in a chunk of pointer to  end of data of previous chunk *f 
5 DATA 8 /* byte offset in a chunk of first data item *f 

1 bumpToNext (pt r ) : 
pt r f- pt r + 4 
i f  (pt r % 2 k )  0 

10 pt r f- * (pt r 2k  + NEXT ) 
n ret urn pt r 
1 2  

1 3  bumpToP rev (pt r ) : 
1 4  pt r f- pt r - 4 
1 5  if (pt r % 2 k )  < DATA 
1 6  pt r +- *pt r 
1 1  return pt r 

/* went off the end . . .  *I 
/* . . .  back up to start of chunk and chain *f 

/* went off the beginning of the data . . .  *f 
/* . . .  chain *f 

require, or at least are simpler with, large contiguous regions. In a 32-bit address space it 
can be difficult to lay out the various spaces statically and have them be large enough for 
all applications. If that were not problematic enough, on many systems we face the added 
difficulty that the operating system may have the right to place dynamic link libraries 
(also called shared object files) anywhere it likes within large swaths of the address space. 
Furthermore, these libraries may not end up in the same place on each run - for security 
purposes the operating system may randomise their placement. Of course one solution 
is the larger address space of a 64-bit machine. However, the wider pointers needed in a 
64-bit system end up increasing the real memory requirements of applications. 

One of the key reasons for using certain large-space layouts of the address space is to 
make address-oriented write barriers efficient, that is, to enable a write barrier to work 
by comparing a pointer to a fixed address or to another pointer rather than requiring a 
table lookup . For example, if the nursery of a generational system is placed at one end of 
the address space used for the heap, a single check against a boundary value suffices to 
distinguish writes of pointers referring to objects in the nursery from other writes. 

In building new systems, it may be best not to insist on large contiguous regions of 
address space for the heap, but to work more on the basis of frames, or at least to allow 
'holes' in the middle of otherwise contiguous regions. Unfortunately this may then require 
table lookup for write barriers. 

Assuming table lookup costs that are acceptable, the system can manage a large logical 
address space by mapping it down to the available virtual address space. This does not 
allow larger heaps, but it does give flexibility in that it removes some of the contiguity re
quirements. To do this, the system deals with memory in power-of-two sized and aligned 
frames, generally somewhat larger than a virtual memory page. The system maintains 
a table indexed by frame number (upper bits of virtual address) that gives each frame's 
logical address. This table then supports the address comparisons used in a variety of 
address-oriented write barriers. It may lead to even better code to associate a generation 
number (for a generational write barrier) with each frame. Algorithm 1 1 . 1 1  gives pseu
docode for such a write barrier. Each line can correspond to one instruction on a typical 
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Algorithm 11.11: Frame-based generational write barrier 

1 Wr i t e ( s r c, i, r e f ) : 
ct  f- f rame Tabl eBa s e  
s r cFrame f- s r c  > > >  LOG_FRAME_S I ZE 
re fFrame f- r e f  > > >  LOG_FRAME_S I ZE 
s r cGen f- ct [ s r cFrame] 
re fGen f- ct [re fF rame] 
if s r cGen > re fGen 

remembe r ( s r c, & s r c [ i ] ,  re f )  
s r c [ i ]  f- r e f  
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processor, particularly if entries in the frame table are a single byte each, simplifying the 
array indexing operation. Notice also that the algorithm works even if re f is null - we 
simply ensure that the entry for null's frame has the highest generation number so the 
code will always skip the call to remember .  

I t  i s  further possible to arrange true multiplexing o f  a large address space into a smaller 
one - after all, that is what operating systems do in providing virtual memory. One 
approach would be to use wide addresses and do a check on every access, mimicking in 
software what the virtual memory hardware accomplishes. This could use the software 
equivalent of translation lookaside buffers, and so on. The performance penalty might 
be high. It is possible to avoid that penalty by leveraging the virtual memory hardware, 
which we discuss in more detail in Section 1 1 . 10. 

It is good to build into systems from the start the capability to relocate the heap. Many 
systems have a starting heap or system image that they load as the system initialises. That 
image assumes it will reside at a particular location in the address space - but what if a 
dynamic link library lies right in the middle of it? If the image includes a table indicating 
which words need adjusting when the image is moved, not unlike many code segments, 
then it is relatively straightforward for the image loader to relocate the image to another 
place in the address space. Likewise it might be desirable to support relocating the entire 
heap, or segments of it, during system operation. 

In actually managing virtual memory, we can distinguish between the managed sys
tem's notion of address space dedicated to particular uses, which we call reserving the 
space, and actual allocation of pages via a call to the operating system. If the operating sys
tem might map new dynamic link libraries into the address space on the fly, to guarantee a 
reservation that the managed system has in mind it must actually allocate the pages - typ
ically as demand-zero pages. This has relatively low cost, but may involve the operating 
system in reserving resources such as swap space, and all virtual memory mapping calls 
tend to be expensive. Allocating pages in advance can also determine earlier that there 
are not adequate resources for a larger heap. However, operating systems do not always 
'charge' for demand-zero pages until they are used, so simply allocating may not give an 
early failure indication. 

11.10 Applications of virtual memory page protection 

There are a variety of checks that a system can arrange to happen as part of virtual mem
ory protection checking. Implemented in this way the checks have little or no normal case 
overhead and furthermore require no explicit conditional branches. A general considera
tion is that the overhead of fielding the trap, all the way through the operating system to 
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the collector software and back again, can be quite high. Also, changing page protections 
can be costly, especially in a multiprocessor system where the operating system may need 
to stop processes currently executing and update and flush their page mapping informa
tion. So sometimes an explicit check is cheaper even when the system could use protection 
traps [Hosking et al, 1992] . Traps are also useful in dealing with uncooperative code, in 
which it is not possible to cause barriers or checks in any other way. 

A consideration, especially in the future, is that there are hardware performance rea
sons to increase page size. In particular, programs use more memory now than when these 
techniques were first developed, and systems tend to have more main memory available 
to map. At the same time, translation lookaside buffer size is not likely to grow because of 
speed and power concerns. But given that translation lookaside buffer size is more or less 
fixed, staying with a small page size while programs' memory use increases implies more 
translation lookaside buffer misses. With larger pages some of the virtual memory 'tricks' 
may not be as desirable. 

We assume a model in which data pages can have their protection set for read-write 
access, read-only access, and no-access. We are not concerned about execute privileges 
since we are unaware of garbage collection-related exploitation of no-execute protection; 
it is also less well supported across platforms. 

Double mapping 

Before considering specific applications we describe a general technique called double map
ping, by which the system maps the same page at two different addresses with different 
protections. Consider for example an incremental copying collector with a tospace invari
ant. To prevent mutators from seeing fromspace pointers in pages not yet processed, the 
collector can set those pages to no-access, effectively creating a hardware supported read 
barrier. But how is the collector to process the pages? If the system is concurrent and the 
collector unprotects the page, some other mutator may see the contents before the collec
tor processes them. However, if the page is mapped a second time in another place, with 
read-write access, then the collector can process the contents via that second mapping, 
then unprotect the page and wake up any mutator waiting for it. 

In a smaller address space (even 32 bits is often small now) it may be difficult to double 
map. A solution to that problem is to fork a child process that holds the second version of 
the address space with same pages but different protections. The collector can communi
cate with the child, requesting the child to process a page, and so forth. 

Note also that double mapping is problematic on some systems. One problem arises 
when caches are indexed by virtual address. In the presence of double mapping, the cache 
could potentially become incoherent. Typically the hardware avoids that by preventing 
aliased entries from residing in the cache at the same time. This can cause extra cache 
misses. However, in the case at hand it applies only to accesses by the mutator and collec
tor near in time on the same processor. Another problem arises if the system uses inverted 
page tables. In this scheme, each physical page can have only one virtual address at a time. 
The operating system can support double mapping by effectively invalidating one of the 
virtual addresses and then connecting the other one. This may involve cache flushing. 

Applications of no-access pages 

In describing double mapping we have already given one example of using no-access 
pages: for an unconditional read barrier. There are at least two more applications for 
no-access pages in common use. One is to detect dereferences of null pointers, which we 
assume to be represented by the value 0. This works by setting page 0, and possibly a few 
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more pages after it, no-access. If a mutator tries to access a field through a null pointer, it 
will attempt to read or write the no-access page. Since fielding a null pointer dereference 
exception is generally not required to be fast, this application can be a good trade-off. In 
the rare case of an access that has a large offset, the compiler can emit an explicit check. If 
the object layout places headers or other fields at negative offsets from the object pointer, 
the technique still works provided that one or more pages with very high addresses are set 
no-access . Most operating systems reserve the high addresses for their own use anyway. 

The other common use for a no-access page is as a guard page. For example, the se
quential store buffer technique for recording new remembered set entries consists of three 
steps:  ensure there is room in the buffer; write the new element to the buffer; and incre
ment the buffer pointer. The check for room, and the call to the buffer overflow handler 
routine, can be removed if the system places a no-access guard page immediately after the 
buffer. Since write barriers can be frequent and their code can be emitted in many places, 
the guard page technique can speed up mutators and keep their code smaller. 

Some systems apply the same idea to detecting stack or heap overflow by placing a 
guard page at the end of the stack (heap) . To detect stack overflow, it is best if a procedure's 
prologue touches the most remote location of the new stack frame it desires to build. That 
way the trap happens at a well defined place in the code. The handler can grow the stack 
by reallocating it elsewhere, or add a new stack segment, and then restart the mutator 
with an adjusted stack and frame pointer. Likewise when using sequential allocation the 
allocator can touch the most remote word of the desired new object and cause a trap if it 
falls into the guard page that marks the end of the sequential allocation area. 

In either case, if the new stack frame or object is so large that its most remote word 
might lie beyond the guard page, the system needs to use an explicit check. But such large 
stack frames and objects are rare in many systems, and in any case a large object will take 
more time to initialise and use, which amortises the cost of the explicit check. 

No-access pages can also help in supporting a large logical address space in a smaller 
virtual address space. An example is the Texas persistent object store [Singhal et al, 1992] . 
Using the strategy for persistence (maintaining a heap beyond a single program execution) 
goes beyond our scope, but the mechanism is suitable for the non-persistent case as well. 
In this approach the system works in terms of pages, of the same size as virtual memory 
pages or some power-of-two multiple of that. The system maintains a table that indicates 
where each logical page is: either or both of an address in (virtual) memory and a location 
in an explicitly managed swapping file on disk. A page can be in one of four states: 

• Unallocated: Not yet used, empty. 

• Resident: In memory and accessible; it may or may not have a disk copy saved yet. 

• Non-resident: On disk and not accessible. 

• Reserved: On disk and not accessible, but with specific virtual memory reserved. 

Initially, a new page starts Resident and has a new logical address, not determined by 
its virtual memory address. As virtual memory fills, some pages may be evicted to disk, 
saved according to their logical address. Also, the system converts all pointers in the page 
to their long logical form, a process called unswizzling in the literature [Moss, 1992] . Thus 
the saved form of a page is typically larger than its in-memory form.  Also, the system 
must be able to find all the pointers in a page accurately. After evicting a page, its state is 
Reserved, and the system sets the virtual memory it occupied to no-access. This guarantees 
that if the program follows a pointer to an evicted object, there will be a page trap, which 
alerts the system to fetch the page back. 
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How can the system free up the Reserved virtual space for re-use? It must determine 
that there are no longer any Resident pages referring to the Reserved page. It can help 
make this happen by evicting pages that refer to the Reserved page. At that point the page 
can become Non-resident and the system can reuse the space. 

Notice that Resident pages refer to each other and to Reserved pages, but never directly 
to data in Non-resident pages .  

Now consider what happens if  the program accesses a Reserved page (and if  there are 
evicted data that are reachable in the object graph, then there must be Reserved pages) . The 
system looks up the page's logical address and fetches it from disk. It then goes through 
the page's pointers and replaces long logical addresses with short virtual addresses (called 
pointer swizzling). For referents on pages that are Resident or Reserved, this consists 
of just a table lookup. If the referent is itself on a Non-resident page, then the system 
must reserve virtual address space for that page, and then replace the long address with 
a pointer to the newly Reserved page. Acquiring virtual address space for these newly 
Reserved pages may require evicting other pages so that some page(s) can be made Non
resident and their virtual address space recycled. 

Just as an operating system virtual memory manager needs good page replacement 
policies, so the Texas approach needs a policy, though it can reasonably borrow from the 
vast store of virtual memory management algorithms. 

How does the scheme work in the presence of garbage collection? It is clear that a full 
heap garbage collection of a heap larger than the virtual address space is probably going 
to involve significant performance penalties. Collection of persistent stores has its own lit
erature and lies beyond our scope. However, we can say that partitioned schemes can help 
and techniques like Mature Object Space [Hudson and Moss, 1992] can offer completeness. 

Related techniques include the Bookmarking collector [Hertz et al, 2005; Bond and 
McKinley, 2008] .  However, the purpose of bookmarking is more to avoid thrashing real 
memory - it does not extend the logical address space beyond the physical. Rather it 
summarises the outgoing pointers of pages evicted by the operating system so that the 
collector can avoid touching evicted pages and thus remain within the working set, at a 
possible loss of precision similar to that occasioned by remembered sets and generational 
collection: the collector may trace from pointers in dead objects of evicted pages . 

11.11 Choosing heap size 

Other things being equal, larger heap sizes generally result in higher mutator through
put and lower collection cost. In some cases, a smaller heap size may improve muta
tor throughput by improving mutator locality by reducing cache or translation lookaside 
buffer misses. However, too big a heap may lead to a working set larger than can be 
accommodated in real memory, resulting in thrashing, particularly when the collector is 
active. Therefore, choosing an appropriate heap size often involves aiming to keep a pro
gram's real memory footprint small enough. Knowing how small is small enough typi
cally involves the run-time system and the operating system, We now review a number 
of schemes that automatic memory managers have used to adjust heap size. Alternative 
approaches to adjusting the size of the heap include choosing which pages to page out, as 
in the Bookmarking collector [Hertz et al, 2005; Hertz, 2006] ,  and having the collector save 
rarely accessed objects to disk [Bond and McKinley, 2008] . 

Alonso and Appel [1990] devised a scheme where an 'advice server ' tracks virtual 
memory usage using information available from ordinary system calls, vms t a t  in partic
ular. After each full collection (the Appel collector for SML is generational), the collector 
reports its minimal space need, how much space more than that it is currently using for 
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the heap, how long it has been since the last full collection and how much mutator and 
collector CPU time it has expended since the last collection. The advice server determines 
an additional amount of space that appears safe for the process to use, and the process 
adjusts its heap size accordingly. The aim is to maximise throughput of the managed pro
cesses without causing other processes to thrash either. 

In contrast to Alonso and Appel, Brecht et al [2001, 2006] control the growth in heap size 
for Java applications without reference to operating system paging information. Rather, for 
a system with a given amount of real memory - they considered 64 and 128 megabytes 
- they give a series of increasing thresholds, Tt to Tb stated as fractions of the real memory 
of the system. At any given time, a process uses a heap size of Ti for some i .  If collecting 
at size Ti yields less than Ti+l - Ti fraction of the space reclaimed, the system increases the 
threshold from Ti to Ti+l · They considered the Boehm-Demers-Weiser collector [Boehm 
and Weiser, 1988] ,  which cannot shrink its heap, so their approach deals only with heap 
growth. The thresholds must be determined empirically, and the approach further as
sumes that the program in question is the only program of interest running on the system. 

Cooper et al [ 1992] present an approach that aims for a specified working set size for 
an Appel-style SML collector running under the Mach operating system. They adjust the 
nursery size to try to stay within the working set size, and they also do two things spe
cific to Mach. One is that they use a large sparse address space and avoid the need to 
copy tospace to lower addresses to avoid hitting the end of the address space. This has 
little to do with heap sizing, but does reduce collector time. The second thing specific to 
Mach is having the collector inform the Mach pager that evacuated fromspace pages can 
be discarded and need not be paged out, and if referenced again, such pages can be offered 
back to the application with arbitrary contents - the allocator will zero them as necessary. 
Cooper et al obtain a four-fold improvement in elapsed time for a small benchmark suite, 
with about half of the improvement coming from the heap size adjustment. However, the 
target working set size must still be determined by the user. 

Yang et al [2004] modify a stock Unix kernel to add a system call whereby an applica
tion can obtain advice as to how much it may increase its working set size without thrash
ing, or how much to decrease it to avoid thrashing. They modify garbage collectors of 
several kinds to adjust their heap size using this information. They demonstrate the im
portance of adaptive heap sizing in obtaining the best performance as memory usage by 
other processes changes. They introduce the notion of the footprint of a program, which 
is the number of pages it needs in memory to avoid increasing the running time by more 
than a specified fraction t, set to five or ten percent. For a garbage collected program, the 
footprint depends on the heap size, and for copying collectors, also on the survival rate 
from full collections, that is, the live size. However, an observation they make, not unlike 
Alonso and Appel, is that the key relationship is between how the footprint changes for a 
given change in heap size. In particular, the relationship is linear, with the ratio determined 
by the particular collection algorithm. The ratio is 1 for mark-sweep based collectors, while 
it is 2 for copying collectors. 

Grzegorczyk et al [2007] consider the relative helpfulness of several pieces of informa
tion related to paging that can be obtained from a standard Unix kernel. Specifically they 
look at page outs, the number of pages written to the swap area by the kernel swapping 
daemon, page faults, the number of pages missing when referenced that had to be fetched 
from disk, and allocation stalls, the number of times the process had to wait when trying to 
obtain a fresh page. These counts are all related to the particular executing process in that 
page outs have to do with the pages of that process, and page faults and allocation stalls 
occur because of actions of the process. Of these three possible indicators that a system 
is under so much memory load that shrinking the heap might be wise, they find that the 
number of allocation stalls is the best indicator to use. When a collection sees no allocation 
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stalls, it will grow the heap by an amount originally set to 2% of the user-specified heap 
size; values between 2% and 5% gave similar results . If a collection experiences allocation 
stalls, the collector shrinks the nursery so that the total heap space, including the reserve 
into which the nursery is copied, fits within the space used the last time that there were 
no allocation stalls. This leaves the nursery cut by up to 50%. In the absence of memory 
pressure, the scheme performs similar to a non-adjusting baseline, while in the presence 
of memory pressure, it performs close to the non-pressure case while the baseline system 
degrades substantially. 

The schemes we have discussed so far concern adjusting individual processes' use of 
memory dynamically, perhaps in response to general use of memory within a system at 
any given time . If, on the other hand, the set of programs to be run is known in advance 
and does not vary, the approach of Hertz et al [2009] aims to indicate the best heap size 
to give to each program. In this scheme 'best' means 'gives the least overall execution 
time', which can also be stated as 'give the highest overall throughput'. At run time, their 
Poor Richard's Memory Manager has each process observe its recent page fault counts and 
resident set size. If the number of page faults observed in one time increment is greater 
than the number observed in the previous increment by more than a threshold amount, 
the collector triggers a full collection, in order to reduce the working set size. Likewise it 
triggers a full collection if the resident set size decreases. The resulting system appears to 
size competing processes' heaps well to achieve the best throughput. 

The dynamic heap sizing mechanism proposed by Zhang et al [2006] is similar in spirit 
to that of Hertz et al [2009], but has the program itself check the number of page faults at 
each collection and adjust the target heap size itself, rather than building the mechanism 
into the collector. Unlike the other mechanisms we have discussed, they assume that the 
user has somehow identified the phases of the program and inserted code to consider 
forcing collection at phase changes. They showed that dynamic adaptive heap sizing can 
substantially improve performance over any single fixed heap size . 

11.12 Issues to consider 

The allocation interface presents a number of questions that the implementer must answer. 
Some answers may be dictated by the language semantics or by the level of concurrency 
in the environment (can objects 'leak' from their allocating thread?) . Others may be at 
the discretion of the implementer and the decisions may be made in order to improve 
performance or the robustness of the run-time system. 

We need to consider what requirements are made of allocation and initialisation. Is the 
language run-time's job simply to allocate some space of sufficient size, must some header 
fields be initialised before the object can be usable or must initialising values for all the 
newly allocated object's fields be provided? What are the alignment requirements for this 
object? Should the run-time distinguish between different kinds of objects, such as arrays 
and other objects? Is it beneficial to treat objects that may contain pointers from those that 
do not? Such a distinction may help to improve tracing since pointer-free objects do not 
need to be scanned. Avoiding scanning such objects is known to be particularly beneficial 
for conservative collectors. 

Often we will want to consider carefully how much of the allocation code sequence can 
be inlined. Typically, we might inline a fast path in which an object can be allocated with 
the least work but not the other slower paths which might involve obtaining space from a 
lower-level allocator or invoking the collector. However, too much inlining can explode 
the size of the code and negate the benefit hoped for. Similarly, if might be desirable 
to dedicate a register to a particular purpose, such as the bump-pointer for sequential 
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allocation. However, doing so may place too much pressure on the register allocator on a 
register-poor platform. 

Depending on the language supported, for safety or for debugging, the run-time may 
zero memory. Space could be zeroed as objects are allocated but bulk zeroing with a well
optimised library routine is likely to be more efficient. Should memory be zeroed shortly 
before it is used (for best cache performance) or immediately when it is freed, which may 
help with debugging (though here writing a special value might be more useful)? 

Collectors need to find pointers in order to determine reachability. Should the run-time 
provide a precise or a conservative estimate to the collector? Or might it provide a conser
vative estimate of the pointers in program threads and a more precise estimate of pointer 
locations in the heap? Conservative pointer finding can ease aspects of an implementation, 
but risks space leaks and may lead to worse performance than type-accurate collection. 
Finding pointers in the stack, especially if it contains a mixture of frame types (optimised 
and unoptimised subroutines, native code frames, bridging frames), can be challenging to 
implement type-accurately. On the other hand, scanning stacks for pointers constrains the 
choice of collection algorithm as objects directly reachable from stacks cannot be moved. 

Systems generally provide stack maps to determine from a return address the function 
within which the address lies. Polymorphic functions and language constructs such as 
Java's j s r  bytecode complicate their use. The implementer must also decide when stack 
maps should be generated and when they can be used. Should the maps be generated 
in advance or should we defer generating until the collector needs one, thereby saving 
space? Is a map only valid at certain safe-points? Stack maps can be large: how can they 
be compressed, especially if they must be valid at every instruction? Stack scanning also 
raises the question of whether the stack should be scanned in its entirety, atomically, or 
incrementally. Incremental stack scanning is more complex but offers two benefits. First, 
it can bound the amount of work done in an increment (which may be important for real
time collectors) .  Second, by noting the portion of the stack that has not changed since the 
last time it was scanned, we can reduce the amount of work that the collector has to do. 

Language semantics and compiler optimisations raise further questions. How should 
interior and derived pointers be handled? Language may allow access to objects from 
outside the managed environment, typically from code written in C or C++, and every 
language needs to interact with the operating system for input/ output. The run-time must 
ensure that objects are not reclaimed while they are being used by external code and that 
external code can find these objects. Typically, this may involve pinning such objects or 
providing access to them through handles. 

Some systems may allow a garbage collection at any point. However it is usually sim
pler to restrict where collection can happen to specific GC-safe points. Typically these 
include allocation, backward branches, and function entry and return. There are alterna
tive ways to cause a thread to suspend at a GC-point. One way is to have threads poll 
by checking a flag that indicates that a collection has been requested. An alternative is 
to patch the code of a running thread to roll it forward to the next GC-point. The hand
shake between collector and mutator thread can be achieved by having threads check a 
thread-local variable, by setting a processor condition code in the saved thread state of a 
suspended thread, by hijacking return address or through operating system signals. 

Several classes of garbage collection algorithm require 'interesting' pointers to be de
tected as mutators run. This opens up a wide range of design policies and implementations 
for the detection and recording of these pointers . As barrier actions are very common, it 
is essential to minimise any overhead they incur. Barriers may be short sequences of code 
inserted by the compiler before pointer loads or stores, or they may be provided through 
operating system support, such as page protection traps. As always, there are trade-offs 
to be considered. In this case, the trade-offs are between the cost to the mutator and the 
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cost to the collector, between precision of recording and speed of a barrier. In general, it is 
better to favour adding overhead to relatively infrequent collector actions (such as discov
ering roots) than to very frequent mutator actions (such as heap stores) . Adding a write 
barrier can increase the instruction count for a pointer write by a factor of two or more, 
though some of this cost may be masked by cache access times. 

How accurately should pointer writes be recorded? Unconditional logging may impose 
less overhead on the mutator than filtering out uninteresting pointers but the implemen
tation of the remembered set is key to this decision. How much filtering should be inline? 
Careful tuning is essential here. At what granularity is the location of the pointer to be 
recorded? Should we record the field overwritten, the object or the card or page on which 
it resides? Should we allow the remembered set to contain duplicate entries? Should ar
rays and non-arrays be treated in the same way? 

What data structures should be used to record the location of interesting pointers: hash 
tables, sequential store buffers, cards or a combination of these? How does this choice 
vary the overheads between the mutator and the collector? Data structures may overflow: 
how can this be handled safely and efficiently? Card tables offer an imprecise recording 
mechanism. At collection time they must be scanned to find dirty cards and hence objects 
that may contain interesting pointers. This raises three performance questions. What size 
should a card be? Card tables are often sparse : how can we speed up the search for dirty 
cards? Should a two-level card table be used? Can we summarise the state of a card, 
for example if it contains only one modified field or object? Once a dirty card is found, 
the collector needs to find the first object on that card, but that object may start on an 
earlier card. We need a crossing map that decodes how objects span cards. How does 
card marking interact with multiprocessor cache coherency protocols? If two processors 
repeatedly write to different objects on the same card, both will want exclusive access to 
the card's cache line. Is this likely to be a problem in practice? 

In systems run with virtual memory, it is important that garbage collected applications 
fit within available real memory. Unlike non-managed programs, garbage collected ones 
can adjust their heap size so as to fit better within available memory. What events and 
counts does the particular operating system provide that a collector might use to adjust 
heap size appropriately? Which of these events or counts are most effective? What is a 
good heap growth policy, and an appropriate one for shrinking, if shrinking is possible? 
How can multiple collected processes cooperate so as to offer good throughput for all? 

In summary, many of the details raised here are subtle but both design choices and 
implementation details have substantial effect on performance. In later chapters, we shall 
see how the solutions discussed here can be used by garbage collection algorithms. 
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Language-specific concerns 

Many programming languages assume the availability of garbage collection. This has led 
to the development of various means for interacting with the collector in ways that ex
tend the basic semantics of programming language memory management. For example, 
a program might want to be informed and take some action when a given object is about 
to be, or has been, reclaimed. We describe such finalisation mechanisms in Section 12 .1 .  
Conversely, i t  is  sometimes helpful to support references that do not of themselves force 
an object to be retained. We consider such weak pointer mechanisms in Section 12.2 .  

12.1 Finalisation 

Automatic storage reclamation with a garbage collector provides the appropriate seman
tics for most objects. However, if a managed object refers to some other resource that lies 
outside the scope or knowledge of the collector, automatic garbage collection does not 
help, and in fact can lead to resource leaks that are hard to fix .  A typical case is open files. 
The interface to the operating system usually represents each open file with a small inte
ger called a file descriptor, and the interface limits the number of files that a given process 
may have open at one time. A language implementation will generally have, for each open 
file, an object that the programmer uses to manage that file stream. Most of the time it is 
clear when a program has finished with a given file stream, and the program can ask the 
run-time system to close the stream, which can close the corresponding file descriptor at 
the operating system interface, allowing the descriptor number to be reused. 

But if the file stream is shared across a number of components in a program, it can be 
difficult to know when they have all finished with the stream. If each component that uses 
a given stream sets its reference to the stream to null when the component is finished with 
the stream, then when there are no more references the collector can (eventually) detect 
that fact. We show such a situation in Figure 12. 1 .  Perhaps we can arrange for the collector 
somehow to cause the file descriptor to be closed. 

To do so, we need the ability to cause some programmer-specified action to happen 
when a given object becomes no longer reachable - more specifically, when it is no longer 
reachable by any mutator. This is called finalisation. A typical finalisation scheme al
lows the programmer to indicate a piece of code, called a finaliser, that is to be run when 
the collector determines that a particular object is no longer mutator reachable. The typi
cal implementation of this has the run-time system maintain a special table of objects for 
which the programmer has indicated a finaliser. The mutators cannot access this table, but 
the collector can. We call an object finaliser-reachable if it is reachable from this table but 
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Figure 12.1: Failure to release a resource: a F i leSt r e am object has become 
unreachable, but its file descriptor has not been closed . 

not from mutator roots. In Figure 12.2 we show the previous situation but with a finaliser 
added. The finaliser 's call to close the descriptor is conditional, since the application may 
have already closed the file. 

In a reference counting system, before freeing an object the collector checks the finali
sation table to see if the object requires finalisation. If it does, then the collector causes the 
finaliser function to run, and removes the object's entry in the finalisation table . Similarly, 
in a tracing system, after the tracing phase the collector checks the finalisation table to see 
if any untraced object has a finaliser, and if so, the collector causes the finaliser to run, and 
so on. 

There are a range of subtly different ways in which finalisation can work. We now 
consider some of the possibilities and issues. 

When do finalisers run? 

At what time do finalisers run? In particular, finalisation might occur during collection, as 
soon as the collector determines the need for it. However, the situation during collection 
might not support execution of general user code. For example, it may not be possible for 
user code to allocate new objects at this time. Therefore most finalisation approaches run 
finalisers after collection. The collector simply queues the finalisers. To avoid the need 
to allocate space for the queue during collection, the collector can partition the finalisation 
table into two portions, one for objects queued for finalisation and one for objects that have 
a finaliser but are not yet queued .  When the collector enqueues an object for finalisation, 
it moves that queue entry to the enqueued-objects partition. A simple, but possibly inef
ficient, approach is to associate an enqueued flag with each entry and have the finalisation 
activity scan the finalisation table. To avoid scanning, we can group the enqueued ob
jects together in the table, perhaps permuting entries when the collector needs to enqueue 
another object. 
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In general, finalisers affect shared state; there is little reason to operate only on finalis
able objects since they are about to disappear. For example, finalisers may need to access 
some global data to release a shared resource, and so often need to acquire locks. This is 
another reason not to run finalisers during collection: it could result in a deadlock. Worse, 
if the run-time system provides re-entrant locks - locks where the same thread can acquire 
a lock that it already holds - we can have the absence of deadlock and silent corruption 
of the state of the application. 1 

Even assuming that finalisers run after collection, there remain several options as to 
exactly when they run. One possibility is immediately after collection, before mutator 
thread(s) resume. This improves promptness of finalisation but perhaps to the detriment 
of mutator pause time. Also, if finalisers communicate with other threads, which remain 
blocked at this time, or if finalisers compete for locks on global data structures, this policy 
could lead to communication problems or deadlock. 

A last consideration is that it is not desirable for a language's specification of finali
sation to constrain the possible collection techniques. In particular, collection on the fly, 
concurrent with mutation, most naturally leads to running finalisers at arbitrary times, 
concurrent with mutator execution. 

Which thread runs a finaliser? 

In a language that permits multiple threads, the most natural approach is to have a back
ground finalisation thread run the enqueued finalisers asynchronously with the mutator 
threads. In this case finalisers may run concurrently with mutators and must therefore be 
safe for concurrent execution. Of particular concern is the possibility that a finaliser for an 

1 Java avoids this by indicating that a finalisation thread will invoke a finaliser with no locks held . Thus the 
finalisation thread must be one that does not hold a lock on the object being finalised. In practice this pretty much 
requires finalisation threads to be distinct threads used only for that purpose. 
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object of type T might run at the same time as the allocation and initialisation code for a 
new instance of T. Any shared data structures must therefore be synchronised to handle 
that case.2 

In a single-threaded language, which thread runs a finaliser is not a question - though 
it does reraise the question of when finalisers run. Given the difficulties previously men
tioned, it appears that the only feasible and safe way, in general, to run finalisers in a 
single-threaded system is to queue them and have the program run them under explicit 
control. In a multithreaded system, as previously noted it is best that distinct finalisation 
threads invoke finalisers, to avoid issues around locks . 

Can finalisers run concurrently with each other? 

If a large concurrent application uses finalisers, it may need more than one finalisation 
thread in order to be scalable. Thus, from the standpoint of language design it appears 
better to allow finalisers to run concurrently with each other, as well as concurrently with 
mutators. Since, in general, programmers must code finalisers carefully so that they oper
ate correctly in the face of concurrency - because finalisers are essentially asynchronous 
with respect to mutator operations - there should be no additional problem with running 
finalisers concurrently with each other. 

Can finalisers access the obj ect that became unreachable? 

In many cases it is convenient for a finaliser to access the state of the object being reclaimed. 
In the file stream example, the operating system file descriptor number, a small integer, 
might most conveniently be stored as a field in the file stream object, as we showed in 
Figure 12.2. The simplest finaliser can read that field and call on the operating system to 
close the file (possibly after flushing a buffer of any pending output data) .  Notice that if the 
finaliser does not have access to the object, and is provided no additional data but is just 
a piece of code to run, then finalisation will not be very useful - the finaliser needs some 
context for its work. In a functional language, this context may be a closure; in an object
oriented language it may be an object. Thus the queuing mechanism needs to provide for 
the passing of arguments to the finaliser. 

On balance it seems more convenient if finalisers can access the object being finalised. 
Assuming finalisers run after collection, this implies that objects enqueued for finalisation 
survive the collection cycle in which they are enqueued. So that finalisers have access 
to everything they might need, the collector must also retain all objects reachable from 
objects enqueued for finalisation. This implies that tracing collectors need to operate in 
two passes. The first pass discovers the objects to be finalised, and the second pass traces 
and preserves objects reachable from the finaliser queue. In a reference counting collector 
the system can increment the object's reference count as it enqueues it for finalisation, that 
is, the finalisation queue's reference to the object 'counts' .  Once the object is dequeued 
and its finaliser runs, the reference count will become zero and the object can be reclaimed. 
Until then, objects reachable from it will not even be considered for reclamation. 

When are finalised obj ects reclaimed? 

The fact that finalisers usually hold a reference to the object being finalised means that 
they might store that reference in a global data structure. This has been called resurrection .  

2Java has a special rule to help prevent this: if an object's finaliser can cause synchronisation on the object, then 
the object is considered mutator reachable whenever its lock is held. This can inhibit removal of synchronisation. 
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In a mechanical sense resurrection is not a problem, though it may be surprising to the 
programmer. Since it is probably difficult to detect stores that resurrect objects, and since 
setting up an object for future finalisation tends to happen as part of allocation and initial
isation, resurrected objects will generally not be re-finalised . Java, for example, guarantees 
that an object will not be finalised more than once. A language design in which setting up 
finalisation works more dynamically might allow the programmer to request finalisation 
for a resurrected object - because it allows such requests for any object. 

If a finalised object is not resurrected, then the next collection cycle can reclaim it. In a 
system with partitioned spaces, such as a generational collector, the finalised object might 
reside in a space that will not be collected again for a long time, so making it available to 
the finaliser can substantially extend the object's physical lifetime. 

What happens if there is an error in a finaliser? 

If finalisation is run synchronously at times known to the application, then programmers 
can easily wrap finalisation actions with recovery handlers for when a finaliser returns an 
error or throws an exception. If finalisers run asynchronously then it may be best to catch 
and log exceptions for later handling by the application at an appropriate time. This is 
more a concern of software engineering than of garbage collection algorithm or mecha
nism. 

Is there any guaranteed order to finalisation? 

Finalisation order can matter to an application. For example, consider a Bu f f  e redSt  ream 
object connected to a F i l e S t ream that holds an open operating system file descriptor, as 
shown in Figure 12.3. Both objects may need finalisers, but it is important to flush (write) 
the buffer of the Bu f fe redSt ream before closing the file descriptor.3 

Clearly, in a layered design like this, the sensible semantics will finalise from higher 
layers to lower. In this case, because the lower level object is reachable from the higher 

3 As a more subtle point, note that unless we can guarantee that the F i l e S t  r e a m  is used only by the 
Bu f fe r e dS t r e am, then the Bu f f e r e d S t r e a m  should not close the F i l e S t r e am. Unfortunately this implies 
that it may require two collection cycles before the file descriptor is closed. 
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Figure 12.4: Restructuring to force finalisation order in cyclic object graphs 

level one, it is possible for finalisation to occur in the sensible order automatically. Notice 
that if we impose order on finalisations, ultimate finalisation may be slow, since we finalise 
only one 'level' in the order at each collection. That is, in a given collection we finalise only 
those unreached objects that are not themselves reachable from other unreached objects. 

This proposal has a significant flaw: it does not handle cycles of unreachable objects 
where more than one needs finalisation. Given that such cases appear to be rare, it seems 
simpler and more helpful to guarantee finalisation in order of reachability; that is, if B is 
reachable from A, the system should invoke the finaliser for A first. 

In the rare case of cycles, the programmer will need to get more involved. Mechanisms 
such as weak references (see Section 12.2) may help, though using them correctly may be 
tricky. A general technique is to separate out fields needed for finalisation in such a way 
as to break the cycle of objects needing finalisation, as suggested by Boehm [2003] . That 
is, if A and B have finalisers and cross reference each other as shown in Figure 12.4a, we 
can split B into B and B', where B does not have a finaliser but B' does (see Figure 12.4b ) .  
A and B still cross reference each other, but (importantly) B' does not refer to A. In  this 
scenario, finalisation in reachability order will finalise A first and then B' .  

The finalisation race problem 

Lest we think that finalisation can be used straightforwardly without risk of subtle bugs, 
even in the case of objects not requiring special finalisation order there is a subtle kind of 
race condition that can arise [Boehm, 2003] . Consider the F i l e S t r e am example shown in 
Figure 12.2. Suppose that the mutator is making its last call to write data to the file. The 
w r i  t eData method of F i leStre am may fetch the descriptor, and then as its last action 
call write  on the descriptor, passing the data . Significantly, at this point the method's 
reference to the F i l e S t ream object is dead, and the compiler may optimise it away. If 
collection happens during the call to write, the finaliser on F i l e S t re am may run and 
close the file, before w r i t e  actually invokes the operating system to write the data . This is 
a difficult problem and Boehm's experience is that the bug is pervasive, but rarely incurred 
because the window of vulnerability is short. 

One fix for this is the Java rule that we mentioned previously that an object must be 
considered live whenever its lock is held and a finaliser could run that requires synchro
nisation on the object. A more general way to avoid the race is to force the compiler to 
retain the reference to the F i l e S t r e am longer. The trick to doing this is to pass the 
F i l eS t ream reference in a later call (to a routine that does nothing) that the compiler 
cannot optimise away. The .NET framework and C# (for example) provide a function for 
this called GC . KeepA l i  ve. At present Java does not provide a similar call. 
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Algorithm 12.1: Process finalisation queue 

1 p r o c e s s_f ina l i s at i o n_queue ( ) : 
while not i s Empty (Queue )  

while not i s Empty(Queue )  
ob j +- r emove (Queue )  
ob j . f i n a l i z e ( )  

if de s i re d  
co l l e ct ( )  

Finalisers and locks 

I* whatever condition is appropriate 4 

As noted, for example by Boehm [2003], the purpose of a finaliser is usually to update some 
global data structure in order to release a resource connected with the object that becomes 
unreachable. Since such data structures are global, they generally require synchronised 
access. In cases such as closing open file handles, some other software component (in this 
case, the operating system) handles the synchronisation implicitly, but for data structures 
within the program, it must be explicit . The concern is that, from the standpoint of most 
code in the program, finalisers are asynchronous. 

There are two general approaches a programmer can take to the situation. One is to 
apply synchronisation to all operations on the global data structure - even in the single 
threaded case (because a finaliser could run in the middle of a data structure operation 
otherwise) . This counts on the underlying implementation not to elide synchronisation on 
an apparently private object if that object has a finalisation method. The other approach 
is to arrange for the collector only to queue the object for finalisation, but not to begin 
the actual finalisation work. Some language implementations offer such queueing mech
anisms as built-in features; if a particular implementation does not, then the programmer 
can code the finalisation method so that all it does is place the object in a programmer
defined queue. In the queueing approach, the programmer will add code to the program, 
at desirable (that is, safe) points. The code will process any enqueued objects needing 
finalisation. Since running finalisers can cause other objects to be enqueued for finalisa
tion, such queue-processing code should generally continue processing until the queue is 
empty, and may want to force collections if it is important to reclaim resources promptly. 
Suitable pseudocode appears in Algorithm 12 . 1 .  As previously noted, the thread that runs 
this algorithm should not be holding a lock on any object to be finalised, which constrains 
the places where this processing can proceed safely. 

The pain involved in this approach is the need to identify appropriate places in the code 
at which to empty the finalisation queue. In addition to sprinkling enough invocations 
throughout the code, the programmer must also take care that invocations do not happen 
in the middle of other operations on the shared data structures. Locks alone cannot prevent 
this, since the invoking thread may already hold the lock, and thus can be allowed to 
proceed . This is the source of the statement in the Java Language Specification that the 
system will invoke f ina l i z e  methods only while holding no user-visible locks. 

Finalisation in particular languages 

Java. The Ob j e ct class at the top of the Java class hierarchy provides a method named 
f i na l i z e, which does nothing. Any subclass can override the method to request final
isation. Java does not guarantee finalisation order, and with respect to concurrency says 
only that finalisation runs in a context starting with no (user-visible) synchronisation locks 
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held. This pretty much means that finalisation runs in one or more separate threads, even 
though the specification is not quite worded that way. If f i na l i z e  throws an exception, 
the Java system ignores it and moves on. If the finalised object is not resurrected, a future 
collection will reclaim it. Java also provides support for programmer-controlled finalisa
tion through appropriate use of the j ava . l ang . ref  API, as we describe in Section 12.2. 

Lisp. Liquid Common Lisp offers a kind of object called a finalisation queue. The pro
grammer can register an ordinary object with one or more finalisation queues. When the 
registered object becomes otherwise unreachable, the collector enters it into the finalisation 
queues with which it was registered . The programmer can extract objects from any finali
sation queue and do with them what she will. The system guarantees that if objects A and 
B are both registered and become unreachable in the same collection, and B is reachable 
from A but not vice versa, then the collector will enter A in the finalisation queue before it 
enters B. That is, it guarantees order of finalisation for acyclic object graphs. The finalisa
tion queues of Liquid Common Lisp are similar to the guardians described by Dybvig et al 
[1993] .  

CLisp offers a simpler mechanism: the programmer can request that the collector call 
a given function f when it detects that a given object 0 is no longer reachable. In this 
case f must not refer to 0 or else 0 will remain reachable and the system will never call 
the finaliser. Since f receives 0 as an argument, this system permits resurrection. Also, 
f could register 0 again, so 0 can be finalised more than once. A variant of the basic 
mechanism allows the programmer to specify a guardian G in addition to the object 0 and 
function f. In this case, when 0 becomes unreachable the system calls f only if G is still 
reachable. If at this time G is unreachable, then the system reclaims 0 but does not call f. 
This can be used to implement guardians of the kind described by Dybvig et al [1993] - f 
can add 0 to the internal queue of G .  

C++. The C++ language offers destructors to  handle disposal of  objects, as a converse to 
constructors which initialise new objects . The primary role of most destructors is to cause 
explicit freeing of memory and its return to the allocator for reuse. However, since pro
grammers can offer any code they want, C++ destructors can handle the case of closing a 
file, and so forth. Destructors also provide a hook through which a programmer can sup
port reference counting to reclaim (acyclic) shared data structures. In fact, C++ templates 
allow a general smart pointer mechanism to drive the reference counting. But this shows 
again that destructors are mostly about reclaiming memory - a job that a garbage col
lector already handles. Thus, true finalisation remains relatively rare, even for C++ . The 
memory reclamation aspect of destructors is relatively safe and straightforward, not least 
because it does not involve user-visible locks. However, as soon as the programmer veers 
into the realm of 'true' finalisation, all the issues we mention here arise and are dropped 
into the programmer 's lap . This includes dealing with locking, order of invocation of fi
nalisers, and so on. Placing the responsibility for all this on the programmer's shoulders 
makes it difficult to ensure that it is done correctly . 

. NET. The .NET framework adds finalisers to the existing notion of destructors in C, 
C++, and the other languages supported by the framework. Destructors are called deter
ministically, starting with compiler-generated code for cleaning up objects as they go out 
of scope. A destructor may call other objects' destructors, but all destructors are concerned 
with reclaiming managed resources, that is, resources known to the language and .NET run
time system, primarily memory. Finalisers, on the other hand, are for explicitly reclaiming 
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unmanaged resources, such as open file handles and the like. If a kind of object needs fi
nalisation, then the destructor should call the finaliser, to cover the case when the object 
is reclaimed explicitly by compiler-generated code. However, the collector will call the 
finaliser if the object is being reclaimed implicitly, that is, by the collector. In that case the 
destructor will not be called. In any case, the finalisation mechanism itself is very similar 
to that of Java . The end result is a mixture of C++ destructors and something close to Java 
finalisation, with both synchronous and asynchronous invocation of finalisers possible. 

For further study 

Various languages have supported finalisation for decades, and have evolved mechanisms 
suitable to their contexts. Systematic consideration of the issues and various design ap
proaches across several languages appears more recently in the literature in works such as 
Hudson [1991 ]  and Hayes [ 1992] . More careful inspection of the semantics of finalisation 
and some of the thorny problems at its heart was performed by Boehm [2003] ,  to whom 
we are indebted as a primary source. 

12.2 Weak references 

Garbage collection determines which memory to retain and which to reclaim using reach
ability through chains of pointers. For automatic reclamation this is a sound approach. 
Still, there are a number of situations in which it is problematic. 

For example, in a compiler it can be useful to ensure that every reference to a given 
variable name, say xy z,  uses exactly the same string instance. Then, to compare two vari
able names for equality it suffices to compare their pointers . To set this up, the compiler 
builds a table of all the variable names it has seen so far. The strings in the table are the 
canonical instances of the variable names, and such tables are therefore sometimes called 
canonicalisation tables . But consider what happens if some names fall into disuse as the 
compiler runs. There are no references to the names from other data structures, but the 
canonical copy remains. It would be possible to reclaim a string whose only reference is 
from the table, but the situation is difficult for the program to detect reliably. 

Weak references (also called weak pointers) address this difficulty. A weak reference con
tinues to refer to its target so long as the target is reachable from the roots via a chain 
consisting of ordinary strong references. Such objects are called strongly reachable. However, 
if every path from roots to an object includes at least one weak reference, then the collector 
may reclaim the object and set any weak reference to the object to null . Such objects are 
called weakly-reachable. As we will see, the collector may also take additional action, such 
as notifying the mutator that a given weak reference has been set to null. 

In the case of the canonicalisation table for variable names, if the reference from the 
table to the name is a weak reference, then once there are no ordinary references to the 
string, the collector can reclaim the string and set the table's weak reference to null. Notice 
that the table design must take this possibility into account, and it may be necessary or 
helpful for the program to clean up the table from time to time. For example, if the table 
is organised by hashing with each hash bucket being a linked list, defunct weak references 
result in linked list entries whose referent is null . We should clean those out of the table 
from time to time. This also shows why a notification facility might be helpful: we can use 
it to trigger the cleaning up. 

Below we offer a more general definition of weak references, which allows several dif
ferent strengths of references, and we indicate how a collector can support them, but first 
we consider how to implement just two strengths: strong and weak. First, we take the case 
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of tracing collectors. To support weak references, the collector does not trace the target of 
a weak reference in the first tracing pass . Rather, it records where the weak pointer is, for 
processing in a second pass. Thus, in the first tracing pass the collector finds all the objects 
reachable via chains of strong references only, that is, all strongly reachable objects. In a 
second pass, the collector examines the weak references that it found and noted in the first 
pass. If a weak reference's target was reached in the first pass, then the collector retains the 
weak reference, and in copying collectors it updates the weak reference to refer to the new 
copy. If a weak reference's target was not reached, the collector sets the weak reference 
to null, thus making the referent no longer reachable. At the end of the second pass, the 
collector can reclaim all unreached objects. 

The collector must be able to identify a weak reference. It may be possible to use a bit 
in the reference to indicate that it is weak. For example, if objects are word-aligned in a 
byte-addressed machine, then pointers normally have their low two bits set to zero. One 
of those bits could indicate a weak reference if the bit is set to one. This approach has the 
disadvantage that it requires the low bits to be cleared before trying to use a reference that 
may be weak. That may be acceptable if weak references arise only in certain restricted 
places in a given language design. Some languages and their implementations may use 
tagged values anyway, and this simply requires one more possible tag value. Another dis
advantage of this approach is that the collector needs to find and null all weak references 
to objects being reclaimed, requiring another pass over the collector roots and heap, or that 
the collector remember from its earlier phases of work where all the weak pointers are. 

An alternative to using low bits is to use high order bits and double-map the heap . In 
this case every heap page appears twice in the virtual address space, once in its natural 
place and again at a high memory (different) address. The addresses differ only in the 
value of a chosen bit near the high-order end of the address. This technique avoids the 
need to mask pointers before using them, and its test for weakness is simple and efficient. 
However, it uses half the address space, which may make it undesirable except in large 
address spaces. 

Perhaps the most common implementation approach is to use indirection, so that spe
cially marked weak objects hold the weak references . The disadvantage of the weak object 
approach is that it is less transparent to use - it requires an explicit dereferencing opera
tion on the weak object - and it imposes a level of indirection. It also requires allocating 
a weak object in addition to the object whose reclamation we are trying to control. How
ever, an advantage is that weak objects are special only to the allocator and collector - to 
all other code they are like ordinary objects. A system can distinguish weak objects from 
ordinary ones by setting a particular bit in the object header reserved for that purpose. Al
ternatively, if objects have custom-generated tracing methods, weak objects will just have 
a special one. 

How does a programmer obtain a weak reference (weak object) in the first place? In 
the case of true weak references, the system must supply a primitive that, when given a 
strong reference to object 0, returns a weak reference to 0.  In the case of weak objects, the 
weak object types likewise supply a constructor that, given a strong reference to 0, returns 
a new weak object whose target is 0. It is also possible for a system to allow programs to 
change the referent field in a weak object. 

Additional motivations 

Canonicalisation tables are but one example of situations where weak references of some 
kind help solve a programming problem, or solve it more easily or efficiently. Another 
example is managing a cache whose contents can be retrieved or rebuilt as necessary. Such 
caches embody a space-time trade-off, but it can be difficult to determine how to control 
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the size of a cache. If space is plentiful, then a larger size makes sense, but how can a 
program know? And what if the space constraints change dynamically? In such situations 
it might be useful to let the collector decide, based on its knowledge of available space. 
The result is a kind of weak reference that the collector may set to null if the referent is not 
strongly reachable, if it so desires. It can make the judgement based on the space consumed 
by the weakly reachable objects in question. 

It is sometimes useful is to let a program know when an object is weakly reachable but 
not strongly reachable, and to allow it to take some action before the collector reclaims the 
object. This is a generalisation of finalisation, a topic we took up in Section 12. 1 .  Among 
other things, suitable arrangements of these sorts of weak references can allow better con
trol of the order in which the program finalises objects . 

Supporting multiple pointer strengths 

Weak references can be generalised to provide multiple levels of weak pointers in addition 
to strong references. These levels can be used to address the issues described above. A 
totally ordered collection of strengths allows each strength level to be associated with a 
positive integer. For a given integer IX > 0, an object is IX* -reachable if it can be reached by 
a path of references where each reference has strength at least IX .  An object is �X-reachable 
(without the superscript * )  if it is IX* -reachable but not (�X + I ) -reachable. An object is IX
reachable if every path to it from a root includes at least one reference of strength a, and at 
least one path includes no references of strength less than IX. Below we will use the names 
of strengths in place of numeric values; the values are somewhat arbitrary anyway, since 
what we rely on is the relative order of the strengths . Also, for gracefulness of expression, 
we will say Weakly-reachable instead of Weak-reachable, and so on. 

Each level of strength will generally have some collector action associated with it. The 
best-known language that supports multiple flavours of weak reference is Java; it provides 
the following strengths, from stronger to weaker.4 

Strong: Ordinary references have the highest strength. The collector never clears these. 

Soft: The collector can clear a Soft reference at its discretion, based on current space usage. 
If a Java collector clears a Soft reference to object 0 (that is, sets the reference to null), 
it must at the same time atomically5 clear all other Soft references from which 0 is 
Strongly-reachable. This rule ensures that after the collector clears the reference, 0 
will no longer be Softly-reachable. 

Weak: The collector must clear a (Soft* -reachable) Weak reference as soon as the collector 
determines its referent is Weak-reachable (and thus not Soft* -reachable) .  As with 
Soft references, if the collector clears a Weak reference to 0, it must at the same time 
clear all other Soft* -reachable Weak references from which 0 is Soft* -reachable. 

Finaliser: We term a reference from the table of objects with finalisers to an object that has 
a finaliser a finaliser reference. We described Java finalisation before, but list it here to 
clarify the relative strength of this kind of weak reference, even though it is internal 
to the run-time system as opposed to a weak object exposed to the programmer. 

4In fact, we are not aware at this time of any language other than Java that supports multiple strengths, but 
the idea may propagate in the future. 

5By atomically the Java specification seems to mean that no thread can see just some of the references cleared: 
either all of them are cleared or none are. This can be accomplished by having the reference objects consult a 
shared flag that indicates whether the referent field should be treated as cleared, even if it is not yet set to null. 
The reference object can itself contain a flag that indicates whether the single global flag should be consulted, that 
is, whether the reference is being considered for clearing. Doing this safely requires synchronisation in concurrent 
collectors. 
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Phantom: These are the weakest kind of weak reference in Java . The program must ex
plicitly clear a Phantom for the collector to reclaim the referent. It makes sense to 
use this only in conjunction with notification, since the Phantom Reference object 
does not allow the program to obtain a reference to the Phantom's referent - it only 
permits clearing of the referent. 

The point of the different strengths in Java is not so much the levels of strength, but the 
special semantics associated with each kind of weak reference that the language specifica
tion defines. Soft references allow the system to shrink adjustable caches. Weak references 
help with canonicalisation tables and other constructs. Phantom references allow the pro
grammer to control the order and time of reclamation. 

Implementing multiple strengths requires multiple additional passes in the collector 
cycle, but they typically complete quickly. We use Java's four strengths as an example, and 
describe the actions for a copying collector - a mark-sweep collector would be similar, 
though simpler. We consider reference counting collectors afterwards. The passes the 
collector must make are as follows. 

1. Working from the roots, trace and copy all Strongly-reachable objects, noting (but 
not tracing through) any Soft, Weak, or Phantom objects found. 

2. Optionally, clear all Soft references atomically.6 If we chose not to clear Soft refer
ences, then trace and copy from them, finding all Soft* -reachable objects, continuing 
to note any Weak or Phantom objects found by tracing through Soft objects. 

3.  If the target of any Weak object noted previously has been copied, update the Weak 
object's pointer to refer to the new copy. If the target has not been copied, clear the 
Weak object's pointer. 

4. If any object requiring finalisation has not yet been copied, enqueue it for finalisation. 
Go back to Step 1, treating the objects newly enqueued for finalisation as new roots. 
Notice that in this second round through the algorithm there can be no additional 
objects requiring finalisation? 

5. If the referent of any Phantom object noted previously has not yet been copied, then 
enqueue the Phantom on its Re fe renceQueue .  In any case, trace and copy all 
Phantom*-reachable objects, starting from the Phantom's target. Notice that the col
lector cannot clear any Phantom object's pointer - the programmer must do that 
explicitly. 

While we worded the steps as for a copying collector, they work just as well for mark 
sweep collection. However, it is more difficult to construct a reference counting version 
of the Java semantics .  One way to do this is not to count the references from Soft, Weak 
and Phantom objects in the ordinary reference count, but rather to have a separate bit to 
indicate if an object is a referent of any of these Re fe rence  objects. It is also convenient 
if an object has a separate bit indicating that it has a finaliser. We assume that there is a 
global table that, for each object 0 that is the referent of at least one Re ference  object, 
indicates those Re fe r e n ce objects that refer to 0. We call this the Reverse Reference Table. 

6 It is legal to be more selective, but following the rules makes that difficult. Note that by 'all' we mean all Soft 
references currently in existence, not just the ones found by the collector so far. 

7Barry Hayes pointed out to us that a Weak object wl might be reachable from an object x requiring finalisa
tion, and the Weak object's referent y might be some object also requiring finalisation, which has another Weak 
object w2 referring to it, that is, both w l  and w2 are Weak objects that refer to y. If w2 is strongly reachable, 
then it will have been cleared, while wl may not be cleared yet if it is reachable only from x. This situation be
comes especially strange if the finaliser for y resurrects y, since then w2 is cleared by y is now Strongly-reachable. 
Unfortunately the issue seems inherent in the way Java defines Weak objects and finalisation. 
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Since reference counting does not involve separate invocations of a collector, some 
other heuristic must be used to determine when to clear all Soft references, which must 
be done atomically. Given that approach, it seems easiest to count Soft references as ordi
nary references which, when they are cleared using the heuristic, may trigger reclamation, 
or processing of weaker strengths of pointers. 

When an object's ordinary (strong) reference count drops to zero, the object can be 
reclaimed (and the reference counts of its referents decrements) unless it is the referent 
of a Re ference  object and requires finalisation. If the object's bits indicate that it is the 
referent of at least one Re fe rence, we check the Reverse Reference Table. Here are the 
cases for handling the Re fe rence objects that refer to the object whose ordinary reference 
count went to zero; we assume they are processed from strongest to weakest. 

Weak: Clear the referent field of the WeakRe ference  and enqueue it if requested. 

Finaliser: Enqueue the object for finalisation. Let the entry in the finalisation queue count 
as an ordinary reference. Thus, the reference count will go back up to one. Clear the 
object's 'I have a finaliser' bit. 

Phantom: If the referent has a finaliser, then do nothing. Otherwise, enqueue the Phan
tom. In order to trigger reconsideration of the referent for reclamation, increment 
its ordinary reference count and mark the Phantom as enqueued. When the Phan
tom's reference is cleared, if the Phantom has been enqueued, decrement the refer
ent's ordinary reference count. Do the same processing when reclaiming a Phantom 
reference. 

There are some more special cases to note. When we reclaim a Re fe rence object, 
we need to remove it from the Reverse Reference Table. We also need to do that when a 
Re fe rence  object is cleared. 

A tricky case is when a detector of garbage cycles finds such a cycle . It appears that, 
before doing anything else, we need to see if any of the objects is the referent of a Soft 
object, and in that case retain them all, but keep checking periodically somehow. If none 
are Soft referents but some are Weak referents, then we need to clear all those Weak objects 
atomically, and enqueue any objects requiring finalisation. Finally, if none of the previous 
cases apply but there are some Phantom referents to the cycle, we need to retain the whole 
cycle and enqueue the Phantoms. If no object in the cycle is the referent of a Re f e r e n ce 
object or requires finalisation, we can reclaim the whole cycle. 

Using Phantom obj ects to control finalisation order 

Suppose we have two objects, A and B, that we wish to finalise in that order. One way 
to do this is to create a Phantom object A', a Phantom reference to A.  In addition, this 
Phantom reference should extend the Java PhantomRe f e rence class so that it holds an 
ordinary (strong) reference to B in order to prevent early reclamation of B.8 We illustrate 
this situation in Figure 12 .5 .  

When the collector enqueues A', the Phantom for A, we know not only that A is un
reachable from the application, but also that the finaliser for A has run. This is because 
reachability from the table of objects requiring finalisation is stronger than Phantom reach
ability. Then, we clear the Phantom reference to A and null the reference to B. At the next 
collection the finaliser for B will be triggered . We further delete the Phantom object itself 
from the global table, so that it too can be reclaimed .  It is easy to extend this approach 

8Fields added in subclasses of Java's built-in reference classes hold strong pointers, not special weak referents. 
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Figure 12.5: Finalising in order. Application objects A and B are unreachable 
from the application and we want to finalise them in that order. Phantom A' 

has a phantom reference to A and a strong reference to B .  

to  ordered finalisation of three or more objects by  using a Phantom between each pair of 
objects with a finalisation order constraint. 

We need Phantoms - Weak objects are not enough. Suppose we used an arrangement 
similar to that of Figure 12.5 .  When A is no longer reachable, the weak reference in A' 

will be cleared and A' will be enqueued. We can then clear the reference from A' to B .  
Unfortunately, the clearing of the weak reference to A happens before the finaliser for A 
runs, and we cannot easily tell when that finaliser has finished .  Therefore we might cause 
the finaliser for B to run first. Phantoms a re intentionally designed to be weaker than 
finalisation reachability, and thus will not be enqueued until after their referent's finaliser 
has run. 

Race in weak pointer clearing 

We note that, just as certain compiler optimisations can lead to a race that can cause pre
mature finalisation, the same situations can lead to premature clearing of weak pointers. 
We described the finalisation case in Section 12 . 1 .  

Notification of weak pointer clearing 

Given a weak reference mechanism, the program may find it useful to know when certain 
weak references are cleared (or, in the case of Phantoms, could be cleared), and then to take 
some appropriate action. To this end, weak reference mechanisms often also include sup
port for notification. Generally this works by inserting the weak object into a queue. For 
example, Java has a built-in class Re ferenceQueue for this purpose, and a program can 
poll a queue or use a blocking operation to wait (with or without a timeout) .  Likewise a 
program can check whether a given weak object is enqueued Gava allows a weak object 
to be enqueued on at most one queue). It is straightforward to add the necessary enqueu
ing actions to the collector 's multi-pass processing of weak pointers described above. A 
number of other languages add similar notification support. 

Weak pointers in other languages 

We discussed Java separately because of its multiple strengths of weak references. Other 
languages offer alternative or additional weak reference features. 
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A number of Lisp implementations support weak arrays and vectors .9 These are sim
ply multi-entry weak objects: when a referent 0 is no longer strongly-reachable, the col
lector sets to n i l  any weak array or vector slots that refer to 0. 

Some Lisp implementations also support weak hash tables. These often come in three 
varieties . One offers weak keys, in which the keys, but not the values, are weak. In this 
case, once the key of a given key-value pair is no longer strongly-reachable, the collector 
removes the entire pair from the hash table. This is useful for things like canonicalisation 
tables and certain kinds of caches. A second variety offers weak values, where the collector 
removes the key-value pair once the value is no longer strongly reachable. The third vari
ety supports weak keys and values, removing the pair once either the key or the value is 
no longer strongly-reachable. 

Some Lisp implementations support weak-AND and weak-OR objects. The elements of 
these objects are potentially weak, but in the following way. A weak-AND will set all 
its elements to n i l  if one or more of them becomes not-strongly-reachable. Thus, it is 
analogous to a Lisp AND, which returns n i l  if any argument to AND is n i l .  A weak-OR 
is the converse: it retains all its arguments until none of them are strongly-reachable, and 
then sets all of its fields to n i l .  We refer readers to the documentation on the Platform 
Independent Extensions to Common Lisp10 for more details and further generalisations, 
including weak associations, weak AND- and OR-mappings, weak association lists, and a 
version of weak hash tables similar to what we discussed above. 

Ephemerons [Hayes, 1997] 11  are a particular form of weak key-value pairs useful for 
maintaining information attached to other objects. Suppose we wish to associate informa
tion I with object 0 through a side table. We can use an ephemeron with key 0 and value 
I .  The semantics of an ephemeron are as follows. Its reference to the key is weak. Its refer
ence to the value is strong while the key is non-null, but is weak after the key is set to null. 
In the example, the reference to the base object 0 is weak, and initially the reference to the 
associated information I is strong. Once 0 is reclaimed and the weak reference to it is set 
to null, the reference to I is treated as weak. Thus, I is not reclaimable while 0 is alive, but 
may become reclaimable once 0 has gone. A weak-key I strong-value pair with notifica
tion (to allow the value reference to be set to null, or to be replaced with a weak reference 
to the value) more or less simulates an ephemeron. A subtle difference, though, is that 
it does not 'count' toward reachability of the ephemeron's key if it is reachable from the 
ephemeron's value. Thus, if I refers to 0, as it well might, an ephemeron can still collect 0 
but the weak-pair approach would prevent 0 from being reclaimed. The only way around 
this without ephemerons would seem to be to ensure that any path from I to 0 includes a 
weak reference. 

Here is a sketch of how to implement ephemerons (ignoring any other forms of weak 
pointers or other finalisation mechanisms) . First, trace through strong pointers from the 
roots, recording ephemerons but not tracing through them. Iterate over the recorded 
ephemerons repeatedly. If an ephemeron's key has been traced, then trace through the 
ephemeron's value field and remove the ephemeron from the set of recorded ephemerons .  
Such tracing may reach other ephemerons' keys, and may also find new ephemerons to 
consider. Eventually we obtain a set, possibly empty, of  ephemerons that we have recorded 
whose keys are not reachable . We clear the key fields of these ephemerons, and the value 
fields if the value object is not yet traced. Alternatively, we can use a notification mech
anism and enqueue the ephemerons, at the risk of possible object resurrection. It may be 
better to clear the ephemeron's fields and enqueue a new pair that presents the key and 
the value to a finalisation function. 

9 Arrays may be multi-dimensional while vectors have only one dimension, but the distinction does not affect 
weak reference semantics. 

1 0 c l i s p .  c o n s . o r g.  
1 1 Hayes credits George Bosworth with the invention of ephemerons. 
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Various other languages have weak pointer support, at least in some implementa
tions. These languages include ActionScript, C++ (for example, the Boost library), Haskell, 
JavaScript, OCAML, python, and Smalltalk. There has also been at least one attempt to 
give a formal semantics for the feature [Donnelly et al, 2006] . 

12.3 Issues to consider 

While we have termed finalisation and weak pointers 'language-specific' concerns, they 
are now largely part of the accepted landscape of automatic memory management. Auto
matic management is a software engineering boon, enabling easier construction of more 
complex systems that work correctly, but various specific problems motivate finalisation 
and weak pointers as extensions to language semantics - extensions that have been intro
duced precisely because of the assumption that memory will be managed automatically. 

If the collector and run-time system implementer receive the language being imple
mented as a given, then many of the design considerations mentioned here have already 
been decided: the language is what it is. The design questions mentioned earlier, partic
ularly with respect to choices in the design of support for finalisation, are more relevant 
in the context of designing a new programming language. Likewise, the varieties of weak 
pointer mechanisms, such as which 'weak' data structures to offer, how many strengths of 
references to support, and so on, are also more the province of language design. 

Where a collector and run-time system implementer has more scope is in the choice 
and design of allocation and collection techniques. Here are some of the considerations of 
how those choices relate to the mechanisms discussed in this chapter. 

• Weak pointers and finalisation tend to require additional tracing 'passes' .  These typ
ically complete quickly - their performance is typically not of unusual concern. 
However, they complicate otherwise basic algorithms, and require considerable care 
in their design. It is best to design in the necessary support from the beginning rather 
than to attempt to add it on later. Needless to say, it is very important to gain a solid 
understanding of the semantics of the features and of how proposed implementation 
strategies enact those semantics . 

• Some mechanisms, notably some of the 'strengths' of Java's weak references, require 
that a whole group of related weak references be cleared at the same time. This is rel
atively easy to accomplish in a stop-the-world collector, but in a more concurrent set
ting it requires additional mechanism and care. As mentioned in earlier discussion, 
traversing the weak references needs to include a check of a shared flag and possibly 
some additional synchronisation, to ensure that collector and mutator threads make 
the same determination as to which weakly-referenced objects are live - they need 
to resolve the race between any mutator thread trying to obtain a strong reference 
and the collector trying to clear a group of weak references atomically. This race is 
by no means peculiar to Java's weak reference mechanisms, and is a potentiality in 
supporting weak pointers in any concurrent setting . 

• Given the concerns about atomic clearing of sets of weak references and the general 
complexity of weak pointer and finalisation support, it may be reasonable to handle 
those features in a stop-the-world phase of an otherwise concurrent collector, or at 
least to use locks rather than lock-free or wait-free techniques. Chapter 13 discusses 
these different approaches to controlling concurrent access to data structures . 

• Java soft references require a collector mechanism to decide whether it is appropriate 
to clear them during a given collection cycle. 



Chapter 13 

Concurrency preliminaries 

Concurrent collection algorithms have been studied for a long time, going back at least to 
the 1970s [Steele, 1975 ] .  For a long time, though, they were relevant to a small minority 
of users. Now, multiprocessors enjoy widespread commercial availability - even the lap
top on which this text is being written has a dual-core processor. Moreover, programmers 
need to deploy multiple cores to cooperate on the same task since that has become the 
only way to get a job done faster: clock speed increases can no longer deliver the regular 
performance boost they used to. Therefore, language implementations need to support 
concurrent programming, and their run-time systems, and their garbage collectors in par
ticular, need to support the concurrent world well. Later chapters explore parallel, con
current and real-time collection in depth. Here we consider concepts, algorithms and data 
structures fundamental to collection in presence of logical and physical parallelism, in
cluding an introduction to the relevant aspects of hardware, memory consistency models, 
atomic update primitives, progress guarantees, mutual exclusion algorithms, work shar
ing and termination detection, concurrent data structures and the emerging model called 
transactional memory. 

13.1 Hardware 

In order to understand both the correctness and the performance of parallel and concurrent 
collection, it is necessary first to understand relevant properties of multiprocessor hard
ware. This section offers definitions and overviews of several key concepts: processors 
and threads, including the various 'multis', multiprocessor, multicore, multiprogrammed, 
and multithreaded; interconnect; and memory and caches. 1 

Processors and threads 

A processor is a unit of hardware that executes instructions. A thread is a sequential pro
gram, that is, an execution of a piece of software.  A thread can be running (also called 
scheduled), ready to run, or blocked awaiting some condition such as arrival of a message, 
completion of input/ output, or for a particular time to arrive. A scheduler, which is usually 
an operating system component, chooses which threads to schedule onto which processors 
at any given time. In general, if a thread is descheduled (moved from running to ready or 
blocked), when it is next scheduled it may run on a different processor than the one on 

1 We are indebted to Herlihy and Shavit [2008] for the organisation of our discussion, and recommend that 
book for additional study. 
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which it ran previously, though the scheduler may recognise and offer some degree of 
affinity of a thread to a particular processor. 

A slight complication in these definitions is that some processor hardware supports 
more than one logical processor using a single execution pipeline. This is called simulta
neous multithreading (SMT) or hyperthreading, and unfortunately for our terminology, the 
logical processors are often called threads. Here thread will always mean the software en
tity and SMTs will be viewed as providing multiple (logical) processors, since the logical 
processors are individually schedulable, and so on. 

A multiprocessor is a computer that provides more than one processor. A chip multipro
cessor (CMP), also called a multicore or even many-core processor, is a multiprocessor that 
has more than one processor on a single integrated circuit chip. Except in the case of SMT, 
multithreaded refers to software that uses multiple threads, which may run concurrently 
on a multiprocessor. Multiprogrammed refers to software executing multiple processes or 
threads on a single processor. 

Interconnect 

What distinguishes a multiprocessor from the general case of cluster, cloud or distributed 
computing is that it involves shared memory, accessible to each of the processors. This ac
cess is mediated by an interconnection network of some kind. The simplest interconnect is 
a single shared bus, through which all messages pass between processors and memory. It 
is helpful to think of memory accesses as like the sending of messages between a processor 
and a memory unit, given how long the accesses take in terms of processor cycles - now 
in the hundreds of cycles. A single bus can be reasonably fast in terms of its raw speed, 
but it can obviously be a bottleneck if multiple processors request service at the same time. 
The highest bandwidth interconnect would provide a private channel between each pro
cessor and each memory, but the hardware resources required grow as the product of the 
number of processor and number of memory units . Note that for better overall bandwidth 
(number of memory accesses per second across the entire system), splitting the memory 
into multiple units is a good idea . Also, transfers between processors and memories are 
usually in terms of whole cache lines (see page 231 )  rather than single bytes or words. 

In larger CMPs a memory request may need to traverse multiple nodes in an intercon
nection network, such as a grid, ring or torus connection arrangement. Details lie beyond 
our scope, but the point is that access time is long and can vary according to where a pro
cessor is in the network and where the target memory unit is. Concurrent traffic along the 
same interconnect paths can introduce more delay. 

Note that the bus in single-bus systems generally becomes a bottleneck when the sys
tem has more than about eight to sixteen processors. However, buses are generally simpler 
and cheaper to implement than other interconnects, and they allow each unit to listen to all 
of the bus traffic (sometimes called snooping), which simplifies supporting cache coherence 
(see page 232) .  

If  the memory units are separate from the processors, the system is called a symmetric 
multiprocessor (SMP), because processors have equal access times to each memory. It is also 
possible to associate memory with each processor, giving that processor more rapid access 
to that portion of the memory, and slower access to other memory. This is called non
uniform memory access (NUMA). A system may have both global SMP-style memory and 
NUMA memory, and processors may also have private memory, though it is the shared
access memory that is most relevant to garbage collection.2 

2Private memory is suitable for thread-local heaps if the threads can be bound to processors (allowed to run 
only on the specific processor where their heap resides). It is also suitable for local copies of immutable data. 
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The most relevant properties of interconnect are that memory takes a long time to ac
cess, that interconnect can be a bottleneck, and that different portions of memory may take 
relatively longer times to access from different processors. 

Memory 

From the standpoint of garbage collection, shared memory appears as a single address 
space of words or bytes, even though it may be physically spread out across multiple 
memory units or processors. Because memory consists of multiple units accessed concur
rently, it is not necessarily possible to describe it as having a single definite global state at 
any given moment. However, each unit, and thus each word, has a well-defined state at 
each moment. 

Caches 

Because memory accesses take so long, modern processors typically add one or more lay
ers of cache to hold recently accessed data and thus statistically reduce the number of 
memory accesses a program requires as it runs. Caches generally operate in terms of cache 
lines (also called cache blocks), typically 32 or 64 bytes in size. If an access finds its contain
ing line in the cache, that is a cache hit, otherwise the access is a cache miss, which requires 
accessing the next higher level of cache, or memory if this was the highest level . In CMPs 
it is typical for some processors to share some higher levels of cache. For example, each 
processor might have its own Level One (Ll ) cache but share its L2 cache with a neighbour. 
The line sizes of different levels need not be the same. 

When there is a cache miss and there is not room for the new line in the cache, then 
a line currently in the cache, chosen according to the cache's replacement policy, must be 
evicted before loading the new line. The evicted line is called the victim. Some caches are 
write-through, meaning that updates to lines in the cache are passed on to the next level as 
soon as practicable, while some caches are write-back, meaning that a modified line (also 
called a dirty line) is not written to the next higher level until it is evicted, explicitly flushed 
(which requires using a special instruction) or explicitly written back (which also requires 
a special instruction) . 

A cache's replacement policy depends substantially on the cache's internal organisa
tion. A fully-associative cache allows any set of lines, up to the cache size, to reside in the 
cache together. Its replacement policy can choose to evict any line. At the opposite end 
of the spectrum are direct-mapped caches, where each line must reside in a particular place 
in the cache, so there is only one possible victim. In between these extremes are k-way set
associative caches, where each line is mapped to a set of k lines of cache memory, and the 
replacement policy can choose any of the k lines as its victim. A variety of other organi
sations occur, such as victim caches, whereby a small number of recent victims are held in 
a fully-associative table on the side of the primary cache, with the primary usually being 
direct mapped. This gives the hit rate of higher associativity with lower hardware cost. 

Another aspect of cache design concerns the relationship between different levels of 
cache. A design of two adjacent levels of cache is called (strictly) inclusive if every line in 
the lower level must be held by the higher level. Conversely, a design is exclusive if a line 
can be held in at most one of the two levels. A design need be neither: it may allow a line 
to reside in both caches, but not require it. 
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Coherence 

Caches hold copies of memory data that is potentially shared . Because not all copies are 
updated at the same moment, particularly with write-back caches, the various copies in 
general do not contain the same value for each address. Thus, it may be possible for two 
processors to disagree on the value at a particular location. This is undesirable, so the un
derlying hardware generally supports some degree of cache coherence. One of the common 
coherence protocols is MESI, from the initial letters of the names it gives to the possible states 
of a given line of memory in each cache. 

Modified: This cache is the only one holding a copy of the line, and its value has been 
updated but not yet written back to memory. 

Exclusive: This cache is the only one holding a copy of the line, but its value corresponds 
with that in memory. 

Shared: Other caches may hold a copy of this line, but they all have the same value as in 
memory. 

Invalid: This cache does not hold a copy of this line. 

To satisfy a processor read, the processor 's cache must hold the line in the M, E, or S state . 
To satisfy a write, however, the cache must hold it in either the M or the E state, and after 
the write its new state will be M. How the system satisfies a read in the I state depends on 
how the line is held elsewhere. If it is held in the M state, that processor must write the 
line back to memory and drop to the S (or I) state. If it is held in the E state, it just needs to 
drop to the S (or I) state . If it is held only in the S or I state, then the requesting processor 
can simply load the line, which might be supplied by an 5-state holder or else by memory. 
To satisfy a write when in I state, the requirements are similar to satisfying a read except 
that other holders must end up in the I state .  To satisfy a write from the S state, other S 
holders must drop to the I state. Refinements include: supporting read-with-intention-to 
write, where other holders end in the I state; write-back, where a line drops from the M to 
the E state; and invalidate, where a line is written back if it is in the M state and in any case 
drops to the I state. 

The point of the protocol is that there can be only one writer at a time for any given 
line, and that two caches never hold disagreeing values for the same lines. The difficulty 
with this algorithm, and indeed with any hardware supported cache coherence protocol, 
is that it does not scale well to large numbers of processors. Therefore larger CMPs are 
starting to emerge that do not have coherence built in and for which the software manages 
the coherence according to whatever protocol it desires. This may still not scale, but at 
least the programmer has a better shot at tuning to the specific algorithm versus relying 
on one fixed hardware algorithm. 

Cache coherence introduces an issue called false sharing. If two processors access and 
update different data that happen to lie in the same cache line, then they will tend to cause 
a lot of coherence traffic on the interconnect and possibly extra reads from memory, as the 
line 'ping-pongs' between the two processors, since each must acquire it in an exclusive 
state before updating it. 

Cache coherence performance example: spin locks 

A typical mutual exclusion lock can be implemented with an At omi cExchange primitive, 
as shown in Algorithm 13 . 1 .  We distinguish primitive atomic instructions by starting their 
name with an upper case letter. We also denote low-level read and write operations by 
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Algorithm 13.1: At omi cExchange spin lock 

exchangeLock (x ) : 
while At omicExchange (x, 1 )  1 

I* do nothing 4 

s exchangeUnl ock (x ) : 
* X  f- 0 

8 At omi cExc hange (x, v ) : 
atomic 

10 o l d  f- * X  
1 1  *X f- V 
12  return old  

Algorithm 13.2: Test-and-Test-and-Set At omi cExchange spin lock 

t e stAndT e s tAndS etExchangeLock (x ) : 
while t e stAndExchange (x ) = 1 

I* do nothing *I 

s t e stAndT e s tAndSe t ExchangeUn l o c k ( x ) : 
* X  f- 0 

8 t e stAndExchange (x ) : 
while * X  = 1 

10 I* do nothing *I 
11 return At omi cExchange (x, 1 )  
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load  and s t o re respectively in order to avoid any confusion with the interface between 
the user program and the mutator. The initial value of the lock should be zero, meaning 
'unlocked' .  This is called a spin lock because the processor is said to 'spin' in the while 
loop. Each invocation of the atomic read-modify-write operation will try to acquire the 
lock's cache line exclusively. If multiple processors contend for the lock, then the line will 
ping-pong, even while some other processor holds the lock. And even that processor will 
need to contend for the line just to unlock! This form of lock is also called a test-and-set lock, 
even though it does not use the TestAndSet  primitive, discussed a little later. 

Because the code of Algorithm 13.1 can cause extreme cache contention, many pro
grams use a more subtle version that has the same semantics, called a test-and-test-and-set 
lock, shown in Algorithm 13.2. The important difference is in line 9, which does ordinary 
read accesses outside the At omi cExchange .  This spins accessing the processor 's (coher
ent) cache, without going to the bus. If the lock is not in cacheable memory, then a thread 
might want to delay between tests using an idle loop or a hardware i d l e  instruction, 
possibly using exponential back-off or some similar algorithm so as to consume fewer re
sources in longer waits. For even longer waits the thread might involve the operating 
system scheduler, by giving up the rest of its quantum, or moving to wait on an explicit 
signal, in which case things must be arranged so that the lock holder will send the signal 
when the lock is released. 
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Algorithm 13.3: Spin locks implemented with the TestAndSet  primitive 

10 

I I  

1 2  

13 

14 

1 5  

t e stAndSet Lock (x ) : 
while T e s t AndSet (x ) 1 

f* do nothing *I 

t e stAndSetUn l o c k (x ) : 
* X  f- 0 

Te stAndSet (x ) : 
atomic 

o l d  +--- * X  
i f  o l d  = 0 

* X  f- 1 
return 0 

return 1 

16 t e stAndTe stAndS et Lock (x ) : 
1 1  while t e s t AndTe stAndSet ( x ) 1 
1s /* do nothing 4 
19 

20 t e stAndTe stAndS et (x ) : 
21 while * X  = 1 
22 /* do nothing 4 
n return T e s t AndSet (x ) 
24 

� t e stAndTe stAndS etUnlock (x ) 
� t e stAndS e t U n l o c k (x ) 

While Section 13.3 covers the range of most frequently available atomic hardware prim
itives, it is edifying to consider test-and-set and test-and-test-and-set locks implemented 
with a TestAndS et  primitive, as shown in Algorithm 13 .3 .  A possible advantage of the 
TestAndSet primitive is that the overall intent and use of the values 0 and 1 are implicit 
in its semantics. This implies that a processor can avoid a bus access and avoid requesting 
the cache line for exclusive access if the value of the lock is 1 in the cache. In principle 
hardware could do that same thing for At omi cExchange ,  but it would require detecting 
that the old and new values are the same as opposed to looking for the specific value 1 .  

13.2 Hardware memory consistency 

We assume that shared memory provides coherence as discussed above: in the absence 
of pending incomplete writes, if two processors read the same memory location, they will 
obtain the same value. Most hardware further guarantees that if two processors write to 
the same location, one of the writes will happen before the other, and the later write's value 
is what every processor will see subsequently. Furthermore, no processor will observe the 
final value and later see the value change without another write.3 In other words, writes 

3The Java memory model is even looser: if two writes are not otherwise synchronised, then a processor can 
observe either value on any future read, and thus the value may oscillate. 
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to any particular memory location are totally ordered, and each processor 's view of that 
location is consistent with that order. 

However, a program's view of the order of writes (and reads) to more than one location 
does not necessarily correspond with the order of those actions at caches or memories, 
and thus as perceived by other processors. That is, program order is not necessarily con
sistent with memory order. This raises two questions: why, and what are the implications? 
To answer the 'why' question, it is a matter of both hardware and software. Broadly, the 
reasons are tied up with performance: strict consistency requires either more hardware 
resources, or reduces performance, or both. One hardware reason is that many processors 
contain a write buffer (also called a store buffer), that receives pending writes to memory. 
A write buffer is basically a queue of (address, data) pairs. Normally these writes may 
be performed in order, but if a later write is to an address already in the write buffer, the 
hardware may combine it with the previous pending write . This means the later write 
can effectively pass an earlier write to a different location and appear in memory sooner. 
Designers are careful to provide each processor with a consistent view of its own actions. 
Thus a read of a location that has a pending write in the write buffer will ultimately pro
duce the value in the write buffer, either with a direct hardware path (faster but more 
costly) or by waiting for the write buffer to empty and then reading the value from cache. 
Another reason program actions can be reordered at the memory is cache misses. Many 
processors will continue executing later instructions past a (data) cache miss, and thus 
reads can pass reads and writes (and so can writes) .  Further, write-back caches present 
writes to memory only when dirty lines are evicted or flushed, so writes to different lines 
can be drastically reordered. This summary of hardware reasons is illustrative but not 
exhaustive. 

Software reasons for reordering mostly come from compilers. For example, if two 
memory references are known to go to the same location and there are no intervening 
writes that can affect that location, the compiler may just use the value originally fetched. 
More generally, if the compiler can show that variables are not aliased (do not refer to the 
same memory location), it can freely reorder reads and writes of the locations, since the 
same overall result will obtain (on a uniprocessor in the absence of thread switches) .  Lan
guages allow such reordering and reuse of the results of previous accesses because it leads 
to more efficient code, and much of the time it does not affect the semantics. 

Obviously, from a programmer 's standpoint lack of consistency between program and 
memory order is potentially problematic - but from an implementation perspective it can 
boost performance and reduce cost. 

What are the implications of looser consistency? First, it should be obvious that it can 
be easy for programmers' intuitions to go completely wrong and for code that works under 
total consistency to fail in confusing ways - though perhaps only rarely - under more 
relaxed models. Second, for techniques such as locks to work, there needs to be some way 
to guarantee particular ordering between accesses to two different locations when ordering 
is needed. There are three primary kinds of accesses that an ordering model distinguishes: 
reads, writes, and atomic operations.4 Atomic operations apply an atomic read-modify
write primitive, often conditionally, such as T e stAndSet .  It can also be useful to consider 
dependent loads, where the program issues a load from address x and then later issues a 
load from address y where y depends on the value returned by loading x. An example 
is following a pointer chain. There are many different kinds of memory access orderings 
weaker than total consistency; we consider the more common ones here. 

4Some authors use the word 'synchronising' where we use 'atomic', but this conflates the atomicity of these 
operations with their usual influence on ordering, which is a strictly different notion. 
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Reordering I Alpha I x86-64 I Itanium I POWER I SPARC TSO I x86 I 
R --+ R y y y 
R --+ w y y y 
w --+ w y y y 
w --+ R y y y y y y 

Atomic --+ R y y y 
Atomic --+ w y y y 
dependent loads y 

Table 13.1: Memory consistency models and possible reorderings. A Y 
means that the indicated happens-before order is not necessarily enforced. 

Fences and happens-before 

A memory fence is an operation on a processor that prevents certain reorderings of memory 
accesses. In particular it can prevent certain accesses issued before the fence, or certain 
accesses issued after the fence, or both, from being performed in an order that places them 
on the other side of the fence. For example, a total read fence requires all reads before the 
fence to happen before all reads issued after the fence. 

This notion of happens-before can be formalised, and refers to requirements on the order 
in which operations occur on memory. Thus, the total read fence imposes a happens-before 
relationship between each previous read and each later read. Typically, atomic operations 
imply a total fence on all operations: every earlier read, write, and atomic operation must 
happen-before each later read, write, and atomic operation. However, other models are 
possible, such as acquire-release. In that model, an acquiring operation (think of it as being 
like acquiring a lock) prevents later operations from being performed before the acquire, 
but earlier reads and writes can happen after the acquire. A releasing operation is symmet
rical: it prevents earlier operations from happening after the release, but later reads and 
writes may happen before the release. In short, operations outside an acquire-release pair 
may move inside it, but ones inside it may not move out. This is suitable for implementing 
critical sections. 

Consistency models 

The strongest consistency model is strict consistency, where everr read, write and atomic op
eration occurs in the same order everywhere in the system. Strict consistency implies 
that happens-before is a total order, with the order defined by some global clock. This is 
the easiest model to understand, and probably the way most programmers think, but it is 
prohibitive to implement efficiently.6 A slightly weaker model is sequential consistency, in 
which the global happens-before order is any partial order consistent with every proces
sor 's program order. Small scale multiprocessors usually aim for sequential consistency or 
something close to it, because it is easier to program to than more relaxed models. Weak 
consistency is the model resulting from treating all atomic operations as total fences. The 
acquire-release model, mentioned above is usually called release consistency. Intermediate 
in strength between sequential and weak consistency is causal consistency. This enforces 
happens-before between previous reads by a program and its subsequent writes, since the 
reads may causally influence the value written, and it enforces happens-before between a 

5By 'occurs' we mean 'appears to occur ' - a program cannot tell the difference. 
6Given relativistic effects, a total order may not even be well-defined in modern systems. 
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Algorithm 13.4: The Compa reAndSwap and Compar eAndSet primitives 

CompareAn dSwap (x, o l d, new ) : 
atomic 

cu r r  +--- * X  
if c u r r  = o l d  

* X  f- new 
return curr  

s CompareAndSet (x, o l d, new ) : 
atomic 

10 

I I  

12 

13 

1 4  

c u r r  f- * X  
if cu r r  = o l d  

* X  +--- new 
return true 

return false 
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read and the write that stored the value obtained by the read. The term relaxed consistency 
applies to any model weaker than sequential consistency. 

While allowed reorderings depend to some extent on the interconnect and memory 
system, that is they may lie outside total control by the processor, Table 13 .1 shows the re
orderings allowed by some well-known processor families . All the processors implement 
at least weak or release consistency. For more background on memory consistency models 
see Adve and Gharachorloo [1995, 1996] . 

13.3 Hardware primitives 

From some of the earliest computers onwards, processors have supported atomic read
modify-write primitives for locking and synchronisation. Section 13.1 introduced two 
primitives. At omi cExchange is perhaps the simplest in that it involves no computation 
or conditional action - it simply writes a new value to a memory location and returns 
the old value atomically, implying that no other write (atomic or otherwise) can interleave. 
TestAndS et is also quite simple in that it sets a single bit to 1 and returns the bit's pre
vious value. However, it can be viewed as a conditional primitive that sets the bit only 
if its current value is zero. The other widely known and used atomic primitives include: 
compare-and-swap, also called compare-and-exchange; load-linked/store-conditionally, 
also called load-and-reserve/store-conditional; and various atomic increment, decrement 
and add primitives, notably fetch-and-add, also called exchange-and-add. We consider 
these in turn below. 

Compare-and-swap 

The CompareAndSwap primitive and its close relation, Comp a r eAndSet ,  are presented in 
Algorithm 13.4. CompareAndSet  compares a memory location to an expected value o l d, 
and if the location's value equals old, it sets the value to new .  In either case it indicates 
whether or not it updated the memory location. CompareAndSwap differs only in that 
it returns the value of the memory location observed by the primitive before any update, 
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1 3  
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Algorithm 13.5: Trying to advance state atomically with compare-and-swap 

compareThenCompareAndSwap ( x ) : 
if * X  = i n t e re s t i ng 

z +- value for the desired next state 
CompareAndSwap (x, i nt e rest ing, z ) 

Algorithm 13.6: Semantics of load-linked /store-conditionally 

LoadLinked ( addre s s ) : 
atomic 

r e s e rvat i o n  f- addr e s s  
r e s e rved  +- true 
return * addres s 

I* re s e rvat ion is a per-processor variable *I 
/* r e s e rved is a per-processor variable *I 

S t o reCondit i on a l ly (addre s s , value ) : 
atomic 

if r e s e rved 
s t o r e ( addres s ,  v a l u e ) 
return true 

return false 

1 4  s t ore ( addre s s , value ) : I* at all processors, not necessarily simultaneously 4 
1 s  if addre s s  = reservat i o n  !* granularity may be same cache line, and so on 4 
1• r e s e rved  +- false 
1 1  * addre s s  +- value  

rather than returning a boolean truth value. The utility o f  the two primitives i s  essentially 
the same, although their semantics are not strictly equivalent. 

CompareAndSwap is often used to advance a location from one state to another, such 
as 'locked by thread t l '  to 'unlocked' to 'locked by thread t2'. It is common to examine the 
current state and then try to advance it atomically, following the pattern of Algorithm 13 .5, 
sometimes called compare-then-compare-and-swap. There is a lurking trap in this ap
proach, namely that it is possible that at the CompareAndSwap the state has changed mul
tiple times, and is now again equal to the value sampled before. In some situations this 
may be all right, but in others it could be that the bit pattern, while equal, actually has a 
different meaning. This can happen in garbage collection if, for example, two semispace 
collections occur, and along the way a pointer was updated to refer to a different object 
that by coincidence lies where the original object was two collections ago. This inability of 
CompareAndSwap to detect whether a value has changed and then changed back is called 
the ABA problem . 

Load-linked/store-conditionally 

LoadLinked and S t o reCondit iona l ly solve the ABA problem by having the proces
sor remember the location read by the LoadLinke d and use the processor 's coherence 
mechanism to detect any update to that location. Assuming that the processor applies the 
semantics of the s t o r e  function, Algorithm 13.6 describes LoadLi nked/StoreCond-
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Algorithm 13.7: Atomic state transition with load-linked/store-conditionally 

observed f- LoadLinked (x ) 
2 compute desired new value z ,  using observed 
3 if not St oreCondit iona l ly (x, z ) 

go back and recompute or otherwise handle interference 
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Algorithm 13.8: Implementing compare-and-swap with load-linked/ store-conditionally 

compareAndSwapByLLSC (x, o l d, new ) : 
previ ous  f- LoadLi nked (x ) 
if previous  = o l d  

S t o reCondi t i o na l ly (� new ) 
return p r evious  

1 compa reAndSet ByLLSC (x, o l d, new ) : 
previ ou s  f- LoadLi nked (x ) 
if previou s  = o l d  

w return S t o reCondit iona l l y ( x, new ) 
n return false 

i t i ona l l y  more precisely. It still falls short, though, because the reservation is cleared 
not only by writes by the same processor, but also by writes coming from other processors. 
Because any write to the reserved location resets the r e s e rved flag, the compare-then
compare-and-swap code can be rewritten to avoid the possible ABA problem, as shown 
in Algorithm 13.7.7 LoadLinked/ StoreCondi  t i o n a l l y  is thus strictly more powerful 
than Compa reAn dSwap. In fact, it should be clear that the LoadLi nked/ S t o r eCond
i t i ona l l y  primitives allow a programmer to implement any atomic read-modify-write 
operation that acts on a single memory word. Algorithm 13.8 shows how to implement 
compare-and-swap with LoadLinked/S t o reCondi t i onal ly ,  and also an implemen
tation of compare-and-set. One more behaviour of LoadLinked/ S t o reCondi t i on a l l y  
is worth mentioning: it is legal for a Sto reCondi t i on a l l y  t o  fail 'spuriously', that is, 
even if no processor wrote the location in question. There might be a variety of low-level 
hardware situations that can cause spurious failures, but notable is the occurrence of inter
rupts, including such things as page and overflow traps, and timer or 1/0 interrupts, all 
of which induce kernel activity. This is not usually a problem, but if some code between 
LoadLinked  and S t o reCondit iona l l y  causes a trap every time, then the S t o r eCond
i t iona l l y  will always fail. 

Because LoadLi nked/ S t oreCondit iona l l y  solves ABA problems so neatly, code 
presented here will most generally prefer LoadLinked/ S t o reCondi t i on a l l y  where 
CompareAndSwap would exhibit an ABA problem. It would typically be straightforward 
to convert such instances to use CompareAndSwap with an associated counter. 

Strictly speaking, StoreCondi t iona l l y's effect may be undefined if it writes to an 
address other than the one reserved. Some processor designs allow that, however, giving 
an occasionally useful atomic primitive that acts across two arbitrary memory locations. 

7 A thread also loses its reservation on a context-switch. 
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Atomic arithmetic primitives 

For completeness, Algorithm 13.9 defines several atomic arithmetic primitives . It is also 
easy to offer versions of At omi c I ncrement  and Atomi cDe c rement that return either 
the old or the new value using At omi cAdd or F e t chAndAdd. Furthermore, processors 
often set condition codes when executing these primitives, which can reveal whether the 
value is (or was) zero, and so on. In the realm of garbage collection, FetchAndAdd might 
be used to implement sequential allocation (that is, with a 'bump pointer ' )  in a concurrent 
setting - though usually it is preferable to set up local allocation buffers as described in 
Section 7.7. F e t  chAndAdd could similarly be used to add or remove items from a queue, 
though wrap-around in a circular buffer requires care (see Section 13.8) . 

It has been shown that these atomic arithmetic primitives are strictly less powerful than 
C ompareAndSwap,  and thus also less powerful than LoadL i n ked/StoreCondit i on
a l ly (see Herlihy and Shavit [2008]) .  In particular, each primitive has what is a called a 
consensus number. If the consensus number of a primitive is k, then it can be used to solve 
the consensus problem among k threads, but not more than k. The consensus problem is a 
multiprocessor algorithm where (a) each thread proposes a value, (b) all threads agree on 
the result, (c) the result is one of the values proposed, and (d) all threads always complete 
in a finite number of steps, that is, the algorithm is wait-free (see Section 13.4) . Primitives 
that either set a value unconditionally, such as At omi cExchange,  or that when commuted 
result in the same value for the variable being updated, such as At omi c i n c rement and 
F e t chAndAdd, have consensus number 2. On the other hand, Compa reAndSwap and 
LoadLinked/ S t o reCondi t i o n a l ly have consensus number oo, that is, they can solve 
consensus in a wait-free manner for any number of threads, as will be illustrated presently 
in Algorithm 13 . 13 .  

One potential advantage to unconditional arithmetic primitives is  that they will al
ways succeed, whereas an emulation of these primitives with LoadLinked/ S t o reCond
i t i o nally  or C ompa reAndSwap can starve in the face of contention.8 

Test then test-and-set 

The 'test then test-and-set' pattern was illustrated in function t e s tAndTe stAndSet  (see 
Algorithm 13.3) .  Because of the way that algorithm iterates, it is correct. Programmers 
should avoid two fallacious attempts at the same semantics, here called test-then-test
and-set and test-then-test-then-set, illustrated in Algorithm 13 .10 .  Test-then-test-and-set 
is fallacious because it does not iterate, yet the T e stAndSet could fail if x is updated be
tween the if and the TestAn dS e t .  Test-then-test-then-set is even worse: it fails to use 
any atomic primitive, and thus anything can happen in between the first and second read 
of x and the second read and the write. Notice that making x volatile does not solve 
the problem. There are similar patterns that might be called compare-then-compare-and
set or compare-then-compare-then-set that are equally fallacious. These traps illustrate the 
difficulty programmers have in thinking concurrently. 

More powerful primitives 

As mentioned above, LoadLinked/ StoreCon d i  t i onally  is fully general, and hence 
the most powerful among single-word atomic update primitives . However, primitives 
that allow updating multiple independent words are even more powerful. In addition to 

80f course if contention is that high, there may be the possibility of starvation at the hardware level, in trying 
to gain exclusive access to the relevant cache line. 
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Algorithm 13.9: Atomic arithmetic primitives 

1 At omi c i n c rement (x) : 
atomic 

* X  f- * X  + 1 

s At omi cDe c rement (x) : 
atomic 

* X  f- * X  - 1 

9 At omi cAdd ( x, v ) : 
w atomic 
I I  

1 2  

1 3  

14 

new +- * X  + v 
* X  +- new 
return new 

1 5  Fet chAndAdd( x, v ) : 
1 6  atomic 
1 7  o l d  +- * X  
1 s  * x +- o l d  + v 
1 9  return o l d  

Algorithm 13.10: Fallacious test and set patterns 

t e s t ThenT e s tAndSet Lock (x ) : 
if * X  = 0 

T e s tAndSet (x )  

5 t e s t ThenT e s t ThenSet Lock (x ) : 
if * X  = 0 

other work 
if * X  = 0 

* X  f- 1 
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/*fallacious! 4 

I* fallacious! 4 

single-word primitives, some processors include double-word primitives such as double
word compare-and-swap, here called CompareAndSwapWi de /Compa reAndS etWide, in 
addition to single-word Comp a r eAndSwap (see Algorithm 13. 1 1 ) .  These are not of greater 
theoretical power. However, a wide double-word CompareAndSwap can solve the ABA 
problem of single-word Comp a reAndSwap by using the second word for a counter of the 
number of times the first word has been updated. It would take so long - 232 updates 
for a 32-bit word - for the counter to wrap around that it may be safe to ignore the pos
sibility. The same would hold even more strongly for updating two adjacent 64-bit words. 
Thus Compar eAndSwapWide can be more convenient and efficient even if it has the same 
theoretical power as a regular CompareAndSwap .  

But while double-word atomic primitives are useful, i t  is even more useful to  be able 
to update two arbitrary (not necessarily adjacent) words in memory atomically. The Mo
torola 88000, and Sun's Rock design, offered a compare-and-swap-two instruction (also 
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Algorithm 13.11: CompareAndSwapWide 

CompareAndSwapWide (x ,  o l dO ,  o l d l ,  newO ,  new l ) : 
atomic 

cu r r O ,  cur r l  +- x [O ] ,  x [ l ]  
if  cu r r O  = o l dO && cur r l  

x [ O ] ,  x [ l ]  +- newO ,  newl 
return currO ,  curr l 

o l dl  

CompareAndS etWide (x, o l dO ,  o ldl ,  newO ,  new l ) : 
atomic 

t o  cu r r O , cur r l  +- x [ O ] ,  x [ l ]  
1 1  if currO  = o l dO  && cur r l  o ldl  
1 2  x [ O ] ,  x [ l ]  +- newO ,  newl  
1 3  return true 
14 return false 

Algorithm 13.12: CompareAndSwap2 

1 0  

I I  

1 2  

1 3  

1 4 

CompareAndS wap2 (xO ,  x l ,  o l dO ,  o l d l ,  newO ,  newl ) :  
atomic 

cu r r O ,  curr l +- * X O ,  * X l  
if c u r r O  = o l dO  && cur r l  

* X O , * X l  +- newO ,  newl 
return currO ,  cu r r l  

o l dl  

CompareAndS e t 2 (xO ,  x l ,  o l dO ,  oldl ,  newO ,  new l ) : 
atomic 

cu r r O , cur r l  +- * X O ,  * X l  
if c u r r O  = o l dO  && cur r l  

* X O , * X l  +- newO ,  newl 
return true 

return false 

o l dl  

called double-compare-and-swap) .  Algorithm 13 . 1 2  illustrates this Compa reAndSwap2 
primitive. Comp a reAndSwap2 is complex to implement in hardware, so it  is  not surpris
ing that no commercially produced machines presently support it. Compa reAndS wap2 
can be generalised to compare-and-swap-n, also called n-way compare-and-swap. It was 
the inspiration for transactional memory, which is to LoadLi nked/  S t oreCondi  t i o n
a l l y what n-way compare-and-swap is to CompareAndSwap. See Section 13.9 for further 
discussion of transactional memory. 

Overheads of atomic primitives 

One reason programmers fall into the traps just mentioned is that they know atomic primi
tives are expensive, so they try to avoid them. Another reason may be that they improperly 
replicate the pattern of t e s tAndTestAndSet . The primitives tend to be expensive for the 
two reasons previously mentioned, but it is helpful to distinguish them. One reason is the 
cost of cache coherence: an atomic read-modify-write primitive must acquire exclusive ac
cess to the relevant cache line. Also, it must do that, read the contents, compute the new 
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Algorithm 13.13: Wait-free consensus using compare-and-swap 

1 shared propo s a l s [N ] 
2 shared winner  +--- - 1  
3 me +--- myThreadi d 

s de c ide ( v ) : 
propo s a l s [me ] +--- v 
CompareAndSwap ( & w i n ne r, - 1 , me ) 
return propo s a l s [winne r ] 

f* one entry per thread 4 
/* indicates which thread got here first 4 

f* 0 � thread id < N 4 

value and write it, before the instruction is complete. While modern processors may over
lap multiple instructions, often there are few instructions available in the pipeline since the 
next thing to do often depends strongly on the result of the atomic operation. Because of 
the need for coherence, an atomic update primitive often includes a bus or memory access, 
which consumes many cycles. 

The other reason atomic primitives tend to be slow is that they either include memory 
fence semantics, or else, by the way they are used, the programmer will need to insert 
fences manually, typically on both sides of the atomic operation. This undermines the 
performance advantage of overlapped and pipelined processing, and makes it difficult for 
the processor to hide the cost of any bus or memory access the primitive requires. 

13.4 Progress guarantees 

It is important to guarantee progress among threads that may be contending on the same 
data structure, such as a shared collected heap, or collector data structures. This is espe
cially true in real-time programming. It is also helpful to know the relative power of the 
various atomic hardware primitives in supporting progress guarantees. From strongest to 
weakest, useful progress guarantees include: wait-freedom, obstruction-freedom and lock
freedom. A concurrent algorithm is wait-free if every thread can always make progress, 
regardless of the actions of other threads. A concurrent algorithm is obstruction-free if, 
given a long enough period of isolated execution, any thread will finish in a finite num
ber of steps. A concurrent algorithm is lock-free if, infinitely often, some thread finishes 
within a finite number of steps. Progress guarantees are almost always conditional in real 
systems. For example, an algorithm might be wait-free as long as it does not exhaust free 
storage. See Herlihy and Shavit [2008] for a thorough discussion of these concepts, how to 
implement them, and so on. 

A wait-free algorithm typically involves the notion of threads helping each other along. 
That is, if thread t2 is about to undertake an action that would undermine thread tl that is 
somehow judged to be ahead of t2, t2 will help advance the work of t l  and then do its own 
work. Assuming a fixed bound on the number of threads, there is a bound on helping to 
accomplish one work unit or operation on the data structure, and thus the total time for 
any work unit or operation can be bounded. However, not only is the bound large, but the 
typical time for an operation is rather higher than for weaker progress guarantees because 
of the additional data structures and work required. For the simple case of consensus, 
it is fairly easy to devise a wait-free algorithm with low time overhead, as illustrated in 
Algorithm 13 .13 .  It is fairly easy to see that this meets all of the criteria to be a solution to 
the consensus problem for N threads, but it does have space overhead proportional to N.  

Obstruction-freedom is  easier to achieve than wait-freedom, but may require scheduler 
cooperation. If threads can see that they are contending, they can use random increasing 
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back-off so as to allow some thread to win. That is, each time they detect contention, 
they compute a longer possible back-off period T and randomly choose an amount of time 
between zero and T to wait before trying again. In a pool of contending threads, each will 
eventually succeed, probabilistically speaking. 

Lock-freedom is even easier to achieve. It requires only that at least one contender 
make progress on any occasion, though any particular individual can 'starve' indefinitely. 

Progress guarantees and concurrent collection 

Parallel collectors use multiple threads simultaneously in the collector, but stop all mutator 
threads during collection. Concurrent collectors perform at least some parts of collection 
while mutators threads are still running, and generally using multiple collector threads 
too .  Both parallel and concurrent collection algorithms typically have a number of phases, 
such as marking, scanning, copying, forwarding or sweeping, and concurrent collection 
also has mutator work trying to proceed at the same time. Multiple collector threads may 
aim to cooperate, yet sometimes interfere with one another and with mutator threads. In 
such a complex situation, how can collector correctness be described? Certainly the collec
tor must do nothing blatantly wrong - at the least it must preserve the reachable parts of 
the object graph and support the mutations being performed by the mutators. Next, pro
vided that an invocation of the collector eventually terminates, it should generally return 
some unreachable memory for reuse. However, the specific expectations vary by collector 
algorithm. A conservative (ambiguous roots) collector may over-estimate reachability and 
thus fail to reclaim some unreachable objects . Likewise, generational and other partial
heap collectors intentionally forgo reclaiming unreachable objects from some parts of the 
heap on any given invocation. A complete collection algorithm gives a stronger guarantee: 
eventually, if invoked enough times, it will reclaim any given piece of garbage. 

Concurrent collectors bring additional interesting issues. One is what can happen to 
objects allocated during collection that then become unreachable, or objects previously 
allocated that become unreachable during collection. A given collector might or might not 
reclaim those during the current invocation. 

But there is a more subtle issue and risk that arises with concurrent and parallel col
lection. Sequential algorithms have more obvious termination properties . For example, 
marking a reachable object graph maintains some representation of marked-and-scanned, 
marked-but-not-yet-scanned, and unmarked object sets, and obeys rules where the first 
set grows, eventually to contain the entire graph of reachable objects. Correctness may 
sometimes be tricky to prove, but it is relatively easy to see that the algorithm terminates. 
It is less obvious with concurrent collection, because the object graph can grow because 
of allocation of new objects, and it can change during a collection cycle. If each mutator 
change forces more collector work, how can we know that the collector will ever catch 
up? Mutators may need to be throttled back or stopped completely for a time. Even if a 
proof deals with the issues of more collector work being created during collection, there 
remains a further difficulty: unless the algorithm uses wait-free techniques, interference 
can prevent progress indefinitely. For example, in a lock-free algorithm, one thread can 
continually fail in its attempts to accomplish a work step. In fact, two competing threads 
can even each prevent progress of the other indefinitely, an occurrence called livelock. 

Different phases of collection may offer different progress guarantees - one phase 
might be lock-free, another wait-free. However, practical implementations, even of theo
retically entirely wait-free algorithms, may have some (it is hoped small) portions that are 
stop-the-world . Given the code complexity and increased possibility of bugs when trying 
to implement stronger progress guarantees, it may not be worth the engineering effort to 
make every last comer wait-free .  Further, notice that an overall collection algorithm can 
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be judged wait-free from the standpoint of the mutators only if it can reclaim memory 
fast enough to ensure that a mutator will not block in allocation waiting for collection to 
complete. Put another way, the heap must not run out before the collector is done. This 
requires more than a wait-free guarantee for each phase - it requires overall balance be
tween heap size, maximum live size, allocation rate and collection rate. Enough resources 
need to be devoted to collection - memory and processing time - for the collector to keep 
up. This may be required for critical real-time systems, and Chapter 19 discusses it in more 
detail . Most of the algorithms presented in succeeding chapters make weaker guarantees, 
such as lock-freedom, possibly only in certain phases. They are easier to implement and 
their guarantees are acceptable in many less stringent settings. 

13.5 Notation used for concurrent algorithms 

Given the considerations discussed previously, particularly atomicity, coherence and con
sistency, what a programmer writes is not always executed in the exact order presented 
hardware and compilers can reorder and even eliminate some operations. Exactly what 
can occur depends strongly on the programming language, its compiler and run-time sys
tem, and the hardware. Yet here it is best to present algorithms in pseudocode indepen
dently of any particular hardware-software platform. In an algorithm, the relative order 
of some operations is typically important to correctness, but it is not generally necessary 
that all operations occur, and be perceived everywhere, in the order presented. Therefore, 
the code offered here for algorithms that may execute concurrently follows certain conven
tions. This makes it easier to translate the pseudocode into a working implementation in a 
given environment. Here are the conventions used. 

Meaning of atomic: The actions within an atomic must be perceived by all processors 
as if they happened instantaneously - no other shared memory read or write can 
appear to happen in the middle. Moreover, atomic actions must be perceived 
as happening in the same order everywhere if they conflict (one writes and the 
other reads or writes the same shared variable), and in program execution order 
for the thread that executes them. Furthermore, atomic blocks act as fences for all 
other shared memory accesses. Since not all hardware includes fence semantics with 
atomic primitives, the programmer may need to add them. The code here may work 
with acquire-release fence semantics, but is designed assuming total fences. 

Ordering effects of load-linked and store-conditionally: Both the load-linked and store
conditionally instructions act as total fences with respect to shared memory accesses. 

Marking variables: We explicitly mark shared variables; all other variables are private to 
each thread. 

Arrays: Where we use arrays, we give the number of elements within brackets, such as 
propo s a l s [N] . Declarations of arrays use shared or private explicitly, so as 
not to look like uses of the arrays, and may be initialised with a tuple, such as 
shared pa i r [2 ] +- [ 0 , 1 ] ,  including tuples extended to the specified length, such as 
shared leve l [N] +- [ - 1 ,  . . .  ] . 

References to shared variables: Each reference to a shared variable is assumed to result 
in an actual memory read or write, though not necessarily in the order presented . 

Causality obeyed: Code assumes that if, subject to the sequential semantics of the pseu
docode language, an action x causally precedes an action y, then x happens-before y 
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in the actual system. An example is a dependent memory reference.  If code accesses 
a shared pointer variable p then a field f of the structure that p references, namely 
( * P ) .  f, then reading p causally preceded reading the field f. Similar remarks apply 
to accessing a shared index variable i then a shared array element a [ i ] .  

Obeying causality also implies obeying control dependence: the evaluation of an if, 
while, or similar expression that determines control flow causally precedes execu
tion of the code it guards. The programmer must be careful not to allow speculative 
evaluation of conditional code so as to reorder accesses to shared variables. How
ever, unconditional code following an if is not causally dependent on evaluation of 
the if expression. Similar remarks apply to moving code across loops. 

Explicit fence points: Even with the conventions listed above, many operations may be 
freely reordered - but sometimes an algorithm requires a particular order for its 
correctness. Therefore, our conventions include the possibility of marking a line of 
code with a $, which indicates operations that must occur in the order presented. 
Furthermore, lines so marked also indicate total fences for shared memory accesses. 
It is convenient that pseudocode presented thus far in this chapter has not needed 
these markings. Notice that a line marked with $ may, for some processor architec
tures, need a fence of some kind before the line, after the line, or both before and 
after. Usually it is a particular action of the line that is important not to reorder, that 
is, one store or one load. While the markers do not offer complete guidance on how 
to translate pseudocode into working code for a given platform, they do serve to 
indicate where caution is necessary. 

13.6 Mutual exclusion 

One of the most basic problems in concurrent computing is mutual exclusion, by which it 
is desired to guarantee that at most one thread at a time can be executing certain code, 
called a critical section.  While atomic primitives can sometimes achieve a necessary state 
transition using one instruction, and techniques with stronger progress guarantees might 
be applied - though perhaps at greatest cost and almost certainly greater complexity 
- mutual exclusion remains convenient and appropriate in many cases. Atomic read
modify-write primitives make it fairly easy to construct lock/unlock functions, as shown 
in Algorithms 13 .1  to 13.3. It is less obvious, but nevertheless true, that mutual exclusion 
can be achieved using only (suitably ordered) reads and writes of shared memory without 
stronger atomic update primitives. One of the classic techniques is Peterson's Algorithm 
for mutual exclusion between two threads, shown in Algorithm 13.14.  Not only does this 
algorithm guarantee mutual exclusion, it also guarantees progress - if two threads are 
competing to enter the critical section, one will succeed - and that waits are bounded, 
that is, the number of turns taken by other processes before a requester gets its tum is 
bounded.9 In this case the bound is one turn by the other thread. 

It is not too hard to generalise Peterson's Algorithm to N threads, as shown in Algo
rithm 13.15, which highlights its similarity to the two-thread case. How the while loop 
works is a bit subtle. The basic idea is that a requesting thread can advance a level in 
the competition to enter the critical section if it sees no other thread at the same or higher 
level .  However, if another thread enters its current level, that thread will change v i c t im 
and the earlier arrival can advance. Put another way, the latest arrival at a given level 

9The time before this happens is not bounded unless a requesting thread whose tum it is enters and then 
leaves within bounded time. 
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Algorithm 13.14: Peterson's algorithm for mutual exclusion 

1 shared i ntere s t ed [ 2 ]  +- [false, false ] 
2 me +- myThreadi d 

4 pet e r s o nLock ( ) : 

1 0  

other  +- 1 - me 
i n t e r e sted [me ] +- true 
vict im +- me 
while vict im = me && i n t e r e sted [o t h e r] 

/* do nothing: wait 4 

11 pet e r s o nUnlock ( ) : 
12 i n t e r e st ed [me] +- false 

/* thread id must be 0 or 1 4 

$ 
$ 

Algorithm 13.15: Peterson's algorithm for N threads 

1 shared leve l [N] +- [- 1, . . .  ] 
2 shared vict im[N] 
3 me +- myThreadi d 

5 pet e r s onLockN( ) : 
for lev  +- 0 to  N-1  

l eve l [me] +- l ev 
v i c t im[l ev] +- me 
while vict im [ lev] 

10 /* do nothing: wait *f 
11  

1 2  pet e r s o nUnlockN ( ) : 
13 l eve l [me] +- - 1  

f* 0 � thread id < N 4 
$ 

me && ( :Ji  =/:- me ) ( l evel [ i ]  � l ev) $ 

Algorithm 13.16: Consensus via mutual exclusion 

1 shared winner  +- - 1  
2 shared va lue 
3 me +- myThreadi d 

5 dec i deWithLock (v) : 
l ock ( )  
if wi nner  = - 1  

wi nner  +- me 
value +- v 

10 unlock ( )  
n return va lue 

f* does not need to  be initialised 4 

f* simple, but no strong progress guarantee *f 
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waits for threads at all higher levels plus earlier arrivals at its own level. Meanwhile, later 
arrivals at the same and lower levels will come strictly later. It does not matter that the 
while loop's condition is not evaluated atomically. Peterson's algorithm is illustrative of 
what is possible and of techniques for reasoning about concurrent programs, but atomic 
locking primitives are more convenient and practical. 

The previous discussion of consensus in Section 13.3 described the wait-free version 
of the consensus problem. Mutual exclusion can solve consensus quite easily if stronger 
progress guarantees are not needed, as shown in Algorithm 13 . 16. Since Peterson's mutual 
exclusion algorithm implements mutual exclusion, it can also support this kind of consen
sus. However, if CompareAndSwap is available it is usually a more appropriate solution 
(see Algorithm 13 .13) . 

13.7 Work sharing and termination detection 

It is common in parallel or concurrent collection algorithms to need a way to detect ter
mination of a parallel algorithm. Note that this is quite distinct from demonstrating that a 
parallel algorithm will terminate; it concerns having the program detect that termination 
has actually been achieved in a specific instance. In particular, consider a generic situation 
in which threads consume work, and as they process work units, they may generate more 
work. If each thread is concerned only with its own work, detecting termination is sim
ple - just have each thread set a done flag and when all the flags are set, the algorithm 
has terminated . However, parallel algorithms generally involve some sort of sharing of 
work items so as to try to balance the amount of work done by each thread and gain max
imum speedup from the available processors . This balancing can take two forms: threads 
with a relatively large amount of work can push work to more lightly loaded threads, or 
lightly loaded threads can pull work from more heavily loaded threads . Work pulling is 
also called work stealing. 

Work movement must be atomic, or at least must guarantee that no work unit is lost. 10 

Here, though, the concern is detecting termination of a work sharing algorithm. It is rel
atively easy to detect termination using a single shared counter of work units updated 
atomically by each thread, but such counters may become bottlenecks to performance if 
the threads update them frequently. l 1 Therefore a number of termination detection algo
rithms avoid atomic update primitives and rely on single word reads and writes. It is 
simplest to consider first algorithms in which detection is the responsibility of a separate 
thread whose only job is detection. 

Algorithm 13 .17 shows a simplified version of the shared-memory work sharing termi
nation algorithm of Leung and Ting [1997] . 1 2 It is designed for the push model. The basic 
idea is that workers indicate whether or not they are busy with their bus y  flags, which the 
detector scans. Notice that an idle worker will become busy again only if another worker 
pushes a job to it. However, the pusher can then finish processing and go idle. Since the 
detector 's scan is not atomic, it might first see the job receiver as idle (because the job has 

1 0Sometimes work is idempotent, so if it is done two or more times, the algorithm is still correct, though 
possibly wasteful of computing resources. 

1 1  Flood et a/ [2001 )  use essentially this technique in their parallel collector, but with a single word that has one 
'active' bit per thread. The termination condition is the same: the algorithm terminates when the status word 
becomes zero. 

12The version shown eliminates the {3 flags of Leung and Ting [1997), which have to do with operating system 
sleeping and wakeup, which we elide here for simplicity. Here, we give their tt and 1' flags the more memorable 
names bu s y  and j obsMove d.  Leung and Ting also give a variant that detects termination a little faster by 
checking the j ob sMoved flag every VN iterations of the detector 's scanning loop. Given the time needed to 
perform work in a collection algorithm, it is doubtful that such a refinement is worthwhile. 
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Algorithm 13.17: Simplified tx/31' shared-memory termination [Leung and Ting, 1997] 

1 shared j obs  [N] +- initial work assignments 
2 shared busy [N] +- [true, . . .  ] 
3 shared j obsMove d +- false 
4 shared a l lDone  +- false 
5 me +- myThreadi d 

7 wo rker ( ) :  
loop 

while not i sEmpty ( j obs [me ] ) 
w if the job set of some thread j appears relatively smaller than mine 
1 1  s ome +- chooseAndD e queueJob s ( )  
12 sendJob s ( s ome, j )  $ 
13 else 
14 j ob +- dequeue ( j ob s [me] ) 
1 5  

1 6  

17 

1 8  

1 9  

20 

21 

per f o rm j ob 
bu s y [me] +- false 
while isEmpt y ( j ob s [me] ) && not a l l D o n e  

f* do noth ing: wait for work o r  termination *f 
i f  a l lDone return 
bu s y [me] +- t rue 

$ 
$ 

$ 
$ 

22 sendJob s ( s ome, j ) : f* push jobs to more lightly loaded thread 4 
23 enqueue ( j ob s [ j ] ,  s ome) 
24 while (not bus y [ j ] )  && (not i s Empty ( j ob s [ j ] ) )  
25 /* do nothing: wait for j to wake up *f 
26 indicate that some work moved 
27 j obsMoved +- t rue 
28 

29 det e ct ( ) : 
30 any Act ive +- true 
31 while anyAct ive  
32 anyAct ive +- ( 3 i ) (busy [ i ] ) 
33 anyAct ive +- anyAct ive I I  
34 j obsMoved +- false 
35 a l lDone  +- true 

j obsMove d  

$ 
$ 

$ 

$ 
$ 
$ 

not been sent yet) and then find the pusher idle (after it sends the job) . In this situation the 
detector would falsely indicate termination. Hence the algorithm includes the j obsMoved 
flag, which indicates whether any jobs have moved recently. The detector restarts detection 
in that case. It is also important that sendJob s waits until bus y [ j ]  is true to guarantee 
that before, during and immediately after the transfer at least one of the bus y [ i ]  is true: 
the only way that all busy  [ i ]  can be false is if there is no work in the system. 

Algorithm 13 . 18  shows the similar algorithm for a work stealing (pull) model of sharing 
work. For example, Endo et al [1997] uses essentially this algorithm to detect termination 
in their parallel collector. Also, while the lock-free collector of Herlihy and Moss [1992] is 
not based on work sharing, its termination algorithm at its heart uses the same logic as the 
busy  and j obsMoved flags. 
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Algorithm 13.18: An tt,6'Y-style work stealing termination algorithm 

• me +- myTh r e a d i d  

3 worker ( ) : 
loop 

while not i sEmpt y ( j obs [me] ) 
j ob +- dequeue ( j ob s [me] ) 
p e r form j ob 

if another thread j exists whose jobs set appears relatively large 
s ome +- s t e a l Jobs ( j )  

1 0  enqueue ( j obs [me] ,  s ome ) 
I I  

1 2  

1 3  

14 

IS 

1 6  

1 7  

continue 
bus y  [me ]  +- false 
while no thread has jobs to steal && not a l lDone 

f* do  nothing: wait for work or  termination 4 
if a l lDone  return 
bus y [me ]  +- true 

1 8  s t e a l Jobs ( j ) : 
19 s ome +- at omi c a l lyRemoveS omeJobs ( j ob s [ j ] )  
2o if not i s Empt y ( s ome ) 

$ 

$ 

$ 
$ 

$ 
$ 

21 j obsMoved +- true /* indicate that some work moved 4 
22 return s orne 

Algorithm 13.19: Delaying scans until useful 

shared any ! dl e  +- false 
2 me +- myTh r e a d i d  

4 worker ( ) : 

bus y [me] +- false 
any i dl e  +- true 

10 detect ( ) : 
1 1  anyAct i ve +- true 
1 2  

1 3  

14 

I S  

1 6  

1 7  

18 

19 

20 

while anyAct ive 
anyAct ive +- false 
while not any i dl e  

/* do nothing: wait until a scan might be useful 4 
any i dl e  +- false 
anyAct ive +- ( 3 i ) (bu s y [i ] ) 
anyAct ive +- anyAct ive I I  j obsMoved 
j ob sMoved +- false 

al lDone  +- true 

$ 
$ 

$ 

$ 
$ 
$ 
$ 
$ 
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Algorithm 13.20: Delaying idle workers 

1 shared anyLarge +--- false 
2 me +--- myThread i d  

4 worke r ( ) : 
loop 

10 

I I  

12 

13 

14 

15 

16 

17 

1 8  

19 

20 

2 1  

2 2  

while not i sEmpty ( j ob s [me] ) 
j ob +--- dequeue ( j ob s [me ] ) 
pe r f o rm(  j ob)  
if my job set i s  large 

anyLa rge +--- true 
if anyLarge  

anyLa rge  +--- false /* set false before looking 4 
if another thread j has a relatively large jobs set 

any La rge +--- true /* could be more stealable work 4 
s ome +--- stealJobs ( j )  
enqueue ( j ob s [me ] ,  s ome ) 
continue 

bu s y [me] +--- false 
while (not anyLarge)  && (not a l l D on e )  

/* do nothing: wait for work o r  termination 4 
if a l lDone return 
bu s y [me] +--- true 

251 

$ 

$ 

$ 
$ 
$ 
$ 

$ 
$ 

$ 
$ 

It is straightforward to refine these detection algorithms so that they wait on a single 
variable any I dle  until a scan might be useful, as shown in Algorithm 13 . 19 .  Likewise, 
in the work stealing case there is a similar refinement so that workers wait on a single 
anyLarge flag (in addition to a l lDone), as shown in Algorithm 13.20. 

The algorithms presented so far assume a separate detection thread. It is tempting to 
use idle threads to check termination, as shown in Algorithm 13.21 . The problem is that 
this algorithm does not work. For example, suppose thread A finishes its work, sees no 
thread to steal from and starts detection. In its detection scan, it now sees that thread B 
has extra work, so A will give up on detection, and may be just about to set its busy flag .  
In  the meantime, B finishes all of its work, enters detection, sees that all threads are done 
and declares termination. A simple approach to fix this is to apply mutual exclusion to 
detection as shown in Algorithm 13.22. 

For completeness, Algorithm 13.23 shows termination detection using an atomically 
updated shared counter. For discussion of a lock-free data structure to support work shar
ing implemented as a concurrent double-ended queue (deque), see Section 13 .8 .  

Rendezvous barriers 

Another common synchronisation mechanism in parallel and concurrent collectors is the 
need for all participants to reach the same point in the algorithm - essentially a point of 
termination of a phase of collection - and then to move on. In the general case one of the 
previously presented termination algorithms may be most appropriate. Another common 
case occurs when the phase does not involve work sharing or balancing, but it is required 
only to wait for all threads to reach a given point, called the rendezvous barrier. This can 
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Algorithm 13.21: Symmetric termination detection 

1 work ( ) :  

while I have no work && not a l lDone 
/* this version is broken! *f 
det ect Symrne t r i c ( ) 

a det ect  S ymmet r i c ( ) :  
while not a l l D o n e  

10 while (not a n y ! dle )  && (not anyLarge )  
1 1  /* do nothing: wait until a scan  might be useful 4 
1 2  if anyLarge  return 
13 a n y i dle  +- false 
1 4  a nyAct ive +- (3i ) (bus y [i ] )  
1 s  a nyAct ive +- anyAct ive  I I  j obsMoved 
1 6  j obsMoved +- false 
1 7  a l lDone +- not anyAct ive  

Algorithm 13.22: Symmetric termination detection repaired 

shared detect o r  +- - 1  
2 me +--- myThread i d  

4 work ( ) :  

while I have no work && not a l lDone 
if det ect o r  2::: 0 

$ 

$ 
$ 

$ 

$ 
$ 
$ 
$ 

$ 

continue /* wait for previous detector to finish before trying 4 

1 0  

1 1  

1 2  

if Compa reAn dSet ( &det e ct o r, - 1 ,  me ) 
detect S ymmet ric ( ) $ 
detect o r  +- - 1  $ 

Algorithm 13.23: Termination via a counter 

1 shared numBusy  +- N 
2 work e r ( ) :  

loop 
while work  r ema1n1ng 

per f o rm ( w o rk )  
if At omi cAdd ( & numBusy ,  - 1 )  = 0 

return 
while nothing to steal && ( numBusy  > 0 )  

/* do nothing: wait for work or termination 4 
w if  numBusy  = 0 
1 1  

1 2  

return 
At omi cAdd ( & numBus� 1 )  

$ 
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Algorithm 13.24: Rendezvous via a counter 

1 shared n umBu s y +- N 

3 ba r r i e r ( ) : 
At omi cAdd( & numBusy, - 1 )  
while numBu s y  > 0 

I* do nothing: wait for others to catch up *f 

Algorithm 13.25: Rendezvous with reset 

1 shared numBu s y  +- N 
2 shared numP a s t  +- 0 

4 bar r i e r ( ) : 
At omi cAdd ( & numBu sy, - 1 )  
while numBu s y  > 0 

I* do nothing: wait for others to catch up *f 
if At omi cAdd ( & numPast ,  1 )  = N 

numP a s t  +- 0 
10 numBu sy  +- N 
n else 

I* one winner does the reset *f 
$ 
$ 

12 while numBu sy  = 0 I* the others wait (but not for long) *f 
1 3  I* do nothing: wait for reset to complete *I 

use a simplified version of termination detection with a counter (Algorithm 13 .23), shown 
in Algorithm 13.24. Since a collector is usually invoked more than once as a program 
runs, these counters must be reset as the algorithm starts, or in any case before the phase 
is run again, and the resetting should be done with care to ensure that no thread can be 
depending on the value of the rendezvous counter at the time it is reset. Algorithm 13.25 
shows such a resetting barrier. 

13.8 Concurrent data structures 

There are particular data structures commonly used in parallel and concurrent allocators 
and collectors, so it is helpful to review some of the relevant implementation techniques.  
It should be plain that data structure implementations for sequential programs are not 
suitable as is for parallel and concurrent systems - they will generally break. If a data 
structure is accessed rarely enough then it may suffice to apply mutual exclusion to an 
otherwise sequential implementation by adding a lock variable to each instance of the 
data structure and have each operation acquire the lock before the operation and release 
it after. If operations can be nested or recursive, then a 'counting lock' is appropriate, as 
shown in Algorithm 13 .26. 

Some data structures have high enough traffic that applying simple mutual exclusion 
leads to bottlenecks. Therefore a number of concurrent data structures have been devised 
that allow greater overlap between concurrent operations . If concurrent operations are 
overlapped, the result must still be safe and correct. An implementation of a concurrent 
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Algorithm 13.26: Counting lock 

1 I* the lock packs into one word a thread id and a count 4 
2 shared lock +- (t h read : - 1 ,  count : o ) int 
3 me +- myThreadi d 

5 count ingLock ( ) : 
o l d  +- lock  
if o l d . thread  = me  && o l d . count > 0 

/* just increment the count; assume no overflow 4 
lock  +- (o l d . t hread, o l d . count + 1 )  

w return 
n loop 
12 if o l d . count  = 0 
n if CompareAndSet ( & l o ck, o l d, (t hread : me, count : 1 ) )  
14 return 
15 o l d  +- l o c k  
1 6  

1 1  count i ngUnlock ( ) : 
1s /* leaves thread id, but no harm even when count  becomes 0 *I 
1• o l d  +- lock  
20 l o c k  +- (o l d . t h read, o l d . count - 1 )  

data structure is said to b e  linearisable if any pair of overlapping operations produces state 
changes on the data structure and responses to the operations consistent with executing 
the two operations in a non-overlapped way in one order or the other [Herlihy and Wing, 
1990] .  Furthermore, if two operations do not overlap in time, they must appear to happen 
in the order in which they were invoked. For each operation there is a point in time at 
which the operation can be viewed as having taken place. This is called its linearisation 
point . Often an operation has many points in time that might be viewed as its linearisation 
point, but the relative order of the linearisation points of operations that affect each other 
will always be consistent with the logical order of the operations. If operations do not 
affect each other then they can linearise in either order. Many memory manager actions, 
such as allocation and changes to work lists, must be linearisable. 

There is a range of generic strategies a programmer can employ in building a concur
rent data structure. In order from lower to higher concurrency, and typically from simplest 
to most complex, they are: 

13 

Coarse-grained locking: One 'large' lock is applied to the whole data structure (already 
mentioned) .  

Fine-grained locking: In  this approach an operation locks individual elements of  a larger 
data structures, such as the individual nodes of a linked list or tree. This can increase 
concurrency if the locales of access and update are spread around enough. A general 
concern to keep in mind is that if an operation locks multiple elements, it must ensure 
that no other invocation of the same operation, or of any other operation, will attempt 
to lock the same two elements in the opposite order - in that case the operations 
can deadlock. A common technique on a data structure accessed only in a single 

13See Herlihy and Shavit [2008] Chapter 9 for details of each of these approaches applied to a set implemented 
as a linked list. 
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direction, such as a singly linked list or a tree, is lock coupling. This locks a node 
A and then a node B pointed to by A. Then it releases the lock on A and acquires 
a lock on a node C pointed to by B, and so on. This 'hand-over-hand' walking of 
locks through a data structure guarantees that later-arriving threads cannot pass the 
current thread in the data structure, and supports safe execution of operations such 
as inserting or removing an item from a list or tree. A potential drawback of fine
grained locking is that the overhead of going to a shared bus or memory multiple 
times to lock individual elements may swamp the benefit of avoiding a coarser lock. 

Optimistic locking: This refines fine-grained locking by doing any searching of the data 
structure without locks, then locking what appear to be the proper elements for the 
operation. However, in general, concurrent updates can have changed things, so 
after locking, the operation validates that it has locked the correct elements for its 
intended action. If the validation fails, it releases the locks and starts over. Avoiding 
locking until the latest time necessary reduces overhead and improves concurrency. 
Optimism is often a good strategy, but can result in poorer performance in the pres
ence of frequent conflicting updates. 

Lazy update: Even with optimistic locking, read-only operations may still need to lock a 
data structure. This can result in a concurrency bottleneck, and also has the effect 
that a read-only operation performs writes (of locks) . It is often possible to design 
a data structure so that read-only operations need no locking - but of course the 
updating operations are a bit more complex. Generally speaking, they make some 
change that logically accomplishes the operation, but may need further steps to com
plete it and get the data structure into a normalised form. An example may help 
in understanding this . For lazy update of a linked list representation of a set, the 
remove operation will first mark an element as being (logically) removed, by setting 
a boolean flag de l e t e d  in the element. After that it will unchain the deleted element 
by redirecting the predecessor 's pointer. All this happens while holding locks in the 
appropriate elements, so as to prevent problems with concurrent updaters. The two 
steps are necessary so that readers can proceed without locking. Adding an element 
needs to modify only one next pointer in the data structure and therefore needs only 
one update (again, with appropriate locks held) . 

Non-blocking: There are strategies that avoid locking altogether and rely on atomic up
date primitives to accomplish changes to the state of data structures. Typically a 
state-changing operation has some particular atomic update event that is its lineari
sation point. This is in contrast to lock based methods, where some critical section 
marks the linearisation 'point'. l4 As previously mentioned, these can be charac
terised according to their progress guarantees, in order from easiest to implement 
to hardest. Lock-free implementations may allow starvation of individual threads; 
obstruction-free implementations may require long enough periods in which a single 
thread can make progress without interference; and wait-free implementations guar
antee progress of all threads. Some lock-free implementations are sketched below; 
for wait-free implementation, see Herlihy and Shavit [2008] . 

For data structures most relevant to implementing parallel and concurrent collection, 
implementation descriptions and code sketches are offered below. The implementation 
strategies generally follow those suggested by Herlihy and Shavit. 

14Because of mutual exclusion, it is a point as far as any other operations are concerned.  However, lazy update 
methods also tend to have a single l inearisation point. 
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Concurrent stacks 

First, we sketch ways to implement a concurrent stack using a singly linked list. Since there 
is only one locus of mutation for a stack, the performance of the various approaches to lock
ing will be about the same. The code is obvious, so not illustrated. Algorithm 1 3.27 shows a 
lock-free implementation of a stack . It is easy to make pu sh lock-free; pop is a little harder. 
The popABA routine is a simple C ompareAndS e t  implementation of pop that is lock-free 
- but that also has an ABA problem. Algorithm 13.27 also shows LoadL i n k e d/Store
C o n dit iona l l y  and CompareAndSetWide solutions that avoid the ABA problem, as 
concrete examples of how to do that. The problem occurs when some other thread(s) pop 
the node referred to by currTop, and that node is pushed later with its n e x t  different 
from the cur r T op . next read by this popping thread. 

A concurrent stack based on an array is best implemented using a lock. However, 
concurrent stacks tend to be a bottleneck not just because of cache and memory issues, 
but because all the operations must serialise. However it is possible to do better. Blelloch 
and Cheng [ 1999]  provide a lock-free solution by requiring all threads accessing a shared 
stack either to be popping from it or all to be pushing onto it, thus allowing the stack 
pointer to be controlled by a Fet c hAndAdd instruction rather than a lock. We discuss this 
in detail in Chapter 14. Chapter 1 1  of Herlihy and Shavit discusses a concurrent lock-free 
stack implementation where threads that encounter high contention try to find matching 
operations in a side buffer. When a pop finds a waiting push, or a push finds a waiting 
pop, that push instantly satisfies that pop: the pair of operations eliminate each other. They 
linearise at that moment (push before pop, of course), regardless of what is happening at 
the 'main' stack. 

Concurrent queue implemented with singly linked list 

A concurrent queue is a more interesting example of concurrency than a concurrent stack, 
since it has two loci of modification, the head, where items are removed, and the tail, where 
they are added. It is convenient to include a 'dummy' node, before the next element to be 
removed from the queue. The h e a d  pointer refers to the dummy node, while the t a i l  
pointer refers t o  the node most recently added to the queue, o r  the dummy node if the 
queue is empty. 

Algorithm 13.28 shows an implementation that does fine-grained locking .  It has one 
lock for each locus. Notice that r emove changes head to refer to the next node; thus, 
after the first successful remove ,  the original dummy node will be free, and the node 
with the value just removed becomes the new head. This version of Queue is unbounded. 
Algorithm 13.29 shows a similar implementation for BoundedQueue .  To avoid update 
contention on a single s i z e  field, it maintains counts of the number of items added and 
the number rem oved. It is fine if these counts wrap around - the fields storing them just 
need to be able to store all max + 1 values from zero through max. Of course if these counts 
lie on the same cache line, this 'optimisation' may perform no better than using a single 
s i z e field. 

There is an important special case of this implementation: if either adding or removing 
or both is limited to one thread, then that end does not need a lock. In particular, if there is 
one adder and one remover, then this data structure needs no locks at all .  A common case 
in collection is multiple adders and one remover, which is still an improvement over the 
general case. 

Other locking approaches (such as optimistic or lazy update) offer no real advantage 
over fine-grained locking for this data structure. 
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Algorithm 13.27: Lock-free implementation of a single-linked-list stack 

shared t opent [ 2 ]  +-- [null, any value] 
2 shared t opAddr +-- & t opent [ O ]  
3 shared cntAddr +-- & t opent [ l ]  

I* t o p  *f 
I* count , only for popeount below *f 

s pus h (  va l ) : 

1 0  

I I  

1 2  

node +-- new Node(value : val ,  next : null ) 
loop 

currTop +-- * t opAddr 
node . next +-- currTop 
if eompa reAndSet (t opAddr, cur rTop, node )  

return 

n popABA( )  : 
t4 loop 
IS 

16 

17 

1 8 

19 

20 

21 

22 

23 pop ( ) : 

currTop +-- * t opAddr 
if currTop = null 

return null 
I* code below can have an ABA problem if node is reused *f 
next +-- cur rTop . next 
if eompareAndSet (t opAddr, cur rTop, next ) 

return currTop . value  

24 loop 
� currTop +-- LoadLi nked(t opAddr ) 
26 if currTop = null 
27 return null 
28 next +-- currTop . next 
29 if Storeeondit iona l l y ( t opAddr, next ) 
� return currTop . va lue  
31 

32 popeount ( )  : 
33 loop 
34 
35 

36 

37 

38 

39 

40 
41 

currTop +-- * t opAddr 
if currTop = null 

return null 
current +-- * CntAddr 
next Top +-- currTop . next 
if eompa reAndSetWide ( & t ope nt, curr Top, cur rent,  

next Top, current + l )  
return currTop . va lue  

$ 
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Algorithm 13.28: Fine-grained locking for a single-linked-list queue 

shared head +- new  Node (value : dont Ca re,  next : null ) 
2 shared t a i l  +- head  
3 shared addLock  +- UNLOCKED 
4 shared removeLock  +- UNLOCKED 

6 add ( val ) : 
n ode +- new  Node (value : val ,  next : null ) 
l o c k ( & addLo c k ) 
t a i l . next +- n ode 

1 0  t a i l  +- node 
I I  unlock ( & addL o c k ) 
1 2  

1 3  remove ( ) : 
1 4  l ock ( & removeLock ) 
15 n ode +- head . n ext 
16 if node = null 
1 7  unlock ( & remove Lock ) 
18 return EMP TY  f* o r  otherwise indicate emptiness 4 
19 val  +- node . va lue 
20 head +- node 
21 unlock ( & removeLock ) 
22 return val  
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Algorithm 13.29: Fine-grained locking for a single-linked-list bounded queue 

shared head +- new Node (va lue : dont Ca re, next : null ) 
shared t a i l +- head 

3 shared addLo ck  +- UNLOCKED 
4 shared removeLock  +- UNLOCKED 
5 shared numAdded +- 0 
6 shared numRemoved +- 0 

add(  va l ) : 
n o de +- new Node ( va lue : val ,  next : null ) 

w l o ck ( & addLock )  
u if numAdded - numRemove d MAX 
u unlock ( & addLock)  
13 return false 
14 t a i l . next +- node 
1 5  

16 

17 

18 

19 

t a i l  +- node 
numAdded +- numAdded + 1 
unlock ( & a ddLock )  
return true 

2 0  remove ( ) : 
n l o ck ( & removeLock )  
22 n o de +- head . next 
� if numAdded - numRemoved 0 
� unlock ( & removeLock )  
� return EMPTY 
26 val  +- node . va lue  
21 head +- n o de 
28 

29 

numRemoved +- numRemoved + 1 
unlock ( & removeLock)  

� return va l 

/* or otherwise indicate full 4 

f* numeric wrap around is ok 4 

/* or otherwise indicate success 4 

/* or otherwise indicate emptiness *I 

f* numeric wrap around is ok *f 
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Algorithm 13.30: Lock-free implementation of a single-linked-list queue 

shared head  +-- new  Node ( value : dontCare ,  next : null ) 
2 shared t a i l  +-- head  

4 add ( va l ) : 

1 0  

I I  

1 2  

1 3  

1 4  

15 

1 6  

1 7  

1 8  

node +-- new Node (value : val ,  next : null ) 
loop 

currTa i l  +-- LoadLinked ( & t a i l ) 
cur rNext +-- c u r rTai l . next 
if currNext f= null 

I* tail appears to be out of sync: try to help 4 
StoreCondi t i ona l l y ( & t a i l , currNext ) 
continue I* start over after attempt to sync 4 

if Compa reAndSet ( & currTa i l . next ,  null, node ) 
I* added to end of chain; try to update tail 4 
StoreCondi t i ona l ly ( & t a i l , node ) 
I* ok if failed: someone else brought tail into sync, or will in the future 4 
return 

1 9  remove ( ) : 
2o loop 
2 1  

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 
35 

36 

37 

38 

39 

40 

4 1  

42 

cur rHead +-- LoadLinked ( & head ) 
next  +-- cur rH e a d . next 
if  next = null 

if S t o r eConditiona l l y ( & hea� currHead ) 
I* head has not changed, so truly empty 4 
return EMP TY I* or otherwise indicate emptiness 4 

continue I* head may have changed so try again 4 

currTa i l  +-- t a i l  
i f  currHe ad  = currTa i l  

I* not empty; appears to be out of sync; try to help *I 
currTa i l  +- LoadLinked ( & t a i l ) 
next +-- currTai l . next  
if next f= null 

StoreCondit iona l l y ( & t a i l , next ) 
continue 

I* appears non - empty and in sync enough; try to remove first node 4 
val  +-- next . va lue 
if StoreCondi t i ona l ly ( & h e a �  next ) 

return v a l  
I* o n  failure, start over 4 
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Algorithm 13.31: Fine-grained locking of a circular buffer 

shared bu f fe r [MAX] 
2 shared head  f- 0 
3 shared t a i l f- 0 
4 shared numAdded f- 0 
5 shared numRemoved f- 0 
6 shared addLo ck f- UNLOCKED 
7 shared removeLock  

9 add(  va l ) : 
w lock ( & addLo ck )  

f- UNLOCKED 

u if numAdded - numRemoved 
u u n l o ck ( & addLo ck )  
n return false 
1 4  bu f f e r [t a i l ] f- val  
1 5  t a i l  f- ( t a i l  + l )  % MAX 
1 6  numAdded f- numAdded + l 
1 7  un l o c k (  & addLo ck )  
1 8  

1 9  remove ( ) : 
w lock ( & remove Lock )  

MAX 

21 if numAdded - numRemoved 0 
n un l o c k ( & removeLo ck )  
23 return EMP TY 
24 val f- bu f fe r [he ad] 
25 head f- ( head  + l )  % MAX 
26 numRemoved f- numRemoved + l 
v un l o c k ( & removeLo ck )  
28 return v a l  

I* indicate failure *f 

I* indicate failure *I 

Algorithm 13.30 shows a lock-free implementation. A tricky thing here is that adding 
a node happens in two steps. First, the current tail node is updated to point to the new 
node, and then t a i l  is updated to refer to the new node. A lock-free implementation 
must provide for the possibility that other adders - and also removers - may see the 
intermediate state. This implementation addresses the issue by having any thread update 
t a i l  if it notices that t a i l  is 'out of sync' .  This ensures that t a i l  comes into sync without 
any thread waiting for another one to do it. This is a case of the helping typical of wait-free 
algorithms, even though this algorithm is not wait-free. 

Concurrent queue implemented with array 

A queue implemented with an array has higher storage density than one implemented 
with a linked list, and it does not require on-the-fly allocation of nodes from a pool. A 
bounded queue can be implemented with a circular buffer. Algorithm 13.31 shows a fine
grained locking version of that, which can be improved by folding together head and 
numRemoved, and also t a i l  and numAdded, using modular arithmetic, shown in Algo
rithm 13.32. This is particularly attractive if MAX is a power of two, since then the modulus 
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Algorithm 13.32: Circular buffer with fewer variables 

shared bu f fe r [MAX ] 
2 MODULUS = MAX * 2 

3 shared h e a d  +-- 0 
4 shared t a i l +-- 0 
5 shared a ddLock +-- UNLOCKED 

6 shared r emoveLock +-- UNLOCKED 

8 add(va l ) : 

l o c k ( & a ddLock ) 

/* see text for explanation 4 
/* 0 :::; head < MODULUS 4 
f* 0 :::; t a i l < MODULUS 4 

w if (t a i l - head + MODULU S ) % MODULUS MAX 

1 1  u n l o c k ( & a ddL o c k ) 
1 2  

1 3  

1 4  

15 

1 6  

1 7  

return false 
bu f f e r [t a i l  % MAX ] +-- va l 

t a i l  +-- (t a i l  + 1 ) % MODULU S 

u n l o c k ( & addLock ) 
return true 

18 remove ( ) : 

� l o c k ( & r emoveL o c k ) 
2o if ( t a i l - head + MODULUS ) % MODULUS 

21 u n l ock ( & remove Lock ) 
22 return EMP TY 

23 local v a l  +-- bu f f e r [head % MAX ] 
24 h e a d  +-- (head + 1 ) % MODULUS 

� u n l o c k ( & remove L o c k ) 
26 return val  

f* indicate failure 4 

/* indicate success 4 

0 

f* indicate failure 4 

function can be performed with bit masking. The reason for MODULUS is that we need to 
distinguish the MAX + 1  possible values for the difference between t a i l  and h e a d, that is, 
the number of elements in the buffer. Thus our modulus for the modular arithmetic needs 
to be greater than MAX. At the same time, it must be a multiple of MAX so that we can re
duce head and t a i l  modulo MAX when indexing into the buffer. The value MAX * 2  is the 
smallest modulus that will work, and has the added virtue of being a power of two when 
MAX is. In the code we add MODULUS to t a i 1 - head to ensure we are taking the modulus 
of a positive number, which is not necessary if using masking or if the implementation 
language does a proper modulus (toward -oo as opposed to toward zero) .  

If there is a distinguished value that can mark empty slots in the buffer, then the code 
can be further simplified as shown in Algorithm 13.33. 

It is often the case that the buffer has just a single reader and a single writer (for exam
ple, the channels used by Oancea et al [2009] ) .  In this case, the code for a circular buffer is 
much simpler; it appears in Algorithm 13 .34 .  This algorithm is a good example for men
tioning the adjustments a programmer needs to make to realise the algorithm on different 
platforms. The algorithm works as is on Intel x86 processors because they are strict about 
the order of stores to memory as perceived by other processors. 

However, on the Power PC the lines we mark with $ for ordering require attention. One 
approach is to insert fences, as indicated by Oancea et al. In add we insert an lwsync in
struction between the stores to bu ffe r  [ t a i 1 ]  and t a i 1, to serve as a store-store memory 
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Algorithm 13.33: Circular buffer with distinguishable empty slots 

1 shared bu f fe r [MAx] +- [EMP TY, . . .  ] 
2 shared head  +- 0 
3 shared t a i l  +- 0 
4 shared addLock  +- UNLOCKED 
s shared removeLock +- UNLOCKED 

1 add(  va l ) : 
l o c k (  & addLock)  
if bu f f e r [t a i l ]  =/:- EMP TY 

w un l o c k ( & addLock )  
I I  return false 
1 2  bu f fe r [t a i l ] +- val  
1 3  t a i l  +- ( t a i l  + 1 )  
1 4  u n l o c k (  & addLock )  
15 return true 
16 

1 1  remove ( ) : 
� l o c k ( & remove Lock )  

% MAX 

1 9  if bu f f e r [head] = EMP TY 
w un l o c k ( & remove Lock )  
21 ret urn EMPTY 
22 val  +- bu f fe r [head] 
23 head +- (head + 1 )  % MAX 
� unlock ( & r emoveLo c k )  
25 return v a l  

/* indicate failure *f 

/* indicate success *f 

/* indicate failure *f 

Algorithm 13.34: Single reader/single writer lock-free buffer [Oancea et al, 2009] 

1 shared bu f f e r [MAx] 
2 shared head  +- 0 
3 shared t a i l  +- 0 

5 add( val ) : 
newTa i l  +- (t a i l  + 1 )  % MAX 
if newT a i l  = head 

return false 
bu f f e r [t a i l ] +- v a l  

w t a i l  +- newTai l  
1 1  return t rue 
1 2  

1 3  remove ( ) : 
14 if head = t a i l  
15 

16 

17 

return EMPTY 
value  +- bu f f e r [head] 
head  +- (head + 1 )  % MAX 

1s return value  

I* next slot from which to try removing *f 
/* next slot into which to add *f 

$ 

/* or otherwise indicate emptiness 4 
$ 
$ 



264 CHAPTER 13. CONCURRENCY PRELIMINARIES 

Algorithm 13.35: Unbounded lock-free buffer implemented with an array 

shared bu f f e r [  ] +--- [EMP TY, . . .  ] 
shared h e a d  +--- 0 

add(va l ) : 
pos +--- F e t  chAndAdd( & head, 1 )  
bu f f e r [pos ]  +--- va l 

remove ( ) : 
l imit +--- head 

f* unrealisable unbounded buffer 4 
f* next slot to fill *f 

1 0  pos +--- - 1  
n loop 
12 

1 3  

14 

I S  

16 

1 7  

1 8  

pos  +--- pos  + 1 
if pos  = l imit 

return null /*found nothing 4 
val  +--- LoadLi nked ( &bu f fe r [po s ] ) 
if v a l  =/:- EMP TY 

if S t o reCondi t i ona l l y ( & bu f fe r [pos ] ,  EMP TY )  
return val  

fence. 15 This will guarantee that i f  the remover orders its load instructions properly, i t  will 
not perceive the change to t a i l  until after it can perceive the change to bu f f e r .  Likewise 
we add an i s yn c  instruction, which serves as a load-store memory fence, before the store 
to bu f fer, to ensure that the processor does not speculatively begin the store before the 
load of head and thus possibly overwrite a value being read by the remover. 16 

Similarly we insert an lws ync  in remove between loading bu f f e r [head] and updat
ing head, and an i s ync before loading from bu f fe r, to serve as a load-load memory 
barrier between loading tai l and loading from bu f fer .  

Oancea et al proposed a solution that includes writing null i n  remove a s  an  explicit 
EMP TY value, and having both add (remove) watch its intended buffer slot until the slot 
appears suitably empty (non-empty), before writing its new value (EMP TY) .  Because there 
is only one reader and only one writer, one only thread writes EMP TY values, and only 
one writes non-EMP TY values, and each delays its write until it sees the other thread's 
previous write, accesses to the buffer cannot incorrectly pass each other. Likewise, only one 
thread writes each of head and t a i l , so at worst the other thread may have a stale view. 
This solution avoids fences, but the buffer writes by the remover may cause more cache 

1 5The l w s y n c  instruction ensures that memory accesses by the issuing processor for instructions before the 
l w s y n c  complete before any memory accesses for instructions after the l w s y n c, as viewed by all processors. It 
stands for 'light-weight sync' and is a version of the s y n c ,  where the 'heavy-weight' version, written just s y n c ,  

deals with input/output device memory in addition to ordinary cached memory. Both l w s y n c  and s y n c  are 
somewhat expensive since their implementation typically involves waiting for the write buffer to drain before 
allowing future memory accessing instructions to issue. This implies waiting for inter-processor cache synchro
nisation to complete . 

1 6The i s y n c  instruction ensures that all instructions previously issued by this processor complete before any 
future instruction of this processor. It is suitable for separating previous loads from future memory accesses. It 
does not guarantee that previous and future stores will be perceived by other processors in the locally issued 
order - that requires one of the s y n c  instructions. One reason i s y n c  may be more efficient is that it involves 
only processor-local waiting, for the instruction pipeline to empty sufficiently; it does not itself require cache 
coherence activity. 
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Algorithm 13.36: Unbounded lock-free array buffer with increasing scan start 

, shared bu f f e r [  ] +-- [EMP TY ,  . . .  ] 
2 shared head +-- 0 
3 shared l ower  +-- 0 

I* unrealisable unbounded buffer 4 
I* next slot to fill *f 

I* position to look at first *f 

5 add(  va l ) : 
pos  +-- F et  chAndAdd (  & head, 1 )  
bu f f e r [p o s ]  +-- va l 

9 remove ( ) : 
w l imit +-- head  
n currLowe r +-- l ower 
1 2  pos  +-- currLower - 1 
13 loop 
1 4  po s +-- pos  + 1 
1 5  

1 6  

1 7  

1 8  

if p o s  = l imit 
return null 

va l +-- LoadLinked (  & bu f fer [po s ] )  
i f  v a l  = EMPTY 

1 9  continue 
2o if val  = USED 
� if pos  = currLower  
22 I* try to advance lower 4 
23 currLowe r +-- LoadLinked ( & l ower )  
M if pos  = currLower 
25 StoreCondi t i onal l y ( & l owe r, po s + 1 )  
26 continue 
21 I* try to grab 4 
28 if S t o reCondit i o n a l l y ( &bu f f e r [pos ] ,  USED ) 
29 return val 

I* found nothing 4 

ping-ponging than fences would. Oancea et al actually combine both solutions, but as we 
just argued, each seems adequate on its own. This all shows the care needed to obtain a 
correctly working implementation of concurrent algorithms under relaxed memory orders. 

If the queue is being used as a buffer, that is, if the order in which things are removed 
need not match exactly the order in which they were added, then it is not too hard to 
devise a lock-free buffer. First assume an array large enough that wrap around will never 
occur. Algorithm 13.35 implements a lock-free buffer. It assumes that initially all entries 
are EMPTY.  

This algorithm does a lot of  repeated scanning. Algorithm 13 .36 adds an index l ower 
from which to start scans. I t  requires distinguishing not just empty slots, but also ones that 
have been filled and then emptied, indicated by USED  in the code. 

Further refinement is needed to produce a lock-free circular buffer implementation 
along these lines. In particular there needs to be code in the add routine that carefully 
converts USED slots to EMPTY ones before advancing the head index. It also helps to use 
index values that cycle through twice MAX as in Algorithm 13.32. The resulting code ap
pears in Algorithm 13 .37. 
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Algorithm 13.37: Bounded lock-free buffer implemented with an array 

shared bu f f e r [MAX] +--- [EMPTY, . . .  ] 
2 MODULUS = 2 * MAX 
3 shared head +--- 0 
4 shared l owe r +--- 0 

f* refers to next slot to fill *f 
f* slots from lowe r to he ad- 1 rruzy have data *f 

6 add( val ) : 
loop 

currHead f- head  
/* could peek before using atomic operator *I 

w o l dVa l f- LoadL i nked(&bu f f e r [currHead % MAX] ) 
1 1  if o l dVal = U S E D  
1 2  

1 3  

1 4  

currLowe r f- l owe r 
i f  ( currHe ad  % MAX) = ( c u rrLower % MAX) 

&& ( c u rrHead =/:. currLowe r)  
1 5  advance Lowe r ( )  /* lower is a buffer behind *f 
1 6 continue 
17 /* try to clean en try; ensure head has not changed 4 
1 s  if currHead = head 
1 9  StoreCond i t i onal l y ( &bu f fe r [currHead % MAX] , EMP TY )  
w continue 
n if o l dVal =/:. EMP TY  
22 i f  currHe ad "I head 
23 continue /* things changed: try again *f 
24 return false /* indicate failure: buffer is  full *f 
25 cur rHead f- LoadLinked ( &head )  f* try t o  claim slot *f 
26 /* recheck inside LL/SC *f 
27 if bu f fe r [currHe ad % MAX] = EMPTY 
zs i f  StoreCondi  t i onal l y (  & he ad, ( cu rrHead  + 1 )  % MODULUS )  
29 bu f fe r [c u r r Head] f- val  
3o return t rue /* indicate success *f 
3 1  

3 2  remove ( ) : 
33 advan ceLower ( )  
34 limit f- head 
35 scan f- lowe r - 1 
36 loop 
37 

38 

39 

4 0  

4 1  

42 

s can  +--- ( s can + 1 )  % MODULUS 
if s can = l imit  

return null 
/* could peek at value first before using atomic operator 4 
val  f- LoadLi n k e d ( &bu f fe r [s c an  % MAX] ) 
if  val  = EMPTY I I  val = USED  

43 continue 
44 /* try to grab *f 

f* found nothing *f 

4s if  S t o reCondit i onally ( &bu f f e r [ s can % MAX] , USED)  
46 /* Note: always safe to grab entry that is not USED and not EMPTY 4 
47 return val  
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Algorithm 13.37 (continued): Bounded lock-free buffer implemented with an array 

1 advanceLowe r ( ) : 
if bu f fer [l owe r % MAX] f:. USED 

return /* quick return without using atomic operation 4 
1oop 

cur rLowe r *- LoadLi nked( & lowe r )  
i f  bu f f e r [ currLowe r % MAX] = USED  

if S t o reCondi t i on a l l y ( & l owe r,  ( l ower + 1 )  % MODULUS ) 
continue 

return 

A concurrent deque for work stealing 

To support work stealing, Arora et al [1998] designed a lock-free implementation of a 
double-ended queue. The local worker thread can push and pop work items, while other 
threads can remove (steal) items. The design has the local worker push and pop at one 
end of the deque, while other threads remove from the opposite end (the deque is input
restricted). Algorithm 13.38 shows an implementation that uses LL/SC to avoid an ABA 
problem.17 It is straightforward to pack a counter with the tail index to derive a safe im
plementation in terms of CompareAndS wap. 

Pushing a value is simple and involves no synchronisation. Popping checks to see if it 
trying to get the last value remaining. If it is, it may be in a race with a non-local remover. 
Both threads will try to update t a i  1 ;  the winner 'gets' the value. In any case, the popper 
sets t a i 1 to zero. This will not confuse a contending remover. Either the remover lost the 
race, in which case it does not return a value, or it won and it already has the value and will 
leave t a i l  alone. It is also important that pop sets t op to zero first, before setting t a i l  
to zero - this keeps the t op ::; t a i l  test working in remove.  Notice that the conventions 
for t op and t a i l  ensure that top- t a i l  is the number of items in the queue (except in 
the middle of resetting them both to zero, where the difference may be negative) .  

13.9 Transactional memory 

First it may be helpful to describe transactional memory further, and after that to proceed 
to consider its relationship to garbage collection. 

What is transactional memory? 

A transaction consists of a collection of reads and writes that should appear to execute 
atomically. That is, the effect should be as if no other reads or writes interleave with those 
of a transaction. LoadLi nked/ S t o reCondit i o na l l y  achieves this semantics for trans
actions involving a single word, but the point is to allow transactions over multiple inde
pendent words. A suitable mechanism will generally include means to indicate: 

• The start of a transaction. 

• Each read that is part of the current transaction. 

17The names of variables are different from Arora et a/ [1998], and the algorithm here calls the local end's index 
top and the opposite end's index tail, so as to correspond better with the view that the local end of the deque is a 
stack and the other end is the tail (removal point) of a queue. 
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Algorithm 13.38: Lock-free work stealing deque [Arora et al, 1998] 

1 shared deque [MAX] 
2 shared t op +- 0 
3 shared t a i l  +- 0 

I* index one beyond the last used entry 4 
I* index of the first used entry 4 

5 pus h (  va l ) : I* local worker function to push (enqueue) a value *I 

10 

1 1  

1 2 

cu r r Top +- t op 
if c u r rTop 2:: MAX 

return false 
deque [currTop] +- val  
t op +- currTop + 1 
return true 

I* indicate overflow *I 

I* indicate success *I 

n pop ( ) : I* local worker function to pop a value from the local end *I 
14 

15 

16 

cur rTop +- t op - 1 
if c u r rTop < 0 

return null 
1 7  t op +- currTop 
1s va l +- deque [cu rrTop] 
1 9  c u r r T a i l  +- LoadLi nked( & t a i l )  
20 if  c u r rTop > cu r rTa i l  
2 1  return va l I* cannot be contending with other removers 4 
22 I* might be contending, and deque will be empty 4 
23 t op +- 0 
2� if S t o reCondi t i o n a l l y ( & t a i l , 0 )  
25 return va l I* I won on changing tail, so I get the value 4 
26 t a i l  +- 0 
27 return null 
28 

29 remove ( ) : 
3o loop 

I* steal a value from another thread's deque 4 

31 c u r rTa i l  +- Lo adLinked( & t a i l )  
32 c u r rTop +- t op 
33 i f  cur rTop ::; currTa i l  
34 return null I* deque is empty 4 
35 v a l  +- deque [ currTa i l ] 
36 i f  StoreCondi t i onal l y ( & t a i l , currTa i l + 1 )  
37 return va l I* won on setting tail, so can return the value 4 
38 I* contended with another remover, or pop that emptied the deque 4 
39 I* if stealing is optional, could indicate failure instead of looping 4 
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• Each write that is part of the current transaction. 

• The end of a transaction. 

The end is usually called the (attempted) commit of the transaction. If it succeeds, then 
the transaction's effects appear; if it fails then the writes are discarded and the software 
may respond by trying again, trying some other action, and so on. Thus, transactions 
may be executed speculatively. It is necessary to mark their end so that speculation can be 
resolved and the transaction accepted, with its writes installed, and so on, or rejected and 
the software notified so that it can retry or take some other action. 

Similar to the ACID properties of database transactions, transactional memory trans
actions ensure: 

• Atomicity: All effects (writes) of a transaction appear or none do. 

• Consistency: A transaction appears to execute at a single instant. 

• Isolation: No other thread can perceive an intermediate state of a transaction, only a 
state before or a state after the transaction. 

The durability property of database transactions, which ensures to very high probability 
that the results of a successful transaction will not be lost, is omitted from the requirements 
on transactional memory. 

The actual reads and writes of a transaction will be spread out over time. Thus, as trans
actions run, they may interfere with each other if they access the same locations. Specif
ically, transactions A and B conflict if one of them writes an item that the other reads or 
writes. Conflicting transactions must be ordered. In some cases, given the reads and writes 
a transaction has already performed, this is not possible. For example, if A and B have both 
read x, and then they both try to write to x, there is no way to complete both transactions 
so as to satisfy transactional semantics. In that case one or both of A and B must be aborted 
(discarded), and the situation made to appear as if the aborted transaction had not run. 
Generally the software will try it again, which will likely force a suitable ordering. 

Transactional memory can be implemented in hardware, software or a hybrid com
bination. Any implementation strategy must provide for: atomicity of writes, detection 
of conflicts and visibility control (for isolation) . Visibility control may be part of conflict 
detection. 

Atomicity of writes can be achieved either by buffering or by undoing. The buffering 
approach accumulates writes in some kind of scratch memory separate from the memory 
locations written, and updates those memory location only if the transaction commits . 
Hardware buffering may be achieved by augmenting caches or using some other side 
buffer; software buffering might work at the level of words, object fields or whole objects. 
With buffering, a transaction commit installs the buffered writes, while an abort discards 
the buffer. This typically requires more work for commits, usually the more common case, 
and less work for aborts. Undoing works in a converse way: it updates modified data as 
a transaction runs, but saves in a side data structure called the undo log the previous value 
of each item it writes. If the transaction commits, it simply discards the undo log, but if 
the transaction aborts, it uses the undo log to restore the previous values. Undo logs can 
be implemented in hardware, software, or a combination, just as buffering can. 

Conflict detection may be implemented eagerly or lazily. Eager conflict checking checks 
each new access against the currently running transactions to see if it conflicts. If necessary 
it will cause one of the conflicting transactions to abort. Lazy conflict checking does the 
checks when a transaction attempts to commit. Some mechanisms also allow a transaction 
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to request as it runs validation that there are no conflicts so far in the transaction. Soft
ware schemes may set flags in object headers or maintain a side table recording accesses . 
These are checked by transactional accesses to accomplish conflict detection. Hardware 
will typically associate flags with cache lines or words to the same end. 

For purposes of presentation let us discuss a simple hardware transactional memory 
interface consisting of these primitives, as introduced by Herlihy and Moss [ 1993] : 

TStartO indicates the beginning of a transaction. 

TCommitO indicates that the transaction wants to commit. It returns a boolean that is true 
if and only if the commit succeeded. 

TAbortO indicates that the transaction wants to abort, which is sometimes useful to re
quest programmatically. 

TLoad(addr) marks a transactional load from the indicated address. This adds that ad
dress to the transaction's read set and returns the current value in that memory loca
tion. 

TStore(addr, value) marks a transactional store of the indicated value to the indicated 
address. This adds the address to the transaction's write set and performs the write 
transactionally, that is, in a way in which the effect of the write disappears if the 
transaction aborts, and so on. 

These primitives can simplify the implementation of a variety of concurrent data struc
tures . For example, Algorithm 13 .30 simplifies to Algorithm 13.39. The add function is 
simpler because it can write two locations atomically, and remove is simpler because it 
can read two and even three values atomically. More importantly, it is easier to see that the 
transactional implementation is correct; verifying the other version requires more subtle 
arguments about orders of reads and writes . 

Using transactional memory to help implement collection 

There are two main relationships that transactional memory can have with garbage collec
tion. Transactional memory can help implement the collector [McGachey et al, 2008], or 
transactions may be part of the managed language semantics that the collector must play 
with nicely. This section considers transactional memory in support of garbage collection; 
the next section looks at garbage collection for a language that support transactions. 

It should be clear that transactional memory, because of the way it can simplify the 
programming of concurrent data structures, can make it easier to implement parallel and 
concurrent allocation and collection. In particular it can simplify concurrent allocators, 
mutator and collector read and write barriers, and concurrent collector data structures. 
Given that there are no current hardware standards and an increasing variety of software 
packages available, it is not possible to be specific, but using transactional memory to 
support automatic memory management involves these caveats: 

• Software transactional memory tends to involve significant overheads, even after op
timisation. Given the desire for low overheads in most parts of automatic storage 
management, the scope for applying software transactional memory may be small . 
Still, coding of low traffic data structures might be simplified while continuing to 
avoid the difficulties with locks. 

• Hardware transactional memory will likely have idiosyncrasies. For example, it may 
handle conflict detection, access and updating all in terms of physical units such as 
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Algorithm 13.39: Transactional memory version of a single-linked-list queue 

shared head  f- new Node (va lue : dont C a re, next : null ) 
2 shared t a i l  f- head 

4 add(  va l ) : 

10 

1 1  

1 2  

node f- new Node (value : val,  next : null ) 
loop 

cu rrTa i l  f- TLoad( & t a i l )  
T S t o re ( & currTa i l . next,  node ) 
T S t o re ( & t a i l , node )  
i f  TCommit ( )  

return 

13 remove ( ) : 
14 loop 
IS 

1 6  

1 7  

1 8  

1 9  

20 

2 1  

22 
23 

24 

25 

26 

27 

currHead f- TLoad(  & head) 
next  f- TLoad( & cu rrHead . next ) 
i f  next = null 

i f  TCommit ( )  
return EMP TY 

continue 

I* the commit ensures we got a consisten t view *f 
I* or otherwise indicate emptiness *f 

I* appears non-empty; try to remove first node *f 
val  f- TLoad( & next . value )  
T S t o re ( & head, next ) 
if TC ommit ( )  

return val  
I* on failure, start over *f 

cache lines. It will also likely have an upper limit on the number of data items in
volved in a transaction, because of hardware capacity limitations such as the number 
of lines per cache set in a set-associative cache, for some approaches to implement
ing hardware transactional memory. Because the mapping from what a programmer 
writes to the cache lines actually used may not be obvious, implementers must still 
be careful with low level details. 

• Transactional memory can, at most, guarantee lock-freedom, though it does that 
fairly easily. Even if the underlying commit mechanism of transactional memory 
is wait-free, transactions can conflict, leading to aborts and retries. Programming 
wait-free data structures will remain complex and subtle. 

• Transactional memory can require careful performance tuning. One concern is inher
ent conflicts between transactions because they access the same data . An example is 
a concurrent stack: transactional memory will not solve the bottleneck caused by the 
need for every push and pop to update the stack pointer. Furthermore, exactly where 
in a transaction various reads and writes occur - nearer to the beginning or nearer to 
the end - can significantly affect conflicts and the overhead of retrying transactions. 

All that said, a hardware transactional memory facility such as that designed at Advanced 
Micro Devices, the Advanced Synchronisation Facility [Christie et al, 2010], and similar to 
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that described in the previous section, could be quite useful. That hardware transactional 
memory design supports reading and writing at least four completely independent cache 
lines in a transaction, which is enough to simplify the implementation of most of the con
current data structures presented here. Whether the performance would be comparable, 
or even better, with hardware transactional memory remains an open question. The sim
pler model of the world that transactional memory presents may result in fewer bugs and 
reduce development effort. 

Supporting transactional memory in the presence of garbage collection 

Consider now the quite different problem of implementing a language that offers both 
automatic memory management and transactions built using some form of transactional 
memory [Harris and Fraser, 2003; Welc et al, 2004, 2005] .  The key issue is the ways in which 
these two complex mechanisms - transactions and automatic memory management -
may interfere, particularly in a highly concurrent implementation. 

One kind of interference is that actions of the storage manager may cause transaction 
conflicts that result in higher overhead because of more retries, as well as making progress 
problematic for either a mutator, the collector or both. For example, if the mutator is at
tempting a long transaction, and collector actions conflict, the mutator transaction may 
be continually aborted by actions of the collector, or the collector may effectively block 
for a long time. The issue is particularly severe if the implementation exploits hardware 
transactional memory. For example, attempts by a concurrent collector to mark, forward 
or copy an object may cause mutator transactions to abort just because they touched the 
same memory word - even though the operations are carefully coded not to disturb each 
other 's semantics. This would be harder to avoid with hardware transactional memory, 
since it is oblivious to the semantics of the data being managed, whereas a software trans
actional memory built for a particular language might give special treatment to object 
headers, as opposed to data fields . 

Transactions can become involved in the semantics of memory reclamation. For ex
ample, if a transactional memory systems uses a log of old values to support aborting 
transactions in an update-in-place implementation, then it is possible for the log to contain 
the only reference to an object. While the transaction remains in doubt, the referent object 
must be considered still to be reachable. Thus, transaction logs need to be included in the 
root set for collection. Furthermore, in the case of copying collection, pointers in the logs 
must not only be provided to the collector for tracing, they must also be updated to reflect 
the new locations of objects that have moved. 

An interesting issue is how to handle allocation in a transactional language. In par
ticular, it would seem logical that if a transaction allocates some objects and then aborts, 
it should somehow unallocate those objects. However, if the allocation data structures 
are shared, maintaining ability to rollback values exactly as they were would mean that 
transactions accessing free-lists or bump pointers effectively lock them until the transac
tion completes. This is probably undesirable. Therefore allocation should be more a logical 
action than a physical one, when we consider how to undo it. A free-list system might go 
back through an aborting transaction's log and free the objects it allocated. This may put 
them in a different position on a free-list, and if a block had been split, it might not be 
recombined, and so forth. It is also possible that the semantics of the language may admit 
some non-transactional activity within a transaction. In that case an object allocated by the 
transaction might be revealed, so it can be unsafe to free the object. The implementation 
must further take care that if an object might be revealed in this way, the initialisation of 
its crucial contents, such as setting up the object header, is not undone. Concepts such as 
open nesting [Ni et al, 2007] may help here. A generic strategy is to consider all automatic 
memory management actions of a transactional mutator to be open nested actions. 
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Finally, some transactional memory systems do significant allocation as part of how 
they function, and that has impact on allocators and collectors. In particular many software 
transactional memory systems work by allocating a new version of an object for a writing 
transaction, which is installed only if the transaction commits. There may not be anything 
new here semantically for a collector to deal with, but the load may be a bit different. There 
is also a bit of a sibling relationship between transactional memory and collection in the 
sense that they may both need efficient concurrent data structures with adequate progress 
guarantees. For example, transaction commit is in part a consensus algorithm that ideally 
is wait-free. 

13.10 Issues to consider 

A first consideration cannot be overstated: getting concurrent algorithms correct is hard! 
Therefore, unless concurrency is absolutely necessary, it should be avoided. That said, 
concurrency has become more necessary than it was and so we offer these additional con
siderations. 

What is the range of platforms on which the system will run? What are the memory 
consistency properties and the fence and synchronisation primitives they offer? It is neces
sary to code to the weakest ordering to be supported, but it may be possible to elide some 
fences or other primitives on some platforms, as we discussed relative to Algorithm 13.34 
in Section 13.8. What orderings will need fences? 

What atomic update primitives are available? Although LoadL inked/St o r e C ond
i t i on a l l y  is convenient and more powerful, many popular systems offer only Compa re
AndSwap or equivalent. Without LoadLinked/ S t o reCondi t i on a l ly, ABA problems 
can crop up, which can be addressed as we showed in Algorithm 13.27. Perhaps in the 
future transactional memory will be of use. 

What progress guarantees are needed? Weaker guarantees are much easier to imple
ment and to reason about. For low-traffic data structures, straightforward locking may 
be appropriate - it is much easier to code and to code correctly than lock-free or stronger 
guarantees. Further, even deployed systems that are wait-free for most cases may use sim
pler techniques for corner cases or for some short steps where the implementation effort 
to make them wait-free is not worth the benefit. 

Does the system exhibit true concurrency (more than one thread running at once in 
hardware) or is it only multiprogrammed? Multiprogrammed concurrent algorithms are 
easier to deal with. 

In the following chapters, we build on the ideas introduced here to construct parallel, 
incremental, concurrent and real-time collectors. 





Chapter 14 

Parallel garbage collection 

Today's trend is for modern hardware architectures to offer increasing numbers of pro
cessors and cores . Sutter [2005] wrote, 'The free lunch is over ' as many of the traditional 
approaches to improving performance ran out of steam. Energy costs, and the difficulty 
of dissipating that energy, have led hardware manufacturers away from increasing clock 
speeds (power consumption is a cubic function of clock frequency) towards placing mul
tiple processor cores on a single chip (where the increase in energy consumption is linear 
in the number of cores) .  As there is no reason to expect this trend to change, design
ing and implementing applications to exploit the parallelism offered by hardware will be
come more and more important. On the contrary, heterogeneous and other non-uniform 
memory architectures will only increase the need for programmers to take the particular 
characteristics of the underlying platform into account. 

Up to now we have assumed that, although there may be many mutator threads there 
is only a single collector thread. This is clearly a poor use of resources on modern multi
core or multiprocessor hardware. In this chapter we consider how to parallelise garbage 
collection, although we continue to assume that no mutators run while garbage collection 
proceeds and that each collection cycle terminates before the mutators can continue. Ter
minology is important. Early papers used terms like 'concurrent', 'parallel', 'on-the-fly' 
and 'real-time' interchangeably or inconsistently. We shall be more consistent, in keeping 
with most usage today. 

Figure 14.1a represents execution on a single processor as a horizontal bar, with time 
proceeding from left to right, and shows mutator execution in white while different col
lection cycles are represented as by distinct non-white shades. Thus grey boxes represent 
actions of one garbage collection cycle and black boxes those of the next. On a multipro
cessor, suspension of the mutator means stopping all the mutator threads. Figure 14 . 1b 
shows the general scenario we have considered so far: multiple mutator threads are sus
pended while a single processor performs garbage collection work. This is clearly a poor 
use of resources. An obvious way to reduce pause times is to have all processors cooperate 
to collect garbage (while still stopping all mutator threads), as illustrated in Figure 14 .lc .  
This parallel collection is the topic of this chapter. 

These scenarios, where collection cycles are completed while the mutators are halted, 
are called stop-the-world collection.  We note in passing that pause times can be further di
minished either by interleaving mutator and collector actions (incremental collection) or by 
allowing mutator and collector threads to execute in parallel (concurrent collection), but we 
defer discussion of these styles of collection to later chapters. In this chapter, we focus on 
parallelising tracing garbage collection algorithms. Reference counting is also a naturally 
parallel and concurrent technique which we discussed in Chapter 5; again, we defer con-
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time 
(a) Stop-the-world collection, single thread 

(b) Stop-the-world collection on multiprocessor, single collector thread 

(c) Stop-the-world parallel collection 

Figure 14.1: Stop-the-world garbage collection: each bar represents an execu
tion on a single processor. The coloured regions represent different garbage 
collection cycles. 

sideration of how this can be improved for a multiprocessor setting until Chapter 18 .  Here 
we consider how parallel techniques can be applied to each of the four major components 
of tracing garbage collection: marking, sweeping, copying and compaction techniques. 

14.1 Is there sufficient work to parallelise? 

The goal of parallelising collection is to reduce the time overhead of garbage collection 
by making better use of available hardware resources. In the case of stop-the-world col
lection, parallel garbage collection will reduce pause times; in the case of incremental or 
concurrent collection, it will shorten garbage collection cycle times. As with parallelising 
any problem, the first requirement is to ensure that there is sufficient work to make a par
allel solution worthwhile. Inevitably, parallel collection will require some synchronisation 
between cooperating garbage collection threads, and this will incur overhead. Different 
solutions may require the use of locks, or atomic primitive operations such as Compare
AndSwap, and careful design of auxiliary data structures. No matter how careful we are 
to optimise these mechanisms, they cannot be as efficient as uniprocessor solutions. The 
question therefore arises, is there sufficient garbage collection work available for the gains 
offered by a parallel solution to more than offset these costs? 

Some garbage collection problems appear inimical to parallelising. For example, a 
mark-sweep collector may need to trace a list, but this is an inherently sequential activ
ity: at each tracing step, the marking stack will contain only a single item, the next item in 
the list to be traced. In this case, only one collector thread will do work and all others will 
stall, waiting for work. Siebert [2008] shows that the number of times n that a processor 
stalls for lack of work during a parallel mark phase on a p-processor system is limited by 
the maximum depth of any reachable object o: 

n ::;  (p - 1 ) · max depth( a ) oEreachable 
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This formulation depends on the unrealistic assumption that all marking steps take the 
same amount of time. Of course, these steps are not uniform but depend on the kind of 
object being scanned. Although most objects in most programming languages are typically 
small - in particular they contain only a few pointers - arrays may be larger and often 
very much larger than the common case (unless they are implemented as a contiguous 
'spine' which contains pointers to fixed-size 'arraylets' that hold the array elements) . 

Fortunately, typical applications comprise a richer set of data structures than a single 
list. For example, tracing a branching data structure such as a tree will generate more work 
at each step than it consumes until the trace reaches the leaves . Furthermore, there are typ
ically multiple sources from which tracing can be initiated. These include global variables, 
the stacks of mutator threads and, in the case of generational or concurrent collectors, re
membered sets. In a study of small Java benchmarks, Siebert finds that not only do many 
programs have a fairly shallow maximum depth but, more significantly, that the ratio be
tween the maximum depth and the number of reachable objects is very small : stalls would 
occur on less than 4% of the objects marked, indicating a high degree of potential paral
lelism, with all the benchmarks scaling well up to 32 processors (or even more in some 
cases) .  

Tracing is the garbage collection component that is most problematic for identifying po
tential parallelism. The opportunities for parallelising other components, such as sweep
ing or fixing up references to compacted objects, are more straightforward, at least in prin
ciple . An obvious way to proceed is to split those parts of the heap that need to be pro
cessed into a number of non-overlapping regions, each of which is managed in parallel by 
a separate processor. Of course, the devil is in the details. 

14.2 Load balancing 

The second requirement of a parallel solution is that work is distributed across available 
hardware resources in a way that minimises the coordination necessary yet keeps all pro
cessors as busy as possible . Without load balancing, na'ive parallelisation may lead to little 
speedup on multiprocessors [Endo et al, 1997] . Unfortunately, the goals of load balancing 
and minimal coordination typically conflict. A static balance of work might be determined 
in advance of execution, at the startup of the memory manager or, at the latest, before 
a collection cycle. It may require no coordination of work between garbage collection 
threads other than to reach a consensus on when their tasks are complete. However, static 
partitioning may not always lead to an even distribution of work amongst threads. For 
example, a contiguous mark-compact space on an N-processor system might be divided 
into N regions, with each processor responsible for fixing up references in its own region. 
This is a comparatively simple task yet its cost is dependent on the number of objects in 
the region and the number of references they contain, and so on. Unless these character
istics are broadly similar across regions, some processors are likely to have more work to 
do than others. Notice also that as well as balancing the amount of work across processors, 
it is also important to balance other resources given to those processors. In a parallel imple
mentation of Baker 's copying collector [1978], Halstead [1984, 1985] gave each processor 
its own fixed fromspace and tospace. Unfortunately, this static organisation frequently led 
to one processor exhausting its tospace while there was room in other processors' spaces .  

Many collection tasks require dynamic load balancing to distribute work approximately 
evenly. For jobs where it is possible to obtain a good estimate of the amount of work 
to be done in advance of performing it, even if this estimate will vary from collection to 
collection, the division of labour may be done quite simply, and in such a way that no 
further cooperation is required between parallel garbage collector threads. For example, 
in the compaction phase of a parallel mark-compact collector, after the marking phase has 
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identified live objects, Flood et al [2001] divide the heap into N regions, each containing 
approximately equal volumes of live data, and assign a processor to compact each region 
separately and in parallel . 

More often it is not possible to estimate, and hence divide, the work to be done in ad
vance of carrying out that work. In this case, the usual solution is to over-partition the work 
into more sub-tasks than there are threads or processors, and then have each compete to 
claim one task at a time to execute. Over-partitioning has several advantages . It is more 
resilient to changes in the number of processors available to the collector due to load from 
other processes on the machine, since smaller sub-tasks can more easily be redistributed 
across the remaining processors. If one task takes longer than expected to complete, any 
further work can be carried out by threads that have completed their smaller tasks. For 
example, Flood et al also over-partition the heap into M object-aligned areas of approxi
mately equal size before installing forwarding pointers; M was typical chosen to be four 
times the number of collection threads. Each thread then competes to claim an area, count
ing the volume of live data in it and coalescing adjacent unmarked objects into a single 
garbage block. Notice how different load balancing strategies are used in different phases 
of this collector (which we discuss in more detail later). 

We simplify the algorithms we present later in this chapter by concentrating on the 
three key sub-tasks of acquiring, performing and generating collection work. We abstract 
this by assuming in most cases that each collector thread t executes the following loop: 

while not termi n a t e d ( )  
acqui reWo rk ( )  
pe rforrnWo rk ( )  
gen e r at eWo rk ( )  

Here, acqu i  reWo rk attempts to obtain one, or possibly more than one, unit of work; 
pe r forrnWo rk  does the work; and gene rat eWo rk may take one or more new work units 
discovered by pe rforrnWo r k  and place them in the general pool for collector threads to 
acquire. 

14.3 Synchronisation 

It might seem that the best possible load balancing would be to divide the work to be done 
into the smallest possible independent tasks, such as marking a single object. However, 
while such fine granularity might lead to a perfect balancing of tasks between proces
sors since whenever a task was available any processor wanting work could claim it, the 
cost of coordinating processors makes this impractical . Synchronisation is needed both 
for correctness and to avoid, or at least minimise, repeating work. There are two aspects 
to correctness. It is essential to prevent parallel execution of garbage collector threads 
from corrupting either the heap or a collector 's own data structures. Consider two exam
ples . Any moving collector must ensure that only a single thread copies an object. If two 
threads were to copy it simultaneously, in the best case (where the object is immutable) 
space would be wasted but the worst case risks the two replicas being updated later with 
conflicting values. Safeguarding the collector 's own data structures is also essential . If 
all threads share a single marking stack, then all push and pop operations must be syn
chronised in order to avoid losing work when more than one thread manipulates the stack 
pointer or adds/removes entries. 

Synchronisation between collector threads has time and space overheads. Mechanisms 
to ensure exclusive access may use locks or wait-free data structures .  Well-designed al
gorithms minimise the occasions on which synchronisation operations are needed, for ex-
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ample by using thread-local data structures. Where synchronisation is required, the fast 
case should be the common case: locks should be rarely contended and atomic operations 
like CompareAndSwap should be expected to succeed. If they don't succeed, it is often 
preferable that they are allowed to compete for other work in a wait-free manner rather 
than having to retry. However, sometimes exclusive access is not essential for correctness 
and so some synchronisation actions can be omitted. For example, setting a mark-bit in 
an object's header word is an idempotent operation. The only consequence of two threads 
setting the same bit is the risk of some unnecessary work, but this may be cheaper than the 
cost of making the action synchronised. 

Implementations trade load balancing against coordination costs. Modern parallel col
lectors typically have worker threads compete to acquire larger tasks, that they expect to 
complete without further synchronisation. These tasks may be organised in a variety of 
ways: as thread-local marking stacks, as heap regions to scan or as other pools of (usually 
fixed-size) buffers of work. Of course, employing such data structures also incurs a space 
cost on account of their metadata and fragmentation, but these costs tend to be small. 

14.4 Taxonomy 

In the rest of this chapter we will consider particular solutions to the problems of par
allelising marking, sweeping, copying and compaction. Throughout we assume that all 
mutator threads are halted at safe-points while the collector threads run to completion. As 
far as possible, we situate these case studies within a consistent framework. In all cases, 
we shall be interested in how the algorithms acquire, perform and generate collection work. 
The design and implementation of these three activities determines what synchronisation 
is necessary, the granularity of the workloads for individual collector threads and how 
these loads are balanced between processors . 

Parallel garbage collection algorithms can be broadly categorised as either processor
centric or memory-centric .  Processor-centric algorithms tend to have threads acquire work 
quanta that vary in size, typically by stealing work from other threads. Little regard is 
given to the location of the objects that are to be processed. However, as we have seen 
in earlier chapters, locality has significant effects on performance, even in the context of 
a uniprocessor. Its importance is even greater for non-uniform memory or heterogeneous 
architectures. Memory-centric algorithms, on the other hand, take location into greater 
account. They typically operate on contiguous blocks of heap memory and acquire I release 
work from/to shared pools of buffers of work; these buffers are likely to be of a fixed size. 
These are most likely to be used by parallel copying collectors. 

Finally, we are concerned with the termination of parallel collection. Threads not only 
acquire work to do but also generate further work dynamically. Thus it is usually insuffi
cient to detect termination of a collection cycle by, say, simply checking that a shared pool 
of work is empty, since an active thread may be about to add further tasks to that pool. 

14.5 Parallel marking 

Marking comprises three activities: acquisition of an object to process from a work list, 
testing and setting one or more marks, generating further marking work by adding the 
object's children to a work list. All known parallel marking algorithms are processor
centric. No synchronisation is necessary to acquire an object to trace if the work list is 
thread-local and non-empty. Otherwise the thread must acquire work (one or more objects) 
atomically, either from some other thread's work list or from some global list. Atomicity 
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is chiefly necessary to maintain the integrity of the list from which the work is acquired. 
Marking an object more than once or adding its children to more than one work list affects 
only performance rather than correctness in a non-moving collector. Although the worst 
case is that another thread might redundantly process an entire data structure in lock-step 
with the first collector thread, such scheduling is unlikely to occur in practice. Thus, if 
an object's mark is represented by a bit in its header or by a byte in a byte-map, it can 
be tested and set with a non-atomic load and store . However, if marks are stored in a 
bitmap that is shared between marking threads, then the bit must be set with an atomic 
operation. The object's children can be added to the marking list without synchronisation 
if the list is private and unbounded. Synchronisation is necessary if the list is shared or if 
it is bounded. In the latter case, some marking work must be transferred to a global list 
whenever the local list is filled. If the object is a very large array of pointers, pushing all its 
children onto a work list as a single task may induce some load imbalance. Some collectors, 
especially those for real-time systems, process the slots of large objects incrementally, often 
by representing a large object as a linked data structure rather than a single contiguous 
array of elements. 

Processor-centric techniques 

Work stealing. Endo et al [1997], Flood et al [2001 )  and Siebert [2010] use work stealing 
to balance loads. Whenever a thread runs out of marking work, it steals work belonging 
to another thread. In a parallel implementation of the Boehm and Weiser [1988] conserva
tive mark-sweep collector, Endo et al provide each marker thread with its own local mark 
stack and a stealable work queue (Algorithm 14. 1 ) .  Periodically, each thread checks its own 
stealable mark queue and, if it is empty, transfers all its private mark stack (apart from 
local roots) to the queue. An idle thread acquires marking work by first examining its own 
stealable queue and then other threads' queues.  When a thread finds a non-empty queue, 
it steals half of the queue's entries into its own mark stack. Multiple threads may seek 
work to steal at the same time, so the stealable queues are protected by locks. Endo et al 
found that a claim-lock-then-steal approach led to processors spending considerable time 
trying to acquire locks so they replaced it by a try-lock-then-steal-else-skip strategy. If a 
thread observes that a queue is locked or if it fails to lock the queue, it gives up on that 
queue and skips to the next one. This sequence is 'lock-free' .  

Any parallel collector needs to take care with how mark bitmaps are treated and how 
large arrays are processed. Bits in a mark bitmap word must be set atomically. Rather than 
locking the word then testing the bit, Endo et al use a simple load to test the bit and, only 
if it is not set, attempt to set it atomically, retrying if the set fails (because bits are only set 
in this phase, only a limited number of retries are needed), illustrated in Algorithm 14.2 .  
Collectors like that of Flood et al [2001 ] ,  which store the mark bit in the object header, can 
of course mark without atomic operations, though. 

Processing large arrays of pointers has been observed to be a source of problems. For 
example, Boehm and Weiser [1988] tried to avoid mark stack overflow by pushing large 
objects in smaller (128 word) portions. Similarly, Endo et al split a large object into 512 byte 
sections before adding them to a stack or queue in order to improve load balancing; here, 
the stack or queue holds (address, size) pairs. 

The Flood et al [2001 ]  parallel generational collector manages its young generation by 
copying and its old generation by mark-compact collection. In this section, we consider 
only parallel marking. Whereas Endo et al used a stack and a stealable queue per proces
sor, Flood et al use just a single deque per collector thread. Their lock-free, work stealing 
algorithm is based on Arora et al [ 1998]; its low overhead allows work to be balanced at 
the level of individual objects. The algorithm works as follows; see also the detailed pre-
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Algorithm 14.1: The Endo et al [1997] parallel mark-sweep algorithm. 

1 shared s t e a l ableWorkQueue [N] 
2 me +-- myThreadid 

I* one per thread 4 

4 acqui reWo rk ( ) : 
if not i sEmpt y (myMa rkS t a c k )  

return 
l o c k (  s teal ableWorkQueue [me ] ) 
I* grab half of my stealable work queue *I 
n +-- s i z e ( s t e a l abl eWo rkQueue [me] ) I 2 

I* my mark stack has work to do 4 

10 t r a n s fe r ( s t e a l abl eWorkQueue [me ] ,  n, myMa rkStack )  
n u n l o c k ( s tea l ab l eWo rkQueue [me] ) 
1 2  

13 if i sEmpt y (myMa rkStack )  
14 for each j in Threads 
1 s  if not l o cked( s teal abl eWorkQueue [ j ] )  
1 6  if l o c k ( s tealableWorkQueue [ j ] )  
1 7  I* grab half of his stealable work queue 4 
1 s  n +-- s i z e ( s t e a l ableWorkQueue [me] ) I 2 

19 t ra n s fe r ( s t e a l ableWorkQueue [ j ] ,  n, myMa rkStack )  
20 u n l o c k ( st ea l ab l eWorkQueue [ j ] )  
2 1  return 
2 2  

n pe r fo rmWo r k ( ) : 
24 while pop(myMar k S tack, r e f )  
� for each fld  in P o i nt e r s ( ref )  
� chi ld +-- * f ld  
27 if chi ld  =/:. null && not i sMa rked (chi ld) 
28 set Ma rked(  chi ld)  
29 pus h (myMarkSt a c k, child) 
30 
31 

32 gene rat eWo r k ( ) : I* transfer all my stack to my stealable work queue 4 
33 if i sEmpt y ( s t e a l abl eWorkQueue [me] ) 
� n +-- s i z e (markStack )  
JS l oc k ( s t e a l ableWo rkQueue [me] ) 
36 t rans fe r (myMarkStack, n, s tealabl eWo rkQueue [me] ) 
37 unlock (  s t e a l ableWorkQueue [me] ) 

Algorithm 14.2: Parallel marking with a bitmap 

1 s etMarked(re f ) : 
o ldByte +-- markByte ( ref )  
b i t P o s i t i o n  +-- markBit ( r e f )  
loop 

if i sMarked(  o l dByte,  b i  t P o s i t i on )  
return 

newByte +-- mark (oldByt e,  bitPo s i t i o n )  
i f  CompareAndSet ( &markBy t e ( ref ) ,  o l dByte, newByt e )  

return 
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Figure 14.2: Global overflow set implemented as a list of lists [Flood et al, 
2001 ] .  The class structure for each Java class holds the head of a list of over
flow objects of that type, linked through the class pointer field in their header. 

sentation in Section 13.8 .  A thread treats the bottom of its deque as its mark stack; its pu s h  
does not require synchronisation and its p o p  operation requires synchronisation only to 
claim the last element of the deque. Threads without work steal an object from the top of 
other threads' deques using the synchronised remove operation. One advantage of this 
work stealing design is that the synchronisation mechanism, with its concomitant over
heads, is activated only when it is needed to balance loads. In contrast, other approaches 
(such as grey packets, which we discuss below) may have their load balancing mechanism 
permanently 'turned on' .  

The Flood et  al  thread deques are fixed size in order to avoid having to allocate during 
a collection. However, this risks overflow, so they provide a global overflow set with just a 
small, per class, overhead . The class structure for each Java class C is made to hold a list of 
all the overflow objects of this class, linked together through their type fields (illustrated in 
Figure 14.2) .  Although the overflow link overwrites the object's type - making this design 
inappropriate for a concurrent collector where mutators need quick access to the object's 
type - it can be recovered as the object is removed from the overflow list. Overflow is 
handled as follows. Whenever pushing an item onto the bottom of a thread's deque would 
cause it to overflow, items in the bottom half of the deque are moved into the overflow sets 
of their classes. Conversely, threads looking for work try to fill half of their deque from the 
overflow set before trying to steal from other threads' deques. 

Siebert [2010] also uses work stealing for a parallel and concurrent implementation 
of the Jamaica real-time Java virtual machine. Jamaica breaks objects into linked blocks 
in order to bound the time of any mark step; thus, the collector works with blocks rather 
than objects . One consequence is that colours are associated with blocks . As we shall see in 
Chapter 15, concurrent mutators and collectors may both need to access lists of grey blocks . 
In order to avoid having to synchronise such accesses, the Jamaica VM uses processor-local 
grey lists . The cost of this design is that a block's colour is represented by a word rather 
than a few bits . A thread marks a block grey by using a CompareAndSwap operation to 
link it through this colour word into a local grey list of the processor on which the thread 
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Algorithm 14.3: The Flood et al [2001 ]  parallel mark-sweep algorithm 

1 shared ove r f l owSet  
2 shared de  que [N] 
3 me +- myThreadi d 

5 acqui reWork ( ) : 

10 

1 1  

1 2  

1 3  

14 

1 5  

1 6 

if not isEmpt y ( deque [me] ) 
return 

n +- s i ze (ove r f l owSet ) I 2 

if t ra n s fe r ( ove r f l owSet,  n ,  deque [me] ) 
return 

for each j in Threads 
r e f  +- remove ( deque [ j ] )  
if  re f f:. nu11 

push (deque [me ] ,  re f )  
return 

1 7  pe r f o rmWork ( ) : 
1s 1oop 
19 re f +- pop ( de que [me] ) 
20 if  r e f  = nu11 
21 

22 

23 
24 

2S 

26 

27 

28 

29 

return 
for each f l d  in Point e r s ( r e f )  

child  +- * f l d  
i f  chi l d  f:. nu11 && not i sMar ke d ( c h i ld) 

setMa r ked(  ch i l d) 
if not push(deque [me ] ,  chi ld )  

n +- s i ze (deque [me] ) I 2 

t r a n s fe r (deque [me ] ,  n, ove r f l owSet ) 

30 gene rat eWork ( ) : 
31 I* nop 4 

I* one per thread *I 

I* try to steal from j 4 

is running. To balance loads, Siebert steals other threads' work lists wholesale: a thread 
without work attempts to steal all of another thread's grey list. To prevent two threads from 
working on the same grey block, a new colour anthracite is introduced for blocks while 
they are being scanned in a mark step. Thief threads also steal by attempting to change 
the colour of the head of the grey list of another processor to anthracite. This mechanism 
is very coarse, and best suited to the case that the victim thread is not performing any 
collection work but maybe only adding blocks to its grey list as it executes write barriers. 
This is a plausible scenario for a real-time, concurrent collector. However, if all threads are 
collecting garbage, it may degrade to a situation where all threads compete for a single 
remaining list of grey blocks . Siebert writes that this does not occur often in practice. 

Termination with work stealing. Finally, the collector must be able to determine when 
a phase is complete, that is, when all the cooperating threads have completed their activi
ties . Endo et al [ 1997) originally tried to detect termination with a single global count of the 
number of mark stacks and stealable mark queues that were empty. However, contention 
to update this counter atomically serialised termination, with large systems (32 proces-
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Figure 14.3: Grey packets. Each thread exchanges an empty packet for a 
packet of references to trace. Marking fills an empty packet with new refer
ences to trace; when it is full, the thread exchanges it with the global pool for 
another empty packet. 

sors or more) spending a significant amount of time acquiring the lock. Their solution, 
presented in detail in Algorithm 13 .18, was to provide each processor with two flags indi
cating whether their mark stack or queue was empty: no locks are necessary to set or clear 
these flags. To detect termination, a processor clears a global detection-in terrupted flag and 
checks through all the other processors' flags. Finally, it checks the detection-interrupted 
flag again in case any other processor has reset it and started work. If not, termination is  
complete. This method required a strict protocol to be followed when a processor A steals 
all the tasks of processor B.  First, A must clear its stack-empty flag, then set the detection
interrupted flag and finally B's queue-empty flag. Unfortunately, as Petrank and Kolodner 
[2004] point out, this protocol is flawed if more than one thread is allowed to detect ter
mination since a second detector thread may clear the detection-interrupted flag after the 
first detector thread has set it, thus fooling the first detector thread into believing that the 
flag remained clear throughout. 

Kolodner and Petrank [1999] employ a solution common to many concurrency prob
lems. They ensure that only one thread at a time can try to detect termination by intro
ducing a lock: a synchronised, global, detector-identity word. Before attempting to detect 
termination, a thread must check that the detector-identity's is -1 (meaning that no thread 
is currently trying to detect termination) and, if so, try to set its own identity into the word 
atomically, or else wait. 

Flood et al detect termination through a status word, with one bit for each participating 
thread, which must be updated atomically. Initially, all threads' statuses are active. When 
a thread has no work to do (and has not been able to steal any), it sets its status bit to be 
inactive and loops, checking whether all the status word's bits are off. If so, all threads have 
offered to terminate and the collection phase is complete. Otherwise, the thread peeks at 
other threads' queues, looking for work to steal. If it finds stealable work, it sets its status 
bit to active and tries to steal. If it fails to steal, it reverts the bit to inactive and loops again. 
This technique clearly does not scale to a number of threads beyond the number of bits in 
a word. The authors suggest using a count of active threads instead. 

Grey packets. Ossia et al observe that mark stacks with work stealing is a technique best 
employed when the number of threads participating in a collection is known in advance 
[Ossia et al, 2002; Barabash et al, 2005] .  This will not be the case if each mutator thread also 
helps by performing a small increment of work, say at each allocation. They also note that 
it may be difficult both for a thread to choose the best queue from which to steal, and to 
detect termination. Instead, they balance work loads by having each thread compete for 
packets of marking work to perform. Their system had a fixed number (1000) of packets 
available and each packet was a fixed size (512 entries) .  
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Each thread uses two packets; it processes entries in its input packet and adds work to 
be done to its output packet. Under the tricolour abstraction, the entries in both packets 
are grey, hence, we adopt the name grey packets originally coined by Thomas et al [1998] for 
Insignia's Jeode Java virtual machine. 1 A thread competes to acquire a new packet of work 
from the global pool . After processing all the entries in the packet, it returns that packet to 
the pool. When its output packet is full, it returns it to the pool and obtains a fresh packet. 
Ossia et al maintain three linked lists of packets: a pool of empty packets, a pool of less than 
half full packets, and a pool of nearly full packets, as illustrated in Figure 14.3. Threads 
prefer to obtain their input packet from the highest occupancy, non-empty list (procedure 
get i nP a c ket  in Algorithm 14.4), and their output packet from the lowest occupancy, 
non-empty list (procedure g e t OutPacket ) . 

Grey packets offer a number of advantages. By separating input from output - Ossia 
et al avoid swapping the roles of a thread's packets - work is distributed evenly between 
processors as a processor will tend not to consume its own output. Since a grey packet con
tains a queue of objects that will be processed in sequence, grey packets naturally support 
prefetching the next objects to be marked . 

Grey packets require synchronisation only when packets are acquired from or returned 
to the global lists. These operations are non-blocking if we use a CompareAndSwap op
eration (with the thread's identifier added to the head of the list to avoid an ABA prob
lem). They also reduce the number of fences that have to be inserted on architectures with 
weakly-ordered memory consistency. Rather than having to fence after marking and push
ing each object, a fence is required only when a thread acquires or returns packets. Ossia 
et al use a vector of allocation bits when they conservatively scan thread stacks in order 
to determine whether a putative reference really does point to an allocated object. Their 
allocation bits are also used for synchronisation between mutators and collectors. Their 
allocators use local allocation buffers. On local allocation buffer-overflow, the allocator 
performs a fence and then sets the allocation bits for all the objects in that local allocation 
buffer, thus ensuring that the stores to allocate and initialise new objects cannot precede 
the stores to set their allocation bits (Algorithm 14.5). Two further fences are needed. First, 
when a tracing thread acquires a new input packet, it tests the allocation bits of every ob
ject in the new packet, recording in a private data structure whether an object is safe to 
trace - its allocation bit has been set - or not. The thread then fences before continuing 
to trace all the safe objects in the input packet. Tracing unsafe objects is deferred; instead, 
they are added to a third, deferred, packet. At some point, this packet may be returned 
to a global pool of deferred packets. This protocol ensures that an object cannot be traced 
before its allocation bit has been loaded and found to be set. A tracing thread also fences 
when it returns its output packet to the global pool (in order to prevent the stores to the 
packet being reordered with respect to adding the packet back to the global pool) .  A fence 
is not needed for this purpose when getting an input packet since there is a data depen
dency between loading the pointer to the packet and accessing its contents, an ordering 
that most hardware hardware respects. 

Grey packets make it comparatively easy to track state. Each global pool has an asso
ciated count of the number of packets it contains, updated by an atomic operation after 
a packet is acquired or returned. Counting the number of packets is only approximate 
since the count may be read after a packet has been returned but before the counter has 
been incremented. However, the termination condition is simply that the size of the empty 
packet pool is same as the total number of packets available. It is not necessary to make 
acquisition/ return of a packet and the update of the counter a single, indivisible operation 
provided that threads observe the following discipline. In order to ensure that the empty 

1 However, the first publication of this idea, other than through a patent application, was by Ossia et a/ [2002] .  
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Algorithm 14.4: Grey packet management 

1 shared ful l P o o l  
2 shared ha l fFu l l P o o l  
3 shared emptyPool  

5 get i nPacket ( ) : 
atomic 

inPacket  f- remove ( f u l l P o o l ) 
if i s Empt y ( i n P acket ) 

atomic 
1 0  inPacket  f- remove (h a l fFul l P o o l ) 
n if i s Empt y ( i n P acket ) 

/* global pool of full packets 4 
f* global pool of half full packets 4 

/* global pool of empty packets 4 

1 2  i nPacket ,  out Packet  f- outP a cket ,  i n P a cket 
1 3  return not i sEmpty ( inPacket ) 
1 4  

1 5  t e stAndMa rk S a f e (packet ) : 
1 6  for each re f in packet  
1 1  s a fe ( re f ) f- a l l ocBit ( re f ) 
IK 

20 get Out P acket ( ) : 
n if i sFul l ( outP a c ke t ) 
22 gene rateWork ( )  
23 if outPacket  = null 
24 atomic 

true 

� outPacket  f- remove (emptyPool ) 
26 if outPacke t  = null 
21 atomic 
� remove (h a l fFul l P o o l ) 
29 if outPacket  = null 
� if not i s F u l l ( inPacket ) 

f* private data structure *f 

31 inPacket ,  outPacket  f- out P a cket ,  inPacket  
32 return 
33 

34 addOutPacket ( re f ) : 
35 getOutPacket ( )  
J6 if outPacket  = null I I  i s F u l l (outP a c k e t ) 
37 di rtyCa rd ( re f ) 
38 else 
39 add (out Packet ,  re f ) 
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Algorithm 14.5: Parallel allocation with grey packets 

1 sequent i a lAl locate (n ) : 
re s u l t  f- free 

1 0  

1 1  

1 2  

1 3  

newF ree f- re s u l t  + n 
if newFree � l abL imit 

free  f- newF ree  
return re s u l t  

/* LAB overflow 4 
fence  
for each ob j in l ab 

a l l ocBit (ob j ) f- true 
l ab, l abL imit f- newLab ( )  
if l ab = null 

287 

$ 

return null f* signal 'Memory exh a u s t ed ' 4 
1 5  sequent i alAl l o c a t e (n ) 

Algorithm 14.6: Parallel tracing with grey packets 

1 shared ful lPool  /* global pool of full packets 4 

3 acqu i reWork ( ) : 
if i sEmpty ( i nP a c ke t ) 

if get i nP a c k e t ( )  
t e stAndMa r k S a fe ( inP a c k e t ) 
fence 

9 performWork ( ) : 
10 for each ref in i n Packet 
1 1  if s a fe (ref ) 
1 2 for each f l d  in P o i n t e r s ( ref ) 
13 chi ld  f- * fld 
14 if chi l d  -::/:- null && not i sMa rked ( child ) 
1 s  s e t Marked (ch i l d ) 
a addOut P acket ( chi ld ) 
1 7  

$ 

1 8  

else 
addDe fe rredPacket (re f ) /* defer tracing unsafe objects 4 

19 

zo gene rat eWork ( ) : 
21 

22 

23 

fence  
add ( ful lPool, out P a cket ) 
outP a cket f- null 

$ 
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Algorithm 14.7: Parallel tracing with channels 

, shared channe l [N,N] 
2 me f- myThreadi d  

f* N X N  single reader, single writer channels *f 

4 a cqu i reWo r k ( ) : 
for each k in Threads 

f* k has work for me 4 if not i s Empt y ( channe l [k,me] ) 
re f f- remove ( channel [k,me] ) 
pu sh (myMarkSt a c k, re f )  
return 

/* on to my mark stack 4 

1 0  

u pe r f o rmWork ( ) : 
1 2  loop 
o if i sEmpt y (myMark S t a c k )  
14 

15 

1 6  

1 7  

1 8  

19 

20 

2 1  

return 
re f f- pop (myMa r k S t a c k )  
for each fld  in P o i n t e r s ( r e f )  

chi ld  f- * f ld  
if ch i l d  f:. null  && not i sMa rked( chi ld )  

if not gene r a t eWo rk (chi ld )  /* drip a task to another processor 4 
push (myMa r k S t ack, chi ld )  

n generateWo r k ( r e f ) : 
23 for each j in Threads  
24 if needsWo rk (k )  && not i s Fu l l ( channe l [me, j ] )  
2s add (channe l [me, j ]  
26 return true 
21 return false 

count cannot drop to zero temporarily, each thread must obtain a new packet before it re
places the old one. Requiring a thread to obtain its input packet before its output packet at 
the start of a collection will ensure that attempts to acquire work packets when no tracing 
work remains will not prevent termination detection. 

Grey packets limit the depth of the total mark queue, making it possible that marking 
may overflow. If a thread cannot obtain an output packet with vacant entries, it may swap 
the roles of its input and output packets . If both are full, some overflow mechanism is 
required. Ossia et al continue to mark objects without adding them to an output packet 
but when this happens they dirty the card table slots corresponding to these objects. Later, 
they scan the card table and continue marking from any marked objects with unmarked 
children. An alternative would be to link overflow objects to the class structures corre
sponding to their type, as Flood et al [2001]  did. 

Channels. Wu and Li [2007] suggest an architecture for load balancing on large-scale 
servers that does not require expensive atomic operations. Instead, threads exchange 
marking tasks through single writer, single reader channels (recall Algorithm 13.34), as 
shown in Algorithm 14.7. In a system with P marking threads, each thread has an array 
of P - 1 queues, implemented as circular buffers; null indicates that a slot in the buffer 
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is empty. It is the restriction to one reader and one writer that allows this architecture to 
avoid the expense of atomic operations. It performed better than the Flood et al [2001 ] 
work stealing algorithm on servers with a large number of processors. 

Similar to the strategy used by Endo et al [1997], threads proactively give up tasks to 
other threads. When a thread i generates a new task, it first checks whether any other 
thread j needs work and, if so, adds the task to the output channel (i --+ j) ] .  Otherwise, it 
pushes the task onto its own marking stack. If its stack is empty, it takes a task from some 
input channel (j --+ i) . Unfortunately, a thread that is not generating any new marking 
tasks will not be able to keep other threads busy. In this case, the thread drips a task from 
the bottom (oldest end) of its local stack into the channel. Wu and Li report that this load
balancing strategy can keep all threads busy. The choice of queue length will depend on 
how busily threads use their local mark stacks or whether they have to seek tasks . If tasks 
do not often have to seek work, then shorter queues will be preferred. On a machine with 
16 Intel Xeon processors, queues of length one or two were found to scale best. They use a 
termination detection solution similar to that of Kolodner and Petrank [1999], but select a 
fixed detector thread in order to avoid the conflicting detector problem. 

14.6 Parallel copying 

Parallelisation of copying algorithms faces many of the same issues faced by parallelisation 
of marking algorithms. However, as we noted earlier, it is essential that an object is copied 
only once whereas marking an object two or more times is often benign. We consider 
processor-centric and then memory-centric techniques. 

Processor-centric techniques 

Dividing work among processors. Blelloch and Cheng parallelise copying in the con
text of replicating collection [Blelloch and Cheng, 1999; Cheng and Blelloch, 2001 ;  Cheng, 
2001 ] .  We discuss replicating collection in detail in Chapter 1 7  but, in brief, replicating 
collectors are incremental or concurrent collectors that copy live objects while the muta
tors are running, taking special care to fix up the values of any fields that a mutator might 
have changed during the course of a collection cycle . In this chapter, we discuss only the 
parallelism aspects of their design. 

Each copying thread is given its own stack of work to do. Blelloch and Cheng claim that 
stacks offer easier synchronisation between copying threads and less fragmentation than 
Cheney queues (but we examine Cheney-style parallel copying collectors below) .  Load 
is balanced by having threads periodically transfer work between their local stacks and 
a shared stack (see Algorithm 14.8) .  As we noted earlier, a simple shared stack requires 
synchronisation between threads pushing and popping entries .  Unfortunately, there is 
no way to increment or decrement a stack pointer and insert or remove a stack element 
atomically using primitive operations like F e t chAndAdd. A lock or use of LoadLink
ed/ S t o reCondi  t i ona l l y  operations would sequentialise access to the shared stack, as 
shown in Section 13.8. However, we can use these instructions either to allow multiple 
threads to push elements or to allow multiple threads to pop elements, since these oper
ations either all advance or all retreat the stack pointer. Once a thread has succeeded in 
moving the stack pointer (possibly by several slots), it can read from or write to those stack 
slots without risk of any races. 

Blelloch and Cheng [1999] enforce such a discipline on access to the shared stack using 
what they later called 'rooms' :  at any time, at least one of the pushing room and the pop-
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Algorithm 14.8: Parallel copying in Cheng and Blelloch [2001] 

shared sha redStack  
2 myCopySt a c k [k] 

sp +-- 0 

5 while not t e rminated ( )  
ent e r  Room ( )  
for i +-- 1 t o  k 

if  i s Lo c a l S tackEmp t y ( )  
a cqui reWo rk ( )  

1 0  i f  i s Local S t a c kEmpty ( )  
n break 
12  pe r fo rmWo rk ( )  
1 3  t ran s i t i o nRooms ( )  
1 4  generateWork ( )  
1 5  if exi t Room ( )  
1 6  t e rmi n a t e ( )  
1 7  

1 8  a cqui reWo r k ( ) : 
19 sharedP op ( )  
20 

21 performWo r k ( ) : 
22 ref +-- l o c a lPop ( )  
23 scan ( r e f ) 
24 

25 generateWo r k ( ) : 
26 sharedP u s h ( )  
27 

28 i sLocal S t a c kEmpty ( )  
29 return s p  = 0 
30 

31 l ocalPu sh ( r e f ) : 
32 myCopyS t a c k [sp++ ] +-- r e f  
33 

34 l ocalPop ( ) : 
35 return myCopyStack [- - sp ] 
36 
37 

38 
39 

40 
4 1  

4 2  

43 

sharedPop ( ) : 
cu r sor  +-- F e t chAndAdd ( & sharedS t a c k ,  
i f  cur s o r  � s tackLimi t 

Fet chAndAdd ( & sharedStack, - 1 ) 
else 

myCopySt ack [sp++ ] +-- cursor [O ] 

44 sharedPush ( ) : 
45 cu rsor  +-- F e t chAndAdd ( & sharedS t a ck ,  
46 for i +-- 0 to sp- 1 
47 cu r s o r [i ] +-- myCopySt ack [i ] 
48 sp +-- 0 

f* the shared stack of work *f 
f* local stack has k slots max. *I 

/* local stack pointer *f 

f* enter pop room *f 

f* leave push room *f 

f* move work from shared stack *f 

/* see Algorithm 4.2 *f 

f* move work to shared stack *f 

/* move work from shared stack *f 
1 ) /* try to grab from shared stack *f 

/* shared stack empty *f 
/* readjust stack *f 

f* move work to local stack *f 

/* move work to shared stack *f 
- sp ) - s p  
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Algorithm 14.9: Push/pop synchronisation with rooms 

shared gate  +- OPEN 
2 shared popCl ient s 
3 shared pu s hCl ient s 

/* number of clien ts currently in the pop room */ 
I* number of clients currently in the push room *f 

5 ente rRo om ( ) : 
whi1e gate  � OPEN 

/* do nothing: wait */ 
Fet chAndAdd ( &popC l i e nt s ,  1 ) 
whi1e gate  � OPEN 

1 0  Fet chAndAdd ( & popC l ient s, - 1 ) 
n whi1e gate � OPEN 
1 2  /* do nothing: wait *I 
n Fet chAndAdd ( &popC l i ents ,  1 ) 
14 

1 5  

1 6  t ra n s i  t i o nRooms ( ) : 
1 1  gat e  +- CLOSED 

I* try to  start popping */ 

/* back out since did not succeed */ 

I* try again *f 

1s Fet chAndAdd ( &pu s hC l i e nt s, 1 ) /* move from popping to pushing *f 
1• Fet chAndAdd ( &popC l i e nt s, - 1 ) 
20 whi1e popCl ient s > 0 
2 1 /* do nothing: cannot start pushing until none other popping *f 
22 

23 exi  tRoom ( )  : 
24 pu she r s  +- Fet chAndAdd ( &pushC l i e nt s ,  - 1 ) - 1 /* stop pushing *f 
25 if pu s he r s  = 0 I* I was last in push room: check termination *f 
26 if i sEmpty ( sharedStack ) /* no grey objects left *f 
21 gate  +- OPEN 
2s return true 
29 e1se 
3o gate  +- OPEN 
31 return fa1se 

ping room must be empty. The algorithm is shown in Algorithm 14.9. At each iteration 
of the collection loop, a thread first enters the pop room and performs a fixed amount of 
work. It obtains slots to scan either from its own local stack or from the shared stack with 
a FetchAndAdd. Any new work generated is added to its stack. The thread then leaves 
the pop room and waits until all other threads have also left the room before it tries to 
enter the push room. The first thread to enter the push room closes the gate to prevent 
any other thread entering the pop room. Once in the push room, the thread empties its 
local stack entirely onto the shared stack, again using Fet chAndAdd to reserve space on 
the stack. The last thread to leave the push room opens the gat e .  

The problem with this mechanism i s  that any processor waiting to  enter the push room 
must wait until all processors in the pop room have finished greying their objects. The 
time to grey objects is considerable compared to fetching or depositing new work, and a 
processor trying to transition to the push phase must wait for all other processors already 
in the pop phase to finish greying their objects . Large variations in the time for different 
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processors to grey their objects makes this idle time significant. A more relaxed abstraction 
would allow processors to leave the pop room without going into the push room. Since 
greying objects is not related to the shared stack, that work can be done outside the rooms. 
This greatly increases the likelihood that the pop room is empty and so a thread can move 
to the push room. 

The original Blelloch and Cheng room abstraction allows straightforward termination 
detection. Each thread's local tracing stack will be empty when it leaves the push room so 
the last thread to leave should detect whether the shared stack is also empty. However, the 
relaxed definition means that collection threads may be working outside the rooms. With 
this abstraction, the shared stack must maintain a global counter of how many threads 
have borrowed objects from it. The last thread to leave the push room must check whether 
this counter is zero as well as whether the shared stack is empty. 

Copying objects in parallel . To ensure that only one thread copies an object, threads 
must race to copy an object and install a forwarding address in the old version's header. 
How threads copy an object depends on whether or not they share a single allocation 
region. By sharing a single region, threads avoid some wastage but at the cost of having to 
use an atomic operation to allocate. In this case, Blelloch and Cheng [1999] have threads 
race to write a 'busy' value in the object's forwarding pointer slot. The winning thread 
copies the object before overwriting the slot with the address of the replica; losing threads 
must spin until they observe a valid pointer value in the slot. An alternative, if each thread 
knows where it will copy an object (for example, because it will copy into its own local 
allocation buffer), is for threads to attempt to write the forwarding address atomically into 
the slot before they copy the object. 

Marlow et al [2008] compared two approaches in the context of the GHC Haskell sys
tem. In the first approach, a thread trying to copy an object first tests whether it has been 
forwarded. If it has it simply returns the forwarding address. Otherwise, it attempts to 
C ompa reAndSwap a busy  value into the forwarding address word; this value should be 
distinguishable from either a 'normal' value to be expected in that slot (such as a lock or 
a hash code) or a valid forwarding address. If the operation succeeds, the thread copies 
the object, writes the address of its tospace replica into the slot and then returns this ad
dress. If the bu s y  CompareAndSwap fails, the thread spins until the winning thread has 
completed copying the object. In their second approach, they avoid spinning by having 
threads optimistically copy the object and then Comp a reAndSwap the forwarding address. 
If the CompareAn dSwap fails, the copy must be retracted (for example, by returning the 
thread's free pointer to its original value) . They found that this latter approach offered 
little benefit since collisions were rare. However, they suggest that in this case, it may be 
worthwhile, in the case of immutable objects, to replace the atomic write with an unsyn
chronised write and accept occasional duplication. 

The collector built by Flood et al [2001] that we discussed earlier in this chapter is gen
erational. Its old generation was managed by mark-compact and its young generation by 
copying; both algorithms are parallel. Above, we discussed how they parallelised mark
ing; here, we consider how they parallelise copying collection. The same work stealing 
queues are used once again to hold the list of objects to be scanned. However, parallel 
copying collection faces two challenges that parallel marking does not. First, it is desirable 
to minimise contention to allocate space for the copy and, second, it is essential that a live 
object is copied only once. Contention for space is minimised through the use of thread
local allocation buffers (see Section 7.7), both for copying to survivor spaces in the young 
generation and for promoting to the old generation. To copy an object, a thread makes a 
speculative allocation in its local allocation buffer and then attempts to CompareAndSwap 
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Figure 14.4: Dominant-thread tracing. Threads 1 to 3, coloured black, grey 
and white respectively, have traced a graph of objects. Each object is coloured 
to indicate the processor to which it will be copied. The first field of each 
object is its header. Thread TO was the last to lock object X. 
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the forwarding pointer. If it succeeds, the thread copies the object. If the CompareAnd
Swap fails, it will return the forwarding pointer that the winning thread installed. 

As we have seen throughout this book, locality has a significant impact on perfor
mance. This is likely to become increasingly important for multiprocessors with non
uniform memory architectures. Here, the ideal is to place objects close to the processor that 
will use them most. Modern operating systems support standard memory affinity policies, 
used to determine the processor from which memory will be reserved. Typically, a policy 
may be first-touch or local, in which case memory is allocated from the processor running 
the thread that requested it, or round-robin, where memory allocation is striped across all 
processors. A processor-affinity thread scheduler will help preserve locality properties by 
attempting to schedule a thread to the last processor on which it ran. Ogasawara [2009] 
observes that, even with a local-processor policy, a memory manager that is unaware of a 
non-uniform memory architecture may not place objects appropriately. If local allocation 
buffers are smaller than a page and are handed out to threads linearly, then some threads 
will have to allocate in remote memory, particularly if the system is configured to use the 
operating system's large page (16 megabytes) feature to reduce the cost of local to physical 
address translation. Further, collectors that move objects will not respect their affinity. 

In contrast, Ogasawara's memory manager is aware of non-uniform memory access 
and so splits the heap into segments of one or more pages. Each segment is mapped to a 
single processor. The allocator, used by both mutator and collector threads, preferentially 
obtains blocks of memory from the preferred processor. For the mutator, this will be the 
processor on which the thread is running. The collector threads always try to evacuate 
live objects to memory associated with their preferred processor. Since the thread that 
allocated an object may not be the one that accesses it most frequently, the collector also 
uses dominant-thread information to determine each object's preferred processor. First, for 
objects directly referred to from the stack of a mutator thread, this will be the processor 
on which that mutator thread was running; it may be necessary for mutator threads to 
update the identity of their preferred processor periodically. Second, the collector can use 
object locking information to identify the dominant thread. Locking schemes often leave 
the locking thread's identity in a word in the object's header. Although this only identifies 
the thread, and hence the preferred processor, that last  locked the object, this is likely to be 
a sufficient approximation, especially as many objects never escape their allocating thread 
(although they may still be locked) . Finally, the collector can propagate the preferred pro
cessor from parent objects to their children. In the example in Figure 14.4, three threads 
are marking. For simplicity, we assume they are all running on their preferred processor, 
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(b) Scan pointer and free pointer in different chunks 

Figure 14.5: Chunk management in the Imai and Tick [1993] parallel copying 
collector, showing selection of a scan block before (above) and after (below) 
overflow. Hatching denotes blocks that have been added to the global pool. 

identified in the figure by different colours. Thread TO has at some time locked object X, 
indicated by writing its thread number in X's header. Each object has been coloured to 
indicate the processor to which a collector thread will copy it. 

Memory-centric techniques 

Per-thread fromspace and tospace. Copying collection lends itself naturally to a division 
of labour based on objects' locations. A simple solution to parallelising copying collection 
is to give each Cheney-style collector its own fromspace and tospace [Halstead, 1984] . In 
this way, each thread has its own contiguous chunk of memory to scan, but s till competes 
with other threads to copy objects and install forwarding pointers. However, this very 
simple design not only risks poor load balancing as one processor may run out of work 
while others are still busy, but also requires some mechanism to handle the case that one 
thread's tospace overflows although there is unused space in other tospaces .  

Block-structured heaps. An obvious solution is to over-partition tospace and then allow 
threads to compete to claim both blocks to scan and blocks for copying allocation. Imai 
and Tick [ 1993] divided the heap into small, fixed-size chunks, giving each copying thread 
its own chunks to scan and into which to copy survivors. Copying used Cheney pointers 
rather than explicit work lists. When a thread's copy chunk was full, it was transferred 
to a global pool where idle threads competed to scan it, and a fresh, empty chunk was 
obtained from a free-chunk manager. Two mechanisms were used to ensure good load 
balancing. First, the chunks acquired for copying (which they called 'heap extension units') 
were comparatively small (only 256 words). The problem with using small chunks for 
linear allocation is that it may lead to excessive fragmentation since, on average, we can 
expect to waste half an object's worth of space at the end of each chunk. To solve this, Imai 
and Tick used big bag of pages allocation (see Chapter 7) for small objects; consequently 
each thread owned N chunks for copying. Larger objects and chunks were both allocated 
from the shared heap using a lock. 

Second, they balanced load at a granularity finer than a chunk. Each chunk was di
vided into smaller blocks (which they called 'load distribution units'). These were maybe 
as small as 32 words - smaller blocks led to better speed ups. In this algorithm, each 
thread offered to give up some of its unscanned blocks whenever it needed a new scan 
block. After scanning a slot and incrementing its scan pointer, the thread checked whether 
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Figure 14.6: Block states and transitions in the Imai and Tick [1993) collector. 
Blocks in states with thick borders are part of the global pool, those with thin 
borders are owned by a thread. 

scan 
copy aliased I I or ll I • 

[] (continue scanning) (continue scanning) scan -+ done 
copy -+ aliased 

0 aliased -+ copy (continue scanning) scan -+ done 
scanlist -+ scan scanlist -+ scan 

IJ aliased -+ copy (cannot happen) (cannot happen) 
scanlist -+ scan 

[ aliased -+ scan copy -+ scanlist scan --t done 
freelist --t copy freelist --t copy copy -+ scan 

freelist -+ copy 
1 1  aliased --t scan (cannot happen) (cannot happen) 

freelist --t copy 
• aliased --t done (cannot happen) (cannot happen) 

freelist --t copy 
scanlist --t scan 

Table 14.1: State transition logic for the Imai and Tick collector 
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it had reached the block boundary. If so, and the next object was smaller than a block, the 
thread advanced its scan pointer to the start of its current copy block. This helps reduce 
contention on the global pool since the thread does not have to compete to acquire a scan 
block. It also avoids a situation whereby the only blocks containing grey objects to scan 
are copy blocks. If there were any unscanned blocks between the old scan block and the 
copy block, these were given up to the global pool for other threads to claim. Figure 14.5 
shows two example scenarios. In Figure 14.5a, a thread's scan and copy blocks are in the 
same chunk; in Figure 14.5b, they are in different chunks. Either way, all but one of the 
unscanned blocks in the thread's copy and scan blocks are given up to the global pool. 

If the object was larger than a block but smaller than a chunk, the scan pointer was 
advanced to the start of the thread's current copy chunk. If the object was large, the thread 
continued to scan it. Any large objects copied were immediately added to the global pool. 

Figure 14.6 shows the states of blocks and their transitions.2 Blocks in the states freelist, 
scanlist and done are in the global pool; blocks in the other states are local to a thread. 
The transitions are labelled with the possible colourings of a block when it changes state. 

2This particularly clear notation is due to Siegwart and Hirzel [2006]. 
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Under the Imai and Tick scheme, a block's state can change only when the scan  pointer 
reaches the end of a scan block, the copy pointer reaches the end of a copy block, or 
s c a n  reaches free  (the scan block is the same as the copy block - they are aliased) .  For 
example, a block must contain at least some empty space in order to be a copy block so 
all transitions into the state copy are at least partially empty. Table 14.1 shows the actions 
taken, depending on the state of the copy and scan blocks. For example, if the copy block 
contains both grey slots and empty space ((]) and the unaliased scan block is completely 
black (•), then we are finished with the scan block and continue scanning in the copy block 
- the copy and scan blocks are now aliases of one another. 

Marlow et al [2008] found this block-at-a-time load-balancing over-sequentialised the 
collector when work was scarce in GHC Haskell. For example, if a thread evacuates its 
roots into a single block, it will export work to other threads only when its scan and free 
pointers are separated by more than a block. Their solution is to export partially full blocks 
to the global pool whenever (i) the size of the pool is below some threshold, (ii) the thread's 
copy block has a sufficient work to be worth exporting, and (iii) its scan block has enough 
unscanned slots to process before it has to claim a new block to scan. The optimum min
imum quantum of work to export was 128 words (for most of their benchmarks, though 
some benefited from much smaller quanta) .  This design could be expected to suffer badly 
from fragmentation if threads were to acquire only empty blocks for copying while export
ing partially filled ones. To avoid this, they have threads prefer to acquire blocks that are 
partly filled rather than fully filled .  Despite the potential for exacerbating fragmentation 
through objects being too large to fit in the current block and also by dividing each gener
ation of their collector into separate steps (see Chapter 9), Marlow et al found the level of 
fragmentation was never more than 1% of total memory. 

The algorithms above provide breadth-first copying. Breadth-first copying leads to 
poor mutator locality as it tends to separate parents from their children, tending to co
locate distant cousins instead (see Section 4.2) .  Depth-first copying, on the other hand, 
offers better locality but at the cost of an auxiliary stack to control tracing. Moon [1984] 
and Wilson et al [1991 ]  introduced hierarchical copying algorithms that led to mostly depth
first traversal but without the cost of a stack. However, their algorithms were sequential. 
Siegwart and Hirzel [2006] add hierarchical decomposition to the Imai and Tick parallel 
copying collector to manage the young generation of IBM's J9 Java virtual machine.3 

In the sequential hierarchical decomposition collector [Wilson et al, 1991] incompletely 
scanned blocks were associated with two pointers, a partial scan pointer and a free space 
pointer. Similarly, Imai and Tick used pairs of scan and free pointers for their blocks. The 
trick to obtaining a hierarchical traversal of the object graph with the parallel algorithm is 
therefore for threads to select the 'right' blocks to use next. Like both of these collectors, 
Siegwart and Hirzel prefer to alias copy and scan blocks,4 in contrast to the approach that 
Ossia et al [2002] used where they strove to have threads hold distinct input and output 
packets . Unlike Imai and Tick, who defer checking whether the copy and scan blocks can 
be aliased until the end of a block, Siegwart and Hirzel make the check immediately after 
scanning a grey slot. It is this immediacy that leads to the hierarchical decomposition order 
of traversal of the object graph. 

Figure 14.7 shows the states of blocks and their transitions under this scheme. As be
fore, blocks in the states freelist, scanlist and done are in the global pool; blocks in the other 
states are local to a thread. The transitions are labelled with the possible colourings of a 
block when it changes state. Table 14.2 shows the actions taken, depending on the state 

3The old generation is managed by concurrent mark-sweep with occasional stop-the-world compaction. 
4Each thread in their generational collector holds two copy blocks, one for young and one for old objects; only 

one at a time can be aliased with the scan block. 
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Figure 14.7: Block states and transitions in the Siegwart and Hirzel collector. 
Blocks in states with thick borders are part of the global pool, those with thin 
borders are local to a thread. A thread may retain one block of the scanlist in 
its local cache. 
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Table 14.2: State transition logic for the Siegwart and Hirzel collector. 
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of the copy and scan blocks. For example, if the copy block contains both grey slots and 
empty space (ITI or !U) and the unaliased scan block also has grey slots, then we return 
the scan block to the scan list and continue scanning the copy block - the copy and scan 
blocks are now aliases of one another. Thus, the state transition system for Siegwart and 
Hirzel is a superset of that for Imai and Tick [1993 ) .  

Parallelising the algorithm places pressure on the global pool to  acquire blocks to  scan. 
For this reason, Siegwart and Hirzel have threads cache an extra scan block locally. Their 
blocks are also larger (128 kilobytes) than those of Imai and Tick. Thus, the transition 
scanlis t  --+ scan really obtains the cached block (if any), and scan --+ scanlist caches the 
block, possibly returning in its stead the previously cached block to the shared pool of 
blocks to be scanned. Parallel hierarchical copying is very effective in improving the spatial 
locality of connected objects. Most parents and children were within a page (four kilobytes) 
of each other. In particular, it offers a promise of reduced translation lookaside buffer and 
cache miss rates. Thus, it can trade mutator speedup for collector slowdown. Whether or 
not this is effective depends on application, implementation and platform. 
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Channels. Like Wu and Li [2007], Oancea et al [2009] use channels to eliminate the need 
for atomic synchronisation operations. However, their architecture is memory-centric 
rather than processor-centric. It was designed to improve performance on non-uniform 
memory architectures although it also performs well on typical multicore platforms. The 
heap is divided into many more partitions than the number of processors. Each partition 
has its own work list, containing only references to tospace objects in that partition that 
need to be scanned. At any given time, at most one processor can own a given work list. 
The authors argue that binding work lists to memory-space semantics is likely to become 
increasingly hardware-friendly as the cost of inter-processor communication grows. 

As usual, a processor traces slots in its work lists. If it finds a reference to an object in 
its partition, it adds the reference to its work list. If the reference is to an object in another 
partition, the reference is sent to that partition . Processors exchange work through single
reader, single-writer channels. These are again implemented as fixed-size, circular buffers 
(see Algorithm 13 .34) . On Intel or AMD x86 architectures, no locks or expensive memory 
barriers are required to insert or remove a slot from a channel. However, architectures like 
the PowerPC that do not enforce strong access ordering require fences or a protocol where 
each slot alternates between null and non-null values. Atomic operations are required 
only to acquire a partition/work list. The partitions used here are larger at 32 kilobytes 
than those we have seen before . While a larger granularity reduces communication costs, 
it is less effective at load balancing than finer grained approaches. 

While there is work left, each thread processes work in its incoming channels and its 
work list. The termination condition for a collector thread is that (i) it does not own any 
work list, (ii) all its input and output channels are empty, and (iii) all work lists (of all 
threads) are empty. On exit, each thread sets a globally visible flag. Oancea et al take a 
pragmatic approach to the management of this collector. They use an initialisation phase 
that processes in parallel a number (30,000) of objects under a classical tracing algorithm 
and then places the resulting grey objects in their corresponding work lists, locking the 
partitions to do so, before distributing the work lists among the processors, and switching 
to the channel-based algorithm. 

Card tables. Often a generational collector will use parallel copying to manage its young 
generation. This raises the additional question of how to deal with roots of that generation 
held in the remembered set. The set may be implemented with a linked list of buffers, 
with a hash table or with a card table. The first two cases can be handled by one of the 
techniques we discussed above.  For example, if the set is a linked list of buffers then loads 
can be balanced by having threads compete to claim the next buffer in the same way as 
a block structured algorithms.  It is more difficult to balance load effectively with card 
tables. When a younger generation is collected, the parts of the heap corresponding to 
cards marked in the table must be scanned for possible inter-generational references. The 
obvious approach to parallelising card scanning would be to divide the heap into con
secutive, equally sized blocks, either statically assigned to processors or which collector 
threads would compete to claim. However, the distribution of live objects among blocks 
tends to be uneven, with some blocks very densely populated and others very sparsely. 
Flood et al [2001 ]  found that this straightforward division of work led to uneven load bal
ancing, as scanning the dense blocks dominated collection time. To address this, they 
over-partitioned the card table into N strides, each a set of cards separated by intervals of 
N cards. Thus, cards {0, N, 2N, . . .  } comprise one stride, cards { 1 , N + 1, 2N + 1, . . .  } com
prise the next, and so on. This causes dense areas to be spread across strides. Instead of 
competing for blocks, threads compete to claim strides. 
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14.7 Parallel sweeping 

We conclude this chapter by considering how to parallelise sweeping and compaction 
phases. Both share the property that the tracing work has been done, the live objects in 
the heap have been identified, and that this last phase is 'embarrassingly' parallel . 

In principle, parallelising the sweep phase is straightforward: either statically partition 
the heap into contiguous blocks or over-partition it and have threads compete for a block 
to sweep to a free-list. However, the effect of such a simple strategy is likely to be that 
the free-list becomes a bottleneck, sequentialising the collection. Fortunately, in any such 
parallel system, processors will have their own free-lists and most likely use segregated 
fits allocation (see Chapter 7), so the issue of contention reduces to that of handling the 
return of completely free blocks to a global block allocator. Furthermore, lazy sweeping 
(see Chapter 2) is a naturally parallel solution to the problem of sweeping partially full 
blocks that balances loads according to the allocation rates of mutator threads. 

The first and only step in the sweep phase of lazy sweeping is to identify completely 
empty blocks and return them to the block allocator. In order to reduce contention, Endo 
et al [1997] gave each sweep thread several (for example, 64) consecutive blocks to process 
locally. His collector used bitmap marking, with the bitmaps held in block headers, stored 
separately from the blocks themselves. This makes it easy to determine whether a block is 
complete empty or not. Empty ones are sorted and coalesced, and added to a local free
block list. Partially full blocks are add to local reclaim lists (for example, one for each size 
class if segregated fits allocation is being used) for subsequent lazy sweeping by mutator 
threads. Once a processor has finished with its sweep set, it merges its free-block list into 
the global free-block list. One remaining question is, what should a mutator thread do if it 
has run out of blocks on its local reclaim list and the global pool of blocks is empty? One 
solution is that it should steal a block from another thread. This requires synchronising the 
acquisition of the next block to sweep, but this is a reasonable cost to pay since acquiring 
a new block to sweep is less frequent than allocating a slot in a block, and we can expect 
contention for a block to sweep to be uncommon. 

14.8 Parallel compaction 

Parallelising mark-compact algorithms shares much of the issues discussed above. Live 
objects must be marked in parallel and then moved in parallel. However, parallel sliding 
compaction is simpler than parallel copying in some respects, at least in contiguous heaps. 
For example, once all the live objects have been marked, the destination of objects to be 
moved is fixed: races affect only performance rather than correctness. After marking is 
complete, all compacting collectors require two or more further phases to determine the 
forwarding address of each object, to update references and to move objects . As we saw 
in Chapter 3, different algorithms may perform these tasks in different orders or even 
combine two tasks in a single pass over the heap. 

Crammond [1988] implemented a location-aware parallel collector for Parlog, a concur
rent logic programming language. Logic programming languages benefit from preserving 
the order of objects in the heap . In particular, backtracking to 'choice points' is made more 
efficient by preserving the allocation order of objects in memory, since all memory allo
cated after the choice point can simply be discarded. Sliding compaction preserves the 
order. Crammond's collector parallelised the Morris [1978] threaded collector, which we 
discussed in Section 3.3; in this section, we consider only the parallelism aspects of the 
algorithm. Crammond reduced the cost by dividing the heap into regions associated with 
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Figure 14.8: Flood et al [2001 ]  divide the heap into one region per thread and 
alternate the direction in which compacting threads slide live objects (shown 
in grey). 

processors. A processor encountering an object in its own region marked and counted 
it without synchronisation. However, if the object was a 'remote' one, a reference to it 
was added to that processor 's stack of indirect references and a global counter was incre
mented. The remote processor was responsible for processing the object and decrementing 
the global counter (which was used to detect termination). Thus, synchronisation (using 
locks) was only required for remote objects since the indirect stacks were single reader, 
multiple writer structures. Crammond found that indirect references typically comprised 
less than 1% of the objects marked. 

Flood et al [2001 ]  use parallel mark-compact to manage the old generation of their Java 
virtual machine. The collector uses three further phases after parallel marking (which we 
discussed above) to (i) calculate forwarding addresses, (ii) update references and (iii) move 
objects. An interesting aspect of their design is that they use different load balancing strate
gies for different phases of compaction. Uniprocessor compaction algorithms typically 
slide all live data to one end of the heap space. If multiple threads move data in parallel, 
then it is essential to prevent one thread from overwriting live data before another thread 
has moved it. For this reason, Flood et al do not compact all objects into a single, dense 
end of the heap but instead divide the space into several regions, one for each compacting 
thread. Each thread slides objects in its region only. To reduce the (limited) fragmentation 
that this partitioning might incur, they also have threads alternate the direction in which 
they move objects in even and odd numbered regions (see Figure 14.8) . 

The first step is to install a forwarding pointer into the header of each live object. This 
will hold the address to which the object is to be moved. In this phase, they over-partition 
the space in order to improve load balancing. The space is split into M object-aligned 
units, each of roughly the same size; they found that a good choice on their eight-way 
UltraSPARC server was to use four times as many units as garbage collection threads, 
M = 4N. Threads compete to claim units and then count the volume of live data in each 
unit; to improve subsequent passes, they also coalesce adjacent garbage objects into single 
quasi-objects. Once they know the volume of live objects in each unit, they can partition 
the space into N unevenly sized regions that contain approximately the same amount of live 
data. These regions are aligned with the units of the previous pass. They also calculate the 
destination address of the first live object in each unit, being careful to take into account 
the direction in which objects in a region will slide. Collection threads then compete once 
again to claim units in order to install forwarding pointers in each live object of their units. 

The next pass updates references to point to objects' new locations. As usual, this re
quires scanning mutator threads' stacks, references to objects in this heap space that are 
held in objects stored outside that space, as well as live objects in this space (for example, 
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Figure 14.9: Inter-block compaction. Rather than sliding object by object, 
Abuaiadh et al [2004] slide only complete blocks: free space within each block 
is not squeezed out. 
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the old generation) .  Any suitable load balancing scheme can be used. Flood et al reuse the 
unit partitions for scanning the space to be compacted (their old generation) although they 
scan the young generation as a single task. Their last phase moves the objects. Here they 
give each thread a region of objects to move. This balances effort between threads since 
these regions were chosen to contain roughly equal volumes of live data. 

There are two disadvantages to the way this algorithm compacts objects. First, it makes 
3 passes over the heap. As we saw in Chapter 3, other algorithms make fewer passes. Sec
ond, rather than compacting all live objects to one end of the heap, Flood et al compact into 
N dense piles, leaving f ( N + 1 ) /21 gaps for allocation. Each pile is compacted densely, in 
the sense that space need only be wasted in a pile due to object alignment requirements. 
However, it is possible that if a very large number of threads/regions were to be used, it 
may be difficult for mutators to allocate very large objects. 

Abuaiadh et al [2004] address the first problem by calculating rather than storing for
warding addresses, using the mark bitmap and an offset vector that holds the new address 
of the first live object in each small block of the heap, as we described in Section 3.4. Their 
solution to the second problem is to over-partition the heap into a number of fairly large 
areas. For example, they suggest that a typical choice may be to have 16 times as many ar
eas as processors, while ensuring that each area is at least four megabytes. The heap areas 
are compacted in order. Threads race to claim an area, using an atomic operation to incre
ment a global area index (or pointer). If the operation is successful, the thread has obtained 
this area to compact. If it was not successful, then another thread must have claimed it and 
the first thread tries again for the next area; thus, acquisition of areas is wait-free. A table 
holds pointers to the beginning of the free space for each area. After winning an area to 
compact, the thread competes to acquire an area into which it can move objects. A thread 
claims an area by trying to write null atomically into its corresponding table slot. Threads 
never try to compact from a source area nor into a target area whose table entry is null, and 
objects are never moved from a lower to a higher numbered area. Progress is guaranteed 
since a thread can always compact an area into itself. Once a thread has finished with an 
area, it updates the area's free space pointer in the table. If an area is full, its free space 
pointer will remain null . 

Abuaiadh et a[ explored two ways in which objects could be moved. The best com
paction, with the least fragmentation, is obtained by moving individual live objects to their 
destination, as we described above. Note that because every object in a block is moved to 
a location partly determined by the offset vector for that block, a block's objects are never 
split between two destination areas .  They also tried trading quality of compaction for 
reduced compaction time by moving whole blocks at a time (256 bytes in their implemen
tation}, illustrated in Figure 14.9. Because objects in a linearly allocated space tend to live 
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and die in clumps, they found that this technique could reduce compaction time by a fifth 
at the cost of increasing the size of the compaction area by only a few percent. On the other 
hand, it is not hard to invent a worst case that would lead to no compaction at all . 

The calculate-rather-than-store the forwarding address mechanism was later adopted 
by Compressor [Kermany and Petrank, 2006] . However, Compressor introduced some 
changes. First, as the second phase of the collector passes over the mark bitmap, it cal
culates a first-object vector as well as the offset vector.5 The first-object table is a vector 
indexed by the pages that will hold the relocated objects. Each slot in the table holds the 
address in fromspace of the first object that will be moved into that page. Compaction itself 
starts by updating the roots (using the information held in the mark and offset vectors). 

The second difference is that each thread then competes to claim a tospace page from 
the first-object table . A successful thread maps a new physical page for its virtual page, 
and copies objects starting from the location specified in this slot of the first-object table, 
using the offset and mark vectors. Acquisition of a fresh page to which to evacuate objects 
allows Compressor to use parallel collector threads whereas the description we gave in 
Chapter 3 sequentialised sliding of objects. At first sight, this may look as if it is a copying 
algorithm rather than a mark-compact one. However, Compressor truly is a sliding mark
compact collector. It manages fromspace and tospace pages at a cost in physical memory 
of typically only one page per collector thread, in stark contrast to a traditional semispace 
collector which requires twice as much heap space. The trick is that, although Compressor 
needs to map fresh tospace pages, it can also unmap each fromspace page as soon as it has 
evacuated all the live objects from it. 

This design minimises overheads for synchronisation between compacting threads. A 
thread needs to synchronise only to claim a slot in the first-object table corresponding to 
a tospace page into which it can evacuate objects . This process is wait-free since a thread 
never needs to retry a page: if it fails to claim it, then another thread is evacuating to it 
so this thread can try the next slot in the table. Termination is equally simple: a thread 
exits when it reaches the end of the table. One subtlety is how to handle objects that span 
pages. In a stop-the-world implementation, one can arbitrarily decide that such an object 
is associated with the first tospace page on which it will be placed. However, this solution 
will not work for a concurrent implementation (which we discuss in Section 1 7.7), so we 
copy precisely the data that belongs to a single tospace page, including the end of the object 
that starts on the previous page and the beginning of one that ends on the next page. 

14.9 Issues to consider 

Terminology 

Earlier work was often inconsistent in the terminology it used to describe parallel garbage 
collection. Papers in the twentieth century often used 'parallel', 'concurrent' and even 
'real-time' interchangeably. Fortunately, since around 2000, authors have adopted a con
sistent usage. Thus, a parallel collector is now one that uses multiple garbage collector 
threads, running in parallel . The world may or may not be stopped while parallel collec
tion threads run. It seems clear that it is sensible to allow parallel collection if the underly
ing platform has the capability to support this, in the same way that it is desirable to allow 
mutator threads to use all available parallel resources. 

5 At 512 bytes, their blocks are also larger than those of Abuaiadh et a/ [2004] . 
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Is parallel collection worthwhile? 

The first question to ask is, recalling Amdahl's law,6 is there sufficient work available to 
parallelise? It is easy to imagine scenarios that offer no opportunity for parallel execution: 
a common example might be tracing a list. Fortunately, there is evidence that real appli
cations use a richer set of data structures and that these do indeed offer a high degree of 
potential parallelism [Siebert, 2008 ] .  Garbage collection activities other than tracing offer 
much more obvious opportunities to exploit parallel hardware. For example, sweeping 
and compaction are eminently parallelisable (even if a little care needs to be taken with the 
latter) .  Even in the tracing phase, thread stacks and remembered sets can be scanned in 
parallel and with little synchronisation overhead; completing the trace in parallel requires 
more careful handling of work lists in order to limit the synchronisation costs while at the 
same time using parallel hardware resources as efficiently as possible . 

Strategies for balancing loads 

It should be clear that parallelising collection effectively requires carefully trading off the 
need to balance loads between processors and limiting the amount of synchronisation nec
essary to do so safely. We want to balance loads to ensure that no processors are inactive 
while others do all the work. It is also important to balance other resources, such as mem
ory. Synchronisation is essential to protect the integrity of the collector's work lists and the 
application's heap allocated structures. For example, allowing two threads to manipulate a 
mark stack pointer simultaneously risks losing entries . Furthermore, allowing two threads 
to copy an object simultaneously risks changing the topology of the heap. However, the 
finest grain balancing is likely to involve very high synchronisation costs. 

The general solution is to assign to each collector thread a quantum of work that it 
can perform without further synchronisation with other threads. This begs the question 
of how the work can be divided between threads. The cheapest division, in the sense of 
the least synchronisation overhead, is to partition the work statically, at either build time, 
on program startup or before each collection cycle. In this case, the coordination between 
threads will be limited to consensus on termination. However, static partitioning may not 
lead to good load balancing. On the other hand, loads can be balanced by over-partitioning 
the work available and having threads compete to acquire tasks and having them return 
new tasks to a global pool. This offers the finest grain load balancing but at the cost of 
the most synchronisation. In between these two extremes, it is often possible to apply 
different load balancing strategies in different phases of the execution of a collection cycle. 
For example, information gathered by one phase (typically, the mark phase) can be used 
to estimate a fair division between threads of the work to done by subsequent phases. The 
Flood et al [2001]  collector is a good example of this approach. 

Managing tracing 

Tracing the heap involves consuming work (objects to mark or copy) and generating fur
ther work (their untraced children). Some structure, such as a stack or a queue, is needed 
to keep track of work to do. A single, shared structure would lead to high synchronisa
tion costs so collection threads should be given their own private data structures. How-

6 Amdahl's law states that the speedup obtained from parallelising a program depends on the proportion of 
the program that can be parallelised . Thus, if s is the amount of time spent (by a serial processor) on serial parts 
of a program, and p is the amount of time spent (by a serial processor) on parts that can be done in parallel by n 
processors, then the speedup is 1 / (s + p i n ) .  
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ever, in order to balance load, some mechanism is required that can transfer work between 
threads. The first decision is what mechanism to use. We have discussed several in this 
chapter. Work stealing data structures can be used to allow work to be transferred safely 
from one thread's to another. The idea is to make the common operation (pushing and 
popping entries while tracing) as cheap (that is, unsynchronised) as possible while still al
lowing infrequent operations (transferring work safely between threads) .  Endo et al [1997] 
give each thread its own stack and a stealable work queue, whereas Flood et al [2001 ]  have 
each thread use just one double-ended queue both for tracing and stealing. Grey packets 
provide a global pool of buffers of work to do (hence their name) [Thomas et al, 1998; Os
sia et al, 2002] . Here, each thread competes for a packet of work to do and returns new 
work to the pool in a fresh packet. Cheng and Blelloch [2001 ]  resolve the problem of syn
chronising stack pushes and pops by splitting tracing into steps, which they call 'rooms'. 
At its simplest, all threads are in the push room or all are in the pop room. In each case, 
every thread wants to move the stack pointer in the same direction so an atomic operation 
like Fet chAndAdd can be used. Other authors eliminate the need for atomic operations 
by having tracing threads communicate through single writer, single reader channels [Wu 
and Li, 2007; Oancea et al, 2009] .  

The second decision is how much work t o  transfer and when to transfer it. Different 
researchers have proposed different solutions. The smallest unit of transfer is a single entry 
from the stack. However, if data structures are small, this may lead to a higher volume of 
traffic between threads. In the context of a parallel, concurrent and real-time collector, 
Siebert [2010]  has a processor with no work steal all of another 's work list. This is only 
a sensible decision if it is unlikely that processors will run out of work to do at around 
the same time (in this case, because they are executing mutator code concurrently) . A 
common solution is to transfer an intermediate amount of work between threads. Fixed 
size grey packets do this naturally; other choices include transferring half of a thread's 
mark stack. If mark stacks are a fixed size, then some mechanism must be employed to 
handle overflow. Again, grey packets handle this naturally: when an output packet is 
filled, it is returned to the global pool and an empty one is acquired from the pool. Flood 
et al [2001] thread overflow sets through Java class objects, at the cost of a small, fixed 
space overhead per class. Large arrays are problematic for load balancing. One solution, 
commonly adopted in real-time systems, is to divide large, logically contiguous objects 
into linked data structures. Another is to record in the mark stack a sequence of sections of 
the array to scan for pointers to trace, rather than requiring all of the array to be scanned 
in a single step . 

The techniques above are processor-centric: the algorithms concern the management of 
thread (processor) local work lists. The alternative is to use memory-centric strategies that 
take into account the location of objects. This may be increasingly important in the context 
of non-uniform memory architectures where access to a remote memory location is more 
expensive than access to a local one. Memory-centric approaches are common in parallel 
copying collectors, particularly where work lists are Cheney queues [Imai and Tick, 1993; 
Siegwart and Hirzel, 2006] . Here the issues are (i) the size of the blocks (the quanta of 
work), (ii) which block to process next and which to return to the global pool of work, 
and (iii) which thread 'owns' an object. There are two aspects to choosing sizes of blocks. 
First, any moving collector should be given its own, private region of the heap into which 
it can bump allocate. These chunks should probably be large in order to reduce contention 
on the chunk manager. However, large chunks do not offer an appropriate granularity 
for balancing the load of copying threads. Instead, chunks should be broken into smaller 
blocks which can act as the work quanta in a Cheney-style collector. Second, the choice 
of which object to process next affects the locality of both the collector and the mutator 
(as we saw in Section 4.2) . In both cases, it seems preferable to select the next unscanned 
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object in the block that is being used for allocation, returning intermediate, unscanned 
or incompletely scanned blocks to the global pool. Making this decision at the end of 
scanning a block may improve the collector 's locality; making this decision after scanning 
each object may improve the mutator 's locality as well because it causes the live object 
graph to be traversed in a more depth-first-like (hierarchical) order. Finally, the decision 
might be made on which processor is most likely to use an object next. Oancea et al [2009] 
uses the notion of a 'dominant thread' to guide the choice of which processor should copy 
an object (and hence the location to which it should be copied) .  

Low-level synchronisation 

As well as synchronising operations on collector data structures, it may also be necessary 
to synchronise operations on individual objects . In principle, marking is an idempotent 
operation: it does not matter if an object is marked more than once. However, if a collector 
uses a vector of mark-bits, it is essential that the marker sets these bits atomically. Since 
modern processors' instruction sets do not provide the ability to set an individual bit in a 
word or byte, setting a mark may necessitate looping trying to set the value of the whole 
byte atomically. On the other hand, if the mark bit is held in the object's header, or the 
mark vector is a vector of bytes (one per object), then no synchronisation is necessary since 
double writing the mark is safe .  

A copying collector must not 'mark' (that is, copy) an object more than once, as this 
would change the topology of the graph, with possibly disastrous consequences for muta
ble objects . It is essential that copying an object and setting the forwarding address is seen 
by other collector threads to be a single, indivisible operation. The details come down to 
how the forwarding address is handled. A number of solutions have been adopted. A col
lector may attempt to write a 'busy' value into the forwarding address slot atomically, then 
copy the object and write the forwarding address with a simple store operation. If another 
thread sees a 'busy' value, it must spin until it sees the forwarding address. The synchro
nisation cost can be reduced by testing the forwarding address slot before attempting the 
atomic 'busy' write. Another tactic might be to copy the object if there is no forwarding 
address and then attempt to store the forwarding address atomically, retracting the copy 
if the store is unsuccessful . The effectiveness of such a tactic will depend on the frequency 
of collisions when installing forwarding addresses. 

It is important that certain actions be made visible in the proper order to other proces
sors on platforms with weakly consistent memory models. This requires the compiler to 
emit memory fences in the appropriate places. Atomic operations such as CompareAnd
Swap often act as fences but in many cases weaker instructions suffice. One factor in the 
choice of algorithm will be the complexity of deciding where to place fences, the number 
that need to be executed and the cost of doing so. It may well be worth trading simplic
ity of programming (and hence confidence that the code is correct) for some reduction in 
performance. 

Sweeping and compaction 

Sweeping and compaction phases essentially sweep linearly through the heap (in more 
than one pass in the case of compaction) . Thus, these operations are well suited to paral
lelisation. The simplest load balancing strategy might be to divide the heap into as many 
partitions as there are processors .  However, this can lead to uneven load balancing if the 
amount of work is uneven between partitions. To first approximation, the amount of work 
to be done is proportional to the number of objects in a partition. This information is avail-
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able from the mark phase, and can be used to divide the heap into unequally sized (but 
object aligned) partitions, each of which contains roughly the same amount of work. 

However, this strategy assumes that each partition can be processed independently 
of the others. This will not be true if processing one partition may destroy information 
on which another partition depends. For example, a sliding compaction collector cannot 
move objects in an arbitrary order to their destination as this would risk overwriting live 
but not yet moved data . In this case, it maybe necessary to process partitions in address 
order. Here, the solution is to over-partition the heap and have threads compete for the 
next partitions to use (one for the objects to be moved and one into which to move them). 

Termination 

Finally, termination of any collection phase must be determined correctly. The use of paral
lel threads clearly makes termination detection more complex. The problem is fundamen
tally that one thread may be attempting to detect whether the phase has terminated while 
another is generating more work. Unfortunately, flawed termination detection algorithms 
are quite easy to write! One (correct) solution to the problem is to nominate a single thread 
to detect termination and have threads indicate atomically whether they are busy or not; 
care is needed with the protocol for raising and lowering flags and processing work, and 
in placement of fences in the presence of relaxed memory orders. Systems with a global 
pool of work can offer simpler protocols that allow any number of threads to detect termi
nation. For example, grey packet systems may allow the number of packets in the global 
pool to be counted:  if they are all present (and empty), then the phase is complete . 



Chapter 15 

Concurrent garbage collection 

The basic principles o f  concurrent collection were initially devised a s  a means to reduce 
pause times for garbage collection on uniprocessors . Early papers used terms such as 
'concurrent', 'parallel', 'on-the-fly' and 'real-time' interchangeably or inconsistently. In 
Chapter 14 we defined the modem usage of 'parallel ' .  Here, we define the remaining 
terms. So far, we have assumed that the mutator is suspended while garbage collection 
proceeds, and that each collection cycle terminates before the mutator can continue. As 
before, Figure 14.1a illustrates different collection styles by one or more horizontal bars, 
with time proceeding from left to right, and shows mutator execution in white while each 
collection cycle is represented as a distinct non-white shade. Thus, grey boxes represent 
actions of one garbage collection cycle, and black boxes those of the next. 

We have already seen one way to reduce pause times on a multiprocessor in Chap
ter 14: run a full garbage collection cycle in parallel while all the mutators are stopped, as 
illustrated in Figure 14.1c .  

Another way to reduce pause times on a uniprocessor is to interleave mutator execution 
with collector execution, as illustrated in Figure 15.1a. Interleaving mutator and collector 
execution in this way is called incremental collection, since the collection cycle is broken 
down into multiple finer-grained increments. However, incremental collection is not as 
straightforward as it might first seem, since the collection cycle is no longer atomic with 
respect to mutation of the object graph, so the reachability of objects can change from one 
increment to the next. Thus, incremental collectors must have some way of keeping track 
of changes to the graph of reachable objects, perhaps re-scanning objects or fields in the 
face of those changes. There are many different ways to cope with this problem. 

Although interleaving provides the illusion of concurrency between mutator and col
lector, incremental collection assumes that the mutator and collector do not execute in 
parallel - that is, that the mutator is stopped for each increment of the collector cycle. It 
is possible to maintain this property on a multiprocessor by making sure that all parallel 
mutators are stopped for each increment, as illustrated in Figure 15.1b. The increments can 
also be parallelised, as in Figure 15.1c. 

It is a conceptually simple step to go from interleaving of the mutator with the collec
tor on a uniprocessor to concurrent execution of (multiple) mutators in parallel with the 
collector on a multiprocessor. The main added difficulty is ensuring that the collector and 
mutators synchronise properly to maintain a consistent view of the heap, and not just for 
reachability. For example, inconsistency can occur when a mutator attempts to manipulate 
partially scanned or copied objects, or to access metadata, concurrently with the collector. 

The degree and granularity of this synchronisation necessarily impacts application 
throughput (that is, end-to-end execution time including both mutator and collector work), 
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Figure 15.1: Incremental and concurrent garbage collection. Each bar rep
resents an execution on a single processor. The coloured regions represent 
different garbage collection cycles. 
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and synchronisation is more easily maintained in some phases of collection than others . 
Thus, mostly-concurrent collection avoids some synchronisation overhead by assuming that 
the mutators are all stopped together for a brief period during each collector cycle, often 
at the beginning of the cycle, which may include obtaining stack roots from the stopped 
mutators. This is true whether the collection cycle is monolithic (Figure lS . ld) or incre
mental (Figure lS .le) .  The (hopefully brief) global stop-the-world phase ensures that all 
the mutators are simultaneously aware that a collection cycle has begun. 

Relaxing the need for a global stop-the-world phase yields purely concurrent on-the-fly 
collection, which executes in parallel with the mutators (Figure lS .lf) ,  possibly incremen
tally (Figure lS .lg) .  The vertical lines indicate that each mutator may need to synchronise 
with the collector prior to each collection cycle, even though there is no global stop-the
world phase. l 

15.1 Correctness of concurrent collection 

A correct concurrent collector must satisfy two properties: 

• safety requires the collector to retain at least all reachable objects; 

• liveness requires the collector eventually to complete its collection cycle . 

Concurrent collectors are correct only insofar as they are able to control mutator and col
lector interleavings. As we shall soon see, concurrent mutator and collector operations 
will be specified as operating atomically, allowing us to interpret a sequence of interleaved 
operations as being generated by a single mutator (and single collector), without loss of 
generality. Any concurrent schedule for executing these atomic operations that preserves 
their appearance of atomicity will be permitted, leaving the actual implementation of the 
concurrency control for these operations to the discretion of the implementer. Perhaps the 
easiest way to preserve atomicity of these operations is to alternate collector and mutator 
work by running the collector incrementally, stopping all the mutator threads while each 
collector increment runs. Other approaches permit finer-grained synchronisation. Tech
niques for doing so have been reviewed in Chapter 13 .  

The tricolour abstraction, revisited 

Correctness of concurrent collectors is often most easily reasoned about by considering 
invariants based on the tricolour abstraction that the collector and mutator must preserve . 
All concurrent collectors preserve some realisation of these invariants, but they must retain 
at least all the reachable objects (safety) even as the mutator modifies objects . Recall that: 

White objects have not yet been reached by the collector; this includes all objects at the 
beginning of the collection cycle. Those left white at the end of the cycle will be 
treated as unreachable garbage. 

Grey objects have been reached by the collector, but one or more of their fields still need 
to be scanned (they may still point to white objects) .  

Black objects have been reached by the collector, and al l  their fields have been scanned; 
thus, immediately after scanning none of the outgoing pointers were to white objects . 
Black objects will not be rescanned unless their colour changes. 

1 Historically, concurrent collection in general was referred to as 'on-the-fly' [Dijkstra et al, 1976, 1978; Ben
Ari, 1984] . However, on-the-fly has since come to mean more specifically never stopping all the mutator threads 
simultaneously. 



310 CHAPTER 15. CONCURRENT GARBAGE COLLECTION 

The garbage collector can be thought of as advancing a grey wavefront, the boundary be
tween black (was reachable at some time and scanned) and white (not yet visited) objects. 
When the collector cycle can complete without mutators concurrently modifying the heap 
there is no problem. The key problem with concurrent mutation is that the collector 's and 
the mutator 's views of the world may become inconsistent, and that the grey wavefront 
no longer represents a proper boundary between black and white. 

Let us reconsider the earlier definition of the mutator W r i t e  operation, which we can 
recast as follows by introducing a redundant load from the field right before the store: 

atomic Write ( s rc, i, new) : 
o l d  f- s rc [ i ]  
s rc [ i ]  f- new 

The Wri t e  operation inserts the pointer s rc ---+new into the field s rc [i ]  of  object s rc .  As 
a side-effect i t  deletes the pointer s rc---+ o l d  from s rc [ i ] .  We characterise the operation as 
atomic to emphasise that the old  and new pointers are exchanged instantaneously with
out any other interleaving of mutator/collector operations. Of course, on most hardware 
the store is naturally atomic so no explicit synchronisation is required. 

When the mutator runs concurrently with the collector and modifies objects ahead of 
the wavefront - grey objects (whose fields still need to be scanned) or white objects (as 
yet unreached) - correctness ensues since the collector will still visit those objects at some 
point (if they are still reachable) . There is also no problem if the mutator modifies objects 
behind the wavefront - black objects (whose fields have already been scanned) - so long 
as it inserts or deletes a pointer to only a black or grey object (which the collector has 
already decided is reachable) . However, other pointer updates may lead to the mutator 's 
and the collector 's view of the set of live objects becoming incoherent [Wilson, 1994] , and 
thus live objects being freed incorrectly. Let us consider an example. 

The lost obj ect problem 

We illustrate the two scenarios under which a white pointer can be inserted behind the 
wavefront in Figure 15 .2 .  The first scenario in Figure 15 .2a illustrates how the mutator can 
hide a white object initially directly reachable from a grey object by inserting its pointer 
behind the wavefront and then deleting its link from the grey object. The initial state of 
the heap shows a black object X and grey object Y, having been marked reachable from the 
roots. White object z is directly reachable from Y. In step 01 the mutator inserts pointer 
b from X to z by copying pointer a from grey object Y. In step 02 the mutator deletes 
unscanned pointer a from the only unscanned object Y that refers to z .  In step 03 the 
collector scans the object Y to make it black, and terminates its marking phase. In the 
sweep phase, white object z will be erroneously reclaimed, even though it is reachable via 
pointer b. 

The second scenario in Figure 15.2b shows how the mutator can hide a white object 
transitively reachable via a chain of pointers from a grey object by inserting its pointer 
behind the wavefront and then deleting some other link in the chain. In this scenario no 
pointer to the lost object itself is deleted, unlike the direct case which does delete a pointer 
to the lost object. The initial state of the heap shows a black object P and grey object Q, 
having been marked reachable from the roots. White object R is directly reachable from Q, 
while white object s is transitively reachable from Q via R. In step T1 the mutator inserts 
pointer e from P to s by copying pointer d from white object R. In step T2 the mutator 
deletes pointer c to R, destroying the path from the only unscanned object Q that leads to 
s. In step T3 the collector scans the object Q to make it black, and terminates its marking 
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Dl : Wr i t e (X, b, Read(Y, a ) )  Tl:  Writ e ( P, e, Read( R, d ) )  

X 

D2: Wr i t e (Y, a, nul.l. ) T2: Wri t e ( Q, c, null )  

D3: s can (Y) T3: s ca n (Q )  

(a) Direct: hiding a reachable white object by 
dropping a direct link from grey. 

(b) Transitive: hiding a transitively reachable 
white object by breaking an indirect chain 
from grey. 

Figure 15.2: The lost object problem: a reachable white object is hidden from 
the collector by making it unreachable from any grey object. 

With kind permission from Springer Science+ Business Media: Vechev et al [2005], 
figures 3--4, pages 584-5. 
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phase. In the sweep phase, white object s will be erroneously reclaimed, even though it is 
reachable via pointer e .  

Wilson [1994] observes that objects can become lost only i f  two conditions hold a t  some 
point during tracing: 

Condition 1: the mutator stores a pointer to a white object into a black object, and 

Condition 2: all paths from any grey objects to that white object are destroyed. 

Inserting a white pointer (that is, a pointer to a white object) into a black object will cause 
problems if the collector never encounters another pointer to the white object. It would 
mean that the white object is reachable (from the black object, Condition 1), but the col
lector will never notice since it does not revisit black objects . The collector could only 
discover the white object by following a path of unvisited (that is, white) objects starting 
from an object that the collector has noticed but not finished with (that is, a grey object) . 
But Condition 2 states that there is no such path. 

The strong and weak tricolour invariants 

To prevent live objects from being reclaimed incorrectly, we must ensure that both condi
tions cannot hold simultaneously. To guarantee that the collector will not miss any reach
able objects it must be sure to find every white object that is pointed to by black objects. So 
long as any white object pointed to by black objects is also protected from deletion it will 
not be missed. It is sufficient for such an object to be directly reachable from some grey 
object, or transitively reachable from some grey object through a chain of white objects. In 
this case Condition 2 never holds. We say that such an object is grey protected. Thus, we 
must preserve: 

The weak tricolour invariant: All white objects pointed to by a black object are grey pro
tected (that is, reachable from some grey object, either directly or through a chain of 
white objects) .  

Non-copying collectors have the advantage that all white pointers automatically turn 
into grey /black pointers when their target object is shaded grey or black. Thus, white 
pointers in black objects are not a problem because their grey protected white targets are 
eventually shaded by the collector - all white pointers in black objects eventually become 
black before the collection cycle can terminate . 

In contrast, concurrent copying collectors are more restricted because they explicitly 
have two copies of every live object at the end of the collection cycle (the fromspace white 
copy, and the tospace black copy), at which point the white copies are discarded along 
with the garbage. By definition, black objects are never revisited by the collector. Thus, 
a correct concurrent copying collector must never allow a white fromspace pointer (to a 
white fromspace object) to be stored in a black tospace object. Otherwise, the collector 
will complete its cycle while leaving dangling white pointers from black tospace into the 
discarded white fromspace. That is, they must preserve: 

The strong tricolour invariant: There are no pointers from black objects to white objects. 

Clearly, the strong invariant implies the weak invariant, but not the other way round. 
Because problems can occur only when the mutator inserts a white pointer into a black 
object it is sufficient simply to prohibit that. Preserving the strong tricolour invariant is a 
strategy equally suited to both copying and non-copying collectors . 

In both the scenarios in the example, the mutator first wrote a pointer to a white object 
into a black object (01 /Tl ), breaking the strong invariant. It then destroyed all paths to 
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that white object from grey objects (D2/T2), breaking the weak invariant. The result was 
that a (reachable) black object ended up pointing to a (presumed garbage) white object, 
violating correctness .  Solutions to the lost object problem operate at either the step that 
writes the pointer to the white object (Dl /Tl) or the step that deletes a remaining path to 
that object (D2/T2) . 

Precision 

Different collector algorithms, which achieve safety and liveness in different ways, will 
have varying degrees of precision (as determined by the set of objects they retain at the 
end of the collection cycle), efficiency (throughput), and atomicity (degree of concurrency) .  
Varying precision means that they may retain some varying superset o f  the reachable ob
jects, and hence affects the promptness of reclamation of dead objects. A stop-the-world 
collector obtains maximal precision (all unreachable objects are collected) at the expense 
of any concurrency with the mutator. Finer grained atomicity permits increased concur
rency with the mutator at the expense of possibly retaining more unreachable objects and 
the overhead to ensure atomicity of key operations. It is difficult to identify the minimal 
yet sufficient set of critical sections to place in tracing. Vechev et al [2007] shows how this 
search can be semi-automated . Unreachable objects that are nevertheless retained at the 
end of the collection cycle are called floating garbage. It is usually desirable, though not 
strictly necessary for correctness, that a concurrent collector also ensure completeness in 
collecting floating garbage at some later collection cycle. 

Mutator colour 

In classifying algorithms it is also useful to talk about the colour of the mutator roots as 
if the mutator itself were an object. A grey mutator either has not yet been scanned by 
the collector so its roots are still to be traced, or its roots have been scanned but need 
to be rescanned. This means that the grey mutator roots may refer to objects that are 
white, grey or black. A black mutator has been scanned by the collector so its roots have 
been traced, and will not be scanned again. Under the strong invariant this means that a 
black mutator 's roots can refer only to objects that are grey or black but not white. Under 
the weak invariant, a black mutator can hold white references so long as their targets are 
protected from deletion. 

The colour of the mutator has implications for termination of a collection cycle. By 
definition, concurrent collection algorithms that permit a grey mutator need to rescan its 
roots. This will lead to more tracing work if a reference to a non-black object is found . 
When this trace is complete, the roots must be scanned again, in case the mutator has 
added to the roots yet another non-black reference, and so on. In the worst case, it may be 
necessary for grey mutator algorithms to halt all mutator threads for a final scan of their 
roots. 

As mentioned earlier, our simplifying assumption for now is that there is only a sin
gle mutator. However, on-the-fly collectors distinguish among multiple mutator threads 
because they do not suspend them all at once to sample their roots. These collectors 
must operate with mutator threads of different colours, both grey (unscanned) and black 
(scanned). Moreover, some collectors may separate a single mutator thread's roots into 
scanned (black) and unscanned (grey) portions. For example, the top frame of a thread's 
stack may be scanned to make it black, while the remaining stack frames are left unscanned 
(grey) .  Returning or unwinding into the grey portion of the stack forces the new top stack 
frame to be scanned. 
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Allocation colour 

Mutator colour also influences the colour objects receive when they are allocated, since 
allocation results in the mutator holding the pointer to the newly allocated object, which 
must satisfy whichever invariant applies given the colour of the mutator. But the allocation 
colour also affects how quickly a new object can be freed once it becomes unreachable. If 
an object is allocated black or grey then it will not be freed during the current collection 
cycle (since black and grey objects are considered to be live), even if the mutator drops 
its reference without storing it into the heap. A grey mutator can allocate objects white 
and so avoid unnecessarily retaining new objects. A black mutator cannot allocate white 
(whether the strong or weak invariant applies), unless (under the weak invariant) there is 
a guarantee that the white reference will be stored to a live object ahead of the wavefront 
so the collector will retain it. Otherwise, there is nothing to prevent the collector from 
reclaiming the object even though the black mutator retains a pointer to it. Note also that, 
initially, a new object contains no outgoing references so allocating black is always safe .  

Incremental update solutions 

Wilson [ 1994] calls solutions that address 01 /Tl mutations incremental update techniques 
because they inform the collector of incremental changes made by the mutator to the set of 
objects known to be live, and hence of additional objects that need to be (re)scanned. In
cremental update solutions conservatively treat an object as live (non-white) if a pointer to 
it is ever inserted behind the wavefront (into a black object), speculating that the mutator 
may yet delete all other paths to the object ahead of the wavefront. Thus, incremental up
date techniques preserve the strong invariant. They use a mutator write barrier to protect 
against insertion of white pointers in black objects. In the example above, the write barrier 
would re-colour the source or destination of pointer b so that the pointer is no longer black 
to white . 

When a black mutator loads a reference from the heap it is effectively inserting a pointer 
in a black object (itself) . Incremental update techniques can use a mutator read barrier to 
protect from insertion of white pointers in a black mutator. 

Snapshot-at-the-beginning solutions 

Wilson calls solutions that address D2/T2 mutations snapshot-at-the-beginning techniques 
since they preserve the set of objects that were live at the start of the collection. They inform 
the collector when the mutator deletes a white pointer from a grey or white object (ahead 
of the wavefront) . Snapshot-at-the-beginning solutions conservatively treat an object as 
live (non-white) if a pointer to it ever existed ahead of the wavefront, speculating that the 
mutator may have also inserted that pointer behind the wavefront. This maintains the 
weak invariant, because there is no way to delete every path from some grey object to 
any object that was live at the beginning of the collection cycle. Snapshot-at-the-beginning 
techniques use a mutator write barrier to protect against deletion of grey or white pointers 
from grey or white objects. 

Snapshotting the mutator means scanning its roots, making it black. We must snapshot 
the mutator at the beginning of the collection cycle to ensure it holds no white pointers. 
Otherwise, if the mutator held a white pointer that was the only pointer to its referent, it 
could write that pointer into a black object and then drop the pointer, breaking the weak 
invariant. A write barrier on black could catch such insertions, but degenerates to main
taining the strong invariant. Thus, snapshot collectors operate only with a black mutator. 
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15.2 Barrier techniques for concurrent collection 

Following Pirinen [1998], barrier techniques that maintain one of the two tricolour invari
ants rely on a number of actions to cope with insertion or deletion of pointers. They can: 

• Add to the wavefront by shading an object grey, if it was white. Shading an already 
grey or black object has no effect. 

• Advance the wavefront by scanning an object to make it black. 

• Retreat the wavefront by reverting an object from black back to grey. 

The only other actions - reverting an object to white or shading an object black without 
scanning - would break the invariants. Algorithms 15 . 1  to 15.2 enumerate the range of 
classical barrier techniques for concurrent collection. 

Grey mutator techniques 

We first consider approaches that operate with a grey mutator. All these techniques pre
serve the strong invariant by using an insertion barrieil- when writing references into the 
heap to protect from storing white pointers into black objects. Because the mutator is grey 
they do not need a read barrier. They are incremental update techniques. 

• Steele [1975, 1976) devised the barrier illustrated in Algorithm 15 . 1a .  It yields the 
most precision of all the techniques because it simply notes the source object being 
modified. It does not change any decision about reachability of any object, but re
treats the wavefront by changing the modified source object from black back to grey. 
It defers deciding reachability of the target white object until the source object can be 
rescanned (the inserted pointer might be deleted before rescanning) .  This precision 
comes at the cost of progress, since the wavefront is retreated. 

• Boehm et al [1991 )  implemented a variant of the Steele [1975, 1976] barrier which ig
nores the colour of the inserted pointer, as shown in Algorithm 15 .1b .  They originally 
implemented this barrier using virtual memory dirty bits to record pages modified 
by the mutator without having to mediate the heap writes in software, which meant 
a less precise barrier that did not originally have the conditional test that the reverted 
source object is actually black. Boehm et al use a stop-the-world phase to terminate 
collection at which time the dirty pages are rescanned. 

• Dijkstra et al [1976, 1978] designed a barrier (Algorithm 15.1c) that yields less preci
sion than Steele's since it commits to shading the target of the inserted pointer reach
able (non-white), even if the inserted pointer is subsequently deleted. This loss of 
precision aids progress by advancing the wavefront. The original formulation of this 
barrier shaded the target without regard for the colour of the source, with a further 
loss of precision. Omitting this extra check allows atomicity to be relaxed, so long 
as the store and the shade operations are separately atomic. The store must still be 
performed ahead of the shade operation so as to avoid a subtle race when the col
lector transitions from one collector cycle to the next in the middle. If the operations 
are inverted then a collector cycle transition right after shading the stored re f grey 
can revert it to white and scan the s rc to black before the store, which then creates a 
black to white pointer violating the strong invariant [Stenning, 1976] . 

2We believe that 'insertion barrier ' is a clearer term for the mechanism than 'incremental update barrier ' .  
Likewise, we prefer the term 'deletion barrier' to 'snapshot-at-the-beginning' barrier. ' 
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Algorithm 15.1: Grey mutator barriers. Algorithm 15.2: Black mutator barriers .  

(a) Steele [1975, 1976] barrier 

atomic Wri t e ( s rc ,  i ,  re f ) : 
s r c [i ]  f- re f 
if i sBlack ( s r c )  

i f  i sWhi t e ( re f )  
reve rt ( s r c )  

(b) Boehm et al [ 199 1 ]  barrier 

1 atomic Write ( s rc ,  i ,  ref ) : 
s rc [ i ]  f- re f 
if i sBlack ( s r c )  

revert ( s r c )  

(c) Dijkstra et al [1976, 1 978] barrier 

atomic Writ e ( s rc ,  i ,  re f ) : 
s r c [ i ]  f- re f 
if i sBlack ( s r c )  

shade ( re f )  

(a) Baker [1978] barrier 

1 atomic Re ad( src, i ) : 
re f f- src [i ]  
if i s Grey ( s rc )  

ref  f- shade ( re f )  
return re f 

(b) Appel et al [1988] barrier 

1 atomic Re ad( src, i ) : 
if i s Grey ( src )  

s c a n ( s rc )  
return s r c [i ]  

(c) Abraham and  Patel [1987] I Yuasa [ 1990] barrier 

1 atomic W r i t e ( s rc, i ,  re f ) : 
if i sGrey ( s rc )  I I  i sWhite ( s r c )  

s h a de ( s rc [i ] ) 
s r c [ i ]  f- re f 

Hellyer et al [2010], doi: 1 0 . 1 1 4 5 / 1 8 0 6 6 5 1 . 1 8 0 6 6 6 6 .  

© 2010 Association for Computing Machinery, Inc. Reprinted by permission. 

Algorithm 15.3: Pirinen [1998] black mutator hybrid barrier 

atomic Rea d ( s rc, i ) : 
re f f- s r c [i ]  
if i sWh i t e ( src )  

shade ( re f) 
return r e f  

atomic W r i  t e ( s rc, i ,  r e f ) : 
if i sGre y ( s rc )  

shade ( s rc [i ] ) 
w s r c [i ]  f- ref  
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Black mutator techniques 

The first two black mutator approaches apply incremental update to maintain the strong 
invariant using a read barrier to prevent the mutator from acquiring white pointers (that 
is, to protect from inserting a white pointer in a black mutator) . The third, a snapshot tech
nique, uses a deletion barrier on pointer writes into the heap to preserve the weak invariant 
(that is, to protect from deleting the last pointer keeping an object live that was reachable 
at the time of the snapshot) . Under the weak invariant a black mutator can still hold white 
references; it is black because its roots do not need to be rescanned, even if it has since 
loaded pointers to white objects, because those white objects are protected from deletion 
by the write barrier. 

• Baker [1978] used the read (mutator insertion) barrier shown in Algorithm 15 .2a .  
This approach has less precision than Dijkstra et al, since i t  retains otherwise white 
objects whose references are loaded by the mutator at some time during the collection 
cycle, as opposed to those actually inserted behind the wavefront. Note that Baker's 
read barrier was designed originally for a copying collector, where the act of shading 
copies the object from fromspace to tospace, so the s hade routine returns the tospace 
pointer. 

• Appel et al [1988] implemented a coarse-grained (less precise) variant of Baker's read 
barrier (Algorithm 15.2b), using virtual memory page protection primitives of the 
operating system to trap accesses by the mutator to grey pages of the heap without 
having to mediate those reads in software. Having scanned (and unprotected) the 
page the trapped access is allowed to proceed .  This barrier can also be used with 
a copying collector since scanning will forward any fromspace pointers held in the 
source object, including that in the field being loaded. 

• Abraham and Patel [1987] and Yuasa [1990] independently devised the deletion bar
rier of Algorithm 15.2c. At 02 it directly shades z grey. At T2 it shades R grey so 
that s can eventually be shaded. This deletion barrier offers the least precision of 
all the techniques, since it retains any unreachable object to which the last pointer 
was deleted during the collection cycle. With an insertion barrier at least we know 
that the mutator has had some interest in objects retained by the barrier (whether to 
acquire or store its reference), whereas the deletion barrier retains objects regardless 
of whether the mutator manipulated them. This is evident in that shading R retains 
it as floating garbage - it is not otherwise reachable - solely to preserve s .  In its 
original form, this snapshot barrier was unconditional: it simply shaded the target 
of the overwritten pointer, regardless of the colour of the source. Abraham and Patel 
exploited this to drive their snapshot barrier using virtual memory copy-on-write 
mechanisms. 

Completeness of barrier techniques 

Pirinen [1998] argues that these barrier techniques cover the complete range of all possible 
approaches, with the addition of the read and write barrier combination illustrated in Al
gorithm 15.3. This combines an insertion read barrier on a black mutator with a deletion 
barrier on the heap. The combination preserves a weak invariant: all black-to-white point
ers have a copy in some grey object (this is slightly stronger than the basic weak invariant 
that requires only a chain of white references from grey to white) . The black mutator can 
safely acquire a white pointer from some grey source object since the target object will 
eventually be shaded grey when the grey source is scanned, or the write barrier will shade 
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the target grey if the source field is modified. The read barrier makes sure that the mutator 
never acquires a white pointer from a white object. Thus, every reachable white object has 
a grey object directly keeping it alive throughout the collection cycle. 

Variations on the listed techniques can be obtained in various ways by short-circuiting 
or coarsening some steps, including: 

• Shading an object grey can be short-circuited by immediately scanning the object to 
make it black. 

• A deletion barrier that shades the target of the deleted pointer grey can instead (and 
more coarsely) scan the source object containing the deleted pointer to black before 
the store . 

• A read barrier that shades the target of the loaded pointer grey can instead (and 
more coarsely) scan the source object to black before the read. Thus, the read barrier 
of Appel et al coarsens that of Baker. 

• An insertion barrier that shades the target of the inserted pointer grey can instead 
revert the source to grey. This is how the barriers of Steele and Boehm et al gain 
precision over that of Dijkstra et al. 

Clearly, all strong invariant (incremental update) techniques must at least protect from 
a grey mutator inserting white pointers into black, or protect a black mutator from acquir
ing or using white pointers. The strong techniques all do one of these two things and need 
not do any more . 

We have already argued that weak invariant (snapshot) techniques must operate with 
a black mutator. Under the weak invariant, a grey object does not merely capture a single 
path to reachable white objects. It may also be a placeholder for a pointer from a black 
object to some white object on that path. Thus, the snapshot barrier must preserve any 
white object directly pointed to from grey. The least it can do is to shade the white object 
when its pointer is deleted from grey. 

To deal with white objects transitively reachable via a white path from a grey object 
(which may also be pointed to from black) we can either prevent the mutator from obtain
ing pointers to white objects on such paths so it can never modify the path [Pirinen, 1998] ,  
or make sure that deleting a pointer from a white object (which may be on such a path) at 
least makes the target of the pointer grey [Abraham and Patel, 1987; Yuasa, 1990] . 

Thus, all of the barrier techniques enumerated here cover the minimal requirements 
to maintain their invariants, but variations on these techniques can be obtained by short
circuiting or coarsening. 

Concurrent write barrier mechanisms 

In order to preserve either the strong or the weak invariant, write barriers must detect all 
writes to object fields of interesting pointers and record either their source, their target or 
the target originally stored in the field. References to these grey objects must be recorded in 
some data structure. However, concurrently with mutators adding references to the struc
ture, the collector will remove and trace them. It is essential that insertions and removals 
be efficient and correct in the face of mutator-mutator and mutator-collector races. 

One way to record grey objects is to add them to a log. We considered a variety of 
concurrent data structures and efficient ways to manage them in Chapter 13. In this sec
tion, we consider a popular and alternative mechanism: card tables. The basic operation 
of card tables for stop-the-world collectors was described in Chapter 1 1 .  Here we extend 
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that discussion to examine how mutator-collector concurrency complicates their operation 
and how this can be resolved . 

Recall that remembered sets can be implemented by associating a byte in a card table 
with each small (say, 512 bytes) contiguous area of the heap . Card tables can be used by 
both generational and concurrent collectors. A write barrier records the location of a grey 
object by dirtying the byte in the card table that corresponds to the card containing the 
object. Concurrently, the collector scans the card table for dirty cards . The collector must 
then search any dirty cards, trace grey objects, and clean the card . Clearly, this presents a 
race between mutators and collector that raises questions of correctness. 

What constitutes an grey entity depends on the style of collector and its write barrier. 
In a generational collector, object fields are grey if the object is in an older generation and 
the field holds a reference to an object in a younger generation. In a concurrent collector 
that uses a Steele-style retreating barrier, an object is grey if it has already been marked 
(that is, was once black) but now holds a reference to an unmarked child. With a Dijkstra
style advancing barrier or a Yuasa-style deletion barrier, all objects in a dirty card must be 
considered grey. While this barrier may seem very imprecise since it will preserve garbage 
neighbours of live objects, note that Abuaiadh et al [2004) found that compacting small 
blocks rather than individual objects led to an increase in memory footprint of only a few 
percent. 

The card table is the concurrent collector 's work list. The collector must scan it looking 
for dirty cards and cleaning them until all cards are clean . Since mutators may dirty cards 
after the collector has cleaned them, the collector must repeatedly scan the card table. An 
alternative might might be to delay processing the card table until a final stop-the-world 
phase, but this is likely to cause the concurrent part of the tracing phase to terminate too 
soon [Barabash et al, 2003, 2005 ] .  

One-level card tables 

The simplest organisation is a one-level card table, as described above. Here, a card may 
be in one of three states: di r t y, refining or c l e an .  Mutator write barriers will set 
the state to be di rty using a simple store instruction rather than an atomic primitive 
such as Compa reAndSwap [Detlefs et al, 2002a] .  The collector thread sets the status to 
re fining before searching the card for interesting pointers and determining a new status 
for the card. The simplest would be dirty  but Detlefs et al can also 'summarise' cards (see 
Chapter 1 1 ) .  The collector now attempts to write the new status back to the card. First, 
it checks that the card's status is still re f i n i n g  and that no mutator has dirtied the card 
while the collector was searching it. If the status is still re f i n i ng, the collector must try 
to change the value atomically to the new status, for example with a CompareAndSwap.  
If this fails, then a mutator must have dirtied the card concurrently, meaning that it may 
contain an unprocessed grey object. Detlefs et al simply leave this card dirty  and proceed 
to the next dirty card, but one might also try to clean the card again .  

Two-level card tables 

Because the overwhelming majority of cards are likely to be clean, two-level card tables 
reduce the cost of searching the card table for dirty cards. Each entry in a second, coarse
grain card table records the state of 2" fine grained cards. Cleaning a two-level card table 
proceeds similarly to cleaning a one-level table. When a dirty coarse-grain card is found, 
its status is set to re fining and the corresponding fine-grained cards are searched. Once 
all the fine-grain cards are clean, the collector attempts atomically to set the state of the 
coarse-grain card to clean .  However, there is a subtle concurrency issue here . Because 
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write barrier actions are not atomic with respect to the card-cleaning thread, the write 
barrier must dirty the fine-grained card before dirtying the corresponding coarse-grained 
card, while the collector reads them in the opposite order. We note that obtaining the 
proper order may have extra cost on machines that require a memory fence to force it. 

Reducing work 

One solution that reduces the amount of redundant work done by the collector is to try to 
avoid scanning any object more than once [Barabash et al, 2003, 2005 ] .  Here, the authors 
defer cleaning cards for as long as there is other tracing work for the collector to do. Their 
mostly-concurrent collector uses a Steele-style retreating insertion barrier. Such collectors 
must scan marked objects on dirty cards and trace all their unmarked children. The first 
technique for reducing the amount of redundant scanning is not to trace through an object 
on a dirty card: it suffices to mark the object as it will be traced through when the card is 
cleaned. Although objects that are traced through before their card is dirtied will still be 
scanned twice, this eliminates rescanning objects that are marked after their card is dirtied. 
Barabash et al observe that this can improve the collector 's performance and reduce the 
number of cache misses it incurs . Note that although changes in the order of memory 
accesses on a weakly consistent platform may cause this optimisation to be missed, the 
technique is still safe. 

Their second approach is to reduce the number of dirty cards. Recall that it is necessary 
for a Steele-style barrier to dirty a card only if the modified object has already been traced 
by the collector. If it has not, then the collector will notice it eventually so there is no need 
to dirty the card . In other words, there is no need to shade a white object grey. Card 
marking is used by collectors because it is a fast, unconditional operation. The question, 
therefore, is how this check can be made efficient. 

One solution is to mark the card dirty unconditionally but maintain a second table 
indicating whether a card contains an object that has been traced. Periodically the dirty 
card table can be undirtied as follows, without need for atomic operations assuming the 
tables hold bytes rather than bits: 

for each di rty  card C 
if not i s Traced (c )  

s e t  C l e an (  c )  
if i s Traced(C )  

s e t D i rty ( C )  

$ 

Their second solution rests on the observation that for many programs most pointer writes 
are made to young objects and that these typically reside in local allocation buffers .  Instead 
of keeping a second card table, a bit is used for each object to indicate whether it is part of 
an active local allocation buffer. If this bit is set, the collector defers tracing the object to a 
later time, instead adding the object to a deferred list. When the buffer overflows - the 
allocation slow path - the mutator sets all the cards in the buffer to be clean and clears all 
the de fer bits for all objects in the buffer. One reason that this is effective is that Barabash 
et al found that the collector rarely reaches objects in an active local allocation buffer. 

Some care is needed with this solution on weakly consistent platforms. The simplest 
approach is to have the collector run a fence after marking a card traced and before trac
ing an object and have the undirtying procedure run a fence between checking whether 
each card is dirty and checking whether it is traced (as above) .  Note that in both cases 
only the collector threads execute the fence. An alternative method is to have the undirty
ing procedure start by scanning the card table, and cleaning and recording (in a list or 
an additional card table) all cards that are dirty but have not yet been traced. Next, the 
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undirtying procedure handshakes with the collector, requesting the concurrent collector to 
run a synchronisation barrier. When both have run the handshake, the undirtying proce
dure rescans all the cards whose dirty bit was cleared and marks them dirty again if the 
card has been traced. 

15.3 Issues to consider 

Garbage collectors that are incremental (mutator interleaved with collector) or concurrent 
(mutator and collector in parallel) have one primary purpose: minimising the collector 
pauses observed by the mutator. Whether the pause is due to an increment of collection 
work needing to be performed by the mutator, or caused by the mutator having to syn
chronise with (and possibly wait for) the collector to finish some work, incremental / con
current techniques usually trade increased elapsed time (mutator throughput) for reduced 
disruption by the collector. In an ideal world, concurrent collectors may be able to reduce 
elapsed time by running collector work completely in parallel with the mutator. Unfortu
nately, there is no free lunch. As we have already seen, concurrent collectors require some 
level of communication and synchronisation between the mutator and the collector, in the 
form of mutator barriers. Moreover, contention between the mutator and collector for pro
cessor time or for memory (including disturbance of the caches by the collector) can also 
slow the mutator down. 

Conversely, incremental or concurrent collection can improve throughput for some ap
plications . The collectors impose overhead on individual mutator actions (loads or stores) 
in order to reduce the pauses observed by the application's users. However, an applica
tion's user may be another program, and this client may be very sensitive to delays. Ossia 
et al [2004] offer three-tier transaction processing systems as an example. They point out 
that delays for stop-the-world collections may cause transactions to time out and to be 
retried. By doing a little extra work (executing write barriers), much more extra work 
(reprocessing transactions that timed out) can be avoided. 

The concurrent collection techniques that we consider in subsequent chapters each 
have their own particular impact on these costs. Concurrent reference counting collectors 
impose a particularly high overhead on pointer loads and stores. Concurrent mark-sweep 
collectors, which don't move objects, have relatively low overhead for pointer access (vary
ing with the barrier), but they may suffer from fragmentation. Concurrent collectors that 
relocate objects require additional synchronisation to protect the mutator from, or inform 
the mutator about, objects that the collector moves. Copying collectors also impose addi
tional space overhead that adds to memory pressure. In all concurrent collectors, whether 
a read barrier or write barrier is used will affect throughput differently, based on the rela
tive frequency of reads and writes, and the amount of work the barrier performs. 

Concurrent mark-sweep collectors typically use a write barrier to notify the marker of 
an object to mark from. Concurrent copying and compacting collectors typically use a read 
barrier, to protect the mutator from accessing stale objects that have been copied elsewhere. 
There is a trade-off between the frequency of barrier execution and the amount of work it 
must do. A barrier that triggers copying and scanning will be more expensive than one 
that simply copies, which will be more expensive than one that simply redirects the source 
pointer. Similarly, performing more work early may result in fewer later barriers needing 
to do much work. All of these factors depend on the granularity of work performed, across 
a scale from references through objects to pages. 

The amount of floating garbage is another factor in the costs of concurrent collection. 
Not having to collect floating garbage will allow faster termination of the current collection 
cycle, at the expense of additional memory pressure. 
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Whether the mutator (threads) must be stopped at the beginning of the collection cycle 
(to make sure the collector has seen all the roots) or at the end (to check for termination) 
also has an impact on throughput. Termination criteria also affect the amount of floating 
garbage. 

A further consideration is that most concurrent collectors offer only loose assurances on 
pauses and space overhead. Providing the hard bounds on space and time needed for real
time applications means making well-defined progress guarantees for mutator operations 
that interact with the heap, and space guarantees that derive solely from knowledge of the 
memory allocation footprint of the application. 

Incremental or concurrent collection can be particularly desirable when the volume of 
live data is expected to be very large. In this case, even stop-the-world parallel collection 
using every processor available would lead to unacceptable pause times. However, one 
drawback of incremental and concurrent collectors is that they cannot recycle any memory 
until the collection cycle is complete; we must provide sufficient headroom in the heap or 
give the collector a sufficiently generous share of processor resources (at the expense of 
the mutator) to ensure that the mutator does not run out of memory before the collection 
cycle completes. We consider garbage collector scheduling when we address the problem 
of real-time collection in Chapter 19; there, the problem is particularly acute. 

An alternative approach is to use a hybrid generational/ concurrent collection. The 
young generation is managed in the usual generational way, stopping the world for each 
minor collection. The old generation is managed by a concurrent collector. This has several 
advantages. Nursery collections are usually short enough (a few milliseconds) not to be 
disruptive. Since most objects tend to die young - the weak generational hypothesis -
we can expect memory to be recycled promptly for further allocation, thus reducing the 
space overhead required to avoid running out of memory. There is no need to apply the 
concurrent write barrier to objects in the young generation as it is collected stop-the-world: 
the generational write barrier in the slow path suffices. Concurrent collectors typically 
allocate new objects black, guaranteeing that they will survive a collection even though 
most objects will not live that long. However, by allocating new objects generationally, 
this problem disappears. Finally, old objects have much lower mutation rates than young 
ones [Blackburn and McKinley, 2003] .  This is the ideal scenario for an incremental or 
concurrent collector since their write barrier is less frequently invoked. 



Chapter 16 

Concurrent mark-sweep 

In the previous chapter we looked at the need for incremental or concurrent garbage collec
tion, and identified the problems faced by all such collectors. In this chapter, we consider 
one family of these collectors: concurrent mark-sweep collectors . As we noted before, the 
most important issue facing concurrent collection is correctness. The mutator and collector 
must communicate with each other in order to ensure that they share a coherent view of 
the heap. This is necessary on the mutator 's part to prevent live objects from being hidden 
the collector. It is necessary for collectors that move objects to ensure that the mutator uses 
the correct addresses of moved objects . 

The mark-sweep family are the simplest of the concurrent collectors. Because they 
do not change pointer fields, the mutator can freely read pointers from the heap without 
needing to be protected from the collector. Thus, there is no inherent need for a read barrier 
for non-moving collectors. Read barriers are otherwise generally considered too expensive 
for use in maintaining the strong invariant for a non-moving collector, since heap reads by 
the mutator are typically much more frequent than writes. For example, Zorn [1990] found 
that the static frequencies of pointer loads and stores in SPUR Lisp were 13% to 15% and 
4%, respectively. He measured the run-time overhead of inlined write barriers as ranging 
from 2% to 6%, and up to 20% for read barriers . The exception to this general rule is 
when compiler optimisation techniques can be brought to bear on eliminating redundant 
barriers [Hosking et al, 1999; Zee and Rinard, 2002], and to folding some of the barrier 
work into existing overheads for null pointer checks [Bacon et al, 2003a] . For this reason, 
mark-sweep collectors usually adopt the Dijkstra et al [ 1976, 1978) incremental update or 
Steele [1976) insertion write barriers, or their coarser Boehm et al [ 1991 ]  variant, or the 
snapshot-at-the-beginning Yuasa [1990] deletion write barrier. 

16.1 Initialisation 

Instead of allowing the mutator to run until memory is exhausted, concurrent collectors 
can run even as the mutator is still allocating. However, when to trigger the beginning of a 
new marking phase is a critical decision. If a collection is triggered too late, it can happen 
that there will insufficient memory to satisfy some allocation request, at which point the 
mutator will stall until the collection cycle can complete. Once the collection cycle begins, 
the collector 's steady-state work-rate must be sufficient to complete the cycle before the 
mutator exhausts memory, while minimising its impact on mutator throughput. How and 
when to trigger a garbage collection cycle, ensuring that sufficient memory is available 
for allocation to keep the mutator satisfied even as concurrent collection proceeds, and 
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Algorithm 16.1: Mostly-concurrent mark-sweep allocation 

1 New( ) : 
co l l e  ctEnough ( )  
ref  f- a l l o cate ( )  
i f  re f = null 

e rror  " Out o f  memo ry"  
return re f 

s atomic c o l l e ctEnough ( ) : 
while beh i nd( )  

1 o  if not rnarkS ome ( )  
I I  return 

f* must initialise black if mutator is black *I 

reaching termination of the collection cycle so that garbage can be reclaimed and recycled, 
all depend on scheduling collection work alongside the mutator. 

Algorithm 16 . 1  illustrates the mutator allocation sequence for a concurrent mark-sweep 
garbage collector that schedules some amount of collector work incrementally at each al
location (piggy-backed on the mutator thread) in the co l le ct Enough procedure. This 
work is synchronised with other concurrent mutator threads executing mutator barriers, 
or other collector threads, as indicated by the atomic modifier. The decision as to when 
and how much collector work to perform is captured by the utility routine behind, which 
makes sure that the mutator does not get so far ahead of the collector that the a l l o cate 
routine cannot satisfy the request for new memory. 

Algorithm 1 6.2 shows what happens when collection work is triggered . An empty 
work list forces initialisation of the collector by scanning the roots to prime the work 
list. Assuming that scanning the roots also means stopping and scanning all the mutator 
threads, then at this point no mutator thread holds a white reference. Thus, this exam
ple operates in mostly-concurrent mode, with a stop-the-world phase to initiate collection. 
The now-grey root objects represent the initial scanning wavefront from which tracing pro
ceeds. Having scanned the roots, mutator threads can now continue either as black (since 
they hold no white references) or grey, depending on the mutator barriers being used . 

Stopping the world may result in unacceptable pauses. With grey mutator barriers in 
place it is possible simply to enable the barriers and defer scanning all the roots until later, 
concurrently with the mutator. Section 16.5 describes techniques that relax the need to stop 
the mutator threads in order to sample their roots . Still, at least one root must be scanned 
to prime the work list and initiate tracing. 

16.2 Termination 

Termination of the collector cycle for a black mutator is a relatively straightforward pro
cedure. When there are no grey objects in the work list remaining to be scanned then the 
collector terminates. At this point, even with the weak tricolour invariant the mutator can 
contain only black references, since there are no white objects reachable from grey objects 
still held by the mutator (since there are no grey objects). Because the mutator is black 
there is no need to rescan its roots . 

Termination for a grey mutator is a little more complicated, since the mutator may 
acquire white pointers after its roots were scanned to initiate the collection. Thus, the grey 
mutator roots must be rescanned before the collector cycle can terminate. Provided that 
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Algorithm 16.2: Mostly-concurrent marking 

1 shared work l i s t  f- empty  

3 ma rkS  orne ( ) : 
if i s Empty (workl i s t ) 

s can (Root s ) 
if i s Empt y (workl i s t ) 

f* marking terminates 4 
sweep ( )  
return false 

1 0  /* collection con tinues 4 
n re f f- remove (wo rkl i s t ) 
12 s can ( re f ) 
13 return true 
14 

I 5  s hade ( re f ) : 
1 6  if not i sMarked ( re f ) 
1 7  setMa rked ( re f ) 
1 s  add (work l i st ,  ref ) 
1 9  

2 0  s c an ( r e f ) : 

/* initiate collection 4 
/* Invariant: mutator holds no white references 4 

/* Invariant: no more grey references 4 

/* eager or lazy sweep 4 
f* terminate marking 4 

f* continue marking, if still behind 4 

2 1  for each f l d  in P o i nt e r s ( re f ) 
22 child  f- * f ld 
23 if ch i l d  =/:. null 
� shade (child) 
25 

26 reve rt ( re f ) : 
27 add (work l i st ,  re f ) 
28 

29 i sWhi t e ( re f ) : 
� return not i sMarked ( r e f ) 
3 1  

32 i s Grey ( re f ) : 
n return re f in work l i s t  
34 

35 i sB l ack ( re f ) : 
� return i sMarked ( re f ) && not isGrey ( re f ) 

rescanning the mutator roots does not expose any fresh grey objects then the collection 
cycle is done. Thus, the example performs rescanning to ensure there are no more grey 
references before entering the sweep phase. 

16.3 Allocation 

Notice that the allocator must initialise the mark state (colour) of the new object according 
to the colour of the mutator. If the mutator is black then new objects must be allocated black 
(marked) under the strong invariant, unless (under the weak invariant) the new object is 
also made reachable from some grey object. This last guarantee is generally difficult to 
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make, so black mutators usually allocate black even under the weak invariant [Abraham 
and Patel, 1987; Yuasa, 1990 ] .  However, a grey mutator admits a number of alternatives 
that several implementations exploit. 

Kung and Song [1977) simply allocate black during the marking phase and white oth
erwise. Their choice is guided by the observation that new objects are usually immedi
ately linked to existing reachable objects, at which point their write barrier (unconditional 
Dijkstra-style incremental update) would simply shade the object anyway. Moreover, be
cause the new object contains no references it is safe to allocate straight to black and avoid 
unnecessary work scanning it for non-existent children. 

Steele [1976] chooses to vary the colour of allocation during marking, depending on the 
pointer values that are used to initialise the new object. Assuming that the initial values 
of a new object's reference fields are known a priori at the time of allocation permits a bulk 
test of the colour of the targets of those references. If none of them are white then the 
new object can safely be allocated black. Furthermore, if none of them are white then it 
is a possible sign that the marker is dose to terminating and that the new object will not 
be discarded. Conversely, if any of the initialising pointers is white then the new object 
is allocated white . The Steele collector marks mutator stacks last, and scans them from 
bottom (least volatile) to top (most volatile), so most cells will be allocated white to reduce 
floating garbage. 

During sweeping Steele allocates white or black according to where the sweeper is in its 
pass through the heap. Allocation is white if the free cell being allocated is from space that 
has already been swept, and black otherwise (to prevent the sweeper from misinterpreting 
the newly allocated object as free) .  

One problem with allocating new objects white instead of black is that the new object 
may over time accumulate a long chain of white objects, which if it remains reachable 
will eventually need to be traversed before the collection cycle can terminate (consider 
what happens when a grey mutator allocates a large new data structure white) .  Allocating 
black avoids dragging out termination in this way, but at the cost of wasted space since it 
defers freeing any newly allocated but now unreachable data until the next collection cycle 
[Boehm et al, 1991; Printezis and Detlefs, 2000] .  Vechev et al [2006] propose a compromise 
solution in which they colour newly allocated objects with a fourth colour: yellow objects 
are treated as if they are white for purposes of retention (they may yet die before the cycle 
completes), but black with respect to the tricolour invariant. That is, a yellow object will 
be shaded straight to black (reachable) without being scanned. Thus, terminating tracing 
with a grey mutator that holds yellow references means not needing to trace beyond the 
yellow object. 

16.4 Concurrent marking and sweeping 

So far we have considered running marking concurrently only with the mutator, with 
marking and sweeping proceeding in series. Lazy sweeping means that allocation requests 
by the mutator may also trigger concurrent sweeping from the previous marking phase, 
even as a new collection cycle is running the next marking phase. This can potentially lead 
to a confusion about the colours of objects. The trick is to distinguish true garbage white 
objects from the previous marking phase (needing to be swept) from (as-yet unmarked) 
white objects in the next marking phase (which may yet be marked). Lamport [1976) 
pipelines the execution of marking and sweeping phases by introducing a new colour, 
purple, to distinguish the former from the latter. At the completion of the marking phase, 
all (garbage) white objects are recoloured purple. Sweeping will collect purple objects, 
adding them to the free-list (recoloured black or white, depending on allocation colour). 
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tag GC 1: b a s e = O O  GC 2: b a s e = 0 1 GC 3: b a s e =  1 0  
hue s h a ded value colour value colour value colour 

0 0  
0 0  
0 1  
0 1  
1 0  
1 0  

0 ba s e  white b a s e + 2  purple ba s e + 1  black 
1 b a s e  grey b a s e + 2  impossible b a s e + 1  black 
0 b a s e + 1 black b a s e  white b a s e + 2  purple 
1 b a s e + 1 black b a s e  grey b a s e + 2  impossible 
0 b a s e + 2  purple b a s e + 1  black b a s e  white 
1 b a s e + 2  impossible b a s e + 1 black b a s e  grey 

Table 16.1: Lamport [1976] mark colours: 'hue and shaded' encoding of 
colours for concurrent marking and sweeping. The colour encoding is: 
white as hue=ba s e / shaded=O ,  grey as hue=ba s e / shade d = l ,  black as 
hue=ba s e + l  and purple as hue=ba s e + 2 .  Note that a garbage (purple) 
object can never be shaded. When all markers and sweepers have finished 
there are no grey or purple nodes, so flipping from black to white/ grey and 
white to purple is achieved simply by incrementing base modulo 3. 
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Lamport envisions several concurrent marking and sweeping threads, with a collection 
cycle proceeding as follows. 

1. Wait until all markers and sweepers have finished. 

2 .  Change all white nodes to purple and all black nodes to white (preferably white to 
avoid floating garbage) or grey (in the case the node has been shaded concurrently 
by the mutator write barrier). 

3 .  Shade all roots . 

4. Start the markers and sweepers. 

Marking ignores all purple objects: the mutator can never acquire a reference to a pur
ple object, so grey objects never point to purple and purple objects are never shaded. Of 
course, the difficulty with this approach is that the conversion of white to purple might 
require touching colour state associated with all of the garbage objects, which must be 
completed before sweeping can begin. Similarly, when starting the marking phase, all 
black objects (from the previous cycle) must be recoloured white. 

Lamport describes an elegant solution to this problem in which the colours are reinter
preted at step 2 by rotating through a range of colour values. Each object is tagged with 
a two-bit basic hue (white, black, purple) plus a one-bit shaded flag. If the hue is white 
then setting the shade d  flag shades the object grey (that is, a shade d  white hue is grey). If 
the hue is black then setting the shaded flag has no effect (that is, black hue means black 
whether the shade d  flag is set or not) . If the hue is purple then the s haded  flag will never 
be set since garbage objects will not be traced. The sense of the hue bits is determined by a 
global variable ba se  encoding the value of white (=b a s e}, black (=ba se+l )  and purple 
(=base+2 } .  At step 2 there are no grey or purple nodes because marking and sweeping 
have finished, so flipping from black to white and white to purple is achieved simply by 
incrementing base  modulo 3. Table 16 . 1  shows the three possible values of base  encoded 
in binary (0 0, 0 1 , 1 0 }  and the two possible values of the shaded flag ( 0 ,  1 }, which together 
make up the possible colours, along with examples for the three possible values of b a s e .  
The entries in the 'value' columns are determined using arithmetic modulo 3 .  Note that 
the combination hue=base+2  I shaded=!  is impossible because purple (garbage) objects 
are never shaded grey. Subsequent increments cycle the hue interpretation accordingly. 
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To make sure that step 2 does not leave a node grey from one cycle to the next unless 
it was recently shaded by a mutator, whenever a marker thread makes a grey node black 
it must also clear the shade d flag. Otherwise, the grey node will be retained as floating 
garbage. Also, to speed up the identification of garbage, markers and sweepers can take 
the opportunity to clear the grey flag whenever they encounter a black object. 

Queinnec et al [1989] propose an alternative solution to this problem, using separate 
colour information for odd and even collection cycles. Thus, marking in one cycle can 
proceed independently of sweeping from the previous cycle because they operate on in
dependent colour state. 

16.5 On-the-fly marking 

So far, we have assumed that the mutator threads are all stopped at once so that their roots 
can be scanned, whether to initiate or terminate marking. Thus, after the initial root scan, 
the mutator holds no white references. At this point, the mutator threads can be left to 
run as black (so long as a black mutator barrier is employed), or grey (with a grey mutator 
barrier) with the proviso that to terminate marking the collector must eventually stop and 
rescan grey mutators until no more work can be found. These stop-the-world actions re
duce concurrency. An alternative is to sample the roots of each mutator thread separately, 
and concurrently with other mutator threads. This approach introduces complexity be
cause of the need to cope with some threads operating grey and some operating black, all 
at the same time, and how it affects termination. 

On-the-fly collection never stops the mutator threads all at once. Rather, the collector 
engages each of the mutators in a series of soft handshakes: these do not require a single 
global hard synchronisation at the command of the collector. Instead, the collector merely 
prompts each mutator thread asynchronously, one-by-one, to halt gracefully at some con
venient point. The collector can then sample (and perhaps modify) each thread's state 
(stacks and registers) before releasing it on its way. While one mutator thread is stopped 
others can continue to run. Furthermore, if stack barriers are used, as described in Sec
tion 11 .5, the collector can restrict its examination of the stopped thread to just the top 
active stack frame (all other frames can be captured synchronously with a stack barrier) so 
the handshake can be very quick, minimising mutator interruption. 

Write barriers for on-the-fly collection 

Synchronisation operations for on-the-fly collectors need some care. A common approach 
for mostly-concurrent collectors, which stop all threads together to scan their stacks, is 
to use a deletion barrier with a black mutator. Furthermore, new objects are allocated 
black. This approach simplifies the termination of marking: black stacks do not need to 
be rescanned and allocation does not lead to more work for the collector. However, this 
approach is not sufficient for an on-the-fly collector, as Figure 16 .1  illustrates . Because 
stacks are scanned on the fly, some may be white. The heap is allowed to contain black 
objects before all threads have been scanned and before tracing has started because we 
allocate new objects black. The deletion barrier is not triggered on stack operations and 
there is no insertion barrier, so neither X nor Y is shaded grey. In summary, correct mutator
collector synchronisation for on-the-fly marking is a subtle issue that requires substantial 
care on the part of the algorithm designer. 
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Thread 1 
stack X /  II 

Thread 2 
stack 

(a) The deletion barrier is 'on' . Thread 1 
has been scanned, but thread 2 has not. X 
has been newly allocated black. 

Thread 1 
sta c k  

/ Thread 2 

:T �,. D 
(b) X is updated to point to Y; thread 2's 
reference to Y is removed . Neither action 
triggers a deletion barrier. 

Figure 16.1: On-the-fly collectors that allocate black need more than a dele
tion barrier to prevent the scenario of a white object reachable only from a 
black object 

Doligez-Leroy-Gonthier 
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Using soft handshakes to initiate marking was first used in a mark-sweep garbage collector 
tailored for the ML programming language. Dubbed Doligez-Leroy-Gonthier, after the 
names of its authors [Doligez and Leroy, 1993; Doligez and Gonthier, 1994], this collector 
uses private thread-local heaps to allow separate garbage collection of data allocated solely 
on behalf of a single thread, and not shared with other threads. A global heap allows 
sharing of objects among threads, with the proviso that the global shared objects never 
contain pointers into private heaps.  A dynamic escape detection mechanism copies private 
objects into the shared heap whenever their reference is stored outside the private heap . 
Only immutable objects (the vast majority in ML) can be allocated privately, so making 
a copy of one in the shared heap does not require updating all the sources of its pointers 
(though it does require copying the transitive closure of reachable objects) .  But mutation is 
rare in ML so this happens infrequently. These rules permit a private heap to be collected 
independently, stopping only the mutator that owns the heap . 

Doligez-Leroy-Gonthier uses concurrent mark-sweep collection in the shared heap, to 
avoid having to update references from each of the threads. The steady-state concurrent 
mark-sweep collector operates in the usual black mutator snapshot mode, employing a 
Yuasa-style snapshot deletion barrier. Initiating steady-state collection proceeds using a 
series of soft handshakes to transition mutator threads from grey to black, as follows . 

The collector and mutator threads each track their own view of the state of the col
lection with a private status variable. To initiate the collection cycle, the collector sets its 
status to Sync1 . The mutator threads are then made to acknowledge, and update their 
own status, via soft handshakes. Once all have acknowledged the Sync1 handshake, the 
collector is said to be in phase Sync1 . Mutator threads ignore handshakes while storing to 
a pointer field or allocating, to ensure that these operations first complete, making them 
atomic with respect to phase changes . Having acknowledged this handshake, each muta
tor thread now runs with the write barrier in Algorithm 16.3a, which shades both the old 
and new values of modified pointer fields, combining both the black mutator Yuasa-style 
snapshot deletion barrier and the grey mutator Dijkstra-style incremental update insertion 
barrier. Shading by the mutator does not directly place the shaded object into the collec
tor 's work list for scanning (like Kung and Song [1977] ) ,  but rather simply colours a white 
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Algorithm 16.3: Doligez-Leroy-Gonthier write barriers. Both ignore the handshake. 

(a) The Sync barrier 

1 Wr i t esync ( s rc, i, new) : 
o l d  f- s r c [i ]  
s hade (o ld) 
s hade ( new) 
s r c [ i ]  f- new 

(b)  The Async barrier 

1 WriteAsync ( s rc , i, new ) : 
o l d  f- s r c [i ]  
if not i sBlack ( o l d) 

s h a de ( o l d) 
if  o l d  ::; s c an n e d  

d i rt y  f- t rue 
s r c [ i ]  f- new 

object explicitly grey and resets a global di r t y  variable to  force the collector to  scan for the 
newly grey object (in the style of Dijkstra et al [ 1978]) .  This avoids the need to synchronise 
explicitly between the mutator and the collector (other than for soft handshakes, where 
atomicity is accomplished simply by delaying acknowledging the handshake), but does 
mean that worst-case termination requires rescanning the heap for grey objects . Because 
mutation is rare in ML, this is not a significant impediment. At this point, the grey mutator 
threads are still allocating white, as they were before the collection cycle was initiated . 

Once all of the mutators have acknowledged the Sync1 handshake the collector moves 
to phase Sync2 with another round of handshakes. Because the write barrier is atomic only 
with respect to handshakes, it does not impose mutator-mutator synchronisation. This 
leaves the possibility that a mutator from before the Sync1 handshake, which is not run
ning the write barrier, could insert some other pointer X into the s rc  [ i ]  field right after 
the load o l df- s r c [i ] .  Thus, shade (  o l d) pointer will not shade the pointer X that actu
ally gets overwritten by the store s r c [i ] f-new .  The transition to phase Sync2 avoids such 
problems by ensuring that all mutator threads have completed any unmonitored atomic 
allocation or write in Async before transitioning to Sync1 . At that point, all mutators will 
be running the write barrier (with insertion protection), so even if the mutators interleave 
their write barrier operations there will not be a problem. The collector can then safely 
move into the steady-state snapshot marking phase, Async. Each mutator thread acknowl
edges the Async handshake by scanning (shading from) its roots for the collector (making 
itself black), starting to allocate black, and reverting to the standard snapshot barrier aug
mented with resetting the global d i rty  flag (similarly to Dijkstra et al [1978])  to force the 
collector to rescan if the shaded object is behind the scanning wavefront, shown in Algo
rithm 16.3b. 

Once marking finishes, sweeping commences in series .  Like Steele [1975] ,  the loca
tion of the collector 's sweep pointer determines the mutator allocation colour to minimise 
floating garbage: white if allocating from memory already swept (so already noted free in 
this cycle), black if not yet swept (to avoid sweeping it to the free-list), and grey if at the 
point where the collector is currently sweeping (to avoid the race with the sweeper at the 
boundary). 

Doligez-Leroy-Gonthier for Java 

Domani et al [2000] consider Doligez-Leroy-Gonthier-style collection in the context of Java, 
where they offer several improvements to cope with much higher mutation rates, and 
language features such as weak references and finalisation. Because Java lacks general 
support for immutable objects they do not consider independently-collected thread-local 
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I Phase Collector Mutators Meaning 

A sync A sync Async No mutators are executing barriers 
Sync1 Async, Sync1 Some mutators may be running the Sync barrier 

Sync1 Sync2 Sync1 , Sync2 Some mutators may be black and running the 
Async barrier; others are running the Sync barrier 

Sync2 Sync2 Sync2 All mutators are running the Async barrier 
Async Sync2, Async Some mutators are black, all are running the 

Async barrier 
A sync Async Async All mutators are black; the collector can complete 

marking, scanning and sweeping 

Table 16.2: Phases in the Doligez and Gonthier collector 

heaps, but simply a global shared heap collected on-the-fly. They also support correct 
execution on multiprocessors that have a more relaxed memory model than sequential 
consistency, which was assumed for the original Doligez-Leroy-Gonthier implementation. 
To avoid rescanning for fresh mutator-shaded grey objects (which are more common in a 
mutation-oriented language like Java), Domani et al dedicate an output-restricted double
ended queue to each mutator thread, to which it can enqueue grey objects at one end, while 
the collector is able to poll for work from the other end. This minimises synchronisation 
between the mutator and collector in the write barriers . 

Sliding views 

Azatchi et al [2003] offer further improvements to on-the-fly marking by exploiting the 
sliding views approach to sampling mutator roots without stopping the world [Levanoni 
and Petrank, 1999] . In place of the deque used by Domani et al [2000], the sliding views 
approach implements the snapshot deletion barrier by logging to a thread-local buffer the 
state of all the fields of an object before it is modified (dirtied) for the first time while the 
collector is marking. The buffers are drained via soft handshakes, with marking termi
nated once all the buffers are empty. Like Doligez-Leroy-Gonthier, after the initial hand
shake, and before the deletion barrier can be enabled for each mutator, the mutators also 
execute a Dijkstra-style incremental update insertion barrier to avoid propagating pointers 
unnoticed before the mutator snapshot can be gathered. These snooped stores also become 
mutator roots. The snooped stores are disabled once all threads are known to be logging 
the snapshot. Further details of this approach are discussed in Section 18.5. 

16.6 Abstract concurrent collection 

Concurrent collectors have many common design features and mechanisms, while differ
ing in small but important details. To highlight these similarities and differences we can 
adopt a common abstract framework for concurrent garbage collection [Vechev et al, 2005, 
2006; Vechev, 2007] . As discussed previously, the correctness of a concurrent collector 
depends on cooperation between the collector and the mutator in the presence of concur
rency. Thus, the abstract concurrent collector logs events of mutual interest to the collector 
and mutator by appending to the shared list l og. These events are tagged as follows : 

• T ( s r c, f l d, o l d, new) records that the collector has Traced pointer field f l d  of 
source object s r c, and that the field initially contained reference o l d  which the col-
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lector has replaced by reference new. That is, the collector has traced an edge in the 
object graph s r c-+old  and replaced it with an edge s r c -+ new.  

• N (re f ) records that the mutator has allocated a New object r e f .  

• R ( s rc, f l d, o l d) records that the mutator has performed a Read from the heap 
by loading the value o l d  from field f ld  of source object s r c .  

• W (s rc, f l d, o l d, new ) records that the mutator has performed a Write to the 
heap by storing the value new into field f l d of source object s rc  which previously 
contained value o l d. If f l d  is a pointer field then the mutator has replaced an edge 
s r c --+ o l d  with an edge s r c -+ new. 

Each of s rc, f l d, o l d, new are the addresses of the source object and source field, and 
old and new target object addresses, respectively. Collector event T captures the fields that 
have already been scanned by the mutator. For a non-moving collector tracing does not 
modify the references in the heap so o ld=new for T events. Mutator event N captures 
allocations by the mutator. Mutator events R, and W capture the fields that the mutator 
has accessed or modified. 

An abstract concurrent mark-sweep collector is illustrated by Algorithm 16.4, which 
takes the abstract tracing collector of Algorithm 6 . 1  and augments it to handle the fact 
that the collector executes concurrently with the mutator. The algorithm proceeds in the 
usual way, scanning reachable objects by tracing from the roots, before sweeping to reclaim 
unreachable objects. Units of scanning work performed by s c a n T r a c i ng i n c  occur atom
ically; except to note that sweeping must also be properly synchronised, we omit details 
of sweepTrac i ng .  

Initialisation of the collector atomically samples the mutator roots using the routine 
root s Trac i n g  and clears the log. This is performed atomically (stop-the-world) to avoid 
the complication of concurrent mutation of the roots by the mutator threads. On-the-fly 
collectors can sample the roots without stopping the world. 

The collector then proceeds concurrently with the mutator, repeatedly both scanning 
objects and adding origins to be considered by the collector due to concurrent writes per
formed by the mutator. 

At some point, the loop terminates as a result of some non-deterministic choice (de
noted by (D), when the collector moves to a termination phase in which the remaining 
origins and objects to be scanned are processed atomically (that is, preventing the mutator 
from writing) .  This is performed atomically to prevent concurrent writes during termina
tion, which may be needed to guarantee that the collector will complete its cycle. For some 
practical algorithms this atomic termination phase can be eliminated. 

The scanT r a c  i ngi  nc procedure implements the usual collector traversal of the heap, 
but incrementally, interleaved with the mutator. It differs from the original procedure 
s c anTracing of Algorithm 6 . 1  only in that it atomically records to the log each traced 
field and the reference it contains . 

The addOr i g  i n s  procedure reveals that the abstract concurrent collector is parametr
ised by an as-yet-undefined function expose which takes a log prefix and returns a set of 
objects that should be considered as additional origins for live references. Different imple
mentations for this function yield different abstract concurrent collector algorithms cor
responding to concrete algorithms in the literature, as discussed further below when we 
describe how to instantiate specific collectors. It is the log that permits dealing with con
current mutations that cause reachable objects to be hidden from the scan routine, which 
otherwise would remain unmarked. 
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Algorithm 16.4: Mostly-concurrent incremental tracing garbage collection 

1 shared l og +-- ( )  

3 c o l l e c t T r a c i ng i nc ( ) : 
atomic 

r o o t sTracing (VV)  
l og +-- ( )  

repeat 
s canTracing i n c ( VV) 
addOr igins ( )  

1 0  until 0 
n atomic 
1 2  addOr igins ( )  
1 3  s canTracing i n c (VV)  
1 4  sweepTracing ( )  
15 

1 6  s canTr a c i ng i n c (VV) : 
11 while not i sEmpty ( VV) 
1 s  s r c  +-- remove ( VV )  
19 if p ( s rc )  = 0 
20 for each f l d  in P o i nt e r s ( s rc )  
2 1  atomic 
22 re f +-- * f ld  

I* reference count is zero 4 

23 log  +-- log  · T( s r c, f ld, r e f, r e f )  
24 if 
25 
26 p ( s rc )  +--
27 

28 addOri g i n s ( ) : 
29 atomic 

r e f  =f:. null 
VV +-- VV + [re f ]  
p ( s r c ) + l  

30 o r i g i n s  +-- expose ( l og)  
3 1  for each s rc in o r igins  
32 VV +-- VV + [ s r c ] 
33 

34 New( ) : 
35 re f +-- a l locat e ( )  
36 atomic 
37 p ( r e f )  +-- 0 
38 l o g  +-- log  · N ( re f ) 
39 return r e f  
40 

41 atomic W r i t e ( s rc, i ,  new) : 
42 if s r c  =/:. root s 
43 o l d  +-- s r c [ i ]  
44 l o g  +-- log  · W ( s r c, & s r c [ i ] ,  o ld, new)  
45 s r c [i ]  +-- new 

/* increment reference count  4 
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The collector wavefront 

Cooperation between the collector and the mutator guarantees correctness in the presence 
of concurrency. The log records the tracing progress of the collector through the heap 
the wavefront - in the form of T events . Key to cooperation is how interleaved mutator 
events (N, R, and W) are treated, depending on whether they occur to the portion of the 
heap already scanned by the collector (behind the wavefront) or not yet scanned (ahead of 
the wavefront) . The wavefront itself comprises the set of pending fields still to be scanned 
(specifically not the values of the pointers in those fields) . Practical collectors may approx
imate the wavefront more or less precisely, from field granularity up through granularity 
at the level of objects to pages or other physical or logical units. 

Adding origins 

The a ddOr ig i n s  procedure uses the log to select a set of additional objects to be consid
ered live, even if the collector has not yet encountered those objects in its trace, since it is 
possible that some number of reachable pointers were hidden by the mutator behind the 
wavefront. The precise choice of the set of origins is returned by the expose function. 

Mutator barriers 

The procedures New and W r i t e  represent the usual barriers performed by the mutator 
(here they are suitably atomic), which in the abstract algorithm coordinate with the collec
tor by appending their actions to the log. Logging New objects allows subsequent mutator 
events to distinguish loading/ storing fields of new objects, and loading/ storing references 
to new objects. A freshly allocated object always has a unique reference until that refer
ence has been stored to more than one field in the heap . Moreover, it does not contain any 
outgoing references (so long as its fields have not been modified, since they are initialised 
to null) .  This event allows concrete collectors to vary in how they decide liveness of ob
jects that are allocated during the collection cycle (some collectors treat all such objects as 
live regardless of their reachability, leaving those that are unreachable to be reclaimed at 
the next collection cycle) .  Others will retain only those new objects whose references are 
stored to live objects. 

As usual, the mutator W r i t e  operation assigns s r c [ i ] +-new (with new�null) so the 
pointer to destination object new is inserted in field s r c [ i ]  of source object src .  Simi
larly, the old pointer o l d  previously in field s r c [i ]  of source object s r c  is deleted. When 
the source field is behind the collector wavefront then the pointers new  I old  are insert
ed/ deleted behind the wavefront. Otherwise, the pointers are inserted/  deleted ahead of 
the wavefront. Logging Write events captures both the inserted and deleted pointers. 

Recall also that the wavefront can be expressed using the tricolour abstraction, where 
those objects/ fields ahead of the wavefront are white, those at the wavefront are grey, and 
those behind the wavefront are black. 

Precision 

The abstract concurrent collector of Algorithm 16.4 preserves a fixed level of atomicity (as 
specified by the atomic blocks) while instantiating the function expose in different ways 
to vary precision. Varying this parameter of the abstract concurrent collector is sufficient 
to capture a representative subset of concrete concurrent collectors that occur in the lit
erature, but there are other real collectors that cannot be instantiated directly from Algo
rithm 16.4 since they vary also in what they treat atomically. For example, Algorithm 16.4 
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assumes that roots can be obtained atomically from the mutator threads, which implies 
that they must be sampled simultaneously perhaps by stopping them all briefly (that is, 
Algorithm 16 .4 is mostly-concurrent) . 

Instantiating collectors 

Instantiating specific concurrent collectors within this framework requires defining a cor
responding expose function. For example, consider a Steele-style concurrent collector that 
rescans all objects modified up to and including the wavefront. The wavefront at an object 
and field granularity is captured by (last) Trace operations in the log for each object/field. 
The objects modified are captured by the s r c component of all the Write records in the 
log, and the modified fields by the f ld component. The Steele-style expose function atom
ically rescans modified fields that have already been traced . The traditional implementa
tion tracks the wavefront at the object granularity (s r c component of Trace records) using 
per-object mark bits, but the abstract framework highlights that the wavefront might also 
operate at the field ( f l d) granularity given a mechanism for marking distinct fields . Thus, 
one need only rescan modified fields that have already been traced as opposed to whole 
modified objects that have already been traced. Moreover, Steele assumes that mutator 
thread stacks are highly volatile so expose must rescan them right to the end. Termination 
requires that every Trace record have no matching (at the field or object level) Write record 
occurring after it in the log. 

A classical Dijkstra-style collector that unconditionally shades the target of any refer
ence stored to the heap will expose the new component of all the Write records up to and 
including matching Trace records at the wavefront. Note that these new references are 
extracted directly from the log without rescanning. Termination is similar to Steele [1976] .  

Conversely, a Yuasa-style snapshot collector exposes the o l d  component of  all the 
Write records that have no matching Trace record after them in log. Tracing that stays 
ahead of the mutator will successfully append Trace records to the log before the muta
tor can modify the fields they record, offering speedier termination than for incremental 
update. 

16.7 Issues to consider 

Many of the issues facing concurrent mark-sweep garbage collection are common to all 
concurrent collectors . Concurrent collectors are without doubt more complex to design, 
implement and debug than stop-the-world collectors. Do the demands made of the collec
tor warrant this additional complexity? Or would a simpler solution such as a generational 
collector suffice? 

Generational collectors can offer expected pause times for most applications of only 
a few milliseconds. However, their worst case - a full heap collection - may pause an 
application for very much longer, depending on the size of the heap, the volume of live 
objects and so on. Such delays may not be acceptable. Concurrent collectors, on the other 
hand, offer shorter and more predictable pause times. As we shall see in Chapter 19, 
properly specified real-time collectors can guarantee sub-millisecond pause times, but this 
typically comes at the cost of significant overhead on both the mutator and the collector. To 
bound pause times, the collector must not only be concurrent but also on-the-fly: it must 
stop mutators only one at a time in order to process their roots . 

Other questions for concurrent mark-sweep collection are the same as those for its stop
the-world counterpart. Non-moving memory managers are vulnerable to fragmentation. 
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As well as defragmenting the heap, copying and compacting collectors permit bump
pointer allocation which may be faster than free-list allocation and may also provide better 
locality for the mutator(s) . On the other hand, mark-sweep collectors make better utilisa
tion of space than copying collectors since they do not require a copy reserve. However, 
non-moving concurrent collectors have a further advantage over other concurrent collec
tors: a simpler heap coherency model . All concurrent collectors require mutators to inform 
the collector of changes to the topology of the heap in order to prevent a mutator from hid
ing objects from a collector. In addition, collectors that move objects must ensure both that 
only one collector thread moves an evacuated object and that it appears to mutators that 
all references to a moved object are updated atomically. 

Concurrent mark-sweep collection also presents a number of tactical choices to the im
plementer. As with other concurrent collectors, objects may be allocated black, grey or 
white. Black mutators require that all objects be allocated black. Grey mutators allow fur
ther possibilities . New objects may be allocated black, grey or white, or the decision may 
be varied depending on the phase of the collector, the initial values of the new object's 
fields, or the progress of the sweeper. 

In the remaining chapters, we examine concurrent copying and compacting collectors 
and conclude with collectors that can provide pause time guarantees sufficient for hard 
real-time systems, that is, those that must meet every deadline. 



Chapter 17 

Concurrent copying & compaction 

In this chapter we discuss approaches to defragmenting the heap concurrently with the 
mutator, relocating live objects either by concurrent copying or by concurrent compaction. 
Here we consider how the mark-compact approaches of Chapter 3 and the copying ap
proaches of Chapter 4 extend to operate concurrently with the mutator. 

We focus initially on collection techniques based on copying (evacuating or scaveng
ing) reachable objects out of a fromspace into a tospace, after which the fromspace can be 
reclaimed.  Recall that when scanning object fields the collector must convert all fromspace 
pointers to tospace pointers, replacing each fromspace pointer with the forwarding ad
dress of its fromspace target, copying the fromspace target the first time it is encountered. 

Concurrent copying collectors must not only protect the collector against mutation but 
also protect the mutator against concurrent copying. Moreover, concurrent updates by the 
mutator must be propagated to the copies being constructed in tospace by the collector. 

For copying collectors, a black mutator must by definition hold only tospace pointers. 
If it held fromspace pointers then the collector would never revisit and forward them, vi
olating correctness. This is called the black mutator tospace invariant: the mutator operates 
at all times ahead of the wavefront in tospace. Similarly, a grey mutator must by definition 
hold only fromspace pointers at the beginning of the collector cycle. In the absence of a 
read barrier to forward a fromspace pointer to the tospace copy, the grey mutator cannot 
directly acquire tospace pointers from fromspace objects (since the copying collector does 
not forward pointers stored in fromspace objects) . This is called the grey mutator fromspace 
invariant .  Of course, for termination of a copying algorithm, all mutator threads must end 
the collection cycle holding only tospace pointers, so any copying collector that allows 
grey mutator threads to continue operating in fromspace must eventually switch them all 
over to tospace by forwarding their roots . Moreover, updates by the mutator in fromspace 
must also be reflected in tospace or else they will be lost. 

17.1 Mostly-concurrent copying: Baker's algorithm 

Maintaining a tospace invariant for all mutator threads is perhaps the simplest approach 
to concurrent copying because it guarantees that the mutator threads never see objects that 
the collector is yet to copy, or is in the middle of copying. Establishing the tospace invariant 
in a mostly-concurrent world requires stopping all the mutator threads (atomically) to 
sample and forward their roots (copying their targets) at the beginning of the collection 
cycle. At this point, the now-black mutators contain only (grey) tospace pointers, but the 
(unscanned) grey targets will still contain fromspace pointers. Baker's [ 1978] black mutator 
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read barrier was first formulated for incremental collection to protect against a mutator 
acquiring one of these fromspace pointers, and subsequently extended by Halstead [1985] 
for concurrent copying. The read barrier has the effect of presenting the illusion to the 
mutator threads that the collection cycle has completed, by preventing them from crossing 
the collector wavefront boundary between tospace and fromspace. 

Baker-style concurrent collection is illustrated in Algorithm 17.1,  as a revision of the 
non-concurrent copying algorithm of Algorithm 4.2. Notice that the read barrier needs to 
trigger only when loading from a grey tospace object (ahead of the collector wave-front) . 
Only then is the f o rward operation needed to ensure that the loaded reference is to a 
tospace object, copying any uncopied fromspace object as necessary. As specified here, 
synchronisation between mutator and collector is relatively coarse-grained (at the level of 
objects) :  the collector atomic block scans the next grey object, while the mutator atomic 
read barrier forwards any reference loaded from a grey object. The atomic blocks ensure 
that a mutator thread can never load a reference from an object that is in the middle of 
being scanned (to turn it from grey to black). 

As presented in Algorithm 17 .1 ,  atomicity of the Rea d  operation ensures that the mu
tator sees the correct state of the s r c  object (grey or not) and the target object (forwarded 
or not), as well as allowing the mutator to copy the target object if it is in fromspace, with
out interfering with ongoing copying by the collector in proce s s .  Thus, the mutator 's 
atomic Read operation may incur overhead proportional to the size of the object being 
copied. It is possible to obtain finer-grained atomicity by carefully synchronising each of 
these operations more carefully with the collector. 

One approach is to allow finer-grained synchronisation using a work list holding field 
addresses rather than object references. A difficulty then is how to distinguish grey fields 
from black fields. The problem is ensuring that the wavefront is easily determined by the 
mutator. At the granularity of objects it is simple enough to set a grey bit in the header of 
each grey object, but for fields there is not usually a cheap place to store this information. 
However, with Cheney scanning the s c a n  pointer can be advanced (atomically) as each 
field is scanned, so black fields lie behind the scan pointer and grey fields in front. In this 
case, the read barrier might look something like: 

atomic Rea d ( s rc ,  i ) : 
r e f  +- s r c [ i ]  
if ref  :1 null && s c an  < & s rc [i ]  

ref  +- f o rwa rd ( re f )  
return r e f  

I* s r c [ i l is grey *I 

Of course, this description leaves out all the machinery needed to advance the wave
front atomically through each of the fields. We will see techniques for achieving this 
finer-grained processing in Chapter 19, where minimising interruptions by the collector 
becomes important for real-time systems. 

Mostly-concurrent, mostly-copying collection 

Mostly-concurrent collection also naturally applies to mostly-copying collections. Recall 
that a mostly-copying collector must treat ambiguous roots conservatively, pinning all ob
jects referenced by ambiguous roots . The collector is free to move the remaining objects 
not directly referenced by ambiguous roots . It is straightforward to use the brief stop-the
world phase of a mostly-concurrent collector to mark (and pin) all the objects referenced 
by the ambiguous roots in the mutator thread stacks and registers. At this point all the mu
tator threads are black, and a Baker-style read barrier will ensure that the mutator threads 
never subsequently acquire references to uncopied objects . 



17. 1 .  MOSTLY-CONCURRENT COPYING: BAKER'S ALGORITHM 

Algorithm 17.1: Mostly-concurrent copying 

1 shared work l i st f- empty 

3 c o l l e ct ( ) : 
atomic 

f l i p ( )  

10 

II 

12 

13 

14 

for each f l d  in Root s 
proce s s ( f l d) 

loop 
atomic 

if i sEmpt y (work l i s t )  
break 

re f f- remove (wo rk l i st )  
s can (  re f )  

I S  f l i p ( ) : 
16 f romspace,  t o space f- t o space ,  f romspace 
17 f ree ,  t op f- t o space, t o spa ce + extent  
18 

19 s c a n (  t oRe f ) : 
20 for each f l d  in P o i nt e r s (t oRe f )  
21 proce s s ( f l d) 
22 
23 proce s s ( f l d) : 
24 fromRe f f- * f l d  
� if fromRe f � null 
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/* exit loop 4 

26 * f l d  f- forward ( fromRe f )  /* update with tospace reference 4 
27 

28 forwa rd ( f romRe f ) : 
29 t oRe f  f- forwardingAddre s s ( f romRe f )  
30 if t oRe f = null 
31 t oRe f f- copy ( f romRe f )  
32 return t oRe f 
33 

34 copy ( fromRe f ) : 
� t oRe f f- f ree 
36 free  f- free + s i z e ( fromRe f )  
� if free  > t op 
38 
39 

40 

41 

42 

43 

e r ror " Out o f  memory " 
move ( fromRe f, t oRe f )  
fo rwa rdingAddre s s ( f romRe f )  f- t oRe f 
add(wo r k l i st ,  t oRe f )  
return t oRe f 

44 atomic Rea d ( s rc, i ) : 
4s ref  f- s rc [i ]  
46 if i s Grey ( s rc )  
47 re f f- forward (re f )  
48 return re f 

I* not copied (not marked) 4 
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DeTreville [1990] used this approach for concurrently collecting Modula-2+ and subse
quently for Modula-3 [Cardelli et al, 1992], both systems-oriented programming languages 
whose compilers were not sophisticated enough to generate accurate stack maps .  Also, 
because their compilers did not emit an explicit barrier for heap accesses, DeTreville ap
plied an Appel et al [ 1988] read barrier to synchronise the mutator with the collector using 
virtual memory page protection. Detlefs [1990] used the same technique for C++, modi
fying the AT&T C++  compiler to derive automatically the accurate pointer maps for heap 
objects needed to allow copying of objects not referenced directly from ambiguous roots. 

Subsequently, Hosking [2006] replaced use of coarse-grained virtual memory page pro
tection as the read barrier mechanism with compiler-generated object-grained read barrier 
support. The motivation for this was the difficulty of managing page protections atomi
cally in the presence of mutator threads that are preemptively scheduled by the operating 
system. Because the read barrier is needed only during the copying phase of collection, 
after all the mutator threads have been stopped to scan their ambiguous roots and make 
them black, it is possible to avoid expensive atomic instructions in the fast path of the 
barrier that checks if the source object is grey. Atomic operations are thus needed only to 
ensure atomicity of the forwarding operation. 

17.2 Brooks's indirection barrier 

An alternative approach to requiring a tospace invariant i s  to  allow the mutator to  make 
progress without concern for the wavefront. Brooks [1984] observes that if every object 
(whether in fromspace or tospace) has a non-null forwarding pointer (either to its from
space original or to its copy in tospace) then the test on the s r c  object in the read barrier 
can be eliminated. A fromspace object that has not yet been copied will have an indirec
tion field that points to itself. When copying an object, the fromspace indirection field is 
atomically updated to refer to the tospace copy. The tospace copy has an indirection field 
that points to itself. All heap accesses, both reads and writes, of pointers, non-pointers and 
mutable values in header words, now always require an unconditional dereference oper
ation to follow any indirection pointer to the tospace copy if one exists. Thus, the Read 
barrier for the mutator i s  rewritten by Brooks as in  Algorithm 17.2. 

Now the only problem is that the read barrier can still read a field ahead of the wave
front that might refer to an uncopied fromspace object. Fortunately, the ubiquitous indi
rection field relaxes the need for the tospace invariant imposed by Baker so the mutator is 
allowed to operate grey and hold fromspace references. To ensure termination Brooks im
poses a Dijkstra-style Write  barrier to prevent the insertion of fromspace pointers behind 
the wavefront as in Algorithm 1 7.2 .  

Because mutator threads now operate grey, once copying is finished they need a final 
scan of their stacks to replace any remaining unforwarded references. The alternative, as 
performed in the original incremental Brooks collector, is simply to scan the thread stacks 
and registers of each mutator thread after each collector increment, in order to redirect any 
references they may hold to copied objects before they can resume. 

17.3 Self-erasing read barriers 

Baker-style collectors require a read barrier to preserve their black mutator invariant. Read 
barriers are often considered to be more expensive than write barriers since reads are more 
prevalent than writes. Furthermore, read barriers are conditional :  given a Read ( s r c,i ) ,  
they must test whether s rc  [ i ]  is in tospace and evacuate it  if not. Cheadle et al [2004] 
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Algorithm 17.2: Brooks's indirection barriers 

1 atomic Read ( s r c, i ) : 

s r c f- forwa rdi ngAddre s s ( s r c ) 
return s r c [ i ] 

atomic W r i t e ( s r c, i ,  re f ) : 

s r c f- forwa rdi ngAddre s s ( s r c ) 
if  i s B l ack ( s r c ) 

r e f f- f o rward ( re f ) 
s r c [ i ] f- re f 

/* s r c is behind wavefront in tospace 4 

eliminate this test and eliminate all overheads in accessing a black tospace object for a 
Baker-style incremental copying collector in the Glasgow Haskell Compiler (GHC).  The 
first word of every object (closure) in GHC points to its entry code: the code to execute (en
ter) when the closure is evaluated. They provide two versions of this code. In addition to 
the standard version, a second version will scavenge the closure before entering the stan
dard code. Let us see how this scheme operates. When the collector is off, the entry-code 
word points to the standard, non-scavenging code. However, when an object is copied to 
tospace, this word is hijacked and set to point to the self-scavenging code. If the object, 
now in tospace, is entered, the self-scavenging code is executed first to copy the object's 
children to tospace. Then the original value of the entry-code word is reinstated. Finally, 
the standard version of the code is entered .  The beauty of this scheme is that if the closure 
is evaluated in the future then its standard code will be entered unconditionally: the read 
barrier has been erased. The cost of this scheme is some duplication of code: Cheadle et al 
found the overhead to be 25% over that of a stop-the-world copying collector. In [Cheadle 
et al, 2008] they applied this technique to flip method-table pointers in the Jikes RVM Java 
virtual machine. To do so they have to virtualise most accesses to an object (all method 
calls and accesses to fields unless they are static or private). However, they were able 
to recoup some of this cost by using the run-time compiler to inline aggressively. 

17.4 Replication copying 

The Brooks indirection barrier imposes a time and space penalty. Following an indirection 
pointer adds (bounded) overhead to every mutator heap access (both reads and writes, 
pointers and non-pointers), and the indirection pointer adds an additional pointer word 
to the header of every object. It has the advantage of avoiding the need for Baker's tospace 
invariant which forces the mutator to perform copying work when loading a fromspace 
reference from the heap, while preserving the essential property that accesses (both reads 
and writes) go to the tospace copy whenever one is present. This has the important result 
that heap updates are never lost because they occur either to the fromspace original before 
it is copied or to the tospace copy afterwards. l 

Replication copying collectors [Nettles et al, 1992; Nettles and O'Toole, 1993] relax this 
requirement by allowing the mutator to continue operating against fromspace originals 
even while the collector is copying them to tospace. That is, the mutator threads obey a 
fromspace invariant, updating the fromspace objects directly, while a write barrier logs all 

1 Atomic copying of an object and installation of the forwarding address from the old copy to the new one is 
not always simple. 



342 CHAPTER 17. CONCURRENT COPYING & COMPACTION 

updates to fromspace objects to record the differences that must still be applied to their 
tospace copies. In other words, replication copying collectors allow the state of the tospace 
copy to lag behind that of its fromspace original, so long as by the time the collector is fin
ished copying, but before it can discard fromspace, all mutator updates have been applied 
from the log to the tospace copy and all mutator roots have been forwarded. Thus, the 
termination condition for collection is that the mutation log is empty, the mutator 's roots 
have all been scanned, and all of the objects in tospace have been scanned. 

Concurrent replication copying requires synchronisation between the mutator and col
lector via the mutation log, and when updating the roots from the mutators. Thread-local 
buffers and work stealing techniques can minimise the synchronisation overhead when 
manipulating the mutation log [Azagury et al, 1999] . The collector must use the muta
tion log to ensure that all replicas reach a consistent state before the collection terminates. 
When the collector modifies a replica that has already been scanned it must rescan the 
replica to make sure that any object referenced as a result of the mutation is also replicated 
in tospace. Termination of the collector requires that each mutator thread be stopped to 
scan its roots. When there are no more objects to scan, the mutator log is empty, and no 
mutator has any remaining references to uncopied objects, then the collection cycle is fin
ished . At this point all the mutator threads are stopped together briefly to switch them 
over to tospace by redirecting their roots. 

The resulting algorithm imposes only short pauses to sample (and at the end redirect) 
the mutator roots: each mutator thread is stopped separately to scan its roots, with a brief 
stop-the-world phase at the end of the cycle to switch all the threads over to tospace. 

The downside to replication copying is that every mutation of the heap, not just point
ers, needs to be logged by the mutator threads. This imposes a much higher write barrier 
overhead than for traditional pointer-only write barriers, and the mutation log can become 
a bottleneck. For languages that discourage mutation, such as the functional language ML 
used by Nettles and O'Toole, this is less of an issue so performance does not suffer. 

17.5 Multi-version copying 

Nettles and O'Toole [1993] still require global stop-the-world synchronisation of the mu
tator threads to transition them to tospace. Their algorithm is not lock-free because no 
mutator can make progress while this transition occurs. Herlihy and Moss [ 1992] dispense 
with the need for a global transition. They adapt Halstead's multiprocessor refinement 
of Baker's [1978] algorithm, which divides the heap into multiple per-processor regions. 
Each processor has its own fromspace and tospace, and is responsible for evacuating into 
its own tospace any fromspace object it discovers while scanning. Halstead uses locking to 
handle races between processors that compete to copy the same object, and for updates to 
avoid writing to an object while it is being evacuated. He also retains global synchronisa
tion to have all the processors perform the f 1 ip into their tospace before discarding their 
fromspace. To eliminate this global synchronisation, Herlihy and Moss decouple from
space reclamation from the f l ip .  They divide each processor region into a single tospace 
plus multiple (zero or more) fromspaces. As copying proceeds, multiple fromspace ver
sions of an object can accumulate in different spaces. Only one of these versions is current 
while the rest are obsolete . 

Each processor2 alternates between its mutator task and a scanning task that checks 
local variables and its tospace for pointers to fromspace versions. When such a pointer 

2Herlihy and Moss use the term process for what might now be called a thread, but we continue to use processor 
here to match Halstead [1985) and to emphasise that the heap regions should be thought of as per-processor. 
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is found, the scanner locates the object's current version. If that version is in a fromspace 
then it copies it to a new current version in its tospace (the old version is now obsolete) .  

In  this way, the processors cooperate to  move objects from fromspaces to  tospaces, and 
to redirect reachable pointers to the tospaces. Each processor is responsible for scanning its 
own tospace for fromspace pointers, and for copying any fromspace object it finds (includ
ing objects in fromspaces of other processors) that does not have a current tospace copy 
in some processor. A processor can f l i p  at any time during its mutator task (when its 
tospace is full and so long as it has sufficient free space to allocate a new tospace), but not 
in the middle of a scan. It cannot free its fromspaces until it can be sure no other processor 
holds references to any of its fromspace objects. 

To manage versions, Herlihy and Moss maintain a forwarding pointer field next at 
all times in each object, so that each obsolete fromspace version refers to its next version, 
terminating at the current version which has a null forwarding pointer. When copying a 
fromspace object into its own tospace, a scanning processor atomically installs the tospace 
copy at the end of the version chain using C ompa reAn dSwap, making it current. Thus, 
every mutator heap access must traverse to the end of the chain of versions before per
forming the access. Moreover, to preserve lock-freedom while ensuring that heap updates 
are not lost, every store into an object creates a new version of the object in the mutat
ing processor 's tospace, using Compa r eAndSwap to make it current. Thus, scanning and 
copying require no global synchronisation, while preserving all mutator updates. 

A processor owning fromspaces (the owner) can discard them only if no other scanning 
processor (scanners) holds any of its fromspace pointers . A scan is clean with respect to 
a given owner if the scan completes without finding any pointers to versions in any of 
its fromspaces, otherwise it is dirty. A round is an interval during which every processor 
starts and completes a scan. A clean round is one in which every scan is clean and no 
processor executes a f l i p .  After a processor executes a f l i p the resulting fromspace can 
be reclaimed after completion of a subsequent clean round .  

An owner detects that another scanner has started and completed a scan using two 
atomic handshake bits, each written by one processor and read by the other. Initially, both 
bits agree. To start a f l i p, the owner creates a new tospace, marks the old tospace as 
a fromspace, and inverts its handshake bit. At the start of a scan, the scanner reads the 
owner 's handshake bit, performs the scan, and sets its handshake bit to the value read 
from the owner 's. Thus, the handshake bits will agree once the scanner has started and 
completed a scan in the interval since the owner 's bit was inverted. 

However, an owner must detect that all processes have started and completed a scan, 
and every processor is symmetrically both an owner and a scanner, so the handshake bits 
are arranged into two arrays. An owner array contains the owner handshake bits, indexed 
by owner processor. A 2-dimensional scanner array contains the scanner handshake bits, 
with an element for each owner-scanner pair. Because a scan can complete with respect to 
multiple owners, the scanner must copy the entire owner array into a local array on each 
scan. At the end of the scan, the scanner must set its corresponding scanner bits to these 
previously saved values. An owner detects that the round is complete as soon as its owner 
bit agrees with the bits from all scanners. An owner cannot begin a new round until the 
current round is complete. 

To detect whether a completed round was clean the processors share an array of dirty 
bits, indexed by processor. When an owner executes a f l ip, it sets the dirty bit for all 
other processors. Also, when a scanner finds a pointer into another processor 's fromspace 
it sets that processor 's dirty bit. If an owner 's dirty bit is clear at the end of a round then 
the round was clean, and it can reclaim its fromspaces. If not, then it simply clears its dirty 
bit and starts a new scan. By associating dirty bits with fromspaces rather than processor 
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Algorithm 17.3: Herlihy and Moss [1992] owner update in place 

1 Wr i t e Local ( a, next,  i , v ) : 

s e q  +- (next + 1 )  % 2 

s e q ( a ) +- s e q  

1 0  

i ndex ( a ) +- i 

v a l u e ( a ) +- v 

if CornpareAndS e t ( & ne xt ( a ) , n e xt,  s e q ) 
s can ( a [ i ] )  
a [i ] +- v 

else 
W r i t e ( a, i, v ) 

$ 

regions, and having scanners set the dirty bit for the target fromspace when they find a 
pointer, it is also possible to reclaim fromspaces individually rather than all at once. 

Herlihy and Moss prove safety and liveness for their algorithm, but they do not explore 
performance of an actual implementation. The liveness argument relies on the observation 
that if each processor always eventually scans then some processor always eventually re
claims its fromspaces . At worst, because each processor will eventually exhaust its free 
spaces, further flips will cease, and all processors will eventually focus on scanning until a 
clean round ensues. Of course, this resource exhaustion has the effect of causing blocking 
in the system as a whole . 

Extensions to avoid copy-on-write 

The novelty of this multi-versioning algorithm is that it is entirely lock-free. Its downside 
is the need to create a new version on every heap update, though this may be useful on a 
non-uniform memory architecture multiprocessor to improve locality. Herlihy and Moss 
consider several alternatives to avoiding versioning on every update: 

Update in place with CompareAndSwap2. The first extension assumes the availability 
of the CornpareAndSwap2 operator which allows both performing the update and ensur
ing that the forwarding pointer next remains null as a single atomic operation. Un
fortunately, CornpareAndS w ap2 is not widely implemented on modern multiprocessors. 
Transactional memory might be a viable alternative; in fact, this algorithm inspired the 
work leading to Herlihy and Moss. 

Owner update in place. Another approach simply uses Cornpa reAn d S wap but it re
quires additional fields in the header of object a :  s e q ( a ) is a modulo two sequence num
ber, i ndex ( a ) is  the index of the slot being updated and v a l ue ( a ) is  the new value for 
that slot. Also, the forwarding pointer field next ( a ) is permitted to hold a sequence 
number, in addition to a pointer or null  (this is easy enough to achieve by tagging the 
forwarding pointer field with a low bit to distinguish pointers to suitably aligned ob
jects from a sequence number) . There need only be two values for sequence numbers: 
if s e q ( a ) =next ( a ) then the current update is installed, and otherwise it is ignored. 

To perform a store using the full write barrier, a processor chains down the list of ver
sions until it finds the current version (one with null or a sequence number stored in its 
next field) .  If the current version is local, then the processor performs the W r i  teLoca l op
eration illustrated in Algorithm 17.3. This takes the current version a, the observed n e x t  
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field (either null or a sequence number), the index i of the slot to be modified, and the 
new value of the slot v. It then uses CornpareAndSwap to install the new sequence number 
in the next field. If successful, then the processor performs a deletion barrier to scan any 
pointer overwritten by the store (this preserves the invariant that scanning has inspected 
every pointer written into tospace), before performing the store . Otherwise, the processor 
locates the newer version and retries the update by invoking the full write barrier. Having 
the owning process update in place is well-suited to a non-uniform memory architecture 
where it is more efficient to update local objects . 

If the object is remote then the new owner makes a local tospace copy as before, ex
cept that after making the copy, but before performing the store, it must check whether 
next ( a ) = s eq( a ) .  If they are equal, then it must first complete the pending update, per
forming the deletion barrier to scan the slot indicated by the index field and storing the 
value from the value field into that slot. The same action must be performed when the 
scanner evacuates an object into tospace. This ensures that any writes performed on the 
original object while it is being copied are linearised before writes performed to the copy. 

Locking update in place. Finally, there is the alternative of giving up on lock-freedom 
and using CornpareAndSwap to lock the object while it is updated. As before, only the 
owner of the current version may update in place. The owner locks an object by : 

1 .  using CornpareAndSwap to lock the object by installing a distinguished locked value 
in its next field; 

2. scanning the pointer (if any) being overwritten by the store; 

3. performing the update; 

4. scanning the pointer (if any) being stored; and 

5. unlocking the object by setting next back to null.  

Since the owner is the only processor that updates the object in place, there is no need to 
synchronise with the scanner. The deletion barrier in step 2 ensures that pointers possibly 
seen by other processors will be scanned. The insertion barrier in step 4 ensures that if the 
object has already been scanned then the new pointer will not be mistakenly omitted. 

17.6 Sapphire 

A problem with symmetric division of the heap into independently collected regions per 
processor as done by Halstead [ 1985] and Herlihy and Moss [1992] is that it ties the heap 
structure to the topology of the multiprocessor. Unfortunately, application heap structures 
and thread-level parallelism may not map so easily to this configuration. Moreover, one 
processor can become a bottleneck because it happens to own a particularly large or knotty 
portion of the heap, causing other processors to wait for it to complete its scan before 
they can discard their fromspaces, so they may end up stalling if they have no free space 
in which to allocate. It may be possible to steal free space from another processor, but 
this requires the ability to reconfigure the per-processor heap regions dynamically. These 
issues were discussed earlier in Chapter 14. Instead, non-parallel concurrent collectors 
place collector work asymmetrically on one or more dedicated collector threads, whose 
priority can easily be adjusted to achieve a balance of throughput between mutator and 
collector threads. 
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1 MarkCopy: 
Mark 
Allocate 
Copy 

6 Mark: 
PreMark 
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Algorithm 17.4: Sapphire phases 

/* mark reachable objects 4 
/* allocate tospace shells */ 

/* copy fromspace con tents into tospace shells 4 

RootMark 
HeapMark/StackMark 

/* install Mark phase write barrier */ 
/* blacken global variables 4 

/* process collector mark queue 4 
1 0  

n Flip: 
1 2  PreFlip 
13 HeapFlip 
14 ThreadFlip 
1s Reclaim 

/* install Flip phase write barrier 4 
/*flip all heap fromspace pointers to tospace */ 

/*flip threads, one at a time 4 
/* reclaim fromspace */ 

Sapphire [Hudson and Moss, 2001 ,  2003] is a concurrent copying algorithm designed 
to work well in the presence of a large number of mutator threads on small- to medium
scale shared memory multiprocessors . It extends previous concurrent replication copying 
algorithms to allow one thread at a time to f 1 ip from operating in fromspace, as opposed 
to having to stop them to transition them all at once over to tospace. This minimises the 
amount of time that any given application thread may need to block to support the col
lector. To cope with mutators operating in both fromspace and tospace at the same time, 
Sapphire requires that they update both the fromspace and tospace copies of an object, 
when both exist. Sapphire also requires that new objects created by the mutator be allo
cated black in a separate newspace in the heap that survives the current collection but is 
not scanned like tospace. This helps guarantee termination of the collection cycle, since 
fromspace (and hence tospace) are bounded in size. Because new objects are not scanned, 
they are treated as black (behind the wavefront), and subject to an installation write barrier 
that scans and forwards any pointer as it is written. 

Collector phases 

Sapphire has two major groups of phases (outlined in Algorithm 17.4) .  

MarkCopy: The first group of phases marks the objects directly reachable from global 
variables and mutator thread stacks and registers and copies them into tospace. Dur
ing these phases the mutators all read from the originals in fromspace, but also must 
mirror their writes to the tospace copies. The fromspace and tospace copies are kept 
loosely coherent by relying on the programming language memory model (in this 
case for Java [Manson et al, 2005; Gosling et al, 2005], but which should also apply 
to the forthcoming memory model for C++ [Boehm and Weiser, 1988]) to avoid a 
barrier on reads of non-volatile fields (volatile fields require a read barrier) . This 
means the updates to each copy need not be atomic or simultaneous. Rather, a Java 
application need only perceive that the values in the copies cohere at application
level synchronisation points. Any changes made by a mutator thread to fromspace 
copies between two synchronisation points will be propagated to the tospace copies 
before passing the second synchronisation point. If all threads are at synchronisation 
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Algorithm 17.5: Sapphire pointer equality 

(a) Fast path 

t pointe rEQ (p, q) : 
i f  p q return true 
if  q = null return false 
if  p = null return false 
return f l ipP o i nt e rEQ(p, q )  

f l ipP o i nte rEQ(p, q ) : 
pp +- fo rward (p )  
qq +- forward(  q)  
return pp = qq 

(b) Flip phase 

/* called only during Flip phases */ 

(c) Pointer forwarding 

f o rwa rd(p) : 
pp +- toAddre s s (p )  
if  pp  = null 

pp +- p 
return pp 

/* p is a non - null pointer 4 
/* pp is null if p is in tospace */ 
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points, then the fromspace and tospace copies will be consistent with one another.3 

This is important during the second group of phases, when mutators can observe 
both fromspace and tospace copies . 

Flip: The second group of phases forwards pointers in global variables and thread stacks 
and registers, flipping them one at a time into tospace. Unflipped mutator threads 
may hold references to both fromspace and tospace copies (even of the same ob
ject) . Previous concurrent copying collectors impose a tospace invariant using a read 
barrier to redirect mutators out of fromspace [Baker, 1978], or impose a fromspace 
invariant while replicating and then flip all at once [Nettles and O'Toole, 1993] . In
cremental flipping plus having no read barrier means that mutators may access both 
fromspace and tospace at the same time, which requires slightly tighter synchronisa
tion of updates to both copies. 

This also affects pointer equality, since the fromspace and tospace copies of the same 
object must appear to have the same reference at the language level. Every pointer 
equality operation must apply a barrier as illustrated in Algorithm 17.5a. Note that 
if either argument is statically null then the compiler can revert the test to the 
simple p=q. The Flip phases must also call the f l ipP o i n t e rEQ function (see Al
gorithm 17.5b) to compare the forwarded pointers similarly to the barrier of Brooks 
(1984] . 

MarkCopy: Mark. The Mark phase marks every fromspace object reachable from the 
roots, both global variables and thread stacks/registers. The Sapphire design calls for the 

3We emphasise that Sapphire assumes that there are no races on updating non-volatiles. 
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collector to perform all the marking, working from a queue. The mutator write barrier 
ensures that if the mutator stores (into a global variable or the heap) a reference to an 
unmarked fromspace object p then p is added to the queue. The collector first scans the 
global variables, enqueuing any reference it finds to an unmarked fromspace object. The 
collector then marks and scans the unmarked objects in the queue. When it removes a 
pointer to object p from the queue, if p is not yet marked then it marks p and scans its slots 
to enqueue any unmarked fromspace objects referred to by p.  

When the collector finds the mark queue empty it  scans each mutator, one at a time, 
stopping each mutator to scan its stacks and registers and enqueuing any reference it finds 
to an unmarked fromspace object. If the collector makes a pass through all the mutators 
without enqueuing any objects for marking then marking is complete; otherwise marking 
and scanning continue. Termination relies on the fact that the write barrier prevents re
treating the marking wavefront, and that new objects are allocated black. Eventually all 
reachable fromspace objects will be marked and scanned. 

The Mark phase has three steps .  The PreMark step installs the Mark phase write barrier 
W r i  t eMarkl shown in Algorithm 1 7.6a. Mutators do not perform any marking directly, but 
rather enqueue objects for the collector to mark. Fromspace objects that are not marked are 
implicitly white. Objects in the mark queue are implicitly grey. This can be encoded using 
an 'enqueued' bit which also allows avoiding enqueuing an object more than once. Each 
mutator has its own queue, so enqueuing normally involves no synchronisation. When 
the collector scans a mutator 's stack it also empties that mutator's queue by appending 
the mutator 's queue onto its own queue. 

The RootMark step scans and blackens the global variables by enqueuing their un
marked targets for the collector to mark using Wr i t eMark · Stores into newly-allocated 
objects, including initialising stores, invoke the write barrier, so newly-allocated objects 
are treated as black. Mutator stacks and registers are still grey. 

Finally, the HeapMark/StackMark step processes the collector's mark queue, a sepa
rate set of explicitly grey (marked) objects, and the thread stacks. For each reference in the 
mark queue, the collector checks if it is already marked. If not, the collector marks the 
object and enters it into the explicit grey set for scanning (otherwise the already marked 
object is ignored) . Each explicitly grey source object is scanned to blacken its slots by en
queuing their unmarked target objects for the collector to mark using W r  i teMa rk, and then 
the source object is considered to be black, as noted by the fact that the object is marked 
but not in the explicit grey set. The collector iterates until both the mark queue and the 
explicit grey set are both empty. (An object can be enqueued for marking more than once, 
but eventually it will be marked and no longer enqueued by the mutators.) 

Whenever the mark queue and grey sets are both empty, the collector scans a mutator 
stack by briefly stopping the mutator thread at a safe point (which cannot be in the middle 
of a write barrier), scanning the thread's stack and registers to blacken them by enqueu
ing every unmarked root using W r  i t eMark · Having scanned every thread's stack without 
finding any white pointers or enqueued objects, and with the mark queue and grey set 
empty, then there can be no white pointers in the thread stacks, global variables, or newly
allocated objects . They are now all black. The termination argument for this phase relies 
on the write barrier to keep globals and newly-allocated objects black. The write barrier 
also prevents mutators from writing white references into the heap . A mutator can obtain 
a white pointer only from a (reachable) grey or white object. Because there were no grey 
objects since the mutator threads were scanned, it cannot obtain a white pointer from a 
grey object, so it can only obtain a white pointer from another white object. But, because 
the mutator had no white references when it was scanned, it must have discarded them 
since the scan, so it cannot obtain any further white references after the scan. This applies 
to all mutators, so the thread stacks must all be black. 
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Algorithm 17.6: Sapphire write barriers 

(a) The Mark phase barrier 

1 Wr i t eMark (P, i, q) : 
p [i ]  +--- q 
if i sF r omSpace (  q) && not marked(  q) 

enqueue (  q) 
/* white 4 

/* collector will mark later 4 

(b) The Copy phase barrier 

1 W r i t ecopy (p, i, q) : 
p [ i ]  +--- q 
pp +--- t oAddre s s (p )  
if pp =/:- null 

q +--- fo rwa rd(q)  
pp [ i ]  +--- q 

(c) The Flip phase barrier 

1 Wr i t eFl ip (P, i, q) : 
q +--- f o rward(q)  
p [ i ]  +--- q 

1 0  

1 1  

pp +--- t oAddre s s (p )  
if pp =/:- null 

pp [i ]  +--- q 
return 

pp +--- f romAddres s (p )  
if pp  =/:- null 

pp [ i ]  +--- q 
return 

$ 
$ 

/* p is in fromspace 4 
/* omit this for non -pointer q 4 

$ 

/* omit this for non -pointer q */ 

/* p is in fromspace */ 

/* p is in tospace 4 
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Note that only mutators active since their last scan during this Mark phase need to be 
rescanned. Similarly, only stack frames active since their last scan within this Mark phase 
need to be rescanned. 

At this point, all white fromspace objects are unreachable. 

MarkCopy: Allocate. Once the Mark phase has determined the set of reachable from
space objects, the collector allocates an empty tospace copy 'shell' for each marked from
space object. It sets a forwarding pointer in the fromspace object to refer to the tospace 
copy, and builds a hash table for the reverse mapping from each tospace copy to its from
space copy. This is needed because a mutator thread that has been flipped to tospace still 
needs to update fromspace copies whenever other threads are still operating in fromspace. 

MarkCopy: Copy. Once every marked fromspace object has a tospace copy and forward
ing pointer installed, the collector begins copying the contents of fromspace objects to their 
tospace shells. This phase maintains the invariant that tospace objects refer only to other 
tospace objects by using a new Copy phase write barrier Write copy' which keeps both 
the fromspace and tospace copies up to date with respect to all writes, and makes sure to 
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Algorithm 17.7: Sapphire word copying procedure 

1 copyWo rd(p, q) : 
for i +-- 1 to MAX_RETRY do 

t oValue +-- * P  
t oValue +-- forward( t oValue )  
* q +-- t oVa l u e  
frornVa lue  +-- * P  
if  t oVa l u e  = frornVa l ue  

return 

$ 
/* omit this for non -pointers 4 

$ 
$ 

LoadLinked( q)  $ 
w t oValue +-- * P  $ 
n t oVa lue +-- forward(toVa l u e )  /* omit this for non -pointers 4 
12 S t o reCondi t i o n a l ly (q, t oValue )  /* assuming no spuriousfailure 4 $ 
1 3  

14 copyWo rdSafe (p, q ) : 
1 s  for . . .  
1 6  loop 
v LoadLi nked (q )  
I K  
19 

2{} 

2 1  

t oValue +-- * P  
t oValue +-- forward(t oVa lue )  
if  StoreCondi t iona l l y ( �  t oValue ) 

return 

/* as in copyWo rd  4 

$ 
$ 

/* omit this for non -pointers */ 
$ 

/* SC succeeded 4 

store only tospace pointers into tospace objects, as shown in Algorithm 17.6b. The mu
tators are all still operating unflipped in fromspace, so the barrier acts only to propagate 
all updates of fromspace objects to their tospace copies .  Here, t oAddre s s  is the same as 
forwardingAddre s s  from previous copying schemes, returning null for tospace ob
jects. Thus, the forward  operation in Sapphire will convert a fromspace pointer to its 
corresponding tospace pointer, but act as the identity operation on non-fromspace point
ers. The memory accesses performed by this barrier (marked with $) must execute in the 
specified order, but otherwise the barrier is unsynchronised because Sapphire assumes no 
mutator-mutator data races on non-volatiles . 

The Copy phase comprises the following steps. The Pre-Copy step installs the Copy 
phase write barrier Wr i t e copy (Algorithm 17.6b) . The Copy step copies the contents of 
each black (marked and scanned) fromspace object into its tospace copy. To cope with con
current updates by mutators while it is copying object contents, the collector uses lock-free 
synchronisation to resolve any race that occurs, as shown in Algorithm 17.7. This tries 
copying the value of a word from one location p to another location q without synchro
nisation primitives, retrying (up to some limit) when the 'from' location p is observed to 
change, and then resorts to using a combination of the LoadLi nked/ S t o reCondi t i on
a l l y  (LL/SC) primitives to  effect the copy (so long as  no update occurs to  the 'to' location 
q, otherwise the mutator write barrier ensures both copies are updated in which case the 
collector need not) . Again, memory accesses (marked with $) must execute in the specified 
order. Note that the algorithm as specified here using LoadLi nked/ S t o reCondi t i on
a l l y  assumes that SC fails only in the case that the mutator really did update the 'from' 
location p.  Unfortunately, current hardware does not provide such guarantees (SC can fail 
spuriously) .  Thus, LoadLi nked/ S t o reCondi t i o na l l y  cannot ensure that the collec
tor will make progress in the face of repeated updates to the 'from' location.4 In practice, 

4We thank Laurence Hellyer for describing this problem. 
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the copyWo rd loop must be re-coded defensively as shown in copyWo rdSa fe, but the 
collector will fail to make progress if the mutator repeatedly updates the 'from' location p 

between every invocation of LoadLinked and StoreCondi  t i onal ly .  

Flip. Again, the phase operates in several steps. Beginning in  this phase, unflipped mu
tators can operate in both fromspace and tospace. The PreFlip step installs the Flip phase 
write barrier Writenip to cope with this (Algorithm 17.6c) . The HeapFlip step then pro
cesses references held in global variables and newspace objects, flipping all fromspace 
pointers to tospace. W r i t e  Fl ip guarantees not to undo this work by ensuring that only 
tospace pointers are written into global variables and newspace. The ThreadFlip step then 
flips each mutator thread, one at a time: it stops the thread, flips any fromspace pointers in 
its stacks and registers over to tospace, and restarts the thread . During this phase, all muta
tors still need to update both fromspace and tospace copies . Thus, flipped threads need to 
be able to map from tospace copies back to fromspace copies (using f r omAddress  analo
gously to t oAddres  s ). Finally, once all threads are flipped and no thread is still executing 
WriteFl ip, the Reclaim step reclaims fromspace and discards the reverse mapping table 
from tospace back to fromspace. 

Since unflipped threads may access both fromspace and tospace copies of the same 
object, the pointer equality test needs to compare the tospace pointers (Algorithm 17.5b) .  

Merging phases 

Sapphire allows some phases to be merged. For example, RootMark, HeapMark/Stack
Mark, Allocate, and Copy can be merged into a single Replicate phase, which combines 
the W r i t eMark and W r i t ecopy into a Replicate write barrier: when writing a fromspace 
pointer into a tospace slot, in addition to enqueuing the fromspace object for copying, the 
write barrier also enqueues the tospace slot so that it can be fixed later by the collector. 

Volatile fields 

Java volatile fields require a physical memory access for each source code access, and 
accesses must appear to be sequentially consistent. For this reason, volatile fields re
quire heavier synchronisation on mutator access and while the collector is copying them 
to ensure that their copies are kept properly coherent. Hudson and Moss describe several 
techniques for achieving this, each of which imposes substantial additional overhead for 
accessing volatile fields. 

In summary, Sapphire extends previous concurrent copying algorithms, and has much 
in common with replication schemes. It permits one thread at a time to flip from fromspace 
to tospace rather than all at once, and minimises thread blocking (pauses) while avoiding 
a read barrier for non-volatile fields. Mutators simply update both the fromspace and 
tospace copies of an object (when both exist) to keep them coherent. 

17.7 Concurrent compaction 

Chapter 3 discussed approaches to garbage collection that split into two phases, marking 
and compacting. Recall that compaction is decoupled from the tracing phase that deter
mines reachable objects . This allows greater freedom than a copying collector over the 
order in which objects are relocated (by address, say, rather than in order of tracing for 
reachability). 
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Compressor 

Compressor [Kermany and Petrank, 2006] ,  presented earlier in Section 3 .4 and Section 14.8, 
exploits the freedom allowed by separating marking from copying to perform compaction 
concurrently with the mutator threads. 

Recall that Compressor first computes an auxiliary first-object table that maps a tospace 
page to the first fromspace object that will be moved into the page . Parallel compactor 
threads then race to claim an unmapped tospace virtual page, map it to a physical page, 
populate it with its copies from fromspace pages, and redirect each pointer field in the 
copies to refer to tospace. Once all the live objects in a fromspace page have been copied it 
is immediately unmapped. 

To enable concurrent compaction, Compressor exploits virtual memory page protec
tion primitives similarly to Appel et al [ 1988], where protection served as the read barrier 
for concurrent copying collection in order to prevent the mutator from accessing tospace 
pages whose objects have not yet been copied or contain unforwarded pointers. Ossia et al 
[2004] also used protection simply to allow concurrent forwarding of pointers in pages 
containing compacted objects, but Compressor drives both compaction and forwarding 
using page protection. Compressor protects the tospace pages from read and write access 
(without yet mapping them to physical pages) .  Computing the first-object table and pro
tecting tospace occurs concurrently with mutator threads operating in fromspace. Com
pressor then briefly stops all the mutator threads to switch their roots to refer to tospace 
addresses before releasing the threads. Of course, the contents of those pages have not yet 
been copied . At this point, if a mutator accesses a protected tospace page it will trap. Han
dling the trap requires doing the work of compaction to map and populate the page with 
its copies (the mutator performs incremental compaction work as if it was a compactor 
thread), and forward the references in those copies, before the mutator can resume and 
access the page. Note that only the data for this page is copied, thus the handler will not 
evacuate the beginning of an object that starts on the previous page or the end of one that 
continues onto the next page. Concurrent compaction requires that a compactor thread be 
able to access the page while other mutator threads are still protected from access. To sup
port this, Compressor double-maps each physical page when its contents are to be copied, 
once in its 'natural' (still-protected) tospace virtual page, and again in an unprotected vir
tual page private to the compactor thread (see also Section 1 1 . 10). Once the compaction 
work has been done for that page, the tospace virtual page can be unprotected so mutators 
can proceed, and the private mapping is discarded. 

In essence, Compressor applies the standard tricolour invariant. Fromspace pages are 
white, protected tospace pages are grey, and unprotected tospace pages are black. Initially, 
the mutator threads operate grey in fromspace while the first-object table is computed 
along with the tospace addresses. When the mutator threads are flipped over to tospace 
they are black. The protection-driven double mapping read barrier prevents the black 
mutator threads from acquiring stale fromspace references from grey pages that are still in 
the process of being populated with their fromspace copies . 

Compressor must also handle other aspects of the tricolour invariant. In particular, af
ter marking and before the task of determining the first-object table begins, mutators must 
allocate all new objects in tospace, to prevent those allocations from interfering with the 
relocation map (otherwise, allocating to a hole in fromspace would interfere) .  Moreover, 
these newly allocated objects must eventually have their pointer fields scanned after the 
mutators flip to tospace, to redirect any stale fromspace references in those fields over to 
tospace, and similarly for global roots. Thus, both newly allocated tospace objects and the 
global roots must be protected from access by mutators, with traps on their pages forcing 
scanning to redirect their pointers. 
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Because the performance of Compressor depends heavily on the cost of virtual mem
ory page mapping and protection primitives, which can be onerous [Hosking and Moss, 
1993], it is important to batch these operations as much as possible. For example, Com
pressor actually protects and double-maps the entire tospace at the beginning of collection 
(to avoid the cost of double mapping each page as it is processed). Similarly, Compres
sor moves eight virtual pages per trap (to better amortise the trap overhead on mutator 
threads) . 

One downside of Compressor is that when a mutator traps on access to a protected 
tospace page then it must not only copy all of that page's objects, it must also forward all 
the pointers in those objects to refer to their relocated (or soon to be relocated) targets. This 
can impose significant pauses on the mutator. In a moment, we will discuss the Pauseless 
collector, which reduces the amount of incremental work needed to be performed by a mu
tator to copying at most one object (without needing to forward any of the stale fromspace 
references it contains). Before doing so, let us briefly review the way in which Compressor 
drives compaction using page protection, as illustrated in Figure 17. 1 .  The figures show 
the logical grouping of virtual pages into distinct categories (the linear address-ordered lay
out of the heap is intentionally not represented) : 

Live: pages containing (mostly) live objects (initially dark grey in the figures) 

Condemned: pages containing some live objects, but mostly dead, which are good candi
dates for compaction (light grey in the figures, with dark grey live objects) 

Free: pages currently free but available for allocation (dashed borders) 

New Live: pages in which copied live objects have been allocated but not yet copied 
(dashed borders, with dashed space allocated for copies) 

Dead: unmapped pages that can be recycled (freed for allocation) once there are no point
ers to them (shown hatched in the figures) 

Figure 17.1a illustrates the initial state in which live objects have been identified along 
with those to be relocated. For ease of later comparison with Pauseless, we take the liberty 
here to restrict compaction only to pages sparsely occupied by live objects. In Compres
sor, live tospace pages containing stale references that need forwarding, and tospace pages 
into which objects are yet to be relocated, must first be protected to prevent the mutators 
from accessing them. Concurrently with the mutators, the forwarding information for the 
live objects is prepared on the side in auxiliary data structures. At this point, the heap 
pages are configured as in Figure 17. 1b, and the mutator roots are all flipped over to re
fer only to the protected tospace pages . Compaction can now proceed concurrently with 
the mutators, which will trap if they try to access an unprocessed tospace page. Trapping 
on a live tospace page causes all of the references in that page to be forwarded to refer to 
tospace, as in Figure 17.1c .  Trapping on a reserved tospace page evacuates objects from 
condemned fromspace pages to fill the page, and the references contained in these copied 
objects are forwarded to refer to tospace (Figure 17 .1d) .  When all the live objects in a con
demned fromspace page have been evacuated, it is completely dead and its physical page 
can be unmapped and returned to the operating system, though its virtual page cannot 
be recycled until all references to it have been forwarded. Compaction ceases when all 
tospace pages have been processed and unprotected (Figure 17.1e) .  We now contrast this 
approach with the Pauseless collector. 
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(a) Initial Compressor configuration. All pages are in fromspace. 
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(b) Compute forwarding information, protect all tospace pages (illustrated by the dou
ble horizontal bars) . These include those reserved to hold evacuated objects and those 
Live pages not condemned for evacuation. Then flip mutator roots to tospace. Muta
tors accessing a protected tospace page will now trap. 

(c) Trapping on a Live page forwards pointers contained in that page to refer to their 
tospace targets. Unprotect the Live page once all its stale fromspace references have 
been replaced with tospace references. 

(d) Trapping on a reserved tospace page evacuates objects from fromspace pages to 
fill the page. The fields of these objects are updated to point to tospace. Unprotect the 
tospace page and unmap fully-evacuated fromspace pages (releasing their physical 
pages, shown as hatched) .  

Roots � 

(e) Compaction is finished when all Live pages have been scanned to forward ref
erences they contain, and all live objects in condemned pages have been copied into 
tospace and the references they contain have been forwarded. 

Figure 17.1: Compressor 



17.7. CONCURRENT COMPACTION 355 

Pauseless 

The Pauseless collector [Click et al, 2005; Azul, 2008], and its generational extension C4 
[Tene et al, 201 1] ,  protects fromspace pages that contain objects being moved, instead of 
protecting tospace pages containing moved objects and/ or stale pointers. Rather than 
needing to protect all of the tospace pages like Compressor, Pauseless protects the much 
smaller set of pages whose objects are actually being moved (focusing on sparsely pop
ulated pages that will yield most space), and these pages can be protected incrementally. 
Pauseless uses a read barrier to intercept and repair stale fromspace references before the 
mutator can use them, and avoids blocking the mutator to fix up entire pages. The ini
tial implementation of Pauseless used proprietary hardware to implement the read barrier 
directly as a special load-reference instruction, but on stock hardware Pauseless compiles 
the necessary logic inline with every load-reference operation by the mutator. 

Hardware and operating system support. Azul's proprietary hardware supports a num
ber of fast user-mode trap handlers . The hardware translation lookaside buffer supports 
an additional GC-mode privilege level, in addition to the usual user and kernel modes . 
Several of the fast user-mode traps switch to GC-mode in the trap handler. The translation 
lookaside buffer also supports large (one or two megabyte) pages, much larger than the 
usual page size of standard processors . These large pages are the standard unit of work 
for the Pauseless collector. 

The hardware also supports a fast co-operative preemption mechanism via interrupts 
that are taken only on user-selected instructions, corresponding to GC-safe points. Blocked 
threads are already at GC-safe points . Running threads can quickly be brought to a GC
safe point and allowed to continue, without idling them. This permits a very fast checkpoint 
operation, where mutators can be asked to quickly perform a small amount of GC-related 
work and then carry on, while blocked threads can have the work performed on their 
behalf by the collector. In contrast, a normal stop-the-world operation requires that all 
mutators reach a GC-safe point before they can proceed. In a checkpoint, running threads 
are never idled, and the GC work is spread out in time. 

As mentioned earlier, Azul's proprietary hardware supports a hardware read barrier, 
which performs a number of checks and actions depending on the particular phase of the 
collector. The read barrier, sketched in Algorithm 17.8, executes first the load, followed 
by the barrier logic which cycles the loaded value (assumed to be an address) through the 
translation lookaside buffer as if it were an address . If this address corresponds to a GC
protected page then a fast user-mode GC-trap handler is invoked. The barrier ignores null 
references. Unlike a Brooks-style indirection barrier there is no null check, no memory ac
cess, no load-use penalty, no forwarding word in the object header and no cache footprint 
imposed by this mechanism. 

Pauseless also steals one address bit from the 64-bit address space.  The hardware ig
nores (strips) this bit in loads and stores. This bit is called the Not-Marked-Through (NMT) 
bit and is used during the concurrent marking phase of the collector to decide whether the 
reference has previously been scanned by the collector. The hardware maintains a desired 
value for the Not-Marked-Through bit and will trap to the Not-Marked-Through-trap han
dler if the reference has the wrong flavour. Null references are also ignored here. 

On standard hardware, the read barrier must be emulated at some cost. The GC pro
tection check is emulated with standard page protection and the read barrier emulated 
by issuing a dead load instruction or by explicitly checking a side-table in software for 
the need to trap. The Not-Marked-Through check is emulated by multi-mapping mem
ory and changing page protections to reflect the expected Not-Marked-Through bit value. 
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Algorithm 17.8: Pauseless read barrier 

1 Read( s r c ,  i ) : 
re f +--- s r c [i ]  
if  p r ot ected( r e f )  

r e f  +-- GCt rap ( re f, & s rc [ i ] ) 
return ref  

1 GCt rap ( o l dRe f, add r ) : 

1 0  

I I  

1 2  

1 3  

1 4  

newRe f +-- forwa rd( o l dRe f )  
ma r k ( newRe f )  

/* forward/copy a s  necessary 4 
/* mark as necessary 4 

I* will repeat only if CAS fails spuriously 4 
CompareAndSwap ( addr, o l dRe f, newRe f )  

loop 
i f  oldRe f 

return 
i f  oldRe f =/:

return 

/* CAS succeed, so we are done 4 
* addr 

/* another thread updatedaddr but n e wRe f is ok 4 

Null references are quite common, so must be filtered explicitly, though the compiler can 
often fold this test into the existing null pointer safety checks required by languages like 
Java. Stripping the Not-Marked-Through bit in software can be achieved by having the 
compiler modify all dereferences to strip it before use, and reusing the stripped reference 
where the reuse does not cross a GC-safe point. Alternatively, the operating system can be 
modified to multi-map memory or alias address ranges so that the Not-Marked-Through 
bit is effectively ignored. 

The Pauseless garbage collection phases. The Pauseless collector is divided into three 
main phases, each of which is fully parallel and concurrent: 

Mark is responsible for periodically refreshing the mark bits. In the process of doing 
that it will set the Not-Marked-Through bit for all references to the desired value 
and gather liveness statistics for each page. The marker starts from the roots (static 
global variables and mutator stacks) and begins marking reachable objects. The Not
Marked-Through bit assists in making the mark phase fully concurrent, as described 
further below. 

Relocate uses the most recently available mark bits to find sparse pages with little live 
data, to compact those pages (relocating their objects), and to free their physical back
ing memory. 

The relocate phase starts by protecting sparsely occupied pages from mutator access 
and then copies live objects out of those pages. Forwarding information maintained 
on the side tracks the location of relocated objects . If a mutator loads a reference 
to a protected page the read barrier will trigger a GC-trap, which changes the stale 
protected-page reference to the correctly forwarded reference. After the page con
tents have been relocated, the relocate phase frees the physical memory, which can 
be immediately recycled by the operating system. Virtual memory cannot be freed 
until no more stale references to that page remain in the heap. 

A relocate phase runs continuously, freeing memory to keep pace with mutator allo
cation. It runs standalone or concurrently with the next mark phase. 
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Remap updates every pointer in the heap whose target has been relocated. 

Collector threads traverse the object graph executing a read barrier against every 
reference in the heap, forwarding stale references as if a mutator had trapped on the 
reference. At the end of this phase no live heap reference can refer to pages protected 
by the previous relocate phase, so virtual memory for those pages is freed. 

Since both the remap and mark phases traverse all live objects Pauseless is able to 
fold them together. The remap phase for the current GC cycle runs concurrently 
with the mark phase for the next GC cycle. 

Pauseless has several qualitative advantages. Firstly, there is no 'rush' to finish any 
given phase. No phase imposes a substantial burden on the mutators that needs to be 
relieved by ending the phase quickly. There is no 'race' to finish some phase before col
lection can begin again - the Relocate phase runs continuously and can immediately free 
memory at any point. Since all phases are parallel, the collector can keep up with any 
number of mutator threads simply by adding more collector threads. Unlike other con
current marking collectors, marking is guaranteed to complete in a single pass regardless 
of the mutation rate (there is no need to re-mark - revert to grey - previously marked 
objects, or stop the mutators in a final mark step to ensure termination) . Collector threads 
will compete with mutator threads for CPU time, though any spare CPU can be employed 
by the collector. 

Secondly, the phases incorporate a 'self-healing' effect, where mutators immediately 
correct the cause of each read barrier trap by replacing any trapping reference in the slot 
from which it was loaded with its updated reference that will not trigger another trap. The 
work involved depends on the type of the trap. Once the mutators' working sets have 
been repaired they can execute at full speed without any further traps. This results in a 
drop in mutator utilisation for a short period (a 'trap storm') following a phase shift, with 
the minimum mutator utilisation penalty of approximately 20 milliseconds spread over a 
few hundred milliseconds. But Pauseless has no stop-the-world pauses where all threads 
must be simultaneously stopped. We now discuss the phases in more detail . 

Mark. The mark phase manipulates mark bits managed on the side. It begins by clearing 
the current cycle's mark bits. Each object has two mark bits, one for the current cycle and 
one for the previous cycle. The mark phase then marks all global references, scans each 
mutator thread's root set, and flips the per-thread expected Not-Marked-Through value. 
Running threads cooperate by marking their own root set at a checkpoint. Blocked (or 
stalled) threads are marked in parallel by mark phase collector threads. Each mutator 
thread can immediately proceed once its root set has been marked (and expected Not
Marked-Through flipped) but the mark phase cannot proceed until all threads have passed 
the checkpoint. 

After the root sets have been marked, marking proceeds in parallel and concurrently 
with the mutators in the style of Flood et al [2001] .  The markers ignore the Not-Marked
Through bit, which is used only by the mutators. This continues until all live objects have 
been marked. New objects are allocated in live pages. Because mutators can hold (and 
thus store) only marked-through references, the initial state of the mark bit for new objects 
does not matter for marking. 

The Not-Marked-Through bit is crucial to completion of the mark phase in a single pass 
over the live objects, regardless of stores by the mutator, because the read barrier prevents 
mutators from acquiring unmarked references. A mutator that loads a reference with the 
wrong flavour of Not-Marked-Through bit will take a Not-Marked-Through-trap which 
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will communicate the reference to the marker threads.  Because it can never acquire an 
unmarked reference, a mutator can never store and propagate an unmarked reference. The 
Not-Marked-Through-trap also stores the corrected (marked) reference back to memory, so 
that particular reference can never cause a trap in the future . This self-healing effect means 
that a phase-change will not make the mutators wait until the marker threads can flip the 
Not-Marked-Through bits in the objects on which the mutator is working. Instead, each 
mutator flips each reference it encounters as it runs. Steady state Not-Marked-Through
traps are rare. 

The mutator must take care that updating the trapping reference does not clobber a 
store to the same location by another thread since the Not-Marked-Through-trap occurred. 
Thus, the trap handler uses a CompareAndSwap operation to update the memory only if 
it has not changed since the trapping thread read from that location. Because a checkpoint 
is used to initiate the mark phase, different threads may briefly have a different view of the 
desired Not-Marked-Through value. It is possible for two threads to compete repeatedly 
over a single reference's Not-Marked-Through value via trapping and updating in mem
ory. This can last only until the unflipped thread passes its next GC-safe point where it 
will trap, mark through its stack, and cross the checkpoint. 

Note that it is not possible for a single thread to hold the same reference twice in its 
root-set with different Not-Marked-Through settings, so pointer equality can always be 
implemented using bit-wise equality. 

Termination of the marking phase needs to worry only about the race between a mu
tator having loaded an unmarked reference but not having yet executed the read barrier. 
Read barriers never span a GC-safe point, so it is sufficient that all the mutators cross a 
GC-safe point without trapping. Thus, the marking phase requests an empty checkpoint. 
Any references discovered before the checkpoint will be marked as normal . When all mu
tators have passed the checkpoint without reporting a new reference for marking then the 
mark phase is complete. Otherwise the marker threads will consume the new references 
for marking and the checkpoint can be repeated. Because no new references can be created 
with the wrong Not-Marked-Through bit this process must eventually terminate. 

Relocate. The relocate phase starts by finding sparsely occupied pages . Figure 17.2a 
shows a logical grouping of virtual pages into distinct categories (again, the linear address
ordered layout of the heap is intentionally not illustrated) .  There are references from both 
the mutator roots and live pages into sparse pages whose live objects are to be compacted 
by evacuation. The relocate phase first builds side arrays to hold forwarding pointers for 
the objects to be relocated . These cannot be held in the fromspace originals because the 
physical storage for the fromspace pages will be reclaimed immediately after copying and 
long before all the fromspace references have been forwarded . The side array of forward
ing data is not large because only sparse pages are relocated, so it can be implemented 
easily as a hash table. The relocate phase then protects the mostly dead condemned pages 
from access by the mutators as in Figure 17.2b. Objects in these pages are now considered 
stale, and can no longer be modified. Also, if a mutator loads a reference that points into a 
protected page the read barrier will now take a GC-trap . 

At the time the fromspace pages are protected, running mutators may have stale ref
erences in their root set. These are already past their read barrier and will not get caught 
directly. Instead, the mutators are asked to forward any existing stale references from their 
root set with a checkpoint, relocating the fromspace targets as necessary (Figure 17.2c) . 
Once all the mutators have passed this checkpoint, copying of the remaining live objects 
into tospace can proceed concurrently with the mutators . The read barrier prevents the 
mutators from seeing a stale object before it has finished moving. 



17.7. CONCURRENT COMPACTION 

(a) Initial Pauseless configuration. All pages are in fromspace. 

(b) Compute forwarding information, protect all condemned fromspace pages (illus
trated by the double horizontal bars), but leave tospace pages unprotected. These in
clude those reserved to hold evacuated objects and those Live pages not condemned 
for evacuation. 

(c) Flip mutator roots to tospace, copying their targets, but leaving the references they 
contain pointing to fromspace. Mutators accessing an object on a protected fromspace 
page will trap and wait until the object is copied. 

Roots � 
-----

Live . •• 
(d) Mutators loading a reference to a protected page will now trigger a GC-trap via 
the read barrier, copying their targets. 

(e) Compaction is finished when a11 live objects in condemned pages have been copied 
into tospace, and all tospace pages have been scanned to forward references they con
tain. 

Figure 17.2: Pauseless 
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As in the mark phase, the read barrier in the relocate phase prevents the mutator from 
loading a stale reference. The self-healing GC-trap handler forwards the reference and 
updates the memory location using C ompareAndSwap.  If the fromspace object has not 
yet been copied then the mutator will copy the object on behalf of the collector. This is 
illustrated in Figure 17.2d .  The mutator can read the GC-protected page because the GC
trap handler runs in the elevated GC-protection mode. Large objects that span multiple 
pages are not relocated, nor are objects in mostly live pages. An object that consumes 
about half of a page can be copied in about a millisecond .5 

To amortise the cost of modifying translation lookaside buffer protections and forward
ing the mutator roots, Pauseless batches up groups of sparse pages for compaction, typi
cally protecting (and relocating and freeing) a few gigabytes at a time. The rate at which 
relocation must proceed is dictated only by the need to keep up with the allocation rate of 
the mutators . 

Remap. Virtual memory is not freed immediately. The final step of forwarding the re
maining stale references in the live pages and reclaiming virtual memory falls to the remap 
phase. At the end of the remap phase there are no more stale references to the fromspace 
pages so their virtual memory can now be recycled (Figure 17.2e), the side array of for
warding pointers can be reclaimed, and the GC cycle is complete. Recall that real memory 
for evacuated pages was reclaimed long before, during the relocate phase. 

Finalisation and weak references. Java's soft and weak references (see Section 12. 1 )  lead 
to a race between the collector nulling a reference and the mutator strengthening it. Fortu
nately, processing the soft and weak references concurrently with the mutator is possible 
with Pauseless by having the collector CompareAndSwap down to null only when the ref
erence remains not marked-through. The Not-Marked-Through-trap handler already has 
the proper CompareAndSwap behaviour allowing both the mutator and the collector to 
race to CompareAndSwap. If the mutator wins then the reference is strengthened (and 
the collector will know), while if the collector wins then the reference is nulled (and the 
mutator sees only the null) . 

Operating system extensions. Pauseless makes aggressive and sustained use of virtual 
memory mapping and physical memory manipulation. This functionality can be imple
mented using standard operating system primitives, but the performance and rates at 
which that functionality can be deployed using the standard primitives is prohibitive. 
Pauseless-specific extensions to the operating system's memory manager result in signif
icant performance improvements [Azul, 2010] .  Enterprise Java applications commonly 
see allocation rates of from 200-500 megabyte/s per core, which must be matched by a 
sustained garbage collection rate to avoid pauses. In Pauseless, each page will eventu
ally be remapped once (and later unmapped once) in order to reclaim dead object space. 
No physical memory copying is required, so the remap rate is not significantly sensitive 
to memory bandwidth. Instead, the cost of the remapping operations dominate. Typical 
operating systems support remapping with three limitations : 

1 .  Each page remap includes an implicit translation lookaside buffer invalidation op
eration. Since translation lookaside buffer invalidations require multiple cross-CPU 
interrupts (over all cores) the cost of remapping grows with the number of active 
threads in the program. This happens even when the active threads do not partici
pate in the remapping, or have no interaction with the remapped memory. 

5Recall that Pauseless's pages are quite large. 
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2. Only small (typically four kilobyte) page mappings can be remapped. 

3. Remap operations are single-threaded within a process (grabbing a common write 
lock) . 

To address these shortcomings, Pauseless benefits from operating system extensions that 
support remapping without translation lookaside buffer invalidation (these can be applied 
in bulk at the end of a large set of remaps as necessary), remapping of large (typically 
two megabyte) page mappings, and multiple concurrent remaps within the same process. 
These operating system improvements result in approximately three orders of magnitude 
speedup compared to a stock operating system, scaling almost linearly as the number of 
active threads doubles. 

Summing up, Pauseless is designed as a fully parallel and concurrent collector for large 
multiprocessor systems. It requires no stop-the-world pauses and dead objects can be 
reclaimed at any point during a collector cycle . There are no phases where the collector 
must race to finish before the mutators run out of free memory. Mutators can perceive a 
period of reduced utilisation during trap storms at some phase shifts, but the self-healing 
property of these traps serves to recover utilisation quickly. 

17.8 Issues to consider 

This chapter has laid out the basic principles of concurrent copying collection and con
current compaction to reduce fragmentation, while also avoiding long pauses. As in any 
concurrent collector algorithm, the collector must be protected against mutations that can 
otherwise cause lost objects . But because the collector is moving objects, the mutator must 
also be protected against accessing stale copies . Some algorithms protect the mutator by 
making sure it operates with a tospace invariant so that it can never hold references to 
stale fromspace objects [Baker, 1978] . Others protect the mutator by making it forward to 
tospace copies as they are created, but otherwise allow it to continue operating in from
space [Brooks, 1984] . Still others permit continued operation in fromspace, so long as up
dates eventually propagate to tospace [Nettles et a[, 1992; Nettles and O'Toole, 1993] . Once 
copying has finished all the mutators flip to tospace in a single step. Dispensing with this 
global transition can mean accumulating chains of multiple versions, which mutators must 
traverse to find the most up-to-date copy [Herlihy and Moss, 1992] . Alternatively, by per
forming updates on both copies, mutators can be transitioned one at a time [Hudson and 
Moss, 2001,  2003] .  Compaction can be performed in similar ways but without the need 
to copy all objects at every collection [Kermany and Petrank, 2006; Click et al, 2005; Azul, 
2008] .  

These approaches may result in longer pauses than non-moving concurrent collection: 
on any given heap access the mutator may need to wait for an object (or objects) to move or 
indirect to the current version. Indeed, Baker [1992a] devised his Treadmill algorithm as an 
antidote to the churn present in his original copying collector [Baker, 1978] . While copying 
or compaction are needed to avoid fragmentation, they can present particular difficulties 
for applications that are sensitive to prolonged or frequent pauses. Often, such applica
tions also operate in environments where memory is unusually constrained, such as em
bedded systems, where defragmentation can be even more important. We consider how to 
manage concurrent copying or concurrent compaction while tightly bounding pauses for 
such applications in Chapter 19. 





Chapter 18 

Concurrent reference counting 

We discussed reference counting in Chapter 5. The two chief issues facing nai:ve refer
ence counting were its inability to collect garbage cycles and the high cost of manipulating 
reference counts, particularly in the face of races between different mutator threads. The 
solution to cyclic garbage was trial deletion (partial tracing) .  We used deferred reference 
counting to avoid having mutators manipulate reference counts on local variables and co
alescing to avoid having to make 'redundant' changes to reference counts that would be 
cancelled out by later mutations; a useful side-effect of coalescing is that it tolerates mu
tator races. All three solutions required stopping the world while the collector reconciled 
reference counts and reclaimed any garbage. In this chapter, we relax this requirement and 
consider the changes that need to be made in order to allow a reference counting collector 
thread to run concurrently with mutator threads. 

18.1 Simple reference counting revisited 

To be correct, reference counting algorithms must preserve the invariant that an object's 
reference count is equal to the number of references to that object. Maintaining this invari
ant becomes more complicated with multiple mutator threads. At first sight, it may seem 
that it is more difficult to Wri t e  safely than to Read safely. Updating a pointer slot re
quires three actions: the reference count of the new target must be incremented, that of the 
old target be decremented and the pointer written. It is important that these three actions 
be coordinated, even though multiple mutator threads may manipulate pointers to the ob
jects in question. 1 Objects must not be reclaimed prematurely (for example, because their 
reference count has temporarily dropped to zero) nor is it desirable for garbage to float 
indefinitely in the heap. Figure 18 .1  illustrates the problem. Here, even if all the reference 
count increments and decrements are be performed atomically, some thread interleavings 
may lead to an incorrect result because the reference count of o l d  may be decremented 
twice and the reference count of one of the new targets may be too high. 

The difficulty of concurrent reference counting does not lie solely with incrementing 
or decrementing reference count fields. This can be done easily enough with one of the 
atomic primitive operations like At omi c i n c rement discussed in Chapter 13 .  The harder 
problem is to synchronise reference count modifications with pointer loads or stores; in 
Algorithm 5.1 we simply required the mutator Re ad and Wri t e  actions to be atomic . The 

1 Note that we are not concerned about the correctness of the user program in the face of races, but we must 
ensure the consistency of the heap. 
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Thread 1 Writ e ( o,i ,x )  
addRe fe rence ( x )  
o l d  +- o [i ]  
de l e t eRe fere n c e ( o l d) 
o [ i ] +- x  

Thread 2 Write (  o , i ,y )  
addRe f e rence (y )  
o l d  +- o [i ]  
de l e t eRe ference ( o l d) 
o [ i ] +- y  

Figure 18.1: Reference counting must synchronise the manipulation of 
counts with pointer updates .  Here, two threads race to update an object 
field. Note that o l d  is a local variable of each thread's Wr i t e  method. 

Algorithm 18.1: Eager reference counting with locks 

Read ( s rc, i ) : 
l ock ( s r c )  

tgt +- s r c [i ]  
addRe f e rence (tgt ) 

unlock (  s r c )  
return t g t  

s W r i t e ( s rc,  i ,  re f ) : 
addRe ference ( re f )  

w l ock ( src )  
1 1  old  +- s rc [i ]  
1 2  s rc [ i ]  +- re f 
u delet eRe fe rence ( o l d) 
1 4  unlock ( s r c )  

simplest way to d o  this is to lock the object containing the field that is being read or writ
ten, s r c, as illustrated in Algorithm 18 . 1 .  This is safe . After Read  has locked s r c, the 
value of field i cannot change. If it is null, Read is trivially correct. Otherwise, s r c  holds 
a reference to some object tgt .  The reference counting invariant ensures that t gt 's ref
erence count cannot drop to zero before s rc is unlocked since there is a reference to t gt 
from s rc .  Thus, we can guarantee that t gt cannot be freed during the Read and that 
addRe f e rence will be able to update the count rather than potentially corrupting mem
ory. A similar argument establishes the safety of Wr i t e .  

I t  is appealing to hope that we can find a lock-free solution, using commonly avail
able primitive operations. Unfortunately, single memory location primitives are insuffi
cient to guarantee safety. The problem does not lie in Write .  Imagine that, instead of the 
coarser grain lock, we use atomic increments and decrements to update reference counts 
and CompareAndSwap for the pointer write, as in Algorithm 18.2 .  If ref  is non-null, 
then the writing thread holds a reference to it so re f cannot be reclaimed until W r i t e  
returns (whether or not w e  use eager o r  deferred reference counting) . W r i t e  spins, at
tempting to set the pointer field until we are successful: at that point, we know that next 
we will decrement the count of the correct old  object and that only the winning thread 
will do this. Note that the reference count of this o l d  target remains an overestimate until 
de l e t eRe ference ( o l d) is called, and so old  cannot be prematurely deleted. 

We cannot apply the same tactic in Re ad, though. Even if Read uses a primitive atomic 
operation to update the reference count, unless we lock src  it is possible that some other 
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Algorithm 18.2: Eager reference counting with Campa reAndSwap is broken 

1 Write ( s rc ,  i, re f ) : 
if re f =/:- null 
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At omi c i nc rement ( & rc ( re f ) )  /* re f guaranteed to be non-free 4 
loop 

o l d  +-- s r c [ i ]  
if  Compa reAndSet ( & s rc [ i ] ,  o l d, re f )  

de leteRe fe rence ( o ld) 
return 

1 0  de leteRe fe rence( re f ) : /* ref  guaranteed to be null or non-free */ 
n if re f =/:- null 
1 2  At omi cDec rement ( & rc ( re f ) )  
n if  rc ( re f )  = 0 
1 4  for each f l d  in P o i nt e r s ( r e f )  
� de let eRe fe rence ( • f l d )  
1 6  f ree ( r e f )  
1 7  

1 s  Read( s rc,  i ) : 
1 9  t gt = s r c [i ]  
20 At omi c i nc rement ( & r c (  t gt ) )  
2 1  return t gt 

Algorithm 18.3: Eager reference counting with Compa reAndSwap2 

1 Read( s r c,  i ,  root ) : 
loop 

t gt +-- s r c [ i ]  
if  t gt = null 

return null  
rc  +-- rc ( tgt ) 

/* oops! 4 

if  CompareAnd S et 2 ( & s rc [ i ] ,  & rc ( t gt ) , t gt ,  r c, t gt ,  r c+ l )  
return t gt 

thread will delete the pointer s r c [i ]  and reclaim its target between the point that we load 
the reference (line 19) and the increment of the reference count. The attempt to increment 
the reference count may corrupt memory that has been freed and maybe reallocated. 

Although single memory location primitive operations are insufficiently powerful to 
provide a solution, Detlefs et al (2001, 2002b] show that the CompareAndS wap2 primi
tive discussed in Section 13 .3 is sufficient. Compa reAndSwap 2 can atomically update two 
independent memory locations . Although this is not sufficient to maintain accurate refer
ence counts at all times, it is sufficient to guarantee the weaker invariant that (i) while there 
remains a pointer to an object, its reference count cannot be zero, and (ii) if there are no 
pointers to an object, its reference count will eventually become zero. In Algorithm 18.3, 
Compa reAndSwap2 is used to increment the reference count and simultaneously to check 
that the pointer to the object still exists, thus avoiding the possibility of modifying an ob
ject's header after it has been freed. 
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18.2 Buffered reference counting 

Eager reference counting schemes require either locks or multi-word atomic primitives, 
which are (currently) not widely available. Deferred reference counting partially finessed 
the problem we saw in the previous section by not applying reference count operations 
to local variables and deferring reclamation of objects with zero reference counts (see Sec
tion 5.3) .  This leaves the question of how to reduce the overhead of pointer writes to object 
fields. We now tum to look at buffered reference counting techniques that use only simple 
loads and stores in the mutator write barrier, yet support multithreaded applications. 

In order to avoid the cost of synchronising reference count manipulations by differ
ent mutator threads, DeTreville [ 1990] had mutators log the old and new referents of each 
pointer update to a buffer (in a hybrid collector for Modula-2+ that used mark-sweep as 
an occasional backup collector to handle cycles) . A single, separate reference counting 
thread processed the log and adjusted objects' reference counts, thereby ensuring that the 
modifications were trivially atomic. In order to prevent inadvertently applying a reference 
count decrement before an increment that causally preceded it (and hence prematurely re
claiming an object), increments were applied before decrements . Unfortunately, buffering 
updates does not resolve the problem of coordinating the reference count manipulations 
with the pointer write . DeTreville offered two solutions, neither of which is entirely satis
factory. His first approach was, as above, to protect the entire Wr i t e  operation with a lock. 
This ensures that records are correctly appended to the shared buffer as well as synchro
nising the updates. To avoid the cost of making every write atomic, his second solution 
provided each mutator thread with its own buffer, which was periodically passed to the 
reference counting thread, but this required the programmer to take care to ensure that 
pointer writes were performed atomically, if necessary performing the locking manually, 
to avoid the problems illustrated by Figure 18 . 1 .  

Bacon and Rajan [2001 ] also provided each thread with a local buffer but required the 
update of the pointer field to be atomic, as for example in Algorithm 18 .4; a CompareAnd
Swap with retry could be used to do this. The mutator write barrier on a processor adds 
the old and new values of slot i to its local myUpdat e s  buffer (line 9). Once again, refer
ence counting of local variables is deferred, and time is divided into ragged epochs to ensure 
that objects are not prematurely deleted, by using a single shared epoch number plus per
thread local epoch numbers . Periodically, just as with deferred reference counting, a pro
cessor will interrupt a thread and scan all the processor 's local stacks, logging references 
found to a local my St ackBu f fe r .  The processor then transfers its my S t ackBu f fe r  and 
myUpdates  to the collector, and updates its local epoch number, e .  Finally, it schedules 
the collection thread of the next processor before resuming the interrupted thread. 

The collector thread runs on the last processor. In each collection cycle k, the collec
tor applies the increments of epoch k and the decrements of epoch k - 1. Finally it in
crements the global epoch counter (for simplicity, we assume an unbounded number of 
global updat e s B u f f e rs in Algorithm 18.4) . The advantage of this technique is that it is 
never necessary to halt all mutators simultaneously: the collector is on-the-fly. Note how 
the collector uses a variant of deferred reference counting. At the start of the collection the 
counts of objects directly referenced from thread stacks (in this epoch) are incremented; at 
the end of the cycle, the reference counts of those directly reachable from the stacks in the 
previous epoch are decremented. 

18.3 Concurrent, cyclic reference counting 

This leaves the question of collecting garbage cycles by reference counting without intro
ducing stop-the-world pauses. The Recycler [Bacon et al, 2001; Bacon and Rajan, 2001 ]  re-
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Algorithm 18.4: Concurrent buffered reference counting 

, shared epoch 
2 shared updatesBu f fe r [  /* one buffer per epoch 4 

4 Write ( s r c, i, re f ) : 
if s rc = Root s 

s rc [ i ]  +- re f 
else 

1 0  

o l d  +- Atomi cExchange ( & s r c [ i ] ,  r e f )  
l og ( o l d, re f )  

" l og(  o l d, new) : 
1 2  myUpdates  +- myUpda t e s  + [ ( o l d, new) ] 
13 

14 c o l l e ct ( ) : 
1 5  /* each processor passes its buffers on to a global updat e s Bu f fe r  *f 
1 6  myS t a ckBu f fe r  +- [] 
17 for each local re f in mySt a c k s  /* deferred reference counting */ 
1s myS t a ckBu f f e r  +- mySta ckBu f fe r  + [ ( re f, ref ) ]  
1 9  atomic 
20 updatesBu f fe r [e ]  +- updat e s B u f f e r [e ]  + myS t a ckBu f fe r  
21 atomic 
22 updatesBu f f e r [e ]  +- updat e s B u f f e r [e ]  + myUpdate s  
n myUpdates  +- [ ] 
24 e +- e + 1  
25 

26 me +- myP roce s s o r i d  
27 if me < MAX_PROCE S SORS 
28 s chedule ( co l l e ct ,  me+ 1 )  /* schedule co l l e ct ( )  on the next processor 4 
29 else 
30 /* the last processor updates the reference counts4 
31 for each ( o l d, new) in updat e s Bu f f e r [epoch] 
n addRe f e r e n c e ( new) 
33 for each ( o l d, new) in update s Bu f f e r [epo ch- 1]  
� de leteRe f e rence (old) 
35 release (upda t e s Bu f fe r [epoch - 1 ] )  /*free the old buffer 4 
36 epoch +- epo ch  + 1 

claims cyclic garbage by tracing candidate subgraphs, applying trial deletion to reference 
counts. Although buffering successfully devolves reference counting to a spare processor, 
the Recycler faces three problems in collecting cycles in a concurrent world. 

• It cannot guarantee that it will retrace the same subgraph since the graph may be 
modified by mutators while the Recycler is detecting garbage cycles. 

• Pointer deletions may disconnect portions of the subgraph. 

• Reference counts may be out of date. 

To resolve these problems, the asynchronous Recycler operates in two phases. The first 
phase is much the same as the synchronous collector described in Chapter 5. However the 



368 CHAPTER 18. CONCURRENT REFERENCE COUNTING 

Figure 18.2: Concurrent coalesced reference counting: in the previous epoch 
A was modified to point to C and the values of its reference fields logged. 
However, A has been modified again in this epoch (to point to D), and so 
marked dirty and logged again. The original referent B can be found in the 
collector 's global log, just as in Figure 5.2. The reference to C that was added 
in the previous epoch will be in some thread's current log: this log can be 
found from A's get LogP o i nt e r  field. 

asynchronous collector defers the freeing of objects discovered by c o l lect  White  (Algo
rithm 5.5) to the next phase which checks that these objects are indeed still garbage. There 
are several disadvantages to this approach. In theory, but probably not in practice, it is 
possible for some garbage cycles not to be collected - the collector is not guaranteed to 
be complete. Further, trial deletion cannot use the original reference count but must add 
a second, cyclic reference count field to object headers. Third, the algorithm must trace 
candidate cycles again, in the second phase, in order to avoid incorrectly reclaiming live 
objects. It also adds overhead to the reference counting write barrier as it must fix the 
colours of objects left white or grey by improper traversals. 

The fundamental problem is that the Recycler is trying to apply an algorithm designed 
for synchronous collection in a world where the topology of the object graph is continually 
changing. Next, we see below how this circle can be squared by providing the Recycler 
with a fixed snapshot of the heap. 

18.4 Taking a snapshot of the heap 

We saw in Chapter 5 how coalesced reference counting provided the collector with a snap
shot of the heap. Thread-local buffers, passed synchronously to the collector, held replicas 
of objects into which pointers had been written. Every thread was halted at the start of 
a collection cycle, its buffers were transferred to the collector, and fresh buffers allocated. 
The collector simply used the replica to find and decrement the reference counts of the old 
targets and the current version of the object to find and increment the new targets. All 
dirty objects were cleaned. 

Let us see first how we can allow the reference counting thread to run concurrently with 
the mutators (after a brief pause to transfer buffers), and then consider how to make that 
concurrent algorithm on-the-fly. In the first case, all the mutator threads can be stopped 
temporarily while their buffers are transferred to the collector. However, once all the mu
tator threads have transferred their buffers, they can be restarted. The collector 's task is 
to modify the reference counts of the old and new children of every modified object. Ref
erence decrements can be handled as before, using the replicas in the logs, but handling 
increments is more involved (Algorithm 18.5). The task is to increment the reference counts 
of the children of each object in the collector 's log, using the state of the object at the time 
that the log was transferred. There are two cases to consider, since the logged object may 
have been modified since the logs were transferred to the collector. 
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Algorithm 18.5: Sliding views: update reference counts 

i n crementNew(ent ry ) : 
ob j +- ob j F romLog(ent ry )  
if not di rt y ( ob j )  

repl i ca +- copy ( ob j )  
if dirty (  ob j )  

/* use the entry in the collector's log */ 
/* the current object 4 

/* copy the object 's reference slots *I 

rep l i c a  +- getLogP o inter ( ob j )  /* entry in some thread's log 4 
else 

rep l i c a  +- getLogP o i n t e r ( ob j )  

for each f l d  in Point e r s ( rep l i ca )  
chi ld  +- * f l d  
if chi l d  =/:- null 

rc( chi l d) +- rc( chi l d) + 1 

ma rk (  ch i l d) I* if tracing young generation 4 

If the object remains clean, its state has not changed, so the reference counts of its cur
rent children are incremented. Note that incrementNew  in Algorithm 18.5 must check 
again after making a replica of a clean object in case it was dirtied while the copy was 
being taken. 

If the object has been modified since the logs were transferred, then it will have been 
re-marked dirty and its state at the time of the transfer can be found in a fresh log buffer 
of some mutator. The object's dirty pointer will now refer to this log, which can be read 
without synchronising with that thread. Consider the example in Figure 18.2 . A has been 
modified again in this epoch, which complicates finding C, the target of the last update to 
A in the previous epoch. As A is dirty, its previous contents will be held in some thread's 
current local log (shown on the right of the figure) :  the log refers to C.  Thus, we can 
decrement the reference count of B and increment the reference count of C. In the next 
epoch, C's reference count will be decremented to reflect the action W r i  t e (A, o, D) .  

18.5 Sliding views reference counting 

For the snapshot of the heap, we stopped the world while threads' modification buffers 
were transferred to the collector. We relax that restriction now, instead stopping threads 
one at a time, on-the-fly. This gives a distorted view of the heap. In this sliding view, the 
values of different objects are recorded (and transferred to the collector thread) at differ
ent times. Sliding views require neither locks nor use of atomic instructions (at least, as
suming sequential consistency), but coordinates mutators and collector threads with four 
handshakes between each mutator thread and the collector thread, similar to those used 
by Doligez and Gonthier [ 1994) . We consider what modifications need to be made to the 
algorithm to support weaker consistency models later. Sliding views can be used in sev
eral contexts: for plain reference counting [Levanoni and Petrank, 1999, 2001, 2006 ] ,  for 
managing the old generation of generational [Azatchi and Petrank, 2003] and age-oriented 
[Paz et al, 2003, 2005b] collectors, and for integration with cyclic reference counting col
lectors [Paz et al, 2005a, 2007] . Here, we consider how sliding views can be used in an 
age-oriented collector and then extend it to reclaim cyclic structures. 
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Age-oriented collection 

Age-oriented collectors partition the heap into young and old generations .  Unlike tradi
tional generational collectors, both generations are collected at the same time: there are no 
nursery collections and inter-generational pointers do not need to be trapped. Appropriate 
policies and techniques are chosen for the management of each generation . Since the weak 
generational hypothesis expects most objects to die young, and young objects are likely 
to have high mutation rates (for example, as they are initialised), a young generation ben
efits from a collector tuned to low survivor rates. In contrast, the old generation can be 
managed by a collector tuned to lower death and mutation rates. Paz et al [2003] adopt 
a mark-sweep collector for the young generation (since it need not trace large volumes of 
dead objects) and a sliding views reference counting collector for the old generation (as it 
can handle huge live heaps) .  Their age-oriented collector does not move objects: instead, 
each object has a bit in its header denoting its generation. 

The algorithm 

On-the-fly collection starts by gathering a sliding view (Algorithm 18.6) .  Incremental col
lection of a sliding view requires careful treatment of modifications made while the view 
is being gathered. Pointer writes are protected by adding an incremental update write 
barrier called snooping to the Write  operation of Algorithm 5.3 (see Algorithm 18.7) .  This 
barrier prevents missing a referent o whose only reference is removed from a slot s1 before 
the sliding view reads s1 , and then is written to another slot s2 after s2 is added to the view. 

At the start of a cycle, each thread's s n o opFlag is raised (without synchronisation) .  
While the sliding view is being collected (and the snoopF l ag is up for this thread), the 
new referent of any modified object is recorded in the thread's local myS n oopedBu f f e r  
(line 25 of Algorithm 18.7) .  I n  terms of the tricolour abstraction, this Dijkstra-style barrier 
marks r e f  black. Objects are allocated grey in the young generation (Algorithm 18.8) in 
order to avoid activating the write barrier when their slots are initialised. 

After the collector has raised the snoopF l ag for each mutator thread, it executes the 
first handshake . The handshake stops each thread, one at a time, and transfers its local log 
and young set to the collector 's update s  buffer. 

Next, all modified and young objects are cleaned. This risks a race. As cleaning is per
formed while mutator threads are running, it may erase the dirty state of objects modified 
concurrently with cleaning. A second handshake therefore pauses each thread, again on
the-fly, and scans its local log to identify objects modified during cleaning. The dirty state 
of these objects is restored ('reinforced') . 

A third, empty handshake ensures that no thread has fallen behind. The collector is 
now ready to begin to mark the young generation and update the reference counts of the 
old generation . 

Concurrent marking starts with a fourth handshake, again suspending threads one at a 
time to scan their stacks in the usual way for mark-sweep and deferred reference counting 
collectors. Each thread's snoop flag can then be dropped. 

The items in each thread's mySnoopedBu f fe r  are transferred to the work list asyn
chronously. The collector is then ready to process reference counts in the old generation. 
Notice that the nursery cannot be marked until the old generation has been processed since 
an update may have added a pointer from an old to a young object. 

Processing the old generation also requires the counts of old and new objects in the 
updates  buffer to be processed : if the reference count of a young object is updated (it 
is reachable from the old generation and will be promoted), and that object has not been 
marked, it is added to the marker 's work list. 
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Algorithm 18.6: Sliding views: the collector 

1 shared updat e s  
2 shared snoopF l ag [MAX_PROCE S S ORS] 

4 c o l l e ct ( ) : 
c o l l e ct S l i di ngVi ew( ) 
o n - t he - fly  hands hake 4 :  

for each t h read  t 
su spend (t ) 
s canSt a c k ( t )  

w snoopF l ag [t ]  +-- false 
n resume ( t ) 
12 proces sRe fe re n ce Count s ( )  
13 markNu r s e ry ( )  
14 sweepNu r s e ry ( )  
1 s  sweepZCT ( )  
� c o l l e ct Cyc l e s ( )  
1 7  

1s c o l l e ct S l idingView ( ) :  
19 o n - t he - fly  hands hake 1 :  
20 for each t h re ad t 
D su spend (t ) 
22 snoopF l ag [t ]  +-- true 
23 transfer t 's buffers to updat e s  
� resume (t ) 
2.' clean modified and young objects 
26 o n - t he - fl y  hands hake 2 :  
27 for each t h read  t 
u su spend(t ) 
29 find modify-dean conflicts 
� resume ( t )  
31 reinforce dirty objects 
32 o n - t he - fl y  hands hake 3 :  
n for each t h read  t 
� suspend( t )  
m resume ( t )  
36 
37 proce s s Re ferenceCount s ( ) : 
� for each ob j in updat e s  
� dec rementOld (ob j )  
� incrementNew(ob j )  
4 1  

42 c o l l e ctCycle s ( ) : 
43 markCandidat e s ( )  
44 markLiveBl a c k ( )  
45 s can ( )  
% c o l l e ctWhite ( )  
47 proces sBu f fe r s ( )  

371 

/* one per processor *I 
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Algorithm 18.7: Sliding views: Write  

1 shared l ogs [MAX_PROCESSORS]  
2 shared s noopF l a g [MAX_PROCE S S ORS ]  
3 me +-- myP roce s s o r i d  

5 Wri t e ( s rc ,  i ,  re f ) : 
i f  s rc = Root s 

s r c [i ]  +-- re f 
else 

i f  not di rt y ( s rc )  
w log( s r c )  
1 1  s r c [i ]  +-- re f 
1 2  s noop ( ref )  
13 

14 log (  re f ) : 
15 for each f l d  in Pointers ( r e f )  
1 6  if * f l d  =/:- null 
17 add( l ogs [me ] ,  * f ld )  
1 s  i f  not di rt y ( re f )  
1 •  /* commit the en try if re f is still clean 4 
20 e nt ry +-- add ( l ogs [me ] ,  re f )  
21 l ogPo i nt e r ( r e f ) +-- ent ry 
22 

23 s noop (  ref ) : 
24 i f  s noopF l a g [me ] && re f =/:- null 
2s myS noopedBu f fe r  +-- my SnoopedBu f f e r  + [re f] 

Algorithm 18.8: Sliding views: New 

1 New( ) : 
r e f  +-- a l l ocat e ( )  
add(myYoungSet ,  re f )  
s e t D i rt y ( re f )  
return re f 

/* one per processor 4 
/* one per processor 4 

$ 
$ 

/* for sliding view 4 

/* mark grey 4 

/* allocate black */ 

Once the old generation has been processed and all inter-generational references have 
been discovered, the young generation is traced (markNu r s e ry), marking objects with the 
increment  New procedure, and swept ( s we epNursery), freeing any unmarked object. 

Objects in the old generation can be reclaimed in the same way as with deferred refer
ence counting. Any object that is unmarked, has a zero reference count and is not directly 
referenced by a root, is reclaimed ( sweep Z CT) .  If an object with a zero reference count is 
dirty, recursive freeing decrements the reference counts of its descendants, found from its 
log entry (see Figure 18.3); otherwise, its current fields are used. 

Sliding views cycle reclamation 

As presented so far, the age-oriented collector can reclaim cycles in the nursery but not in 
the old generation. Paz et al [2007] combine the Recycler 's cycle collection algorithm with 
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Figure 18.3: Sliding views allow a fixed snapshot of the graph to be traced by 
using values stored in the log. Here, the shaded objects indicate the state of 
the graph at the time that the pointer from X to Y was overwritten to refer to 
Z. The old version of the graph can be traced by using the value of X's field 
stored in the log. 
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an age-oriented collector. The difficulty that faced the asynchronous Recycler was that 
the topology of the heap could vary under its feet. In contrast, sliding views presents the 
collector with a fixed view of the heap, using the original version of unmodified objects or 
the logged copy of modified objects (see Figure 18.3) . It is therefore possible for each pass 
of the trial deletion algorithm to retrace the steps of the first pass. Thus, by working on the 
sliding view of the heap, we can apply the simpler synchronous algorithm rather than the 
more complicated, multi-coloured asynchronous algorithm of Bacon and Rajan [2001 ] .  

Paz e t  a l  introduce a number o f  optimisations that can further reduce the number of 
objects that trial deletion must trace. Like Bacon and Rajan [2001],  they ignore scalar objects 
that cannot be members of cycles. Mature objects are considered for cycle reclamation only 
if they have survived several collections. This requires a queue of candidate buffers rather 
than a single one (they found a delay of two collection cycles to be effective) .  Paz et al also 
try to avoid considering objects that might be live, including root referents, snooped objects 
and objects modified after the sliding view was collected. An additional markBl ac k  phase 
pre-processes these objects, marking them and their sliding view descendants black. This 
raises a dilemma. The set of objects known to be live (actually, a subset of the dirty objects) 
is not fixed during the collection, so it is not possible to identify how many reference count 
modifications the collector might have made to an object before it became dirty. Hence, it 
is not possible to restore its original count. Instead, cycle detection operates on a second, 
cyclic, reference count. The alternative, to consider these objects regardless, would lead to 
more objects being processed by the reference counter. 

Memory consistency 

The sliding views algorithms presented above assume sequential consistency, which mod
ern processors do not always guarantee. On the mutator side, it is important that the order 
of operations in Write  are preserved to ensure that (i) the values seen in the log are the cor
rect ones (that is, those they represent a snapshot of the modified object as it was before the 
collection cycle started; (ii) the collector reads only completed log entries; and (iii) object 
fields cannot be updated after a collection starts without being snooped. The handshakes 
used by the algorithm solve some dependency issues on weakly consistent platforms (en-
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suring that the collector only sees complete log entries, or that new references are snooped 
during the collection cycle) . Two further modifications are necessary. First, on the mutator 
side, synchronisation must be added in the write barrier around the logging to ensure that 
it is seen before the modification of the pointer. Levanoni and Petrank [2006] do this by 
placing a memory fence before and after 1 og ( s r c ) .  Second, something similar is needed 
on the collector side. However, the approach above would be inefficient since most objects 
are unlikely to be dirty since their log pointers have been reset. Instead, on a weakly con
sistent platform, the collector can reduce the cost of synchronisation by reading batches of 
values from the buffers into a local array before processing them. 

18.6 Issues to consider 

The immediate problem facing reference counting is  how to  ensure that objects' reference 
counts are correct in the face of concurrent modifications to the object graph. The simplest 
solution is to require mutators to lock an object before it is modified. If the cost of locking 
is considered to be too high, then an alternative solution must be found. Current solutions 
rest on avoiding races between mutators that compromise the consistency of reference 
counts. Note that the memory manager is concerned only to preserve the consistency of 
the heap; whether or not mutator races violate the correctness of the user program is of no 
interest to it. 

To preserve coherence, we must ask how we can serialise pointer writes and reference 
count operations. A partial solution is to use deferred reference counting, since this defers 
reclamation of garbage objects and, in particular, devolves the task to a single collector 
thread. However, this accounts only for pointer loads and stores, and not for writes into 
object fields. Thus, the question becomes, how can we devolve reference count modifica
tions necessitated by writes to pointer fields from the mutator threads to a collector thread? 
One solution is for each mutator to buffer its reference counting operations and periodi
cally pass them to the collector. A further step, coalesced reference counting, extends this 
by taking a snapshot of objects before they are modified: this allows the collector thread 
to avoid applying any redundant reference count modifications. In both cases reference 
count manipulation and object reclamation is separated from the action of writing point
ers and is performed by a single collector thread (although it would be relatively straight
forward to use parallel collector threads) . Taking a snapshot of the state of the heap also 
simplifies concurrent cyclic reference counting. Trial deletion algorithms need to traverse 
a subgraph of the heap multiple times. By traversing the snapshot, the collector can ensure 
that it traces the same subgraph each time, even in the face of concurrent mutator activity. 

Finally we note that there is a large literature on safe reclamation of memory when 
using dynamic memory structures, from the ABA-prevention tags used in IBM's System 
370 onwards. Other lock-free reference counting methods that require multi-word atomic 
primitives include Michael and Scott [1995] and Herlihy et a[ [2002] .  Techniques that use 
timestamps to delay releasing an object until it is safe to do so are scheduler-dependent 
and tend to be vulnerable to the delay or failure of a single thread. For example, the Read
Copy-Update method [McKenney and Slingwine, 1998], used in the Linux kernel, delays 
reclamation of an object until all threads that have accessed it reach a 'quiescence' point. 
Other mechanisms that use immediate (rather than deferred) reference counting require a 
particular programming style, for example hazard pointers [Michael, 2004] or announcement 
schemes [Sundell, 2005] .  



Chapter 19 

Real-time garbage collection 

The concurrent and incremental garbage collection algorithms o f  the preceding chapters 
strive to reduce the pause times perceived by the mutator, by interleaving small increments 
of collector work on the same processor as the mutator or by running collector work at the 
same time on another processor. Many of these algorithms were developed with the goal 
of supporting applications where long pauses result in the application providing degraded 
service quality (such as jumpy movement of a mouse cursor in a graphical user interface) .  
Thus, early incremental and concurrent collectors were often called 'real-time' collectors, 
but they were real-time only under certain strict conditions (such as restricting the size of 
objects) .  However, as real-time systems are now understood, none of the previous algo
rithms live up to the promise of supporting true real-time behaviour because they cannot 
provide strong progress guarantees to the mutator. When the mutator must take a lock 
(within a read or write barrier or during allocation) its progress can no longer be guar
anteed. Worse, preemptive thread scheduling may result in the mutator being desched
uled arbitrarily in favour of concurrent collector threads. True real-time collection (RTGC) 
must account precisely for all interruptions to mutator progress, while ensuring that space 
bounds are not exceeded. Fortunately, there has been much recent progress in real-time 
garbage collection that extends the advantages of automatic memory management to real
time systems. 

19.1 Real-time systems 

Real-time systems impose operational deadlines on particular tasks within an application. 
These real-time tasks must be able to respond to application inputs (events) within a fixed 
time window. A task that fails to meet its real-time constraint may degrade service (for 
example, dropping a frame while displaying digital video), or much worse, cause catas
trophic failure of the system (such as mis-timing the spark-plug ignition signal resulting 
in damage to an internal combustion engine) .  Thus, a real-time system must not only be 
correct logically, it must also be correct with respect to responsiveness to real-time events. 

A soft real-time system (like video display) can tolerate missed deadlines at the expense 
of service quality. Too many missed deadlines will result in unacceptable quality of service, 
but the occasional missed deadline will not matter much. Printezis [2006] suggests for 
systems a soft real-time goal that specifies a maximum garbage collection time, a time slice 
duration and an acceptable failure rate. In any interval in this time slice duration, the 
collector should avoid using more than the allowed maximum collection time, and any 
violations of this goal be within the acceptable failure rate. 

375 
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Figure 19.1: Unpredictable frequency and duration of conventional collec
tors. Collector pauses in grey. 

Such a soft goal is inadequate for hard real-time systems (like engine control) which con
sider missed deadlines to mean failure of the system. A correct hard real-time system 
must guarantee that all real-time constraints will be satisfied. ln the face of such timing 
constraints, it is important to be able to characterise the responsiveness of garbage collec
tion in real-time systems in ways that reflect both needs of the application (hard or soft 
real-time) and the behaviour of the garbage collector Printezis [2006] .  

Overall performance or throughput in  real-time systems i s  less important than pre
dictability of performance. The timing behaviour of a real-time task should be able to be 
determined analytically by design, or empirically during testing, so that its response-time 
when deployed in the field can be known ahead of time (to some acceptable degree of 
confidence). The worst-case execution time (WCET) of a task is the maximum length of time 
the task could take to execute in isolation (that is, ignoring re-scheduling) on a particular 
hardware platform. Multitasking real-time systems must schedule tasks so that their real
time constraints are met. Knowing that these constraints will be met at run time involves 
performing schedulability analysis ahead-of-time, assuming a particular (usually priority
based) run-time scheduling algorithm. 

Real-time applications are often deployed to run as embedded systems dedicated to 
a specific purpose, such as the example above of a control system for engine timing. 
Single-chip processors predominate in embedded systems, so incremental garbage col
lection techniques translate naturally to embedded settings, but with multicore embedded 
processors becoming increasingly common, techniques for concurrent and parallel collec
tion also apply. Moreover, embedded systems often impose tighter space constraints than 
general-purpose platforms. 

For all of these reasons, stop-the-world, parallel, or even concurrent garbage collectors 
that impose unpredictable pause times are not suited to real-time applications. Consider 
the collector schedule illustrated in Figure 19.1 which results when the effort required to 
reclaim memory depends on the total amount and size of objects that the application uses, 
the interconnections among those objects, and the level of effort required to free enough 
memory to satisfy future allocations. Given this schedule, the mutator cannot rely on 
predictable and sustained utilisation of the processor. 

19.2 Scheduling real-time collection 

When and how to trigger collector work is the main factor affecting the impact of the collec
tor on the mutator. Stop-the-world collectors defer all collector work until some allocation 
attempt detects that space is exhausted and triggers the collector. An incremental collec
tor will piggyback some amount of collector work on each heap access (using read/write 
barriers) and allocation. A concurrent collector will trigger some amount of collector work 
to be performed concurrently (possibly in parallel) with the mutator, but imposes muta
tor barriers to keep the collector synchronised with the mutator. To maintain steady-state 
space consumption, the collector must free and recycle dead objects at the same rate (mea
sured by space allocated) as the mutator creates new objects. Fragmentation can lead to 
space being wasted so that in the worst case an allocation request cannot be satisfied un-
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less the collector itself or a separate compaction phase is able to relocate objects . But object 
relocation imposes an additional burden that can adversely affect real-time bounds. 

There are a number of alternative techniques for scheduling the work of real-time 
garbage collectors, and for characterising how that work can affect the mutator [Henriks
son, 1998; Detlefs, 2004b; Cheng and Blelloch, 2001; Pizlo and Vitek, 2008] . Work-based 
scheduling imposes collector work as a tax on units of mutator work. Slack-based scheduling 
runs collector work in the slack portions of the real-time task schedule (that is, when no 
real-time task is running) . The slack can be a significant fraction of overall time when real
time tasks are infrequent or periodic (executing briefly at some known frequency) . This can 
be achieved easily in a priority-scheduled system by giving the collector a lower priority 
than any of the real-time tasks. Time-based scheduling reserves a pre-defined portion of ex
ecution time solely for collector work during which the mutator is stopped. This allows 
meeting some pre-defined minimum mutator utilisation guarantee. 

19.3 Work-based real-time collection 

The classic Baker (1978] incremental semispace copying collector is one of the earliest at
tempts at real-time garbage collection. It uses a precise model for analysing for real-time 
behaviour founded on the limiting assumption that objects (in this case Lisp cons cells) 
have a fixed size. Recall that Baker's read barrier prevents the mutator from accessing 
fromspace objects, by making the mutator copy any fromspace object it encounters into 
tospace. This work is bounded because the objects have a single fixed size. Also, each mu
tator allocation performs some bounded amount of collector work (scanning some fixed 
number of grey tospace fields, copying their fixed-size fromspace targets as necessary) . 
The more fields scanned per allocation the faster the collection will finish, but the slower 
the mutator will run. Baker [1978] derived bounds on both time and space for his collector. 
His space bound was 2R ( 1 + 1 /k) , where R is the reachable space, and k is the adjustable 
time bound defined to be the number of fields scanned at allocation time. Baker did offer 
some solutions for incremental copying of variable-sized arrays, but these do not feature 
in his analysis . 

Parallel, concurrent replication 

Blelloch and Cheng [1999] extended the analysis of Baker [ 1978] for multiprocessor col
lection by devising a concurrent and parallel replicating copying collector for which they 
derive bounds on space and time. In evaluating their subsequent practical implementation 
of this collector, Cheng and Blelloch (2001 ]  were the first to characterise intrusiveness of 
collection in terms of minimum mutator utilisation. Because their collector is still work
based, regardless of the efforts to which it goes towards minimising pause times, it can 
still suffer from unpredictable variation in the distribution of pauses that make it difficult 
to obtain real-time guarantees for the mutator. In Section 19.5 we will see that minimum 
mutator utilisation can also be used to drive time-based scheduling of real-time garbage 
collection by making minimum mutator utilisation an input constraint to the collector. 
Still, Blelloch and Cheng offer useful insights into the way in which pause times can be 
tightly bounded, while also bounding space, so we consider its detailed design here. 

Machine model. Blelloch and Cheng assume an idealised machine model . A real imple
mentation must grapple with differences between this idealised model and the actual tar
get machine. The machine assumed is a typical shared-memory symmetric multiprocessor, 
having atomic TestAndSet  and Fet chAndAdd instructions for synchronisation. These 
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are supported directly in hardware, or can be implemented easily on modem symmet
ric multiprocessors using LoadLinked/ St oreCondit i onal l y  or C ompareAndSwap, 
though it is important that Fet chAndAdd be implemented fairly so that all processors 
make progress. They also assume a simple interrupt that is used to start and stop in
cremental collection on each of the processors. This can be implemented using GC-safe 
points as described in Section 11 .6. More importantly, they assume memory accesses to be 
sequentially consistent, which makes practical implementation of the collector more diffi
cult, since some memory accesses must be ordered appropriately to ensure correctness. 

The memory is organised as a contiguous set of locations addressable from [2 . . M + 1] 
(so pointers with value 0 and 1 have special meaning) where M is the maximum memory 
size. Each location can hold at least a pointer. 

For timing analysis, the longest time taken by any one instruction is used as the cost of 
all instructions (interrupts occur between instructions and do not count towards this time) .  

Application model. The application model assumes the usual mutator operations Re ad 
and Write ,  and New(n )  which allocates a new object with n fields and returns a pointer 
to the first field; it also includes a header word for use by the memory manager. In ad
dition, Blelloch and Cheng require that on each processor every New (n )  is followed by n 
invocations of I n i  t s 1 ot ( v ) to initialise each of the n fields of the last allocated object of 
the processor with v, starting at slot 0. A processor must complete all n invocations of 
I n it S l ot before it uses the new object or executes another New, though any number of 
other operations including Read and Wr i t e  can be interleaved with the I n i t S  l ots .  Fur
thermore, the idealised application model assumes that W r i t e  operations are atomic (no 
two processors can overlap execution of a Write) .  The memory manager further uses a 
function i s P o i nter (p, i )  to determine whether the i th field of the object referenced by 
p is a pointer, a fact often determined statically by the type of the object, or its class in an 
object-oriented language. 

The algorithm. The collector is structured as a replicating collector in the style of Nettles 
and O'Toole [ 1993], except that, instead of a fromspace invariant and logging updates, 
the mutators obey a replication invariant: whenever the collector is active and a mutator 
wishes to update an object it must update both the primary and its replica (if one exists) .  
When the collector is active, all  allocations make both a primary and a replica in tospace 
for the mutators to manipulate . Blelloch and Cheng also use a snapshot-at-the-beginning 
style Yuasa [1990] deletion write barrier to ensure correctness. 

Blelloch and Cheng assume a header field forwardingAddre s s (p )  on each primary 
object p and copyCount ( r )  on each replica r (these can be stored in the same slot because 
they apply only to a primary or replica, respectively) . The header is used for several pur
poses: for synchronisation on the primary to control which thread generates the replica, 
as a forwarding pointer from the primary to the replica, as a count on the replica of how 
much remains to be copied to it from the primary, and to synchronise on the replica among 
mutators and the thread copying the object. When a primary object p is white there is only 
a primary copy and its header is zero ( f orwa rdingAddres  s (p ) =null) .  When the object 
turns grey and space has been allocated for the replica r, the header of the primary points 
to the replica ( f orwardi ngAddres s (p ) = r),  and the header of the replica contains how 
many fields remain to be copied (copyCou nt ( r  ) =n) .  When the object turns black (is fully 
copied) then the header of the replica will be zero (copyCount ( r  ) = 0 ) .  

The heap i s  configured into two semispaces a s  shown in  Figure 19.2 .  Fromspace is 
bounded by the variables fromBot and f r omTop which are private to each thread. The 
collector maintains an explicit copy stack in the top part of tospace holding pointers to the 
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Figure 19.2: Heap structure in the Blelloch and Cheng work-based collector 

379 

grey objects. As noted in Section 14.6, Blelloch and Cheng [1999] offer several arguments 
that this explicit copy stack allows better control over locality and synchronisation than 
Cheney queues in sharing the work of copying among concurrent collector threads. The 
area between toBot and free  holds all replicas and newly allocated objects. The area 
between sharedStack  and t o  Top holds the copy stack (growing down from t o  Top to 
share dS t a c k) . When free= sharedSt a c k  the collector has run out of memory. If the 
collector is off when this happens then it is turned on. Otherwise an out of memory error 
is reported. The variables t oBot and t o  Top are also private to each thread, whereas free  
and sharedStack  are shared. 

The code for copying a slot from a primary object to its replica is shown in Algo
rithm 19.1, where copyOneS  l ot takes the address of the grey primary object p as its argu
ment, copies the slot specified by the current count stored in the replica, shades the object 
pointed to by that slot (by calling makeGrey), and stores the decremented count. Finally, 
the primary object p is still grey if it has fields that still need to be copied, in which case 
it is pushed back onto the local copy stack (the operations on the local stack are defined 
earlier in Algorithm 14.8). 

The makeGrey function turns an object grey if it is white (has no replica allocated for 
it) and returns the pointer to the replica . The atomic TestAndSet is used to check if the 
object is white, since many processors could try to shade an object simultaneously, and it 
is undesirable to allocate more than one replica in tospace. The processor that manages to 
win this copy-copy race is the designated copier. The makeGrey function distinguishes three 
cases for the header forwardingAddre s s (p) : 

1 .  The TestAndSet returns zero so this processor becomes the designated copier and 
allocates the tospace replica r, sets its header copyCount (r ) to the length of the ob
ject, sets the header forwardingAddre s s (p ) of the primary to point to the replica, 
pushes a reference to the primary on a private stack and returns the pointer to r. 

2. The TestAndSet returns non-zero, and the value of the header is a valid forwarding 
pointer so this pointer to the replica can be returned. 

3. The Tes tAndSet returns non-zero, but the value in the header is 1 ,  so another pro
cessor is the designated copier but has not yet set the forwarding pointer. The current 
processor must wait until it can return the proper forwarding pointer. 

Algorithm 19.2 shows the code for the mutator operations when the collector is on. The 
New operation allocates space for the primary and replica copies using a l locate,  and 
sets some private variables that parametrise the behaviour of I n it S l ot,  saying where 
it should write initial values. The variable l a stA tracks the address of the last allocated 
object, l a s t L  notes its length, and lastC  holds the count of how many of its slots have 
already been initialised. The I n i t S lot function stores the value of the next slot to be 
initialised in both the primary and replica copies and increments l a s tC .  These initial
ising stores shade any pointers that are stored to preserve the strong tricolour invariant 
that black objects cannot point to white objects. The statement col lect  (k )  incrementally 
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Algorithm 19.1: Copying in the Blelloch and Cheng work-based collector 

1 shared gcOn +- false 
2 shared free 
3 shared sharedS t ack  

5 copyOneSlot (p ) : 
r +- fo rwa rdingAddre s s (p ) 
i +- copyCount ( r ) - 1  
c opyCount ( r ) +- - ( i + 1 ) 
v f-- p [i ] 

10 i f  i sPo int e r (p, i ) 
u v +-- makeGrey (v ) 
12 r [i ] +-- v 
n c opyCount ( r ) +-- i 
14  if i > 0 
t s  localPu s h (p ) 
1 6  

/* allocation pointer 4 
/* copy stack pointer 4 

/* p is the primary copy of a grey object 4 
/* pointer to the replica copy 4 

/* index of slot to be copied 4 
/* lock slot to prevent write while copying 4 

/* grey if it is a pointer 4 
/* copy the slot 4 

/* unlock object with decremented index 4 

/* push back on local stack 4 

11 makeGrey (p ) : /* p must be a primary copy 4 
1 8  if TestAndS e t ( & forwa r d i n gAddr e s s (p ) )  ::/:- 0 /* race to replicate primary 4 
t 9  /* we lost the race 4 
20 while forwardingAddre s s (p ) = 1 
21 /* do nothing: wait for a valid forwarding address 4 
22 
23 

24 
25 
26 
27 

211 
29 
30 

else 
/* we won the race 4 
count +- length (p ) 
r +-- a l l o c a t e ( count ) 
copyCount ( r ) +-- count  
forwardingAddres s (p ) +- r 
l ocalPu s h (p ) 

return forwardi ngAddre s s (p ) 

31 a l l ocate (n ) : 
32 re f +-- Fet chAndAdd ( & f ree ,  n ) 
33 i f  ref  + n > s haredS t a c k  
34 
35 

36 
37 

if gcOn 
error  " Out of memo r y "  

inter rupt ( col lect o rOn ) 
a l l ocat e (n ) 

38 return ref  

/* length of primary 4 
/* allocate replica */ 

/* set copy counter for replica */ 
/* set forwarding address for primary */ 
/* push primary on stack for copying 4 

/* is tospace exhausted? 4 

/* interrupt mutators to start next collection */ 
/* try again 4 

copies k words for every word allocated. By design, the algorithm allows a collection 
cycle to start while an object is only partially initialised (that is, when a processor has 
l a s t C ::j:. l a st L) . 

The W r i t e  operation first shades any overwritten (deleted) pointer grey (to preserve 
snapshot reachability), and then writes the new value into the corresponding slot of both 
the primary and the replica (if it exists) .  When writing to a grey object it is possible that 
the designated copier is also copying the same slot. This copy-write race can lead to a 
lost update, if the mutator writes to the replica after the copier has read the slot from 
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Algorithm 19.2: Mutator operations in the Blelloch and Cheng collector (gcOn=true) 

lastA  
2 l a s t L  
3 l a s t C  

/* per-processor pointer to last allocated object 4 
/* per-processor length of last allocated object 4 

/* per-processor count of number of slots last filled 4 

5 Read(p,  i ) : 
return p [i ]  

8 New (n ) : 
p f- a l l ocat e ( n )  

1 0  r f- a l l ocat e ( n )  
1 1  fo rwa rdingAddres s (p )  
1 2  copyCount ( r )  f- 0 
13 l a s t A  f- p 
14  l a s t C  f- 0 
1 5  l a s t L  f- n 
1 6  return p 
1 7  

1 s  atomic Write (p, i ,  v ) : 
1 9  if i s P o i nt e r (p, i )  
20 makeGrey (p [  i ] ) 
21 p [i ]  f- v 

f- r 

22 if  fo rwa rdi ngAddr e s s (p )  f:. 0 

/* allocate primary 4 
/* alloca te replica 4 

/* primary forwards to replica 4 
/* replica has no slots to copy 4 

/* set las t  allocated 4 
/* set count 4 

/* set length 4 

/* grey old value 4 
/* write new value into primary 4 

/* check if object is forwarded 4 
23 while forwardingAddres s (p )  = 1 

24 /* do nothing: wait for forwarding address 4 
25 r f- forwardi ngAddress (p )  
26 while copyCount ( r )  = - ( i + l )  

/* get pointer to replica 4 

21 /* do nothing: wait while slot concurrently being copied 4 
28 i f  i s P o i nt e r (p, i )  
29 v f- makeG rey (  v )  
30 r [i ]  f- v 
31 c o l l e c t (k) 
32 

33 I n i t S lot (v ) : 
34 l a stA [ l a s t C] f- v 
35 if  i s P o i nt e r ( l a s tA, l a s t C) 
36 v f- makeGrey (  v )  
37 fo rwardi ngAddre s s ( l a s tA) [l a s t C + +] 
38 c o l l ect (k) 

/* update replica with grey new value 4 
/* update replica 4 

/* execute k copy steps 4 

/* initialise next slot of last allocated */ 
/* initialise primary 4 

/* replica gets grey initial value 4 
+--- v /* initialise replica */ 

/* execute k copy steps */ 

the primary but before it has finished copying the slot to the replica. Thus, the Write  
operation waits for the copier, both to  allocate the replica and to  finish copying the slot. It 
is not a problem for the mutator to write to the primary before the copier locks the slot, 
since the copier will then copy that value to the replica . The while statements that force 
the mutator to wait are both time-bounded, the first by the time it takes for the copier to 
allocate the replica and the second by the time it takes for the copier to copy the slot. 

I n i t S lot  is used for initialising stores instead of Write  because it is much cheaper. 
The uninitialised slots are implicitly null so do not need a deletion barrier to preserve 
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Algorithm 19.3: Collector code in the Blelloch and Cheng work-based collector 

c o l lect (k) : 
enterRoom( ) 
for i +- 0 to k- 1 

if i s L o c a l St ackEmp t y ( )  
sharedP op ( )  
if  i s LocalSt a c kEmpt y ( )  

break 
p +- l o c a lPop ( )  
copyOne S l ot (p )  

1 0  t rans it i onRooms ( )  
1 1  sharedP u s h ( )  
1 2  if exit Room ( )  
n int e rrupt ( col lect o r O f f )  

/* local stack empty 4 
/* move work from shared stack to local 4 

/* local stack still empty 4 
/* no more work to do 4 

/* move work to shared stack */ 

/* turn collector off */ 

the snapshot. Also, the new object always has a replica so there is no need to check for 
the replica's presence .  Finally, the collector is designed so that if a collection cycle starts 
while an object is only partially initialised, only the initialised slots will be copied (see 
co l l e ct o rOn in Algorithm 19.4) . 

Algorithm 19.3 shows the collector function c o l l ect (k), which copies k slots. The 
shared copy stack allows the copy work to be shared among the processors. To reduce 
the number of invocations of the potentially expensive sharedP op operation (which uses 
Fe t chAndAdd), to improve the chances for local optimisation, and to enhance locality, 
each processor takes most of its work from a private local stack (the shared and private 
stack operations are defined earlier in Algorithm 14.8) .  Only when there is no work avail
able in this local stack will the processor fetch additional work from the shared copy stack. 
After copying k slots, col lect  places any remaining work back into the shared stack. 
Note that no two processors can simultaneously execute the code to copy slots (obtaining 
additional work from the shared copy stack) in lines 2-10 and move copy work back to the 
copy stack after copying k slots in lines lines 10-12.  This is enforced using the 'rooms' of 
Algorithm 14.9, which we discussed in Section 14.6.  

Algorithm 19.4 shows the code to start (co l l e ctorOn) and stop (co l l e ct o r O f f) 
the collector. Here, the only roots are assumed to reside in the fixed number of registers 
REG private to each processor. The s ynch routine implements barrier synchronisation to 
block a processor until all processors have reached that barrier. These are used to ensure 
a consistent view of the shared variables gcOn, free, and s h a redSt ack .  When a new 
collection cycle begins, each processor sets the replica header of its partially initialised last 
allocated object to the last initialised slot l a s t c  so that only the initialised slots need to 
be copied. When the collection cycle ends, the registers and the last allocated object are 
forwarded to refer to their replicas .  

Other practical improvements. The original formulation of the real-time replication al
gorithm [Blelloch and Cheng, 1999] and its subsequent practical implementation [Cheng 
and Blelloch, 2001 ;  Cheng, 2001 ]  describe a number of other practical improvements to 
this algorithm. Instead of using F e t chAndAdd in every invocation of a l locate  (line 32) 
each processor can allocate from a private allocation area as described in Section 7.7. In
stead of spin-waiting for the forwarding pointer in makeGrey, because the processor can 
know the location at which it is going to place an object in its private space, it can then 
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Algorithm 19.4: Stopping and starting the Blelloch and Cheng work-based collector 

I shared gcOn 
2 shared t o  Top 
3 shared free 
4 shared count 
5 shared round 

f-- 0 
f-- 0 

/* number of processors that have synched */ 
/* the current synchronisation round 4 

7 

10 

I I  

synch { ) :  
cu rRound +- round 
s e l f  +- Fet chAndAdd( & cnt ,  1 )  + 1 
if  s e l f  = numP roc  

cnt  +- 0 
1 2  round++ 
n while round = cu rRound 

/* round is done, reset for next one */ 

14 /* do nothing: wait until last processor changes round 4 
15 

16 c o l l e c t o ron ( ) : 
1 1  synch ( )  
1 8  gcOn +- true 
19 

20 

21 

22 
23 

24 

2S 

26 

27 

28 

29 

30 

31 

32 

33 

34 

t oBot ,  fromBot +- fromBot ,  t oBot 
t oTop, fromTop +- fromTop, t oTop 
free ,  sharedS t a c k  +- toBot ,  t oTop 
s t a c kLimit +- sharedSt ack  
synch ( )  
r +- a l locat e ( l a s t L ) 
forwardingAddre s s ( l astA) +- r 
copyCount ( r )  +- l a s t C  
if  l a s t C  > 0 

l o calPush ( l a s tA) 
for i +- 0 to l ength(REG)  

if i s Point e r (REG, i )  
makeGrey (REG [  i ] ) 

sharedPush ( )  
synch { )  

35 co l l e ct o rOff ( ) : 
36 s yn ch { )  
37 for i +- 0 to length (REG)  
38 if  i s Point e r ( REG, i )  

/* allocate replica of last allocated 4 
/*forward last allocated 4 

/* set number of slots to copy 4 

/* push work onto local stack 4 
/* make roots grey 4 

/* move work to shared stack 4 

/* make roots grey */ 

39 REG [i ]  +- forwardingAddre s s (REG ( i ] ) /* forward roots 4 
40 l a s tA +- fo rwa rdingAddre s s ( l a s tA) 
4 1  gcOn +- false 
42 synch ( )  
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use a CompareAndSwap instead of Tes tAndSet .  Other improvements include deferring 
the collector work performed in New and I n itLoc  until each local allocation area fills up 
with (small) objects, avoiding the cost of double allocations (primary and replica) in New 
and how to make W r i t e  atomic using rooms synchronisation (only one writer can enter 
the 'writing room' at any particular time) .  

Time and space bounds. The considerable effort taken by this algorithm to place a well
defined bound on each increment of collector work allows for precise bounds to be placed 
on space and the time spent in garbage collection. Blelloch and Cheng [1999] prove that 
the algorithm requires at most 2 (R( l + 2/k) + N + SPD) memory words, where P is the 
number of processors, R is the maximum reachable space during a computation (number 
of words accessible from the root set), N is the maximum number of reachable objects, 
D is the maximum depth of any object and k controls the tradeoff between space and 
time, bounding how many words are copied each time a word is allocated. They also 
show that mutator threads are never stopped for more than time proportional to k non
blocking machine instructions. These bounds are guaranteed even for large objects and 
arrays, because makeGrey progresses the grey wavefront a field at a time rather than a 
whole object at a time. 

Performance. Cheng and Blelloch [2001]  implemented their collector for ML, a statically 
typed functional language. ML programs typically have very a high allocation rates, pos
ing a challenge to most collectors . Results reported are for a 64-processor Sun Enterprise 
10000, with processor clock speeds on the order of a few hundred megahertz . On a single 
processor, the collector imposes an average (across a range of benchmarks) overhead of 
51% compared to an equivalent stop-the-world collector. These are the costs to support 
both parallel (39%) and concurrent (12%) collection. Nevertheless, the collector scales well 
for 32 processors (17.2 x speedup) while the mutator does not scale quite so well (9 .2 x 
speedup), and near perfectly for 8 processors (7.8 x and 7.2 x ,  respectively). Minimum 
mutator utilisation for the stop-the-world collector is zero or near zero for all benchmarks 
at a granularity of lOms, whereas the concurrent collector supports a minimum mutator 
utilisation of around 10% for k = 2 and 15% for k = 1 .2 .  Maximum pause times for the 
concurrent collector range from three to four milliseconds. 

Uneven work and its impact on work-based scheduling 

The argument against work-based scheduling for real-time garbage collection is that it 
results in uneven minimum mutator utilisation, with the operations of the mutator so 
tightly-coupled to those of the collector. A worst-case execution time analysis for work
based copying collection must assume the worst-case time for all mutator operations on 
the heap. For the Baker [ 1978] collector, reading a pointer slot may require copying its 
target. For Lisp c o n s  cells this is a bounded cost, but variable-sized objects like arrays 
cause problems. Allocation can cause some fixed amount of collector work, and at the 
beginning of the collection cycle will also involve the flip, scanning the roots and copying 
their targets. This includes the global variables (bounded in each particular program) and 
local (thread stack) variables (potentially unbounded up to stack overflow) .  In summary, 
the worst case is so far from the usual case that the resulting worst-case execution time 
analysis is virtually useless for schedulability analysis. 

There have been several attempts at containing these worst-case overheads for work
based scheduling. To bound the cost of stack scanning Cheng and Blelloch [2001] propose 
dividing the stack into fixed-size stacklets . The flip needs only to scan the top-most stacklet 
in which the mutator is currently active, leaving the other stacklets for later scanning in due 
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Figure 19.3: Low mutator utilisation even with short collector pauses. The 
mutator (white) runs infrequently while the collector (grey) dominates. 
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course. To prevent a mutator from returning to an un-scanned stacklet, this approach adds 
a stack barrier to the operations that pop the stacklets as the mutator executes, requiring 
the mutator to scan the stacklet being returned to . Detlefs [2004b] notes two approaches for 
handling the case in which the collector attempts to return into a stacklet that is already in 
the process of being scanned by the collector. Either the mutator must wait for the collector, 
or the collector must abort the scanning of that stacklet, deferring that work to the mutator. 

Similarly, variable-sized objects can be broken into fixed-size oblets, and arrays into 
array lets, to place bounds on the granularity of scanning/ copying to advance the collector 
wavefront. Of course, these non-standard representations require corresponding changes 
to the operations for accessing object fields and indexing array elements, increasing space 
and time overheads for the additional indirections [Siebert, 1998, 2000, 2010] . 

Nevertheless, Detlefs considers the asymmetric overheads of pure work-based schedul
ing to be the final nail in its coffin. For example, in the Baker concurrent copying collector 
mutator operations have costs that vary greatly depending on where in the collector cycle 
they occur. Before a flip operation, the mutator is taxed only for the occasional allocation 
operation in order to progress the wavefront, while reads are most likely to load references 
to already copied objects. For some time after the flip, when only mutator roots have been 
scanned, the average cost of reads may come dose to the theoretical worst case as they 
are forced to copy their targets. Similarly, for the Blelloch and Cheng [1999] collector, even 
though writes are much less common than reads, there is still wide variability in the need 
to replicate an object at any given write. 

This variability can yield collector schedules that preserve predictably short pause 
times, but do not result in satisfactory utilisation because of the frequency and duration 
of collector work. Consider the schedule in Figure 19.3 in which the collector pauses are 
bounded at a millisecond, but the mutator is permitted only a tenth of a millisecond be
tween collector pauses in which to run. Even though collector work is split into predictably 
short bounded pauses, there is insufficient time remaining for a real-time mutator to meet 
its deadlines. 

While work-based scheduling may result in collector overhead being spread evenly 
over mutator operations, on average, the big difference between average cost and worst
case cost leaves worst-case execution time analysis for work-based scheduling ineffective. 
The result is unnecessary over-provisioning of processor resources resulting in reduced 
utilisation of the processor by the mutator. 

In a non-copying concurrent collector, where the mutator write barrier simply shades 
the source or old/new target object, mutator overheads for accessing the heap are rela
tively tightly bounded. However, because allocations come in bursts, work-based schedul
ing still results in wide variation in the GC overheads imposed on mutators. 

For this reason, more advanced scheduling approaches treat collector work as some
thing that must be budgeted for in a way that does not make it a pure tax on mutator work, 
essentially by treating garbage collection as another real-time task that must be scheduled. 
This results in mutator worst-case execution time analysis that is much closer to actual av
erage mutator performance, allowing for better processor utilisation. Rare but potentially 
costly operations, such as flipping the mutator, need only be short enough to complete 
during the portion of execution made available to the collector. 
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Figure 19.4: Heap structure in the Henriksson slack-based collector 

19.4 Slack-based real-time collection 

Henriksson attacks the real-time collector scheduling problem by adopting the rule that 
garbage collection should be completely avoided while high priority (real-time) tasks are 
executing [Magnusson and Henriksson, 1995; Henriksson, 1998] .  Garbage collection work 
is instead delayed until no high-priority tasks are eligible for execution. Allocation by 
high-priority tasks is not taxed, while low-priority tasks perform some collector work 
when allocating. A special task, the high-priority garbage collection task, is responsible for 
performing collector work that was omitted while the high-priority tasks were execut
ing, as implied by the allocations performed by the high-priority tasks. The high-priority 
garbage collection task has a priority lower than the high-priority tasks, but higher than 
the low-priority tasks. It must always ensure that enough free memory is initialised and 
available for allocation to meet the requirements of the high-priority tasks. Thus, collector 
work operates entirely in the slack in the real-time task schedule. 

The heap is configured into two semispaces as shown in Figure 19.4. New objects are 
allocated at the top of tospace, at the position of the pointer t op. Evacuated objects are 
placed at the bottom of tospace, at the position designated by bot t om. The collector scans 
the evacuated objects in the usual Cheney style, evacuating all fromspace objects they refer 
to. Low-priority threads perform some evacuation work incrementally as new objects are 
allocated at the top of tospace. The position of s can  indicates the progress of the collector 
in scanning the evacuated objects. 

Henriksson describes his approach in the context of a Brooks-style concurrent copy
ing collector that uses an indirection barrier on all accesses, including a Dijkstra insertion 
write barrier to ensure that the new target object is in tospace, copying it if not. This 
maintains a strong invariant for concurrent collection: no tospace object contains refer
ences to fromspace objects. However, Henriksson does not impose the full copying cost 
of the write barrier on high-priority tasks. Instead, objects are evacuated lazily. The write 
barrier simply allocates space for the tospace copy, but without actually transferring the 
contents of the fromspace original. Eventually, the garbage collector will run (whether as 
the high-priority garbage collection task, or as a tax on allocation by low-priority tasks), 
and perform the deferred copying work when it comes to scan the contents of the tospace 
copy. Before scanning the tospace version the collector must copy the contents over from 
the fromspace original. To prevent any mutator from accessing the empty tospace copy be
fore its contents have been copied over, Henriksson exploits the Brooks indirection barrier 
by giving every empty tospace shell a back-pointer to the fromspace original. This lazy 
evacuation is illustrated in Figure 19.5 .  

As sketched in Algorithms 19.5 and 19.6, the collector is similar to that of concur
rent copying (Algorithm 17.1 ), but uses the Brooks indirection barrier to avoid the need 
for a tospace invariant on the mutators, and (like Sapphire) defers any copying from 
the mutator write barrier to the collector. Note that the temporary t oAddre s s  pointer 
allows the collector to forward references held in tospace copies, even while the muta-
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(a) Before a high-priority task performs B.y+-A.x. The write bar
rier catches the assignment since the fromspace C object is not 
previously evacuated or scheduled for evacuation. 

(b) After having reserved a tospace location for C. A temporary 
t oAdd r e s s  pointer (dashed) to the reserved area prevents mul
tiple tospace reservations for C. Forwarding pointers prevent ac
cess to the uninitialised reserved space. 

Fromspace 

(c) When the high-priority task pauses, the collector finishes 
evacuating C to its reserved tospace location, and sets the for
warding pointers to refer to the tospace copy. A.x will be for
warded later when the A object is scanned by the collector. 

Figure 19.5: Lazy evacuation in the Henriksson slack-based collector. 

Henriksson [1998] .  Reprinted by permission. 
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Algorithm 19.5: The Henriksson slack-based collector 

10 

I I  

1 2  

1 3  

1 4 

coroutine co l l e ct o r : 
loop 

while bot t om < t op 
y i e 1 d /* revert to mutator 4 

f l i p ( )  
for each f l d  i n  Root s 

p r o ce s s ( f l d) 
if  not beh i nd( ) 

y i e 1 d /* revert to mutator 4 
while s can  < bott om 

s can  +- s canOb j e ct ( s can )  
if  not behi nd( ) 

y i e 1 d I* revert to mutator 4 

15 f l ip ( ) : 
1 6  t oBot,  f romBot f- f romBot ,  t oBot 
1 1  t oTop, f romTop f- f romTop, t oTop 
1 8  bott om, t op f- t oBot,  t oTop 
1 9  s can  f- bot t om 
20 

21 s canOb j ect (t oRe f ) : 
22 f romRe f f- f o rwardi ngAddre s s (t oRe f )  
23 move ( f romRe f, t oRe f )  
24 for each f l d  in P o i nt e r s ( t oRe f )  
� proce s s ( f l d) 
� f o rwardi ngAddre s s ( f romRe f )  f- t oRe f  
21 return t o Re f  + s i z e ( t oRe f )  
28 

29 proce s s ( f l d) : 
� f romRe f f- * f l d  
3 1  if f romRe f f- null 
3 2  * f ld  f- f o rwa rd( f romRe f )  
33 
34 f o rwa rd( f romRe f ) : 
35 t oRe f +- f o rwardingAddre s s ( f romRe f )  

/* tospace is not full 4 

/* update with tospace reference 4 

36 if  t oRe f = f r omRe f /* not evacuated */ 
37 t oRe f f- t oAddre s s ( f romRe f )  
38 if t oRe f = null /* not scheduled for evacuation (not marked) 4 
39 t oRe f f- s chedu l e ( f r omRe f )  
� return t oRe f 
4 1  

42 s chedu l e ( f romRe f ) : 
43 t oRe f +- bot t om 
44 bot t om +- bot t om + s i z e ( f romRe f )  
45 if bot t om > t op 
46 

47 

48 

error  " Out  o f  memo ry " 
t oAddre s s ( f r omRe f )  +- t o Re f  
return t o Re f  

/* schedule for evacuation (mark) 4 
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Algorithm 19.6: Mutator operations in the Henriksson slack-based collector 

1 atomic Read ( s rc, i ) : 

1 0  

s rc +- forwardi ngAddres s ( s rc ) 
return s rc [i ] 

atomic W r i t e ( s rc, i ,  r e f ) : 
s rc +- forwardi ngAddre s s ( s r c ) 
if  re f in f roms p a c e  

ref  +- forward ( r e f ) 
s rc [i ] +- ref  

1 1  atomic NewHi ghPri ori ty ( s i z e ) : 
1 2  t op +- t op - s i z e 
1 3  t oRe f +- t op 
14 fo rwa rdi ngAddre s s (t oRe f ) +- t o Re f 
1 5  return t oRe f 
1 6  

1 7  atomic NewLowPri ori ty ( s i z e ) : 
1 s  while behind ( )  
19 y i e l d  I* wake up the collector 4 
20 t op +- t op - s i z e  
21 t oRe f  +- t op 
22 if bot t om > t op 
n e r r o r  "Out o f  memory " 
24 fo rwardingAddre s s (t oRe f ) +- t o Re f 
25 return t oRe f 

I* Brooks indirection *I 

I* Brooks indirection *I 

tor continues to operate in fromspace, since this t oAddre s s  pointer is distinct from the 
forwa rdi ngAddre s s  header word used by the mutator. 

The collector itself is specified as a coroutine, so that collector execution interleaves 
with the low-priority mutator tasks at well-defined y i e l d  points, though high-priority 
tasks can preempt the collector at any time to regain control. If the collector is in the 
middle of copying an object, the copy is simply aborted and restarted when the collector 
resumes. Also, Henriksson assumes that the execution platform is a uniprocessor, so that 
disabling scheduler interrupts is sufficient to implement atomic operations. 

Scheduling the collector work 

The amount of work to perform in each collector increment (controlled by the call to 
behind) must ensure that fromspace is completely evacuated before tospace fills up, thus 
finishing a collector cycle. Let us assume that the amount of work (in terms of bytes pro
cessed) needed in the worst case to evacuate all live objects out of fromspace and to ini
tialise enough memory to satisfy allocation requests of the high-priority threads during 
a collection cycle is Wmax, and that after the flip at least Fmin bytes of memory must be 
free and available for allocation. That is, Wmax indicates the maximum work needed to 
complete a collection cycle and Fmin the minimum space that must be free when the cycle 
completes. Then the minimum GC ratio GCRmin is defined as: 

GCR . _ Wmax 
mm - Fmin 
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The current GC ratio GCR is the ratio between performed GC work W and the amount A 
of new allocated objects in tospace: 

GCR = 
W 
A 

Allocation by the mutator causes A to increase, while GC work increases W. The collector 
must perform enough work W to make sure that the current GC ratio is no less than the 
minimum GC ratio (GCR 2: GCRmm) .  This will guarantee that fromspace is empty (all live 
objects have been evacuated) before tospace is filled, even in the worst case. 

Allocation of memory by low-priority tasks is throttled so that the current GC ratio 
GCR does not drop too low (below GCRmin), by giving the collector task priority. The 
upper bound on the collector work performed during allocation will be proportional to 
the size of the allocated object. 

If a high-priority task is activated shortly before a semispace flip is due then the remain
ing memory in tospace may not be sufficient to hold both the last objects to be allocated 
by the high-priority task and the last objects to be evacuated from fromspace. The col
lector must ensure a sufficiently large buffer between bot t om and t op for these objects, 
large enough to hold all new objects allocated by the high-priority tasks while the col
lector finishes the current cycle . To do this, the application developer must estimate the 
worst-case allocation needed by the high-priority tasks in order to run, as well as their 
periods and worst-case execution times for each period. Henriksson suggests that this 
job is easy enough for the developer because high-priority tasks in a control system are 
written to be fast and small, with little need to allocate memory. He provides an ana
lytical framework for deciding schedulability and the memory headroom needed by high
priority tasks, given a large set of program parameters such as task deadlines, task periods, 
and so on. 

Execution overheads 

The overhead to high-priority tasks for collector activity consists of tight bounds on the 
instructions required for memory allocation, pointer dereferencing and pointer stores. Of 
course, instruction counts alone are not always a reliable measure of time, in the face of 
loads that may miss in the cache. Worst-case execution time analysis must either assume 
caches are disabled (slowing down all loads) or the system must be tested empirically to 
ensure that real-time deadlines are met under the expected system load. 

Heap accesses require single instruction indirection through the forwarding pointer, 
plus the overhead of disabling interrupts. Pointer stores have worst-case overhead on 
the order of twenty instructions to mark the target object for later evacuation. Allocation 
requires simply bumping a pointer and initialising the header (to include the forwarding 
pointer and other header information), having overhead on the order of ten instructions. 

Low-priority tasks have the same overheads for heap accesses and pointer stores. On 
allocation, the worst-case requirement is to perform collector work proportional to the 
size of the new object. The exact worst case for allocation depends on the maximum object 
size, total heap size, maximum live object set, and the maximum collector work performed 
within any given cycle. 

Worst-case latency for high-priority tasks depends on the time for the collector to com
plete (or abort) an ongoing item of atomic work, which is short and bounded. Henriksson 
states that latency is dominated more by the cost of the context switch than the cost of com
pleting an item of atomic work. 
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Figure 19.6: Metronome utilisation. Collector quanta are shown in grey and 
mutator quanta in white. 

Programmer input 

391 

The programmer must provide sufficient information about the application program, and 
the high-priority tasks, to compute the minimum GC ratio and to track the GC ratio as 
the program executes so that the collector does not disrupt the high-priority tasks. The 
period and worst-case execution times for each high-priority task is required, along with 
its worst-case allocation need for any one of its periodic invocations, so as to calculate the 
minimum buffer requirements to satisfy high-priority allocations. The programmer must 
also provide an estimate of the maximum live memory footprint of the application. These 
parameters are sufficient to perform worst-case execution time analysis, and schedulability 
analysis, for the high-priority real-time tasks. Henriksson [1998] provides further details. 

19.5 Time-based real-time collection: Metronome 

Slack-based scheduling of the collector requires sufficient slack available in the sched
ule of high-priority real-time tasks in which to run the collector. Time-based scheduling 
treats minimum mutator utilisation as an input to the scheduling problem, with the sched
uler designed to maintain minimum mutator utilisation while providing real-time bounds. 
This approach was first used in the Metronome real-time garbage collector for Java [Bacon 
et al, 2003a] .  Metronome is an incremental mark-sweep collector with partial on-demand 
compaction to avoid fragmentation. It uses a deletion write barrier to enforce the weak 
tricolour invariant, marking live any object whose reference is overwritten during a write. 
Objects allocated during marking are black. The overhead of simply marking on writes is 
much lower (and more predictable) than replicating as in Blelloch and Cheng [1999 ) .  

After sweeping to  reclaim garbage, Metronome compacts if necessary, to ensure that 
enough contiguous free space is available to satisfy allocation requests until the next collec
tion. Like Henriksson [1998], Metronome uses Brooks-style forwarding pointers, imposing 
an indirection on every mutator access. 

Mutator utilisation 

Metronome guarantees the mutator a predetermined percentage of execution time, with 
use of the remaining time at the collector's discretion: any time not used by the collector 
will be given to the mutator. By maintaining uniformly short collector pause times Metro
nome is able to give finer-grained utilisation guarantees than traditional collectors. Using 
collector quanta of 500 microseconds over a 10 millisecond window Metronome sets a de
fault mutator utilisation target of 70%. This target utilisation can also be tuned further for 
the application to meet its space constraints. Figure 19.6 shows a 20-millisecond Metro
nome collector cycle split into 500-microsecond time slices. The collector preserves 70% 
utilisation over a tO-millisecond sliding window: there are at most 6 collector quanta and 
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Figure 19.7: Overall mutator utilisation in Metronome 
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Figure 19.8: Mutator utilisation in Metronome during a collection cycle. 
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correspondingly at least 14 mutator quanta in any window. Here, each collector quantum 
is followed by at least one mutator quantum so that pauses are limited to the length of one 
quantum, even if utilisation would still be preserved by back-to-back quanta so as to min
imise pauses. Given a minimum mutator utilisation target below 50% then a window may 
schedule more collector quanta than mutator quanta so some instances of back-to-back 
collector quanta will be needed to ensure that the collector gets its share of the window. 

Of course, when the collector is not active all quanta can be used by the mutator, giv
ing 100% utilisation. Overall, the mutator will see utilisation drop during periods that 
the collector is running, but never lower than the target utilisation. This is illustrated in 
Figure 19.7, which shows overall mutator utilisation dropping for each collector cycle. 

Figure 19.8 shows mutator utilisation over the same collector cycle that was illustrated 
in Figure 19.6 (grey bars indicate each collector quantum while white is the mutator) . At 
time t on the x-axis this shows utilisation for the ten millisecond window leading up to 
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time t. Note that while the schedule in Figure 19.6 is perfect in that utilisation is exactly 
70% over the collector cycle, real schedules will not be quite so exact. A real scheduler will 
typically allow collector quanta to run until minimum mutator utilisation is dose to the 
target MMU and then back off to prevent overshooting the target. 

Section A of the figure is a staircase graph where the descending portions correspond to 
collector quanta and the flat portions correspond to mutator quanta . The staircase shows 
the collector maintaining low pause times by interleaving with the mutator, as utilisation 
steps down to the target. Section B comprises only mutator activity so as to preserve 
mutator utilisation across all sliding windows that cover that section. It is common to 
see this pattern showing collector activity only at the beginning of a window because the 
collector runs whenever it is allowed to (while preserving pause times and utilisation) . 
This means the collector will exhaust its allotted time at the beginning and then allow the 
mutator to recover for the remainder of the window. Section C shows collector activity 
when mutator utilisation is near the target. Ascending portions represent mutator quanta, 
where the scheduler detects utilisation rising above the target, and descending portions 
are collector quanta where the scheduler permits the collector to run to bring utilisation 
back dose to the target. The sawtooth results from the interleaving of the mutator with the 
collector to preserve low pause times while also preserving the target utilisation. Section 
D shows that once the collector finishes its cycle the mutator must run for a while before 
utilisation begins to rebound. In Section E the mutator regains 100% utilisation stepping 
up the staircase from the target. 

Supporting predictability 

Metronome uses a number of techniques to achieve deterministic pause times while guar
anteeing collector safety. The first of these addresses the unpredictability of allocating 
large objects when the heap becomes fragmented. The remainder advance predictability 
by keeping collector pause times deterministically short. 

Arraylets. Metronome was implemented to support arraylets to allow allocation of ar
rays in multiple chunks. This allows a degree of tolerance to fragmentation without the 
need to perform compaction (which can adversely affect predictability) . Large arrays can 
be allocated as a single contiguous spine object, which then contains pointers to separately 
allocated fixed-size arraylets that contain the array elements. The size is a power of two 
so that the division operation needed for indexing can be implemented using a shift. This 
allows simple computation of the element position, using an extra indirection through the 
spine. Metronome uses an arraylet size of two kilobytes and a maximum block size of 
sixteen kilobytes for the spine, allowing arrays of up to eight megabytes in size . 

Read barrier. Like Henriksson [1998], Metronome uses a Brooks-style read barrier to 
ensure that the overhead for accessing objects has uniform cost even if the collector has 
moved them. Historically, read barriers were considered too expensive to implement in 
software - Zorn [1990] measured their run-time overhead at around 20% - but Metro
nome applies several optimisations to reduce their overhead to 4% on average. First, it 
uses an eager read barrier, forwarding all references as they are loaded from the heap, to 
make sure that they always refer to tospace. Thus, accesses from the stacks and registers 
via these references incur no indirection overhead. In contrast, a lazy read barrier would 
incur indirection every time a reference held in the stacks or registers is used. The cost for 
this is that whenever a collector quantum moves objects it must also forward all references 
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held in the registers and stacks . Second, Metronome applies several common compiler op
timisations to reduce the cost of read barriers, such as common subexpression elimination, 
and specialised optimisations such as barrier sinking to move the barrier to the point of 
use, allowing the barrier and use null-checks to be combined [Bacon et al, 2003a] .  

Scheduling the collector. Metronome uses two different threads to  control for both con
sistent scheduling and short, uninterrupted pause times. The alarm thread is a very high 
priority thread (higher than any mutator thread) that wakes up every 500 microseconds. It 
acts as the 'heartbeat' for deciding whether to schedule a collector quantum. If so, it initi
ates suspension of the mutator threads, and wakes the collector thread . The alarm thread 
is active only long enough to carry out these duties (typically under 10 microseconds) so 
that it goes unnoticed by the application. 

The collector thread performs the actual collector work for each collector quantum. It 
must first complete the suspension of the mutator threads that was initiated by the alarm 
thread. Then it will perform collector work for the remainder of the quantum, before 
restarting the mutator threads and going back to sleep. The collector thread can also pre
emptively sleep if it is unable to complete its work before the quantum ends. 

Metronome produces consistent CPU utilisation because the collector and mutator are 
interleaved using fixed time quanta . However, time-based scheduling is susceptible to 
variations in memory requirements if the mutator allocation rate varies over time. 

Suspending the mutator threads. Metronome uses a series of short incremental pauses 
to complete each collector cycle. However, it must still stop all the mutator threads for each 
collector quantum, using a handshake mechanism to make all the mutator threads stop at 
a GC-safe point. At these points, each mutator thread will release any internally held 
run-time metadata, store any object references from its current context into well-described 
locations, signal that it has reached the safe point and then sleep while waiting for a re
sume signal. Upon resumption each thread will reload object pointers for the current con
text, reacquire any necessary run-time metadata that it previously held and then continue. 
Storing and reloading object pointers allows the collector to update the pointers if their 
targets move during the quantum. GC-safe points are placed at regularly-spaced intervals 
by the compiler so as to bound the time needed to suspend any mutator thread. 

The suspend mechanism is used only for threads actively executing mutator code. 
Threads that do not access the heap, threads executing non-mutator 'native' code, and 
already suspended mutator threads (such as those waiting for synchronisation purposes) 
are ignored. If these threads need to begin (or return to) mutating the heap (for example, 
when returning from 'native' code, invoking operations of the Java Native Interface, or 
accessing other Java run-time structures), they will suspend themselves and wait for the 
collector quantum to complete. 

Ragged root scanning. Metronome scans each complete thread stack within a single col
lector quantum so as to avoid losing pointers to objects. Developers must make sure not 
to use deep stacks in their real-time applications so as to permit each stack to be scanned 
in a single quantum. Though each whole stack must be scanned atomically in a single 
quantum, Metronome does allow scanning of distinct thread stacks to occur in different 
quanta . That is, the collector and mutator threads are allowed to interleave their execution 
while the collector is scanning the thread stacks . To support this, Metronome imposes an 
installation write barrier on all unscanned threads, to make sure they do not hide a root 
reference behind the wave front before the collector can scan it. 
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Analysis 

One of the biggest contributions of Metronome is a formal model of the scheduling of 
collection work and its characterisation in terms of mutator utilisation and memory usage 
[Bacon et al, 2003a] .  The model is parametrised by the instantaneous allocation rate A* ( T) of 
the mutator over time, the instantaneous garbage generation rate G* ( T) of the mutator over 
time and the garbage collector processing rate P (measured over the live data) . All are defined 
in units of data volume per unit time. Here, time T ranges over mutator time, idealised for a 
collector that runs infinitely fast (or in practice assuming there is sufficient memory to run 
without collecting). 

These parameters allow simple definitions of the amount of memory allocated during 
an interval of time ( T1 , Tz ) as 

and similarly for garbage generated as 

The maximum memory allocated for an interval of size tn is 

a: * (ln) = max a:* ( T, T + Lh) 
T 

which gives the maximum allocation rate1 

(19 .1 )  

(19 .2) 

(19 .3) 

(19 .4) 

The instantaneous memory requirement of the program (excluding garbage, overhead, 
and fragmentation) at a given time T is 

m * (T) = a:* (O, T) - -y* (O, T) . (19 .5) 

Of course, real time must also include the time for the collector to execute, so it is 
helpful to introduce a function <I> : t -+  T that maps from real t to mutator time T, where 
T � t. A function that operates in mutator time is written f* whereas a function that 
operates in real time is written f. Thus, the live memory of the program at time t is 

m (t )  = m * (<P ( t ) )  

and the maximum memory requirement over the entire program execution is 

m = max m ( t ) = max m* (T) . 
t T 

(19 .6) 

(19 .7) 

Time utilisation. Time-based scheduling has two additional parameters: the mutator 
quantum Qr and the collector quantum Cr, being the amount of time that the mutator and 
collector (respectively) are allowed to run before yielding. These allow derivation of mini
mum mutator utilisation as 

ur (M ) = 

Qr . L�J + x 

M (19 .8) 

1Note carefully here the distinction between a* (the maximum allocation rate over an interval) and a* (the 
maximum allocated memory over an interval). 
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Figure 19.9: Minimum mutator utilisation u r (L'lt) for a perfectly scheduled 

time-based collector. Cr = 10. Utilisation converges to Qr'tcr . Increasing the 
frequency of the collector (reducing the mutator quantum) produces faster 
convergence. 

where Qr · l Qr�Cr J is the length of whole mutator quanta in the interval and x is the size 
of the remaining partial mutator quantum, defined as 

(19.9) 

Asymptotically, minimum mutator utilisation approaches the expected ratio of total time 
given to the mutator versus the collector: 

(19 .10) 

For example, consider a perfectly scheduled system that has a collector quantum Cr = 

10, which is the maximum pause that will be experienced by the mutator. Figure 19.9 plots 
minimum mutator utilisation for mutator quanta of Qr = 2.5, Qr = 10 and Qr = 40. 

Notice that ur (M)  converges to A in the limit for large L'lt, and that more frequent 
collection (reducing the mutator quantum Qr) leads to faster convergence. Also, note that 
the x term has more impact at the small time scales of interest in real-time systems. Of 
course, in practice the collector will usually run only intermittently, so ur (L'lt) is only a 
lower bound on mutator utilisation. 

Space utilisation. As already noted, space utilisation will vary depending on the mutator 
allocation rate . Assuming constant collector rate P, at time t the collector will run for time 
m ( t ) / P  to process the m ( t) live data (work is proportional to the tracing needed to mark 
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the live data) .  In that time, the mutator will run for quantum Qr per quantum Cr of the 
collector. Thus, to run a collection increment at time t requires an excess space overhead of 

er ( t )  = �* ( <l>( t ) , <l>( t )  + 
m�t )  · �;) 

allowing definition of the maximum excess space required as 

er = max er ( t ) .  
I 

(19 . 1 1 )  

(19 .12) 

Freeing an object in Metronome can take as long as three collection cycles: one to collect 
the object, two if the object became garbage only after the current snapshot cycle began so 
it cannot be collected until the next cycle and three if the object needs also to be relocated 
before its space can be reused. 

Thus, the space required (ignoring internal fragmentation) at time t is 

(19 . 13) 

while the overall space needed is 
(19 . 14) 

These are in the worst case that all garbage objects are dragged into the next collector cycle 
and that they all need to be moved. The expected space needed is simply m + er. 

Mutation. Mutation also has a space cost because the write barrier must record every 
deleted and inserted reference. It must filter null references and marked objects so as to 
place a bound on collector work (at most all the objects in the heap will be marked live), 
while keeping the cost of the write barrier constant. Thus, in the worst case, the write log 
can have as many entries as there are objects. This space must be accounted for by treating 
allocation of the log entries as an indirect form of allocation. 

Sensitivity. Metronome will behave as predicted only when given accurate estimates of 
the parameters used to describe the application and the collector: the application alloca
tion rate A* ( t )  and garbage generation rate G* ( t ) ,  and the collector processing rate P and 
the quantisation parameters Qr and Cr. Utilisation ur depends solely on Qr and Cr, so 
utilisation will remain steady (subject only to any jitter in the operating system delivering 
a timely quantum signal and the minimum quantum it can support) .  

The excess space required for collection er ( t ) ,  which determines the total space sr 
needed, depends on both maximum application memory usage m and the amount of mem
ory allocated over an interval . If the application developer underestimates either the total 
space required m or the maximum allocation rate a* then the total space requirement sr 
may grow arbitrarily. Time-based collectors suffer from such behaviour particularly when 
there are intervals of time in which the allocation rate is very high. Similarly, the estimate 
of the collector processing rate P must be a conservative underestimate of the actual rate. 

Fortunately, a collection cycle runs for a relatively long interval of mutator execution 
time 

�T = m (t )  . Qr 
P Cr 

so the allocation rate in that time will be dose to the average allocation rate, resulting in 
little variation in space consumed so long as the estimate of maximum memory required 
m is accurate. 



398 CHAPTER 1 9. REAL-TIME GARBAGE COLLECTION 

Comparison with work-based scheduling. A similar analysis of work-based scheduling 
yields the opportunity to compare time-based and work-based scheduling. However, this 
analysis is compromised because operations of the mutator can affect the time allocated 
to it. More formally, for time-based scheduling the time dilation <I> from t to T is linear 
and fixed, whereas for work-based scheduling the dilation is variable and non-linear, and 
dependent on the application. 

The parameters for work-based scheduling reflect that the mutator and collector inter
leave by triggering the collector after some amount of allocation to perform some amount 
of collector work: the work-based mutator quantum Qw and collector quantum Cw be
ing the amount of memory that the mutator and collector (respectively) are allowed to 
allocate/process before yielding. 

Because work-based time dilation is variable and non-linear there is no way to obtain a 
closed-form solution for minimum mutator utilisation. Each collector increment processes 
Cw memory at rate P, so each pause for collection takes time d = Cw I P. Each mutator 
quantum involves allocation of Qw memory, so the minimum total mutator time �T; for i 
quanta is the minimum �T; that solves the equation 

(19.15) 

Increasing the time interval does not decrease the maximum amount of allocation in that 
time, so a * (�T) increases monotonically. Thus, �T; > �T;_ 1 , so Equation 19 .15 can be 
solved using an iterative method. Let k be the largest integer such that 

so that the minimum mutator utilisation over an interval � t  is 

( A ) 
�Tk + Y Uw ut = 
--'-:------=--

M 

(19.16) 

(19.17) 

where �Tk is the time taken by k whole mutator quanta in M and y is the size of the 
remaining partial mutator quantum, defined as 

y = max(O, M - �Tk - (k + 1 ) · d ) . (19. 18) 

Note that minimum mutator utilisation u w ( M) will be zero for M < d. Moreover, any 
large allocation of nQw bytes will force the collector to perform n units of work leading to 
a pause lasting time nd in which the mutator will experience zero utilisation. This reveals 
analytically that the application developer must take care with a work-based collector to 
achieve real-time bounds by avoiding large allocations and making sure that allocation is 
spaced evenly. 

Now, minimum mutator utilisation depends on the allocation rate a* (�T) , where �T ::=; 
�t, and on the collector processing rate P. Suppose that the interval M over which we re
quire real-time performance is small (say twenty milliseconds), so the peak allocation rate 
for this interval is likely to be quite high. Thus, at real-time scales work-based minimum 
mutator utilisation uw ( M) will vary considerably with the allocation rate. In contrast, note 
that the �T in which the time-based collector is dependent on allocation rate is at a much 
larger scale: the time needed for a complete garbage collection cycle. 

Analysing for space, the excess space required to perform a collection at time t is 

ew ( t) = m( t )  · �: 
and the excess space required for a collection cycle over its whole execution is 

Qw 
ew = m · 

Cw
. 

(19. 19) 

(19 .20) 
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These will be accurate as long as the application developer 's estimate of total live memory 
m is accurate. Also, note that the excess ew for a whole collection cycle will exceed the 
maximum memory m needed for execution of the program unless Qw < Cw . The space 
requirement of the program at time t is 

sw ( t )  :::; m ( t )  + 3ew ( 19 .21) 

and the space required overall is 
sw = m + 3ew . ( 19 .22) 

To sum up, while a work-scheduled collector will meet its space bound so long as 
m is correctly estimated, its minimum mutator utilisation will be heavily dependent on 
the allocation rate over a real-time interval, while a time-based collector will guarantee 
minimum mutator utilisation easily but may fluctuate in its space requirements. 

Robustness 

Time-based scheduling yields the robustness needed for real-time collection, but when the 
input parameters to the collector are not accurately specified it may fail to reclaim sufficient 
memory. The only way for it to degrade gracefully is to slow down the allocation rate . 

One approach to reducing the total allocation rate is to impose a generational scheme. 
This treats the nursery as a filter to reduce the allocation rate into the primary heap. Fo
cusing collector effort on the portion of the heap most likely to yield free memory results 
in higher mutator utilisation and also reduces the amount of floating garbage. However, 
traditional nursery collection is unpredictable both in terms of the time to collect and the 
quantity of data that is promoted. Syncopation is an approach for performing nursery col
lection synchronously with the mature-space collector, where the nursery is evacuated at 
the beginning of the mature-space collection cycle and at the start of sweeping, as well as 
outside the mature-space collection cycle [Bacon et al, 2005] .  It relies on an analytic solu
tion for utilisation in generational collection taking the nursery survival rate as a parame
ter and sizing the nursery such that evacuation is needed only once per real-time window. 
The analysis informs whether generational collection should be used in any given appli
cation. Syncopation handles the situation where temporary spikes in allocation rate make 
it impossible to evacuate the nursery quickly enough to meet real-time bounds by moving 
the work triggered by the temporary spike to a later time. Frampton et al [2007] adopt 
a different approach, allowing nursery collection to be performed incrementally so as to 
avoid having pause times degenerate to the time needed to evacuate the nursery. 

Another strategy for slowing the allocation rate is simply to add an element of work
based collection to slow the mutator down, but of course this can lead to missed dead
lines. Alternatively, slack-based scheduling achieves this by preempting the low-priority 
threads as necessary for the collector to keep up with allocation. So long as sufficient low
priority slack is available then real-time deadlines will be preserved. These observations 
lead to the following Tax-and-Spend methodology that combines slack-based and time
based scheduling. 

19.6 Combining scheduling approaches: Tax-and-Spend 

Metronome works best on  dedicated uniprocessor or  small multiprocessor systems, be
cause of its need to suspend the mutator while an increment of collector work is per
formed. Typical work-based collectors can suffer latencies that are orders of magnitude 
worse than time-based schemes. Henriksson's slack-based scheduling is best-suited to 



400 CHAPTER 1 9. REAL-TIME GARBAGE COLLECTION 

periodic applications and is fragile under overload conditions when there is no available 
slack. To address these limitations Auerbach et al [2008] devised a general scheduling 
methodology called Tax-and-Spend that subsumes the work-based, slack-based and time
based approaches. When applied to Metronome, the Tax-and-Spend methodology results 
in latencies almost three times shorter, comparable utilisation at a time window two and a 
half times shorter, and mean throughput improvements of 10% to 20%. 

The basic principle of Tax-and-Spend is that each mutator thread is required to engage 
in some amount of collection work (taxation) at a rate and intervals appropriate to its 
desired minimum mutator utilisation. Collection work also proceeds in any available slack 
left over by the mutators, building up credits that mutators can later spend to preserve or 
improve their utilisation by avoiding some amount of collector work. 

Taxation can occur at any GC-safe point as a result of some global decision, but a 
thread-specific check for pending collector work is imposed on every slow path allocation 
(when the thread's local allocation buffer is exhausted) that also enables a decision based 
on mutator work (measured by units of allocation, thread execution time, safe points exe
cuted, absolute physical time, or whatever virtualised time makes sense). 

Tax-and-Spend scheduling 

As we have already seen, minimum mutator utilisation is simple for developers to rea
son about because they can consider the system as just running somewhat slower than the 
native processor speed until the responsiveness requirements approach the quantisation 
limits of the garbage collector. As a measure of garbage collector intrusiveness, minimum 
mutator utilisation is superior to maximum pause time since it accounts for clustering 
of the individual pauses that cause missed deadlines and pathological slowdowns. Tax
and-Spend scheduling allows different threads to run at different utilisations, providing 
flexibility when threads have widely varying allocation rates, or for threads having partic
ularly stringent deadlines that must be interrupted as little as possible . Also, background 
threads on spare processors can be used to offload collector work to obtain high utilisation 
for mutator threads. The time metric can be physical or virtual as best suits the application. 
Of course, this does mean that any analysis of the application must compose the real-time 
constraints of the individual threads to obtain a global picture of application behaviour. 

Per-thread scheduling. To manage per-mutator utilisation, Tax-and-Spend must mea
sure and schedule collector work based on per-thread metrics and allow a collector in
crement to be charged to a single mutator thread. All collector-related activity can be 
accounted for in each thread (including the overheads of extending the mutation log, ini
tialising an allocation page, and other bookkeeping activities) . The collector can track all 
of these so as to avoid scheduling too much work on any given mutator thread.  

Also, by piggybacking collector increments on mutator threads before a thread volun
tarily yields to the operating system (say to take an allocation slow path, or to perform l/0 
or execute native code that does not access the heap) Tax-and-Spend avoids having the op
erating system scheduler assume that the thread has finished with its operating system 
time quantum and schedule some unrelated thread in its place . This is particularly impor
tant in a loaded system. By interleaving mutation and collection on the same operating 
system thread the operating system scheduler is less likely to interfere in the scheduling 
of the collection work. 

Allowing different threads to run with different utilisation is important when alloca
tion rates vary significantly across threads or when high-priority threads like event han
dlers desire minimal interruption. This also permits threads that can tolerate less stringent 
timing requirements to lower their quantisation overheads by running with larger quanta, 
and so increase throughput. 
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Tax-based versus slack-based scheduling. Slack-based scheduling works well in classi
cal periodic real-time systems, but it degrades badly when the system is overloaded and 
has insufficient slack. This makes it poorly suited to queuing, adaptive (where the sys
tem saturates the processor to compute as accurate a result as possible, but tolerates less 
accuracy to avoid total overload) or interactive real-time systems. Work-based scheduling 
taxes mutator allocation work, choosing some amount of collector work proportional to al
location work that will permit the collector to finish its cycle before memory is exhausted. 
It often suffers from poor minimum mutator utilisation and wide variations in pause time. 
Time-based scheduling taxes mutator utilisation to interleave the collector with the muta
tor for given amounts of processor time. It is robust to overload because the tax continues 
to be assessed, but when there is sufficient slack in the system it can result in unneces
sary jitter since collection can occur at any time so long as minimum mutator utilisation 
requirements are preserved. 

Combining tax-based and slack-based scheduling. Tax-and-Spend combines these dif
ferent scheduling approaches by adopting an economic model. Each mutator thread is 
subject to a tax rate that determines how much collector work it must perform for a given 
amount of execution time, specified as a per-thread minimum mutator utilisation. Dedi
cated collector threads run at low or idle priority during slack periods and accumulate tax 
credits for their work. Credits are typically deposited in a single global account, though it 
is possible to consider policies that use multiple accounts . 

The aggregate tax over over all threads, combining the tax on the mutator threads with 
the credits contributed by the collector threads, must be sufficient for the collector to finish 
its cycle before memory is exhausted. The number of background collector threads is typ
ically the same as the number of processors, configured so that they naturally run during 
slack periods in overall system execution. They execute a series of quanta each adding 
the corresponding amount of credit. On real-time operating systems it is desirable to run 
these threads at some low real-time priority rather than the standard idle priority so that 
they are scheduled similarly to other threads that perform real work rather than as a true 
idle thread. These low-priority real-time threads will still sleep for some small amount of 
time, making it possible for non-real-time processes to make progress even when collec
tion might saturate the machine. This enables administrators to log in and kill run-away 
real-time processes as necessary. 

Each mutator thread is scheduled according to its desired minimum mutator utilisa
tion, guaranteeing that it can meet its real-time requirements while also allowing the col
lector to make sufficient progress. When a mutator thread is running and its tax is due, it 
first attempts to withdraw credit from the bank equal to its tax quantum. If this is success
ful then the mutator thread can skip its collector quantum because the collector is keeping 
up, so the mutator pays tax only when there is insufficient slack-scheduled background 
collection. Even if only a partial quantum's credit is available then the mutator can per
form a smaller quantum of collector work than usual. Thus, if there is any slack available 
the mutator can still run with both higher throughput and lower latencies without having 
the collector falling behind. This treats slack in a uniprocessor and excess capacity in a 
multiprocessor in the same way. 

Tax-and-Spend prerequisites 

Tax-and-Spend requires an underlying garbage collector that is both incremental (so col
lector work can be levied as a work-scheduled tax on the mutator threads) and concurrent 
(so slack-scheduled collector work can run on a spare processor concurrently with the mu
tators) .  To exploit multiprocessors effectively it should also be parallel (so slack-scheduled 
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collector work can run concurrently with work-scheduled collector work) . While Metro
nome is incremental, it was not originally devised to be concurrent, because time-based 
scheduling requires that the mutator interleave with the collector at precise intervals, with 
the mutator suspended while the collector executes. Thus, Tax-and-Spend makes two 
key changes .  First, collector work occurs in collector threads concurrently with mutator 
threads. This makes it easy for the collector threads to exploit any available slack on some 
processors while the other processors continue to run mutator threads. Second, mutator 
threads can be taxed by piggybacking an increment of collector work on them when the 
load on the system makes it necessary to steal some time from the mutator. 

Concurrent collection by itself is insufficient, since it devolves scheduling of the collec
tor threads to the operating system which does not provide the precision needed to meet 
real-time guarantees and prevent heap exhaustion. Even a real-time operating system can
not account for the allocation patterns and space needs of the application in making its 
scheduling decisions. 

We describe below how Tax-and-Spend extends Metronome to achieve on-the-fly, con
current, parallel and incremental collection. These extensions are similar to those of other 
on-the-fly concurrent and parallel collectors, but we reiterate them here in this context for 
completeness. 

Ragged epochs for global consensus. Rather than stopping all the mutator threads to 
impose global consensus about the current activities of the collector, Tax-and-Spend sub
stitutes a ragged epoch protocol .  This is used for several purposes. For example, during 
certain phases of the collector all the mutators must install a particular write barrier. Al
ternatively, for termination of the collector, all mutator threads must have drained their 
private store buffer. The thread installing the barrier, or checking for termination, uses the 
epoch mechanism to assert that the new state is in effect for all threads. 

The epoch mechanism uses a single shared epoch number that can be atomically in
cremented by any thread to initiate a new epoch, plus a per-thread local epoch number. 
Each thread updates its local epoch number by copying the shared epoch, but it does so 
only at GC-safe points. Thus, each thread's local epoch is always less than or equal to 
the shared epoch. Any thread can examine the local epochs of all threads to find the least 
local epoch, which is called the confirmed epoch . Only when the confirmed epoch reaches 
or passes the value a thread sets for the global epoch can it be sure that all other threads 
have noticed the change. On weakly-ordered hardware a thread must use a memory fence 
before updating its local epoch. To cope with threads waiting on l/0 or executing native 
code, Tax-and-Spend requires that they execute a GC-safe point on return to update their 
local epoch before they resume epoch-sensitive activities. Thus, such threads can always 
be assumed to be at the current epoch, so there is no need to wait for them. 

Phase agreement using 'last one out'. Metronome easily achieved agreement on the col
lector phase (such as marking, sweeping, finalising, and so on) because all collector work 
occurred on dedicated threads that could block briefly to effect a phase change so long 
as there was enough remaining time in their shared collector quantum. With concurrent 
collection piggy-backed on the mutator threads, each mutator might be at a different place 
in its taxation quantum, so it is essential that phase detection be non-blocking or else a 
taxed mutator might fail to meet its deadlines. Using ragged epochs for this is not efficient 
because it does not distinguish taxed mutator threads from others . Instead, the 'last one 
out' protocol operates by storing a phase identifier and worker count in a single shared 
and atomically updatable location. 
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Every taxed mutator thread atomically increments the worker count, leaving the phase 
identifier unchanged. When a mutator thread exhausts its taxation quantum without com
pleting the phase it atomically decrements the worker count, also leaving the phase identi
fier unchanged. When any thread believes that the phase might be complete because there 
is (apparently) no further work to do in that phase, and it is the only remaining worker 
thread (the count is one), then it will change the phase and decrement the worker count in 
one atomic operation to establish the new phase. 

This protocol works only so long as each worker thread returns any incomplete work 
to a global work queue when it exits. Eventually there will be no work left, some thread 
will end up being the last one and it will be able to declare the next phase. 

Unfortunately, termination of the mark phase in Metronome is not easily achieved us
ing this mechanism, because the deletion barrier employed by Metronome deposits the 
overwritten pointer into a per-thread mutation log. Mark phase termination requires that 
all threads have an empty mutation log (not just those performing collector work) . Thus, 
Tax-and-Spend introduces a final marking phase in which the remaining marking work 
is handled by one thread which uses the ragged epoch mechanism to ensure that there 
is global agreement that all the mutation logs are empty. If this check fails then the de
ciding thread can declare a false alarm and switch back to parallel marking. Eventually 
all the termination conditions will be met and the deciding thread can move to the next 
post-marking phase. 

Per-thread callbacks. Most phases of a collection cycle need just enough worker threads 
to make progress, but others require that something be done by (or to) every mutator 
thread. For example, the first phase of collection must scan every mutator stack. Other 
phases require that the mutator threads flush their thread-local state to make information 
available to the collector. To support this some phases impose a callback protocol instead 
of 'last one out'. 

In a callback phase some collector master thread periodically examines all the mutator 
threads to see if they have performed the desired task. Every active thread that has not 
is asked to perform a callback at their next GC-safe point to perform the required action 
(stack scanning, cache flushing, and so on) . Threads waiting on 1/0 or executing native 
code are prevented from returning while the action is performed on their behalf. Thus, the 
maximum delay to any thread during a callback phase is the time taken to perform the 
action. 

Priority boosting to ensure progress. It is imperative that a real-time collector make 
progress so that it finishes collection before the heap is exhausted. All three of the prior 
protocols (ragged epochs, last one out and callback) can be prevented from making pro
gress if some lower priority thread is unable to respond because higher priority threads are 
saturating the processors. The solution is to boost the priority of the lower priority thread 
temporarily until it has been heard from. 

19.7 Controlling fragmentation 

A real-time collector must bound both its time and its space consumption. Unfortunately, 
over time fragmentation can eat away at the space bound. Accounting for fragmentation 
is impossible without precise characterisation of application-specific behaviours such as 
pointer density, average object size, and locality of object size. Thus, a real-time collector 
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must be designed to manage and limit fragmentation in some way. One way to achieve 
this is through compaction. Another approach is to allocate objects in fragments (obJets 
and arraylets) so as to preclude external fragmentation at the expense of some (bounded) 
internal fragmentation and overhead on the mutator to access the appropriate fragment 
during reads and writes to the heap. In this section we discuss both of these approaches. 

The challenge in concurrent compaction is for the collector to relocate objects concur
rently with the mutator while guaranteeing that mutator accesses retain tight time bounds. 
The replicating collectors of Chapter 17 and Blelloch and Cheng [1999] were originally de
vised expressly to allow concurrent copying but they maintain two copies of each object. 
Keeping these copies consistent on modem multiprocessors that lack strict coherence usu
ally requires some form of locking, particularly for volatile fields. Moreover, replicating 
collectors rely on a synchronous termination phase to ensure that the mutator roots have 
been forwarded. Per-object locking does not scale. Compressor and Pauseless rely on 
page-level synchronisation using page protection, but suffer from poor minimum mutator 
utilisation both because of the cost of the traps and because they are work-based, with a 
trap storm following a phase shift. 

The absence of lock-freedom means we cannot guarantee progress of the mutator let 
alone preserve time bounds. There are a number of approaches to making mutator accesses 
wait-free or lock-free in the presence of concurrent compaction, which we now discuss. 

Incremental compaction in Metronome 

Metronome was designed as a mostly non-copying collector under the assumption that 
external fragmentation is rare .  It uses arraylets to break large objects (arrays) into chunks 
which form the largest contiguous units allocated by the system. This combination greatly 
reduces the number of objects that must be copied in order to minimise fragmentation. 
Bacon et a[ [2003b] derive an analytical framework to decide how many pages to defrag
ment during each collection so as to ensure that the mutator never needs to wait for any 
allocation request. Because Metronome is an incremental collector it can perform defrag
mentation while all the mutator threads are stopped. When the mutator threads resume 
they are forwarded to any copies as necessary via the Brooks indirection barrier. There is 
no need to be concerned with mutators seeing objects in the middle of being copied. The 
only cost to the mutator is the cost of the extra indirection, which has tight time bounds. 
The Tax-and-Spend extension of Metronome is a concurrent collector but it does not per
form any compaction. 

The framework of Bacon et a[ [2003b] divides the defragmentation work (as determined 
by the derived defragmentation target) as evenly as possible across the size classes of their 
segregated-fits allocator. Each size class consists of a linked list of pages (as opposed to 
individual objects). The algorithm for defragmenting a size class consists of the following 
steps. 

1. Sort the pages by the number of unused (free) objects per page from dense to sparse. 

2. Set the allocation page to the first (densest) non-full page in the resulting list. 

3 .  Set the page to evacuate to the last (sparsest) page in the list. 

4. While the target number of pages to evacuate in this size class has not been met, and 
the page to evacuate does not equal the page in which to allocate, move each live 
object from the sparsest page to the next available free cell on the allocation page 
(moving to the next page in the list whenever the current allocation page fills up) . 
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Algorithm 19.7: Replication copying for a uniprocessor 

t atomic Read(p,  i ) : 
return p [i ]  

405 

• atomic Wri t e (p, i, value ) : /* p may be primary or replica */ 
/* deletion barrier code also needed here for snapshot collection 4 
p [i ]  +- value 
r +- fo rwa rdingAddre s s (p )  
r [i ]  +- value 
I* insertion barrier code also needed here for incremental update collection */ 

This moves objects from the sparsest pages to the densest pages. It moves the minimal 
number of objects and produces the maximal number of completely full pages. The choice 
of the first allocation page in step 2 as the densest non-full page may result in poor cache 
locality because previously co-located objects will be spread among the available dense 
pages. To address this, one can set a threshold for the density of the page in which to 
allocate at the head of the list, so that there are enough free cells in the page to satisfy the 
locality goal. 

References to relocated objects are redirected as they are scanned by the subsequent 
tracing mark phase. Thus, at the end of the next mark phase, the relocated objects of the 
previous collection can be freed. In the meantime, the Brooks forwarding barrier ensures 
proper mutator access to the relocated objects. Deferring update of references to the next 
mark phase has three benefits: there is no extra 'fixup' phase, fewer references need to be 
fixed (since any object that dies will never be scanned) and there is the locality benefit of 
piggybacking fixup on tracing. 

Incremental replication on uniprocessors 

Before considering more complicated schemes for concurrent compaction, it is worth not
ing that many real-time applications run in embedded systems, where uniprocessors have 
been the predominant platform. Preserving atomicity of mutator operations (with respect 
to the collector and other mutators) is simple on a uniprocessor, either by disabling sched
uler interrupts or by preventing thread switching except at GC-safe points (making sure 
that mutator barriers never contain a GC-safe point) . In this setting, the collector can freely 
copy objects so long as mutators subsequently access only the copy (using a Brooks indi
rection barrier to force a tospace invariant), or they make sure to update both copies (in 
case other mutators are still reading from the old version in a replicating collector) .  

Kalibera [2009] compares replication copying to copying with a Brooks barrier in the 
context of a real-time system for Java running on uni-processors. His replication scheme 
maintains the usual forwarding pointer in all objects, except that when the object is repli
cated the forwarding pointer in the replica refers back to the original instead of to itself 
(in contrast to Brooks [1984]) .  This arrangement allows for very simple and predictable 
mutator barriers. On Read the mutator need not be concerned whether it is accessing a 
fromspace or tospace object, and can simply load the value from whichever version the 
mutator references. All that Wr i t e  needs to do is to make sure that the update is per
formed on both versions of the object to keep them coherent. Pseudo-code for these bar
riers (omitting the support necessary for concurrent tracing) is shown in Algorithm 19.7. 
Not surprisingly, avoiding the need to forward every read is a significant benefit, and the 
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cost of the double-write is negligible given that most of the time both writes will be to the 
same address because the forwarding address is a self-reference. 

Concurrent compaction on a multiprocessor prevents us from assuming that Read 
and Write can be made straightforwardly atomic . For that we must consider more fine
grained synchronisation among mutators, and between mutator and collector, as follows. 

Stopless: lock-free garbage collection 

Pizlo et al [2007] describe an approach to concurrent compaction for their lock-free Stop less 
collector that ensures lock-freedom for mutator operations (allocation and heap accesses) 
even while compaction proceeds concurrently. Unlike Blelloch and Cheng [ 1999], Stopless 
does not require that the mutator update both copies of an object to keep them coherent. 
Instead, it enforces a protocol that always updates just one definitive copy of the object. 
The innovation in Stopless is to create an intermediate 'wide' version of the object being 
copied, where each field has an associated status word, and to use CompareAndSwapWide 
to synchronise copying of those fields with mutation. The field's status word changes 
atomically with its data and indicates the up-to-date location of the data (in the fromspace 
original, the wide copy, or the final tospace copy) . As in Blelloch and Cheng [ 1999] a header 
word on each object stores a Brooks forwarding pointer, either to the wide copy or to the 
tospace copy. During the compaction phase, mutator and collector threads race to create 
the wide copy using CompareAndSwap to install the forwarding pointer. 

Once the wide copy has been created, and its pointer installed in the original's for
warding pointer header field, the mutator can update only the wide copy. The status word 
on each field lets the mutator know (via read and write barriers) where to read /write 
the up-to-date field, encoding the three possibilities: inOrigi n a l , i nWide and i nCopy. 
All status words on the fields in the wide object are initialised to i nOrigin a l .  So long 
as the status field is inOrigi n a l  then mutator reads occur on the fromspace original. 
All updates (both by the collector as it copies each field and the mutator as it performs 
updates) operate on the wide copy, atomically updating both the field and its adjacent sta
tus to inWide using CompareAndSwapWide.  The collector must assert that the field is 
inOr  iginal as it copies the field. If this fails then the field has already been updated by 
the mutator and the copy operation can be abandoned. 

Once all fields of an object have been converted to inWide (whether by copying or 
mutation), the collector allocates its final 'narrow' version in tospace, whose pointer is then 
installed as a forwarding pointer into the wide copy. At this point there are three versions 
of the object: the out-of-date fromspace original which forwards to the wide copy, the up
to-date wide copy which forwards to the tospace copy, and the uninitialised tospace copy. 
The collector concurrently copies each field of the wide copy into the narrow tospace copy, 
using CompareAndSwapWide to assert that the field is unmodified and to set its status 
to i nCopy. If this fails then the field was updated by the mutator and the collector tries 
again to copy the field .  If the mutator encounters an i nCopy field when trying to access 
the wide copy then it will forward the access to the tospace copy. 

Because Stopless forces all updates to the most up-to-date location of a field it also 
supports Java volatile fields without the need for locking. It is also able to simulate 
application-level atomic operations like compare-and-swap on fields by the mutator. For 
details see Pizlo et al [2007] . The only remaining issue is coping with atomic operations 
on double-word fields (such as Java long) where the Compa reAndSwapWide is not able 
to cover both the double-word field and its adjacent status word.  The authors of Stop less 
propose a technique based on emulating n-way compare-and-swap using the standard 
Compa reAndSwap [Harris et al, 2002] .  
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Some might object to the space overhead of Stop less (three copies including one double
width), but Pizlo2 points out that so long as sparse pages are being evacuated, with at most 
one third occupancy, one can make use of the dead space for the wide copies. Of course, 
the reason for evacuating the page is that it is fragmented, so there may not be sufficient 
contiguous free space available for all the copies. But if segregated-fits allocation is used 
then the free portions are uniformly sized, and it is possible to allocate the wide objects 
in multiple wide fragments so as to allocate each data field and its status word side-by
side. In Stopless, the space for the wide objects is retained until the next mark phase has 
completed, having forwarded all pointers to their tospace copies . 

Staccato: best-effort compaction with mutator wait-freedom 

Whereas Metronome performs compaction while the mutator is stopped during a collector 
quantum, Staccato [McCloskey et al, 2008] permits concurrent compaction without requir
ing any locks, and without requiring atomic operations like compare-and-swap in the com
mon case, even on multiprocessors with weak memory ordering. Storms of atomic oper
ations are avoided by moving few objects (only as necessary to reclaim sparsely-occupied 
pages) and by randomising their selection. 

Staccato inherits the Brooks-style indirection barrier of Metronome, placing a forward
ing pointer in every object header. It also relies on ragged synchronisation:  the mutators are 
instrumented to perform a memory fence (on weakly ordered machines like the Power PC) 
at regular intervals (such as GC-safe points) to bring them up to date with any change to 
global state. The collector reserves a bit in the forwarding pointer to denote that the ob
ject is being copied Oava objects are always word-aligned so a low bit in the pointer can 
be used) . This COP Y I NG bit and the forwarding pointer can be changed atomically using 
compare-and-swap /set. To move an object, the collector performs the following steps:  

1 .  Set the COP Y I NG bit using compare-and-swap /set. Mutators access the forwarding 
pointer without atomic operations so this change takes some time to propagate to 
the mutators . 

2. Wait for a ragged synchronisation where every mutator performs a read fence to 
ensure that all mutators have seen the update to the COP Y I NG bit. 

3. Perform a read fence (on weakly ordered machines) to ensure that the collector sees 
all updates by mutators from before they saw the change to the COPYING bit. 

4. Allocate the copy, and copy over the fields from the original. 

5. Perform a write fence (on weakly ordered machines) to push the newly written state 
of the copy to make it globally visible. 

6. Wait for a ragged synchronisation where every mutator performs a read fence to 
ensure that it has seen the values written into the copy. 

7. Set the forwarding address to point to the copy and simultaneously clear the COPY
ING bit using compare-and-swap/set. This commits the move of the object. If this 
fails then the mutator must have modified the object at some point and the move is 
aborted. 

The collector will usually want to move a number of objects, so the cost of the ragged syn
chronisation can be amortised by batching the copying, as illustrated by the copyOb j ect  s 

2Filip Pizlo, personal communication. 
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Algorithm 19.8: Copying and mutator barriers (while copying) in Staccato 

copyOb j e ct s ( candidat e s ) : 
for each p in candidat e s  

I* set COPYING bit *I 
Comp a reAndSet ( & f o rwardingAddres s (p) ,  p, p I COPY ING) 

wai t F o rRaggedSynch ( readFence )  I* ensure mutators see COP Y I NG bits *I 
readF e n ce ( )  I* ensure collector sees mutator updates from before CAS *I 
for each p in candidat es  

r +-- a l l ocat e ( l e ngth(p ) ) I* allocate the copy 4 
move  (p,  r )  I* copy the contents 4 

w f o rw a rdi ngAddre s s ( r )  I* the copy forwards t o  itself *I 
n add(  rep l i cas ,  r )  I* remember the copies *I 
1 2  wri t e F e n c e ( )  I* flush the copies so the mutators can see them *I 
1 3  wai tFo rRaggedSynch (  re adFence ) I* ensure mutators see the copies *I 
14 for each (p in candi dates ,  r in repl i c a s )  
1 s  I* try to commit the copy *I 
16 i f  not CompareAndS et ( & f orwardi ngAddre s s (p ) ,  p I COP Y I NG, r )  
1 7  I* the commit failed so deal with it *I 
1 s  f r e e ( r )  I* free the aborted copy 4 
19  add(  aborted, p )  I* remember the aborts *I 
20 return aborted 
2 1  

22 Acce s s (p ) : 
23 r +- f o rwardingAddre s s (p )  
24 if r & COPY ING = 0 

I* load the forwarding pointer *I 

2s ret urn r I* use the forwarding pointer only if not copying 4 
26 I* try to abort the copy *I 
27 if Compa reAndSet ( & f o rwa rdi ngAddre s s (p) ,  r, p )  
2s ret urn p I* the abort succeeded 4 
29 I* collector committed or another aborted *I 
30 atomic I* force reload of current f o rwardi ngAddre s s  ( p )  *I 
3 1  r +-- fo rwardi ngAddress (p)  
32 return r 

34 Read(p, i )  : 
35 p +- Acce s s (p )  
36 return p [ i ]  
37 

38 Write (p, i ,  v a lue ) : 
39 p +- Acce s s (p )  
40 p [i ]  +-- v a l ue 
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Algorithm 19.9: Heap access (while copying) in Staccato using Cornpa reAndSwap 

1 Acce s s (p ) : 
r +- f o rwardi ngAddre s s (p ) 
if  r & COPYING = 0 

/* load the forwarding pointer 4 

return r /* use the forwarding pointer only if not copying 4 
/* otherwise try to abort the copy */ 
r +- CornpareAndSwap ( & forwa rdi ngAddres s (p ) , r, p ) 
/*failure means collector committed or another aborted so r is good 4 
return r & - coPY I NG /* success means we aborted so clear COP Y I NG bit 4 

routine in Algorithm 19.8. This takes a list of candidat e s  to be moved and returns a list 
of abo rted objects that could not be moved. 

Meanwhile, when the mutator accesses an object (to examine or modify its state for any 
reason) it performs the following steps: 

1 .  Load the forwarding pointer. 

2. Use the forwarding pointer as the object pointer only if the COPYING bit is clear. 

3. Otherwise, try to abort the copy by using a compare-and-set to clear the COPYING 
bit (which is the same as storing the original pointer) .  

4 .  Use the forwarding pointer (with the COP Y I NG bit cleared) as  the object pointer only 
if the compare-and-set succeeds. 

5. Otherwise, the failure of the compare-and-set means either that the collector com
mitted the copy or else another mutator aborted it. So, reload the forwarding pointer 
using an atomic read (needed on weakly ordered machines), guaranteed to see the 
current value of the forwarding pointer (that is, the value placed there by the collec
tor or other mutator) . 

These steps are shown in the Acce s s  barrier helper function, used by both Read and 
Write  in Algorithm 19.8. 

We note that when using compare-and-swap (instead of compare-and-set) Acce s s  can 
avoid the atomic read of the forwarding pointer and simply use the value that Cornpare
AndSwap returns, as  shown in Algorithm 19 .9, clearing its COPY ING bit just in case the 
compare-and-swap succeeded. 

McCloskey et al [2008] note that frequently-accessed objects might prove difficult to 
relocate because their move is more likely to be aborted. To cope with this they suggest that 
when such a popular object is detected then its page can be made the target of compaction. 
That is, instead of moving the popular object off of a sparsely populated page it suffices 
simply to increase the population density of the page. 

Also, abort storms can occur when the collector chooses to move objects that have tem
poral locality of access by the mutator, so degrading its minimum mutator utilisation be
cause of the need to run an increased number of CornpareAndSwap operations in a short 
time. This is unlikely because only objects on sparsely populated pages are moved, so 
objects allocated close together in time are unlikely all to move together. The probability 
of correlated aborts can be reduced by breaking the defragmentation into several phases 
to shorten the time window for aborts. Also, the set of pages chosen for defragmentation 
in each phase can be randomised. Finally, by choosing to run several defragmentation 
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Algorithm 19.10: Copying and mutator barriers (while copying) in Chicken 

1 copyOb j ect  s ( c a n didat e s ) : 
for each p in candi dat e s  

/* set COP Y I NG bit 4 
forwar d i n gAddre s s (p ) f- p I COP Y I NG 

waitFo rRagge dSynch ( )  /* ensure mutators see COPYING bits 4 

10 

for each p in candi dat e s  
r f- a l l ocate ( length (p ) )  
move (p, r ) 
forwa r d i n gAddres s ( r ) 
/* try to commit the copy 4 

/* allocate the copy */ 
/* copy the contents */ 

/* the copy forwards to itself 4 

I I  if not C ompareAndS e t ( & fo rwardi n gAddres s (p ) , p I COP Y ING, r ) 
12 

13 

1 4  

/* the commit Jailed so deal with it 4 
f re e ( r ) 
add ( aborted, p ) 

t 5  return abo r t e d  
1 6  

t 7  Re ad (p, i ) : 

/* free the aborted copy 4 
/* remember the aborts 4 

1 8 r f- forwardi ngAddre s s (p ) /* load the forwarding pointer 4 
t 9  return r [i ] 
20 

2 1  Wri t e (p, i, v a l u e ) : 
22 r f- forwardi ngAddre s s (p ) /* load the forwarding pointer 4 
23 if r & COP Y I NG =1- 0 /* use theforwarding pointer only ifnot copying 4 
24 /* otherwise try to abort the copy 4 
25 CompareAn dSet ( & fo rwardi ngAddre s s (p ) , r, r & - cOPYING ) 
26 /* failure means collector committed or another aborted 4 
27 r f- forwardi ngAddre s s (p ) /* reload forwardi ngAddre s s  ( p )  4 
28 r [i ] f- v a l u e  

threads a t  much the same time (though not synchronously, and respecting minimum mu
tator utilisation requirements), there will be fewer mutator threads running so reducing 
the likelihood of aborts . 

Chicken: best-effort compaction with mutator wait-freedom for x86 

Pizlo et al [2008] offer a solution similar to Staccato (see Algorithm 19 .10) .  Their Chicken al
gorithm, developed independently, is essentially the same as Staccato, though they assume 
the stronger memory model of x86/x86-64 (recall Table 13 .1 ) .  This means that only writes 
need abort a copy (because atomic operations order reads) and that the ragged synchro
nisations need not perform the read fence. Both Staccato and Chicken support wait-free 
mutator reads and writes, and wait-free copying at the cost that some copy operations 
might be aborted by the mutator. 

Clover: guaranteed compaction with probabilistic mutator lock-freedom 

Pizlo et al describe an alternative approach called Clover that relies on probabilistic detec
tion of writes by the mutator to deliver guaranteed copying with lock-free mutator accesses 
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Algorithm 19.11: Copying and mutator barriers (while copying) in Clover 

1 copy S l ot (p, i ) : 
repeat 

value +- p [i ] 
r f- f o rwardingAddre s s (p ) 
r [i ] f- value  

until Compa reAndSet ( &p [ i ] , value, a ) 

s Re ad (p, i ) : 
value  f- p [i ] 

w if  value = a 
n r f- fo rwardingAddre s s (p ) 
1 2  value f- r [i ] 
n return value  
14  
t 5  W r i t e (p, i ,  newVa lue ) : 
t6 if  newValue = a 
t7 sleep until copying ends 
ts repeat 
t9 oldValue  f- p [i ] 
20 if oldVa lue  = a 
2 1  r f- f o rwardingAddre s s (p ) 
22 r [i ] +- newValue 
n break 
24 until CompareAndSet ( & s r c [i ] , o ldVal ue,  newValue ) 

4 1 1  

(except in very rare cases) and lock-free copying by  the collector. Rather than preventing 
data races between the collector and the mutator, Clover detects when they occur, and in 
that rare situation may need to block the mutator until the copying phase has finished. 
Clover picks a random value a to mark fields that have been copied and assumes that the 
mutator can never write that value to the heap. To ensure this, the write barrier includes a 
check on the value being stored, and will block the mutator if it attempts to do so. 

As the collector copies the contents of the original object to the copy it marks the origi
nal fields as copied by overwriting them with the value a using compare-and-swap. When
ever the mutator reads a field and loads the value a it knows that it must reload the up-to
date value of the field via the forwarding pointer (which points to the original if its copy 
has not been made yet, or the copy if it has) . This works even if the true value of the field 
is a from before the copy phase began. 

Whenever the mutator tries to overwrite a field containing the value a it knows that it 
must store to the up-to-date location of the field via the forwarding pointer. If the mutator 
actually tries to store the value a then it must block until copying ends (so that a no longer 
means a copied field that must be reloaded via the forwarding pointer) . We sketch Clover 's 
collector copying routine and mutator barriers in Algorithm 19. 1 1 .  

For some types a can be  guaranteed not to clash with a proper value: pointers usually 
have some illegal values that can never be used and floating point numbers can use any 
one of the NaN forms so long as the program never generates them. For other types, a 
needs to be chosen with care to minimise overlap with values used in the program. To 
make the chance of overlap virtually impossible, Pizlo et al [2008] offer an innovative 
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solution using a random choice for a .  They use the largest width Compa reAndSwap
Wide available on the processor to assert copying of multiple fields at once. For example, 
modern x86-64 processors support a 128-bit compare-and-swap, resulting in the infinites
imal chance of overlap of 2- 128 . Of course, this implies that when testing for a every 
Read/Wr i t e  must look at the full aligned 128-bit memory location and extract/insert the 
value to load/store. 

Stopless versus Chicken versus Clover 

Pizlo et al [2008] compare Chicken and Clover to their earlier Stop less collector as well as to 
a non-compacting concurrent mark-sweep collector. Qualitatively, Stopless cannot guar
antee progress to the collector, because there is a chance that repeated writes to a field in a 
'wide' copy may cause copying to be postponed indefinitely. Chicken guarantees progress 
for the collector, at the expense of aborting some copies . Pizlo et al claim that Clover can 
guarantee collector progress, though in the simple formulation presented here it may stall 
waiting to install a into a field it is copying while the mutator repeatedly updates the field, 
causing its CompareAndSwap to fail repeatedly. 

All three algorithms aim for lock-free heap access, but with subtle differences. Chicken 
guarantees wait-free access for both reads and writes. Clover and Stopless provide only 
lock-free writes, and reads require branching. Clover 's lock-free writes are only proba
bilistic, since it is possible that a heap write must be stalled until copying is complete as 
noted above. 

Clover never aborts an object copy. Stop less can abort copying an object in the unlikely 
situation that two or more mutator threads write to the same field at much the same time 
during entry into the compaction phase (see Pizlo et al [2007] for details) . Chicken is much 
less careful: any write to an object while it is being copied will force the copy to abort. 

Benchmarks comparing these collectors and non-compacting concurrent mark-sweep 
collection show that throughput is highest for the non-compacting collector (because it 
has much simpler barriers) .  The copying collectors install their copying-tailored barriers 
only during the compaction phase by hot-swapping compiled code at phase changes us
ing the techniques of Arnold and Ryder [2001 ] .  Chicken is fastest (three times slow-down 
while copying according to Pizlo3), though it results in many more copy aborts, followed 
by Clover (five times slower while copying) and Stopless (ten times slower while copy
ing) . All the collectors scale well on a multiprocessor up to six processors . Because of 
the throughput slow-downs copying degrades responsiveness to real-time events for both 
Clover and Stop less. Responsiveness for Chicken is much better because it stays out of the 
mutator's way by aborting copies quickly when necessary. 

Fragmented allocation 

The preceding discussion of compaction for real-time systems reveals that any real-time 
collector relying on defragmentation to ensure space bounds must trade off throughput 
and responsiveness to real-time events against the level of fragmentation it is willing to 
tolerate. Wait-freedom of mutator heap accesses was guaranteed only by Chicken/Stac
cato at the price of aborting some copies . Stopless and Clover offer stronger space guar
antees but only with the weaker progress guarantee of lock-freedom for heap accesses. A 
real-time collector needing hard space bounds may find this tradeoff unacceptable. 

For this reason, Siebert has long advocated bounding external fragmentation by allo
cating all objects in (logically if not physically) discontiguous fixed-size chunks [Siebert, 
1998, 2000, 2010], as implemented in his Jamaica VM for real-time Java. The Jamaica VM 

3Personal communication. 



1 9.7. CONTROLLING FRAGMENTATION 413  

splits objects into a list of fixed-size oblets, with each successive oblet requiring an  extra 
level of indirection to access, starting at the head of the list. This results in linear-time ac
cess for object fields, depending on the field index. Similarly, arrays are represented as a 
binary tree of arraylets arranged into a trie data structure [Fredkin, 1960] . Thus, accessing 
an array element requires a number of indirections logarithmic in the size of the array. The 
main problem with this scheme is this variable cost of accessing arrays . Worst-case exe
cution time analysis requires knowing (or bounding) statically the size of the array being 
accessed . However, array size in Java is a dynamic property, so there is no way to prove 
general bounds for programs in which array size is not known statically. Thus, in the ab
sence of other knowledge the worst-case access time for trie-based arrays can in general 
be bounded only by the size of the largest allocated array in the application, or (worse) the 
size of the heap itself if that bound is unknown. 

To solve this problem, Pizlo et al [2010b] marry the spine-based arraylet allocation tech
niques of Metronome to the fragmented allocation techniques of the Jamaica VM in a sys
tem they call Schism. By allowing objects and arrays to be allocated as fixed-size fragments 
there is no need to worry about external fragmentation . Moreover, both object and array 
accesses have strong time bounds: indirecting a statically known number (depending on 
the field offset) of oblets for object accesses, and indirecting through the spine to access 
the appropriate arraylet for array accesses. To a first order approximation (ignoring cache 
effects) both operations require constant time. Schism's scheme for allocating fragmented 
objects and arrays is illustrated in Figure 19.10. An object or array is represented by a 
'sentinel' fragment in the heap. Every object or array has a header word for garbage col
lection and another to encode its type. The sentinel fragment, representing the object or 
array, contains these and additional header words to encode the remaining structure . All 
references to an object or array point to its sentinel fragment. 

Objects are encoded as a linked list of oblets as in Figure 19 .10a.  An array that fits 
in a single fragment is encoded as in Figure 19.10b. Arrays requiring multiple arraylet 
fragments are encoded with a sentinel that refers to a spine, which contains pointers to 
each of the arraylet fragments. The spine can be 'inlined' into the sentinel fragment if it is 
small enough as in Figure 19.10c. Otherwise, the spine must be allocated separately. 

The novelty of Schism is that separately allocated array spines need not be allocated 
in the object/ array space . That space is managed entirely as a set of fixed-size fragments 
using the allocation techniques of the immix mark-region collector. The 128-byte lines of 
immix are the oblet and arraylet fragments of Schism. Schism adds fragmented allocation 
and on-the-fly concurrent marking to immix, using an incremental update Dijkstra style 
insertion barrier. The fragments never move, but so long as there are sufficient free frag
ments available any array or object can be allocated. Thus, fragmentation is a non-issue, 
except for the variable-sized array spines. 

To bound the fragmentation due to array spines, Schism allocates them in a separately 
managed space that uses replication copying collection to perform compaction. Because 
the array spines are immutable (they contain only pointers to arraylet fragments, which 
never move) there is no problem of dealing with updates to the spines. Indeed, a mutator 
can use either a fromspace primary spine or tospace replica spine without fear. Moreover, 
each spine has a reference from at most one array sentinel. When replicating, the reference 
to the primary from the sentinel can be lazily replaced with a reference to the replica at the 
collector's leisure, without needing to synchronise with the mutator. Mutators can freely 
continue to use the spine primary or switch over to using the spine replica when next they 
load the spine pointer from the sentinel . Once replication of the spines has finished the 
fromspace spines can be discarded without needing to fix any other pointers because the 
tospace spines have only the single reference from their sentinel. A ragged synchronisation 
of the mutators ensures that they all agree and are no longer in the middle of any heap 
access that is still using a fromspace spine. 
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(a) A two-fragment object with a payload of 
six to twelve words. The sentinel fragment has 
three header words: a fragmentation pointer 
to the next object fragment, a garbage collec
tion header and a type header. Each fragment 
has a header pointing to the next. 

(b) A single-fragment array with a payload 
of up to four words. The sentinel fragment 
has four header words: a null fragmentation 
pointer, a garbage collection header, a type 
header and an actual length n :::; 4 words, fol
lowed by the inlined array fields. 

(c) A multi-fragment array with a payload of up to three fragments (up to 24 words). The 
sentinel fragment has five header words: a non-null fragmentation pointer to the inlined 
array spine, a garbage collection header, a type header, a pseudo-length 0 indicating frag
mentation and an actual length 4 < n ::; 24 words (at the same negative offeset from the 
spine as in (b)), followed by the inlined spine. Payload fragments have no headers. 

(d) An array with a payload of four or more fragments (more than 24 words). The sen
tinel fragment has four header words: a non-null fragmentation pointer to the separately 
allocated array spine, a garbage collection header, a type header and a pseudo-length 0 in
dicating fragmentation, followed by the rest of the sentinel which is unused. The spine has 
a two-word header: the actual length and a forwarding pointer, at negative offsets. Payload 
fragments have no headers. 

Figure 19.10: Fragmented allocation in Schism. 
Pizlo et al [2010b], doi: 1 0 . 1 1 4 5 / 1 8 0 6 5 9 6 . 1 8 0  6 6 1 5 . 

© 2010 Association for Computing Machinery, Inc. Reprinted by permission. 
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Schism has a number of desirable properties . First, mutator accesses to the heap are 
wait-free and tightly-bounded (costing constant time) . Second, fragmentation is strictly 
controlled. Indeed, Pizlo et al [2010b] prove that given the number and type of objects 
and arrays (including their size) in the maximum live set of the program, then total mem
ory needed for the program can be strictly bounded at 1 .3104b where b is the size of the 
maximum live set. Third, as proposed for Jamaica VM by Siebert [2000], Schism can run 
with contiguous allocation of arrays (objects are always fragmented) when there is suffi
cient contiguous space. Contiguous arrays are laid out as in Figure 19 .10d, except with 
the payload extending into successive contiguous fragments. This allows for much faster 
array access without indirection through the spine. These properties mean that Schism has 
superior throughput compared to other production real-time collectors, while also being 
tolerant of fragmentation by switching to fragmented allocation of arrays when contiguous 
allocation fails . This comes at the cost of some slow-down to access the fragmented arrays . 
The cost of the read and write barrier machinery to access fragmented arrays is through
put 77% of pure concurrent mark-region garbage collection (without the fragmented array 
access support) . 

For application developers requiring predictability of the cost for array accesses Schism 
can be configured always to use fragmented allocation for arrays at the cost of having to 
perform spine indirections on all array accesses . The benefit for this is much improved 
maximum pause times. Since all allocations are performed in terms of fragments, pauses 
due to allocation are essentially the cost of zero-initialising a four kilobyte page in the slow 
path of allocation - 0.4 milliseconds on a forty megahertz embedded processor. When al
locating arrays contiguously the allocator must first attempt to locate a contiguous range 
of fragments, which slows things down enough to cause maximum pauses around a mil
lisecond on that processor. 

19.8 Issues to consider 

Real-time systems demand precise control over garbage collection to ensure short pauses 
and predictable minimum mutator utilisation. This chapter brings together techniques 
from all the previous chapters in order to achieve these goals. In the absence of parallelism 
and concurrency, real-time garbage collection is conceptually straightforward so long as 
collection can be scheduled to preserve adequate responsiveness and performance. Our 
focus here has been on the real-time garbage collection algorithms themselves, and not 
so much on how to integrate their schedulability with that of the application. Real-time 
application developers still need accurate analysis of worst-case execution time to feed 
into schedulability analyses that will ensure that real-time constraints will be met [Wilhelm 
et al, 2008] . The literature on real-time systems offers an abundance of guidance on analysis 
of garbage collected applications for worst-case execution time and schedulability [Kim 
et al, 2001; Robertz and Henriksson, 2003; Chang and Wellings, 2005, 2006a,b; Chang, 2007; 
Cho et al, 2007, 2009; van Assche et al, 2006; Kalibera et al, 2009; Feizabadi and Back, 2005, 
2007; Goh et al, 2006; Kim et al, 1999, 2000, 2001; Kim and Shin, 2004; Schoeberl, 2010; Zhao 
et al, 1987] . 

While we have focused on minimum mutator utilisation as the primary metric for mea
suring garbage collector responsiveness over time, we note that other metrics may be just 
as important. Printezis [2006] argues that application-specific metrics are often more ap
propriate. Consider a periodic real-time task that must deliver a response within a fixed 
window. From the perspective of this task, minimum mutator utilisation is immaterial, 
so long as the real-time expectations of that task are met. Moreover, minimum muta
tor utilisation and maximum pause time may be difficult to account for when the only 
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pauses related to garbage collection that the mutator experiences are those due to execut
ing the compiler-inlined slow path of a read or write barrier, or the slow path during allo
cation when the thread's local allocation buffer is exhausted. For some collectors, such as 
Schism, these are the only collector-related pauses that the mutator will see (assuming col
lector work can be offloaded to another processor). Should these pauses be charged to the 
garbage collector? If so, then how can a system account for them? Pizlo et al [2010a] even 
go so far as to account for these slow paths using specialised hardware for on-device profil
ing of an embedded processor. To aid developers lacking such specialised hardware, Pizlo 
et a[ [2010b] provide a worst-case execution mode for their Schism collector that forces 
slow path execution so that developers can get some reasonable estimate of worst-case 
execution times during testing. 



Glossary 

A comprehensive glossary can also be found at http : I / www . memorymanagement . o r  g .  

ABA problem the inability o f  certain 
atomic operations to distinguish reading 
the same value twice from a memory lo
cation as 'nothing changed' versus some 
other thread changing the value after the 
first read and then changing it back before 
the second read. 

accurate see type-accurate . 

activation record a record that saves the 
state of computation and the return ad
dress of a method, sometimes called a 
frame. 

age-based collection a collection tech
nique that partitions the heap into spaces 
by age. 

aging space a subspace of a generation, 
typically the youngest generation, into 
which objects are copied for a few collec
tions before promoting them. 

alignment hardware or virtual machine 
constraints may require that objects and 
fields can be stored only on certain ad
dress boundaries. 

allocation the action of allocating a free 
cell . 

allocator the memory manager component 
responsible for creating objects (but not 
initialising them) . 

ambiguous pointer a value that may or 
may not be a true pointer to an object; see 
conservative collection. 

ambiguous root a root that is an ambigu
ous pointer. 

arraylet a fixed-size chunk representing 
some subset of the cells of an array. 

barrier an action (typically a sequence of 
code emitted by the compiler) mediating 
access to an object. 

belt a collection of increments used by the 
Beltway collector. 

best-fit allocation a free-list allocation 
strategy that places an object in the next 
cell in the heap that most closely matches 
the object's size. 

big bag of pages allocation (BiBoP) a 
segregated-fits allocation strategy that 
places objects with the same attribute 
(such as type) in the same block, thus al
lowing the type to be associated with the 
block rather than with individual objects. 

bitmap an array of bits (or often, bytes), 
each associated with an object or granule. 

bitmapped-fits allocation a sequential fits 
allocation strategy that uses a bitmap to 
record the free granules in the heap . 

black an object is black if the collector has 
finished processing it and considers it to 
be live; see also tricolour abstraction. 

black-listing an address range that has 
been found to be a target of a false 
pointer may be blacklisted in conserva
tive collection to prevent space leaks . 

block an aligned chunk of a particular size, 
usually a power of two . 

boundary tag structures on the boundaries 
of blocks that assist coalescing. 

bounded mutator utilisation (BMU) the 
minimum mutator utilisation observed 
for a given time window or any larger 
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one; BMU is monotonically increasing 
unlike MMU. 

breadth-first traversal a traversal of the ob
ject graph in which an object's siblings are 
visited before its descendants . 

bucket a subspace used to segregate objects 
by age within a step. 

bucket brigade an approach to genera
tional collection using buckets. 

buddy system a segregated-fits allocation 
strategy that allocates blocks in power of 
two sizes, allowing easy splitting and co
alescing.  

buffered reference counting a form of ref
erence counting in which mutators buffer 
reference counting operations and subse
quently send them for execution to the 
collector. 

bump pointer allocation see sequential al
location. 

cache a fast memory which stores copies of 
data from frequently used memory loca
tions. 

cache block see cache line. 

cache coherence the degree to which two 
or more caches agree on the contents of 
memory. 

cache hit a memory access that finds its 
containing cache line in the cache. 

cache line the unit of memory that can be 
transferred between the cache and mem
ory. 

cache miss a memory access that does not 
find its containing cache line in the cache. 

call stack a stack holding the stack frames 
of the methods being executed by a 
thread. 

car the unit of collection in the train collec
tor. 

car (in Lisp) the word in a cons cell that 
holds or points to the list element. 

card a small, power of two sized and 
aligned area of the heap. 

GLOSSARY 

card marking a technique used by the mu
tator to record the source of pointers of 
interest to the collector; the write barrier 
updates a card table. 

causal consistency a consistency model in 
which a prior read is ordered before any 
write that may store the value obtained 
by the read, and a prior write is ordered 
before any read that may load the value 
stored by the write. 

cdr the word in a cons cell that holds or 
points to the next cons cell in the list. 

cell a contiguous group of granules, which 
may be allocated or free, or even wasted 
or unusable. 

Cheney scanning a technique used with 
copying collection for tracing live objects 
without use of a stack. 

chip multiprocessor (CMP) a multiproces
sor that has more than one processor on 
a single integrated circuit chip; see also 
multicore and many-core processor. 

chunk a large contiguous group of gran
ules. 

circular first-fit allocation see next-fit allo
cation. 

coalesced reference counting a form of 
buffered reference counting that avoids 
applying redundant reference count op
erations. 

coalescing recombining adjacent cells into 
a single cell; see also segregated-fits allo
cation. 

coherence protocol a cache management 
protocol for maintaining some memory 
consistency model . 

collection a single instantiation of a collec
tor; typically this instantiation would re
claim at least all objects in the space being 
collected that were dead at the time that 
the collector was called. 

collection cycle a complete execution of 
the collector. 

collector a system component responsible 
for garbage collection. 

compacting relocating marked (live) ob
jects and updating the pointer values of 
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all live references to objects that have dangling pointer a pointer to an object that 
moved so as to eliminate external frag- has been reclaimed by the memory man-
mentation. ager. 

compaction see compacting. 

compaction order the order in which a 
compacting collector rearranges objects; 
this may be arbitrary (ignoring their previ
ous order or their relationship with other 
objects), linearising (which attempts to 
place objects next to those that they refer
ence), or sliding (preserving their original 
order). 

completeness the property of a collector 
that guarantees to reclaim all garbage 
eventually; for example reference count
ing is not complete because it cannot re
claim cycles of dead objects. 

concurrent collection execution of the 
garbage collector concurrently with ex
ecution of mutator threads. 

condemned space the space or subspace 
chosen to be collected. 

connectivity-based (garbage) collection 
(CBGC) a collection technique that parti
tions the heap into spaces based on con
nectivity. 

cons cell a double-word cell used by Lisp 
for storing the spine of a list. 

conservative collection a technique for col
lection that receives no assistance from a 
language's compiler or run-time system 
and so must make over-estimates of the 
set of live objects. 

consistency model a specification of how 
the memory system will appear to the 
programmer, placing restrictions on the 
values that can be returned by a read in 
a shared-memory program execution. 

copy reserve a space reserved for copying 
in copying collection. 

copying collection collection that evacu
ates live objects from one semispace to 
another (after which, the space occupied 
by the former can be reclaimed) .  

creation space see nursery. 

crossing map a map that decodes how ob
jects span areas (typically cards) . 

dead an object is dead if it will not be ac
cessed at some time in the future execu
tion of the mutator. 

deallocation the action of freeing an allo
cated cell. 

deferred reference counting a reference 
counting scheme in which some reference 
count operations (typically those on local 
variables) are deferred to a later time. 

deletion barrier a write barrier that de
tects the removal of a reference; see also 
snapshot-at-the-beginning . 

dependent load a load from a memory lo
cation whose address depends on the re
sult of a prior load. 

depth-first traversal a traversal of the ob
ject graph in which an object's descen
dants are visited before its siblings. 

derived pointer a pointer obtained by 
adding an offset to an object reference. 

direct collection a collection algorithm that 
determines whether an object is live sim
ply from that object itself. 

double mapping a technique that maps the 
same page at two different addresses with 
different protections. 

double-ended queue (deque) a data struc
ture allowing adding to and removing 
from the front (head) and back (tail) .  

epoch a period of execution of a reference 
counting collector during which synchro
nised operations can be eliminated or re
placed by unsynchronised operations. 

escape analysis an analysis (usually static) 
that determines whether an object may 
become reachable from outside the 
method or thread that created it. 

evacuating moving an object from a con
demned space to its new location (in to
space); see copying collection or mark
compact collection. 

explicit deallocation the action of deallo
cation under the control of the program
mer, rather than automatically. 
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external fragmentation space wasted out
side any cell; see also internal fragmen
tation. 

false pointer a value that was falsely as
sumed to be a pointer to an object; see 
conservative collection. 

false sharing the coincidence of different 
processors accessing memory locations 
that happen to lie in the same cache line, 
resulting in increased cache coherence 
traffic. 

GLOSSARY 

frame a power of two sized and aligned 
chunk; typically a discontiguous space 
comprises a number of frames; however, 
see also activation record. 

free the state of a cell in being available for 
reallocation. 

free pointer a pointer to the free granules 
of a chunk; see sequential allocation. 

free-list allocation a sequential fits alloca
tion strategy that uses a data structure to 
record the location and size of free cells. 

fromspace the semispace from which 
fast-fits allocation a sequential fits alloca- copying collection copies objects . 

tion strategy that uses an index to search fromspace invariant the invariant that the 
for the first or next cell that satisfies the mutator holds only fromspace references .  
allocation request. 

Fibonacci buddy system a buddy system 
in which the size classes form a Fibonacci 
sequence. 

field a component of an object holding a 
reference or scalar value. 

filler object an object allocated in the gaps 
between real objects to support heap 
parsability. 

finalisation an action performed on an ob
ject when it is no longer reachable. 

finaliser a method that runs when the col
lector determines that the object is no 
longer reachable. 

first-fit allocation a free-list allocation 
strategy that places an object in the first 
cell in the heap that matches the object's 
size. 

first-in, first-out (FIFO) see queue. 

flip the swapping of fromspace and to
space in copying collection at the start of 
a collection cycle .  

floating garbage garbage that was not re
claimed in a previous collection cycle .  

forwarding address the address to which 
an object has been evacuated (typically 
stored in the fromspace object's header) . 

fragmentation the inability to use free 
memory because of the arrangement of 
other objects; see also internal fragmen
tation and external fragmentation .  

garbage an object that is  not live but whose 
space has not been reclaimed. 

garbage collection (GC) an automatic ap
proach to memory management that re
claims memory occupied by objects that 
are no longer in use by the program. 

garbage collector see collector. 

GC-check point a point in the mutator 
code that does not itself trigger collection, 
but at which the mutator can safely stop 
while collection occurs. 

GC-point a point in the mutator code that 
may trigger garbage collection (such as 
an allocation site) . 

GC-safe point see GC-point. 

generation a space characterised by the age 
of the objects it contains. 

generational collection collection that seg
regates objects by age into generations 
and preferentially collects the youngest 
generation. 

generational hypothesis the hypothesis 
that object lifetime is correlated with age; 
see also weak generational hypothesis 
and strong generational hypothesis.  

gibibyte (GiB) standard usage unit mean
ing 230 bytes; see also gigabyte. 

gigabyte (GB) common usage unit mean
ing 230 bytes; see also gibibyte. 

granule the smallest unit of allocation, say 
a word or a double-word. 
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grey an object is grey if the collector has not 
yet finished processing it but considers it 
to be live; see also tricolour abstraction. 

guard page a page mapped with no-access 
protection. 

handle a structure holding a reference to an 
object; typically, a handle is not moved 
by the collector whereas its target object 
might be. 

happens-before a requirement on the order 
in which operations occur on memory. 

hard real-time system a real-time system 
in which all deadlines must be met within 
a strict bound; missing a deadline is a crit
ical system failure. 

header a part of an object used to store 
metadata used by the run-time system. 

heap a data structure in which objects may 
be allocated or deallocated in any order, 
independent of the lifetime of the method 
that created them. 

heap allocation allocation of an object in 
the heap. 

heap parsability the capability to advance 
through the heap from one object to the 
next. 

heap let a subset of the heap containing ob
jects accessible to only a single thread. 

hyperthreading see simultaneous multi
threading. 
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concludes that anything else must be 
garbage. 

insertion barrier a write barrier that de
tects the insertion of a reference; see also 
incremental update. 

interior pointer a derived pointer to an in
ternal object field. 

internal fragmentation space wasted in
side a cell, for example due to rounding 
up requested sizes; see also external frag
mentation. 

JVM a virtual machine for the Java lan
guage. 

kibibyte (KiB) standard usage unit mean
ing 210 bytes; see also kilobyte. 

kilobyte (KB) common usage unit meaning 
210 bytes; see also kibibyte. 

large object space (LOS) a space reserved 
for objects larger than a given threshold, 
and typically managed by a non-moving 
collector. 

last-in, first-out (LIFO) see stack. 

lazy reference counting deferring freeing 
of zero-count objects when reference 
counting until they are subsequently ac
quired by the allocator, at which point 
their children can be processed. 

lazy sweeping sweeping only on demand 
(when fresh space is required) .  

leak see memory leak. 

increment a unit of collection in the Belt- limit pointer a pointer to the end of a 
way collector; however, see also incre- chunk; see sequential allocation. 
mental collection. linear allocation see sequential allocation. 

incremental collection collection in which 
the mutator performs small quanta of col
lection work; see also concurrent collec
tion. 

incremental update a technique for solv
ing the lost object problem that informs 
the collector of incremental changes made 
by the mutator to the set of objects known 
to be live. 

indirect collection a collection algorithm 
that does not detect garbage per se, but 
rather identifies all live objects and then 

linearisable an execution history of con
current operations that appear to execute 
serially in some non-overlapped way, 
where if two operations do not overlap in 
the history then they must appear to hap
pen in the order they were invoked. 

linearisation point the point in time at 
which an operation in a linearisable his
tory appears instantaneously to occur. 

live an object is live if it will be accessed at 
some time in the future execution of the 
mutator. 
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livelock a situation in which two (or more) 
competing threads prevent progress of 
the other(s) indefinitely. 

liveness (of collector) the property of a 
(concurrent) collector that it eventually 
completes its collection cycle. 

liveness (of object) the property of an ob
ject that will be accessed at some time in 
the future execution of the mutator. 

local allocation buffer (LAB) a chunk of 
memory used for allocation by a single 
thread. 

locality the degree to which to items 
(fields, objects) are accessed together in 
space or time; see also spatial locality and 
temporal locality.  

lock a synchronisation mechanism for con
trolling access to a resource by multi
ple concurrent threads; usually only one 
thread at a time can hold the lock, while 
all other threads must wait. 

lock-free a guarantee of system-wide 
progress, although individual threads 
may fail to make progress; implies 
obstruction-free; see also non-blocking. 

lost object problem a situation that can 
arise when their interleaved execution 
results in the mutator hiding references 
from the collector so that it erroneously 
reclaims live objects. 

maj or collection collection of both the old 
generation and young generation; see 
also generational collection. 

malloc a function in the C standard library 
that allocates memory in the heap . 

managed code application code running 
on a managed run-time. 

managed run-time a run-time system that 
provides services such as automatic 
memory management. 

many-core processor a multiprocessor 
that has a large number of processors on 
a single integrated circuit chip . 

mark bit a bit (stored in the object's header 
or on the side in a mark table) recording 
whether an object is live. 
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mark-compact collection a tracing collec
tion that typically operates in three or 
more phases, first marking all live ob
jects and then compacting these objects to 
eliminate fragmentation. 

mark-sweep collection a tracing collection 
that typically operates in two phases, first 
marking all live objects and then sweep
ing through the heap, reclaiming the stor
age of all unmarked, and hence dead, ob
jects. 

mark/cons ratio a common garbage collec
tion metric that compares the amount of 
work done by the collector ('marking') 
with the amount of allocation ('consing') 
done; see cons cell. 

marking recording that an object is live, of
ten by setting a mark bit. 

mature object space (MOS) a space re
served for older (mature) objects man
aged without respect to their age. 

mebibyte (MiB) standard usage unit mean
ing 220 bytes; see also megabyte. 

megabyte (MB) common usage unit mean
ing 220 bytes; see also mebibyte. 

memory fence an operation on a processor 
that prevents certain reorderings of mem
ory accesses. 

memory leak a failure to reclaim memory 
that is no longer in use by the program. 

memory order the order of writes (and 
reads) to multiple memory locations at 
caches or memories, and thus as per
ceived by other processors; see also pro
gram order. 

minimum mutator utilisation (MMU) the 
minimum mutator utilisation for a given 
time window. 

minor collection collection of only the 
young generation or nursery; see also 
generational collection. 

mmap a Unix system call that creates a 
mapping for a range of virtual addresses. 

mostly-concurrent collection a technique 
for concurrent collection that may pause 
all mutator threads briefly. 
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mostly-copying collection a technique for 
copying collection that copies most ob
jects but does not move others (because 
of pinning). 

moving collection any collection technique 
that moves objects . 

multi-tasking virtual machine (MVM) a 
virtual machine that runs several appli
cations (tasks) within a single invocation 
of the virtual machine. 

multicore see chip multiprocessor. 

multiprocessor a computer that provides 
more than one processor. 

multiprogramming the execution of multi
ple processes or threads on a single pro
cessor. 

multitasking the execution of multiple 
tasks on a single processor. 

multithreading the execution of multiple 
threads on one or more processors. 

mutator the user program, so called be
cause from the collector 's point of view it 
simply mutates the graph of objects. 

mutator utilisation the fraction of CPU 
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giving that processor faster access to that 
memory unit. 

Not-Marked-Through (NMT) a state of a 
reference indicating that it has not been 
traced through by the Pauseless collector 
to assure that its target object has been 
marked. 

null a distinguished reference value that 
does not refer to any object. 

nursery a space in which objects are cre
ated, typically by a generational collector. 

object a cell allocated for use by the appli
cation. 

object inlining see scalar replacement. 

oblet a fixed-size chunk representing some 
subset of the cells of an object. 

obstruction-free a guarantee that at any 
point, a single thread executed in isola
tion (that is, with all obstructing threads 
suspended) will complete its operation 
within a bounded number of steps; see 
also non-blocking. 

old generation a space into which objects 
are promoted or tenured. 

time used by the mutator, as opposed to on-stack replacement a technique for re
the collector. placing a method's code with new code 

while it has active invocations . 
nepotism the situation where a dead ob-

on-the-fly collection a technique 
ject in an uncollected space preserves an 

current collection that stops 
for con
mutator 

otherwise dead object in the condemned threads at most one at a time. 
space. 

newspace the space in which objects are al- padding extra space inserted by the alloca-
located. tor to meet alignment constraints . 

next-fit allocation a free-list allocation page a block of virtual memory. 
strategy that places an object in the next parallel collection use of multiple proces
cell in the heap that matches the object's sors or threads to perform collection; not 
size. 

to be confused with concurrent collec-
node see object. 

non-blocking a guarantee that threads 
competing for a shared resource do not 
have their execution delayed indefinitely; 
see also obstruction-free, lock-free, wait
free. 

non-uniform memory access (NUMA) a 
multiprocessor in which a shared mem
ory unit is associated with each processor, 

tion. 

partial tracing tracing only a subset of the 
graph of objects; typically used to refer 
to a trial deletion algorithm that traces 
a sub-graph that is suspected of being 
garbage. 

pause time the time during which muta
tors are halted while stop-the-world col
lection runs. 
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pinning preventing a collector from mov
ing a particular object (typically because 
it is accessible to code that is not collector
aware). 

pointer the address in memory of an object. 

pointer field a field that contains a pointer 
to another object. 

pointer reachability the property of all live 
objects (and some dead objects) that they 
be reachable by following a chain of refer
ences from the roots . 

prefetching fetching a value into the cache 
earlier than it would naturally be fetched. 

prefetching on grey fetching the first cache 
line of an object when that object is 
marked grey. 
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real-time (garbage) collection (RTGC) a 
technique for concurrent collection or 
incremental collection supporting a real
time system. 

real-time system a hardware or software 
system that is subject to deadlines from 
event to system response . 

reference the canonical pointer used to 
identify an object. 

reference count a count of the number of 
references that point to an object, typi
cally stored in the object's header. 

reference counting a collection scheme 
that manages objects by maintaining a 
count of the number of references to each 
object. 

pretenuring allocating an object directly reference listing a collection scheme that 
into an old generation. manages objects by maintaining a list of 

process an instance of a computer program 
that is executing within its own address 
space; a process may comprise multiple 
threads executing concurrently. 

program order the order of writes (and 
reads) to multiple memory locations as 
they appear in the program; see also 
memory order. 

prolific type an object type having many 
instantiations. 

promoting moving an object into an old 
generation. 

promptness the degree to which a collector 
reclaims all garbage at each collection cy
cle. 

queue a first-in, first-out data structure, al
lowing adding to the back (tail) and re
moving from the front (head) .  

raw pointer a plain pointer (in contrast to a 
smart pointer) . 

reachable the property of an object that can 

references to each object. 

region a space visible to and managed by 
the programmer or (typically inferred au
tomatically by the) compiler; a region can 
typically be made free in constant time. 

relaxed consistency any consistency 
model that is weaker than sequential 
consistency. 

release consistency a consistency model in 
which acquire operations prevent later 
accesses from occurring before the ac
quire, but earlier accesses can happen af
ter the acquire and release operations pre
vent earlier accesses from happening after 
the release but later accesses can happen 
before the release. 

remembered set (remset) a set of objects 
or fields that the collector must process; 
typically, mutators supported by gener
ational collection, or concurrent collec
tion or incremental collection add en
tries to the remembered set as they create 
or delete pointers of interest to the collec
tor. 

be accessed by following a chain of refer- remset see remembered set. 
ences from a set of mutator roots. 

read barrier a barrier on reference loads by 
the mutator. 

rendezvous barrier a code point at which 
each thread waits until all other threads 
have reached that point. 
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replicating collection a technique for con
current copying collection in which two 
(or more) copies of live objects are main
tained. 

restricted deque a double-ended queue 
where the action of adding or removing 
is allowed at only one end of the queue. 

resurrection an action performed by a fi
naliser that causes the previously un
reachable object to become reachable. 

root a reference that is directly accessible to 
the mutator without going through other 
objects. 

root object an object in the heap referred to 
directly by a root. 

run-time system the code that supports the 
execution of a program, providing ser
vices such as memory management and 
thread scheduling. 

safety the property of a collector in never 
reclaiming a live object. 

scalar a non-reference value. 

scalar field a field that contains a scalar 
value. 

scalar replacement an optimisation tech
nique that replaces an object with local 
variables representing its fields. 

scanning processing each pointer field of 
an object. 

scavenging picking out live objects from 
the fromspace; see copying collection. 

schedulability analysis the analysis of a 
set of real-time tasks to decide whether 
they can be scheduled so that none of 
them misses a deadline. 

scheduler an operating system component 
that chooses which threads to execute on 
which processors at any given time. 

scheduling choosing when to execute a 
unit of collection. 

segregated-fits allocation an allocation 
strategy that partitions the heap by size 
class in order to minimise fragmentation. 

semispace one of two spaces into which a 
copying collection divides the heap. 
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semispace copying see copying collection. 

sequential allocation an allocation strat
egy that allocates objects consecutively 
from one end of a free chunk; often called 
bump pointer allocation or linear alloca
tion. 

sequential consistency a consistency 
model in which all memory operations 
appear to execute one at a time, and the 
operations of each processor appear to 
execute in its program order. 

sequential fits allocation a free-list alloca
tion strategy that searches the free-list se
quentially for a cell that satisfies the allo
cation request. 

sequential store buffer (SSB) an efficient 
implementation of a remembered set 
such as a chain of blocks of slots . 

shared pointer a form of smart pointer de
fined for C++ based on reference count
ing. 

simultaneous multithreading (SMT) the 
capability of a processor to execute multi
ple independent threads at the same time. 

size class a logical set of objects that are 
managed by the same allocation and col
lection policies. 

slack-based scheduling a technique for 
scheduling real-time collection that per
forms collector work when no real-time 
task is running. 

slot see field. 

smart pointer a form of pointer upon 
which operations such as copying or 
dereferencing are overloaded in order 
to perform memory management opera
tions. 

snapshot-at-the-beginning a technique for 
solving the lost obj ect problem that pre
serves the set of objects live at the start of 
the collection cycle. 

soft real-time system (controversially) a 
real-time system in which most dead
lines must be met within strict bounds to 
preserve quality of service; completion of 
an operation after its deadline results in 
degraded service.  
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space a subset of the heap managed by a 
particular collection policy. 

spatial locality the degree to which two 
items (fields, objects) are likely to be al
located close to each other (for example, 
on the same page or cache line) .  

spin lock a lock where the waiting threads 
simply 'spin' in a loop until they can ac
quire the lock. 
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strong reference a reference to an object 
that contributes to its reachability; normal 
references are usually strong. 

strong tricolour invariant a tricolour ab
straction invariant that no black object 
ever refers to a white object. 

sweeping reclaiming unmarked (dead) ob
jects in a linear pass through (a subset) of 
the heap. 

symmetric multiprocessor (SMP) a multi
splitting dividing a cell into two adjacent 

processor in which shared memory units 
cells; see also segregated-fits allocation. 

stack a last-in, first-out data structure, al
lowing adding and removing only from 
the front (top);  see also call stack.  

stack allocation allocation of an object in 
the stack frame of its allocating method. 

are separate from the processors. 

task a unit of work performed by a process 
or thread, usually in a real-time system. 

tebibyte (TiB) standard usage unit mean
ing 240 bytes; see also terabyte . 

stack barrier a barrier on returning (or temporal locality the degree to which two 

throwing) beyond a given stack frame in items (fields, objects) are likely to be ac-

a thread's call stack. cessed close in time to each other. 

stack frame an activation record allocated 
in the call stack. 

tenuring see promoting. 

terabyte (TB) common usage unit meaning 
240 bytes; see also tebibyte. 

stack map a data structure indicating 
which addresses the collector should con- test-and-set lock see spin lock. 

sider to be references to objects in a call test-and-test-and-set lock a lower
stack. overhead variant of a test-and-set lock 

static allocation allocation of an object at 
an address known at compile time. 

step a subspace used to segregate objects 
by age within a generation. 

sticky reference count a reference count 
that has been incremented to the maxi
mum permissible value, not changed by 
subsequent pointer updates . 

stop-the-world collection a technique for 
collection during which all mutator 
threads are halted.  

store buffer see write buffer. 

strict consistency a consistency model in 
which every memory access and atomic 
operation appears to occur in the same or
der everywhere. 

strong generational hypothesis the hy-
pothesis that object lifetime is inversely 
related to age. 

that uses (expensive) atomic hardware 
primitives only when the lock appears to 
be free. 

thread a sequential execution path through 
an address space; the smallest unit of pro
cessing that can be scheduled for execu
tion by an operating system; see also pro
cess. 

threaded compaction a technique for com
pacting that links objects so that all the 
objects originally pointing to a given ob
ject can be discovered from that object. 

tidy pointer the canonical pointer used as 
an object's reference. 

time-based scheduling a technique for 
scheduling real-time collection that re
serves a pre-defined portion of execu
tion time solely for collector work during 
which the mutator is stopped. 

tospace the semispace to which copying 
collection evacuates live objects. 
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tospace invariant the invariant that the virtual machine (VM) a run-time system 
mutator holds only tospace references. that abstracts away details of the under-

tracing visiting the reachable objects by 
lying hardware or operating system. 

traversing all or part of an object graph. 

tracing collection a technique for indirect 
collection that operates by tracing the 
graph of live objects. 

train a component of the mature object 
space collector. 

transaction a collection of reads and writes 
that must appear to execute atomically. 

transaction abort the unsuccessful termi
nation of a transaction which discards its 
effects. 

transaction commit the successful comple
tion of a transaction which ensures that 
its effects are made visible. 

translation lookaside buffer (TLB) a small 
associative memory that caches part of 
the translation between virtual and phys
ical addresses. 

traversal visiting each node in a graph ex
actly once. 

trial deletion the temporary deletion of a 
reference in order to discover whether 
this causes an object's reference count to 
drop to zero. 

tricolour abstraction a characterisation of 
the work of the garbage collector as parti
tioning objects into white (not yet visited) 
and black (need not be revisited), using 
grey to represent the remaining work (to 
be revisited) . 

type-accurate a property of a garbage col
lector that can precisely identify every 
slot or root that contains a pointer. 

ulterior reference counting a reference 
counting scheme that manages young 
objects by copying and older ones by ref
erence counting. 

unique pointer a smart pointer that pre
serves the property that no object is ever 
referred to by more than one unique 
pointer. 

wait-free a guarantee of both system-wide 
(lock-free) and per-thread progress so 
that a thread will complete its operation 
in a bounded number of steps; see also 
non-blocking. 

wavefront the boundary, comprising grey 
objects (still to be processed), separating 
black objects (already processed) from 
white objects (not yet processed) .  

weak consistency a consistency model 
which treats each atomic operation as a 
total memory fence.  

weak generational hypothesis the hypoth
esis that most objects die young. 

weak reference a reference to an object 
that does not contribute to its reachabil
ity; Java for example provides several 
flavours of weak reference. 

weak tricolour invariant a tricolour ab
straction invariant that any white object 
pointed to by a black object must also be 
reachable from some grey object either di
rectly or through a chain of white objects . 

white an object is white if the collector has 
not processed it; at the end of a collection 
cycle, white objects are considered dead; 
see also tricolour abstraction. 

wilderness the last free chunk in the heap. 

wilderness preservation a policy of allo
cating from the wilderness only as a last 
resort. 

work stealing a technique for balanc
ing work among threads where lightly 
loaded threads pull work from more 
heavily loaded threads. 

work-based scheduling a technique for 
scheduling real-time collection that im
poses collector work as a tax on units of 
mutator work. 

worst-case execution time (WCET) the 
maximum time an operation can take on 
a specific hardware platform; knowing 
worst-case execution times is necessary 
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for schedulability analysis of a hard real
time system. 

write barrier a barrier on reference stores 
by the mutator. 

write buffer a buffer that holds pending 

GLOSSARY 

writes to memory. 

young generation see nursery. 

zero count table (ZCT) a table of objects 
whose reference counts are zero . 
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