

THE
GARBAGE COLLECTION

HANDBOOK
The Art of Automatic Memory Management

Chapman & Haii/CRC
Applied Algorithms and Data Structures Series

Aims and Scopes

Series Editor
Samir Khuller

University of Maryland

The design and analysis of algorithms and data structures form the foundation of computer

science. As current algorithms and data structures are improved and new methods are
introduced, it becomes increasingly important to present the latest research and applications

to professionals in the field.

This series aims to capture new developments and applications in the design and analysis

of algorithms and data structures through the publication of a broad range of textbooks,
reference works, and handbooks. The inclusion of concrete examples and applications is

highly encouraged. The scope of the series includes, but is not limited to, titles in the
areas of parallel algorithms, approximation algorithms, randomized algorithms, graph
algorithms, search algorithms, machine learning algorithms, medical algorithms, data

structures, graph structures, tree data structures, and other relevant topics that might be
proposed by potential contributors.

Published Titles
A Practical Guide to Data Structures and Algorithms Using Java

Sally A. Goldman and Kenneth J. Goldman

Algorithms and Theory of Computation Handbook, Second Edition -Two Volume Set

Edited by Mikhail J. Atallah and Marina Blanton

Mathematical and Algorithmic Foundations of the Internet
Fabrizio Luccio and Linda Pagli, with Graham Steel

The Garbage Collection Handbook: The Art of Automatic Memory Management

Richard Jones, Antony Hosking, and Eliot Moss

THE
GARBAGE COLLECTION

HANDBOOK
The Art of Automatic Memory Management

Richard Jones
Antony Hosking

Eliot Moss

0 �y��F�����"P
Boca Raton london New York

CRC Press is an imprint of the
Taylor & Francis Group an informa business
A CHAPMAN & HALL BOOK

The cover image logo concept was created by Richard Jones, and the rights to the logo belong solely to him.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2012 by Richard Jones, Antony Hosking, and Eliot Moss
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
Version Date: 20110726
International Standard Book Number: 978-1-4200-8279-1 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at

http:/ /www.taylorandfrancis.com

and the CRC Press Web site at

http:/ /www.crcpress.com

To
Robbie, Helen, Kate and William

Mandi, Ben, Matt, Jory and K
Hannah, Natalie and Casandra

Contents

List of Algorithms

List of Figures

List of Tables

Preface

Acknowledgements

Authors

1 Introduction

1 . 1 Explicit deallocation
1 .2 Automatic dynamic memory management .
1 .3 Comparing garbage collection algorithms

Safety
Throughput
Completeness and promptness .
Pause time
Space overhead
Optimisations for specific languages
Scalability and portability . . .

1 .4 A performance disadvantage?
1 .5 Experimental methodology .

1 .6 Terminology and notation . .
The heap
The mutator and the collector
The mutator roots
References, fields and addresses
Liveness, correctness and reachability .
Pseudo-code
The allocator
Mutator read and write operations
Atomic operations
Sets, multisets, sequences and tuples

vii

XV

xix

xxi

xxiii

xxvii

xxix

1
2
3
5
6
6
6
7
8
8
9
9

10
11
1 1
12
12
13
13
14
14
14
15
15

viii

2 Mark-sweep garbage collection
2 . 1 The mark-sweep algorithm .
2 .2 The tricolour abstraction
2 .3 Improving mark-sweep
2.4 Bitmap marking
2 .5 Lazy sweeping
2 .6 Cache misses in the marking loop
2 .7 Issues to consider

Mutator overhead
Throughput
Space usage
To move or not to move?

3 Mark-compact garbage collection
3 .1 Two-finger compaction
3 .2 The Lisp 2 algorithm
3.3 Threaded compaction
3.4 One-pass algorithms .
3 .5 Issues to consider . .

Is compaction necessary?
Throughput costs of compaction .
Long-lived data
Locality
Limitations of mark-compact algorithms

4 Copying garbage collection
4.1 Semispace copying collection .

Work list implementations .
An example

4.2 Traversal order and locality .
4.3 Issues to consider

Allocation
Space and locality
Moving objects

5 Reference counting
5 .1 Advantages and disadvantages of reference counting
5 .2 Improving efficiency
5 .3 Deferred reference counting .
5 .4 Coalesced reference counting .
5.5 Cyclic reference counting . . .
5 .6 Limited-field reference counting .
5 .7 Issues to consider .

The environment . .
Advanced solutions

6 Comparing garbage collectors
6.1 Throughput .
6 .2 Pause time . . .
6 .3 Space
6 .4 Implementation

CONTENTS

17
18
20
21
22
24
27
29
29
29
29
30

31
32
34
36
38
40
40
41
41
41
42

43
43
44
46
46
53
53
54
55

57
58
60
61
63
66
72
73
73
74

77
77
78
78
79

CONTENTS

6.5 Adaptive systems
6.6 A unified theory of garbage collection

Abstract garbage collection
Tracing garbage collection
Reference counting garbage collection

7 Allocation
7.1 Sequential allocation
7.2 Free-list allocation

First-fit allocation
Next-fit allocation
Best-fit allocation .
Speeding free-list allocation

7.3 Fragmentation
7.4 Segregated-fits allocation

Fragmentation
Populating size classes . .

7.5 Combining segregated-fits with first-, best- and next-fit
7.6 Additional considerations

Alignment . . .
Size constraints .
Boundary tags
Heap parsability
Locality
Wilderness preservation
Crossing maps

7.7 Allocation in concurrent systems
7.8 Issues to consider

8 Partitioning the heap
8 .1 Terminology
8.2 Why to partition

Partitioning by mobility .
Partitioning by size
Partitioning for space
Partitioning by kind .
Partitioning for yield
Partitioning to reduce pause time
Partitioning for locality . . .
Partitioning by thread
Partitioning by availability .
Partitioning by mutability

8.3 How to partition .
8.4 When to partition

9 Generational garbage collection
9.1 Example
9.2 Measuring time
9.3 Generational hypotheses . .
9.4 Generations and heap layout .
9.5 Multiple generations

ix

80
80
81
81
82

87
87
88
89
90
90
92
93
93
95
95
96
97
97
98
98
98

100
100
101
101
102

103
103
103
104
104
104
105
105
106
106
107
107
108
108
109

111
112
1 13
1 13
1 14
115

X

9 .6 Age recording
En masse promotion .
Aging semispaces . .
Survivor spaces and flexibility

9 . 7 Adapting to program behaviour .
Appel-style garbage collection .
Feedback controlled promotion

9 .8 Inter-generational pointers
Remembered sets .
Pointer direction

9 .9 Space management
9 . 10 Older-first garbage collection .
9 . 1 1 Beltway
9 . 1 2 Analytic support for generational collection
9 . 13 Issues to consider
9 . 14 Abstract generational garbage collection

10 Other partitioned schemes
10 . 1 Large object spaces

The Treadmill garbage collector
Moving objects with operating system support .
Pointer-free objects

10 .2 Topological collectors
Mature object space garbage collection
Connectivity-based garbage collection
Thread-local garbage collection
Stack allocation
Region inferencing

10 .3 Hybrid mark-sweep, copying collectors
Garbage-First
Immix and others
Copying collection in a constrained memory space

10.4 Bookmarking garbage collection . .
1 0 .5 Ulterior reference counting
10 .6 Issues to consider

11 Run-time interface
1 1 . 1 Interface to allocation

Speeding allocation
Zeroing

1 1 .2 Finding pointers . . .
Conservative pointer finding .
Accurate pointer finding using tagged values
Accurate pointer finding in objects
Accurate pointer finding in global roots . . .
Accurate pointer finding in stacks and registers .
Accurate pointer finding in code .
Handling interior pointers
Handling derived pointers . .

1 1 .3 Object tables
1 1 .4 References from external code

CONTENTS

1 1 6
1 1 6
1 1 6
1 19
121
121
123
123
124
125
126
127
130
132
133
134

137
137
138
139
140
140
140
143
144
147
148
149
150
151
154
156
157
158

161
161
164
165
166
166
168
169
1 71
1 71
181
182
183
184
185

CONTENTS

1 1 .5 Stack barriers
1 1 .6 GC-safe points and mutator suspension
1 1 .7 Garbage collecting code .
1 1 .8 Read and write barriers . .

Engineering
Precision of write barriers .
Hash tables
Sequential store buffers
Overflow action
Card tables
Crossing maps . . .
Summarising cards
Hardware and virtual memory techniques
Write barrier mechanisms: in summary .
Chunked lists

1 1 .9 Managing address space
1 1 . 10 Applications of virtual memory page protection .

Double mapping
Applications of no-access pages

1 1 . 1 1 Choosing heap size
1 1 . 12 Issues to consider

12 Language-specific concerns
12 .1 Finalisation

When do finalisers run?
Which thread runs a finaliser?
Can finalisers run concurrently with each other?
Can finalisers access the object that became unreachable?
When are finalised objects reclaimed?
What happens if there is an error in a finaliser?
Is there any guaranteed order to finalisation?
The finalisation race problem
Finalisers and locks
Finalisation in particular languages
For further study

12.2 Weak references
Additional motivations
Supporting multiple pointer strengths
Using Phantom objects to control finalisation order .
Race in weak pointer clearing
Notification of weak pointer clearing
Weak pointers in other languages

12.3 Issues to consider

13 Concurrency preliminaries
13 .1 Hardware

Processors and threads
Interconnect
Memory . .
Caches . . .
Coherence .

xi

186
187
190
191
191
192
194
195
196
197
199
201
202
202
203
203
205
206
206
208
210

213
213
214
215
216
216
216
217
217
218
219
219
221
221
222
223
225
226
226
226
228

229
229
229
230
231
231
232

xii

Cache coherence performance example: spin locks
13 .2 Hardware memory consistency

Fences and happens-before .
Consistency models .

13 .3 Hardware primitives
Compare-and-swap
Load-linked / store-conditionally .
Atomic arithmetic primitives .
Test then test-and-set

CONTENTS

232
234
236
236
237
237
238
240
240

More powerful primitives . . . 240
Overheads of atomic primitives 242

13 .4 Progress guarantees 243
Progress guarantees and concurrent collection . 244

13 .5 Notation used for concurrent algorithms 245
13 .6 Mutual exclusion 246
13 .7 Work sharing and termination detection 248

Rendezvous barriers 251
13 .8 Concurrent data structures 253

Concurrent stacks 256
Concurrent queue implemented with singly linked list . 256
Concurrent queue implemented with array 261
A concurrent deque for work stealing . 267

13 .9 Transactional memory 267
What is transactional memory? 267
Using transactional memory to help implement collection 270
Supporting transactional memory in the presence of garbage collection 272

13 . 10 Issues to consider . 273

14 Parallel garbage collection 275

14 .1 Is there sufficient work to parallelise? . 276
14 .2 Load balancing . 277
14 .3 Synchronisation 278
14 .4 Taxonomy 279
14 .5 Parallel marking 279

Processor-centric techniques 280
14 .6 Parallel copying 289

Processor-centric techniques 289
Memory-centric techniques . 294

14 .7 Parallel sweeping . 299
14 .8 Parallel compaction 299
14 .9 Issues to consider . 302

Terminology 302
Is parallel collection worthwhile? 303
Strategies for balancing loads 303
Managing tracing 303
Low-level synchronisation 305
Sweeping and compaction 305
Termination 306

CONTENTS

15 Concurrent garbage collection
15 .1 Correctness of concurrent collection .

The tricolour abstraction, revisited .
The lost object problem
The strong and weak tricolour invariants .
Precision
Mutator colour
Allocation colour
Incremental update solutions .
Snapshot-at-the-beginning solutions

15.2 Barrier techniques for concurrent collection
Grey mutator techniques
Black mutator techniques
Completeness of barrier techniques . .
Concurrent write barrier mechanisms .
One-level card tables
Two-level card tables
Reducing work . .

15 .3 Issues to consider

16 Concurrent mark-sweep
16 .1 Initialisation
16.2 Termination
16.3 Allocation
16.4 Concurrent marking and sweeping
16.5 On-the-fly marking

Write barriers for on-the-fly collection
Doligez-Leroy-Gonthier
Doligez-Leroy-Gonthier for Java .
Sliding views

16.6 Abstract concurrent collection
The collector wavefront .
Adding origins .
Mutator barriers
Precision
Instantiating collectors

16 .7 Issues to consider . . .

17 Concurrent copying & compaction
17. 1 Mostly-concurrent copying: Baker 's algorithm

Mostly-concurrent, mostly-copying collection
17.2 Brooks's indirection barrier .
1 7.3 Self-erasing read barriers
17.4 Replication copying
1 7.5 Multi-version copying

Extensions to avoid copy-on-write .
17.6 Sapphire

Collector phases
Merging phases
Volatile fields . .

1 7.7 Concurrent compaction .

xiii

307
309
309
310
312
313
313
314
314
314
315
315
317
317
318
3 19
3 19
320
321

323
323
324
325
326
328
328
329
330
331
331
334
334
334
334
335
335

337
337
338
340
340
341
342
344
345
346
351
351
351

xiv

Compressor
Pauseless

1 7.8 Issues to consider

CONTENTS

352
355
361

18 Concurrent reference counting 363
18 . 1 Simple reference counting revisited 363
18 .2 Buffered reference counting 366
18 .3 Concurrent, cyclic reference counting . 366
18 .4 Taking a snapshot of the heap . . 368
18 .5 Sliding views reference counting . 369

Age-oriented collection 370
The algorithm 370
Sliding views cycle reclamation 372
Memory consistency . 373

18 .6 Issues to consider 374

19 Real-time garbage collection 375
19 . 1 Real-time systems 375
19 .2 Scheduling real-time collection . 376
19 .3 Work-based real-time collection 377

Parallel, concurrent replication . 377
Uneven work and its impact on work-based scheduling 384

19 .4 Slack-based real-time collection 386
Scheduling the collector work 389
Execution overheads 390
Programmer input 391

19.5 Time-based real-time collection: Metronome . 391
Mutator utilisation 391
Supporting predictability . 393
Analysis 395
Robustness 399

19 .6 Combining scheduling approaches: Tax-and-Spend . 399
Tax-and-Spend scheduling . 400
Tax-and-Spend prerequisites 401

19 .7 Controlling fragmentation 403
Incremental compaction in Metronome . 404
Incremental replication on uniprocessors . 405
Stopless: lock-free garbage collection . . . 406
Staccato: best-effort compaction with mutator wait-freedom . 407
Chicken: best-effort compaction with mutator wait-freedom for x86 410
Clover: guaranteed compaction with probabilistic mutator lock-freedom 410
Stopless versus Chicken versus Clover 412
Fragmented allocation . 412

19 .8 Issues to consider 415

Glossary 417

Bibliography 429

Index 463

List of Algorithms

2 .1 Mark-sweep: allocation
2 .2 Mark-sweep: marking .
2 .3 Mark-sweep: sweeping
2 .4 Printezis and Detlefs's bitmap marking .
2 .5 Lazy sweeping with a block structured heap .
2 .6 Marking with a FIFO prefetch buffer . .
2 .7 Marking graph edges rather than nodes

3 .1 The Two-Finger compaction algorithm
3 .2 The Lisp 2 compaction algorithm
3.3 Jonkers's threaded compactor
3 .4 Compressor

4 . 1 Copying collection: initialisation and allocation .
4 .2 Semispace copying garbage collection
4.3 Copying with Cheney's work list
4.4 Approximately depth-first copying
4.5 Online object reordering

5 .1 Simple reference counting
5 .2 Deferred reference counting
5.3 Coalesced reference counting: write barrier
5.4 Coalesced reference counting: update reference counts .
5.5 The Recycler

6 .1 Abstract tracing garbage collection
6.2 Abstract reference counting garbage collection
6 .3 Abstract deferred reference counting garbage collection

7 .1 Sequential allocation
7.2 First-fit allocation
7.3 First fit allocation: an alternative way to split a cell
7.4 Next-fit allocation
7.5 Best-fit allocation
7.6 Searching in Cartesian trees
7.7 Segregated-fits allocation . .
7 .8 Incorporating alignment requirements

9 .1 Abstract generational garbage collection

XV

18
19
20
24
25
28
28

33
35
37
40

44
45
46
50
52

58
62
64
65
68

82
83
84

88
89
89
91
91
92
95
98

135

xvi LIST OF ALGORITHMS

10.1 Allocation in immix

1 1 . 1 Callee-save stack walking .
1 1 .2 Stack walking for non-modifying.func
1 1 .3 No callee-save stack walking
1 1 .4 Recording stored pointers with a sequential store buffer
1 1 .5 Misaligned access boundary check
1 1 .6 Recording stored pointers with a card table on SPARC .
1 1 .7 Recording stored pointers with Holzle's card table on SPARC . .
1 1 .8 Two-level card tables on SPARC
1 1 .9 Search a crossing map for a slot-recording card table
1 1 .10 Traversing chunked lists
1 1 . 1 1 Frame-based generational write barrier .

12 .1 Process finalisation queue .

153

175
178
179
195
196
198
198
198
200
204
205

219

13.1 At omi cE xchange spin lock 233
13.2 Test-and-Test-and-Set At omi cEx change spin lock 233
13.3 Spin locks implemented with the T e s tAndSet primitive 234
13.4 The C ompa reAndSwap and Comp a r eAndSet primitives 237
13.5 Trying to advance state atomically with compare-and-swap . 238
13.6 Semantics of load-linked /store-conditionally 238
13.7 Atomic state transition with load-linked /store-conditionally 239
13.8 Implementing compare-and-swap with load-linked/ store-conditionally . 239
13.9 Atomic arithmetic primitives . . 241
13 .10 Fallacious test and set patterns . 241
13 .11 Comp a reAndSwapWi de 242
13 .12 C omp a r eAndSwap2 242
13.13 Wait-free consensus using compare-and-swap . 243
13.14 Peterson's algorithm for mutual exclusion 247
13.15 Peterson's algorithm for N threads 247
13 .16 Consensus via mutual exclusion 247
13 .17 Simplified tx{3ry shared-memory termination . 249
13 .18 An tx{3ry-style work stealing termination algorithm 250
13.19 Delaying scans until useful 250
13.20 Delaying idle workers 251
13 .21 Symmetric termination detection 252
13 .22 Symmetric termination detection repaired 252
13.23 Termination via a counter . . 252
13 .24 Rendezvous via a counter . . 253
13 .25 Rendezvous with reset . . . 253
13 .26 Counting lock 254
13 .27 Lock-free implementation of a single-linked-list stack 257
13 .28 Fine-grained locking for a single-linked-list queue . . 258
13 .29 Fine-grained locking for a single-linked-list bounded queue . 259
13.30 Lock-free implementation of a single-linked-list queue . 260
13.31 Fine-grained locking of a circular buffer 261
13.32 Circular buffer with fewer variables 262
13 .33 Circular buffer with distinguishable empty slots 263
13 .34 Single reader I single writer lock-free buffer . . . 263
13.35 Unbounded lock-free buffer implemented with an array . 264

LIST OF ALGORITHMS

13 .36 Unbounded lock-free array buffer with increasing scan start .
13.37 Bounded lock-free buffer implemented with an array
13.38 Lock-free work stealing deque
13.39 Transactional memory version of a single-linked-list queue

14 .1 The Endo et al parallel mark-sweep algorithm .
14.2 Parallel marking with a bitmap
14.3 The Flood et al parallel mark-sweep algorithm .
14.4 Grey packet management
14.5 Parallel allocation with grey packets
14.6 Parallel tracing with grey packets
14.7 Parallel tracing with channels
14.8 Parallel copying
14.9 Push/pop synchronisation with rooms

15 .1 Grey mutator barriers .
(a) Steele barrier
(b) Boehm et a[barrier
(c) Dijkstra et al barrier .

15 .2 Black mutator barriers .
(a) Baker barrier
(b) Appel et a[barrier . .
(c) Abraham and Patel I Yuasa write barrier

15 .3 Pirinen black mutator hybrid barrier . . .

16 . 1 Mostly-concurrent mark-sweep allocation
16 .2 Mostly-concurrent marking
16 .3 Doligez-Leroy-Gonthier write barriers . .
16.4 Mostly-concurrent incremental tracing garbage collection

17.1 Mostly-concurrent copying
17.2 Brooks's indirection barriers
17.3 Herlihy and Moss owner update in place .
17.4 Sapphire phases
17.5 Sapphire pointer equality .

(a) Fast path
(b) Flip phase slow path
(c) Pointer forwarding .

17.6 Sapphire write barriers
(a) The Mark phase barrier
(b) The Copy phase barrier
(c) The Flip phase barrier

17 .7 Sapphire word copying procedure .
17.8 Pauseless read barrier

18 .1 Eager reference counting with locks .
18 .2 Eager reference counting with C ompareAndSwap is broken .
18.3 Eager reference counting with C ompareAndSwap2

18.4 Concurrent buffered reference counting
18.5 Sliding views: update reference counts
18 .6 Sliding views: the collector .
18 .7 Sliding views: Wr i t e

xvii

265
266
268
271

281
281
283
286
287
287
288
290
291

316
316
316
316
316
316
316
316
316

324
325
330
333

339
341
344
346
347
347
347
347
349
349
349
349
350
356

364
365
365
367
369
371
372

xviii LIST OF ALGORITHMS

18.8 Sliding views: New . 372

19 .1 Copying in the Blelloch and Cheng work-based collector 380
19.2 Mutator operations in the Blelloch and Cheng collector . 381
19.3 Collector code in the Blelloch and Cheng work-based collector 382
19.4 Stopping and starting the Blelloch and Cheng work-based collector 383
19.5 The Henriksson slack-based collector 388
19 .6 Mutator operations in the Henriksson slack-based collector 389
19.7 Replication copying for a uniprocessor 405
19.8 Copying and mutator barriers (while copying) in Staccato . 408
19.9 Heap access (while copying) in Staccato 409
19 .10 Copying and mutator barriers (while copying) in Chicken . 410
19 .11 Copying and mutator barriers (while copying) in Clover . . 41 1

List of Figures

1 . 1 Premature deletion o f an object may lead to errors
1 .2 Minimum and bounded mutator utilisation curves
1 .3 Roots, heap cells and references

2 .1 Marking with the tricolour abstraction
2.2 Marking with a FIFO prefetch buffer

3.1 Edwards's Two-Finger algorithm . .
3.2 Threading pointers
3 .3 The heap and metadata used by Compressor

4.1 Copying garbage collection: an example . . .
4.2 Copying a tree with different traversal orders
4.3 Moon's approximately depth-first copying . .
4.4 A FIFO prefetch buffer does not improve locality with copying
4.5 Mark/cons ratios for mark-sweep and copying collection

5 .1 Deferred reference counting schematic
5.2 Coalesced reference counting
5.3 Cyclic reference counting
5.4 The synchronous Recycler state transition diagram

6.1 A simple cycle

7. 1 Sequential allocation
7.2 A Java object header design for heap parsability .

9 . 1 Intergenerational pointers
9 .2 Semispace organisation in a generational collector
9.3 Survival rates with a copy count of 1 or 2 .
9.4 Shaw's bucket brigade system
9 .5 High water marks
9 .6 Appel's simple generational collector . . .
9 .7 Switching between copying and marking the young generation .
9.8 Renewal Older First garbage collection .
9.9 Deferred Older First garbage collection .
9 .10 Beltway configurations

10 .1 The Treadmill collector
10.2 The Train copying collector .

xix

2
8

1 1

2 1
27

33
36
39

47
49
51
51
55

61
66
71
72

85

88
99

112
1 17
1 18
1 19
120
122
127
128
129
131

138
142

XX LIST OF FIGURES

10.3 A 'futile' collection
10.4 Thread-local heaplet organisation
10 .5 A continuum of tracing collectors
10 .6 Incremental incrementally compacting garbage collection
10 .7 Allocation in immix
10 .8 Mark-Copy
10 .9 Ulterior reference counting schematic .

1 1 . 1 Conservative pointer finding
1 1 . 2 Stack scanning
1 1 .3 Crossing map with slot-remembering card table .
1 1 .4 A stack implemented as a chunked list

12 .1 Failure to release a resource
12 .2 Using a finaliser to release a resource
12.3 Object finalisation order
12.4 Restructuring to force finalisation order
12.5 Phantom objects and finalisation order .

14.1 Stop-the-world garbage collection . .
14.2 A global overflow set . .
14.3 Grey packets
14.4 Dominant-thread tracing
14.5 Chunk management in the lmai and Tick collector
14.6 Block states and transitions in the Imai and Tick collector
14.7 Block states and transitions in the Siegwart and Hirzel collector
14.8 Sliding compaction in the Flood et al collector
14.9 Inter-block compaction in the Abuaiadh et al collector

15 .1 Incremental and concurrent garbage collection
15.2 The lost object problem

16 .1 Barriers for on-the-fly collectors

17. 1 Compressor
1 7.2 Pauseless

18 . 1 Reference counting and races .
18.2 Concurrent coalesced reference counting .
18 .3 Sliding views snapshot

143
145
149
150
152
155
158

167
176
199
203

214
215
217
218
226

276
282
284
293
294
295
297
300
301

308
311

329

354
359

364
368
373

19 .1 Unpredictable frequency and duration of conventional collectors . 376
19.2 Heap structure in the Blelloch and Cheng work-based collector . 379
19 .3 Low mutator utilisation even with short collector pauses 385
19.4 Heap structure in the Henriksson slack-based collector . . 386
19.5 Lazy evacuation in the Henriksson slack-based collector . 387
19.6 Metronome utilisation . 391
19.7 Overall mutator utilisation in Metronome 392
19 .8 Mutator utilisation in Metronome during a collection cycle 392
19.9 MMU ur(M) for a perfectly scheduled time-based collector . 396
19 .10 Fragmented allocation in Schism 414

List of Tables

1 . 1 Modern languages and garbage collection 5

1 1 . 1 An example o f pointer tag encoding 169
1 1 .2 Tag encoding for the SPARC architecture . 169
1 1 .3 The crossing map encoding of Garthwaite et al 201

13 .1 Memory consistency models and possible reorderings . 236

14 .1 State transition logic for the Imai and Tick collector . . . 295
14.2 State transition logic for the Siegwart and Hirzel collector 297

16 .1 Lamport mark colours 327
16 .2 Phases in the Doligez and Gonthier collector . 331

xxi

Preface

Happy anniversary! As we near completion o f this book i t i s also the 50th anniversary of
the first papers on automatic dynamic memory management, or garbage collection, written
by McCarthy and Collins in 1960. Garbage collection was born in the Lisp programming
language. By a curious coincidence, we started writing on the tenth anniversary of the first
International Symposium on Memory Management, held in October 1998, almost exactly 40
years after the implementation of Lisp started in 1958. McCarthy [1978] recollects that the
first online demonstration was to an MIT Industrial Liaison Symposium. It was important
to make a good impression but unfortunately, mid-way through the demonstration, the
IBM 7041 exhausted (all of!) its 32k words of memory - McCarthy's team had omitted to
refresh the Lisp core image from a previous rehearsal - and its Flexowriter printed, at ten
characters per second,

THE GARBAGE COLLECTOR HAS BEEN CALL E D . S OME INTERE S T ING

STAT I S T I C S ARE AS FOLLOWS :

and so on at great length, taking all the time remaining for the demonstration. McCarthy
and the audience collapsed in laughter. Fifty years on, garbage collection is no joke but an
essential component of modem programming language implementations . Indeed, Visual
Basic (introduced in 1991) is probably the only widely used language developed since 1990
not to adopt automatic memory management, but even its modem incarnation, VB.NET
(2002), relies on the garbage collector in Microsoft's Common Language Runtime.

The advantages that garbage collected languages offer to software development are le
gion. It eliminates whole classes of bugs, such as attempting to follow dangling pointers
that still refer to memory that has been reclaimed or worse, reused in another context. It
is no longer possible to free memory that has already been freed. It reduces the chances of
programs leaking memory, although it cannot cure all errors of this kind . It greatly sim
plifies the construction and use of concurrent data structures [Herlihy and Shavit, 2008] .
Above all, the abstraction offered by garbage collection provides for better software engi
neering practice. It simplifies user interfaces and leads to code that is easier to understand
and to maintain, and hence more reliable. By removing memory management worries
from interfaces, it leads to code that is easier to reuse.

The memory management field has developed at an ever increasing rate in recent years,
in terms of both software and hardware. In 1996, a typical Intel Pentium processor had a
clock speed of 120 MHz although high-end workstations based on Digital's Alpha chips
could run as fast as 266 MHz! Today's top-end processors run at over 3 GHz and multicore
chips are ubiquitous. The size of main memory deployed has similarly increased nearly
1000-fold, from a few megabytes to four gigabytes being common in desktop machines

1The IBM 704's legacy to the Lisp world includes the terms car and cdr. The 704's 36-bit words included two
15-bit parts, the address and decrement parts. Lisp's list or cons cells stored pointers in these two parts. The head
of the list, the car, could be obtained using the 704's car 'Contents of the Address part of Register ' instruction,
and the tail, the cdr, with its cdr 'Contents of the Decrement part of Register ' instruction.

xxiii

xxiv PREFACE

today. Nevertheless, the advances made in the performance of DRAM memory continue
to lag well behind those of processors. At that time, we wrote that we did not argue that
"garbage collection is a panacea for all memory management problems," and in particu
lar pointed out that "the problem of garbage collection for hard real-time programming
[where deadlines must be met without fail] has yet to be solved" [Jones, 1996] . Yet today,
hard real-time collectors have moved out of the research laboratory and into commercially
deployed systems. Nevertheless, although many problems have been solved by modem
garbage collector implementations, new hardware, new environments and new applica
tions continue to throw up new research challenges for memory management.

The audience

In this book, we have tried to bring together the wealth of experience gathered by au
tomatic memory management researchers and developers over the past fifty years . The
literature is huge - our online bibliography contains 2,500 entries at the time of writing.
We discuss and compare the most important approaches and state-of-the-art techniques
in a single, accessible framework . We have taken care to present algorithms and concepts
using a consistent style and terminology. These are described in detail, often with pseu
docode and illustrations. Where it is critical to performance, we pay attention to low level
details, such as the choice of primitive operations for synchronisation or how hardware
components such as caches influence algorithm design.

In particular, we address the new challenges presented to garbage collection by ad
vances in hardware and software over the last decade or so. The gap in performance
between processors and memory has by and large continued to widen. Processor clock
speeds have increased, more and more cores are being placed on each die and config
urations with multiple processor modules are common. This book focuses strongly on
the consequences of these changes for designers and implementers of high performance
garbage collectors . Their algorithms must take locality into account since cache perfor
mance is critical . Increasing numbers of application programs are multithreaded and run
on multicore processors. Memory managers must be designed to avoid becoming a se
quential bottleneck. On the other hand, the garbage collector itself should be designed to
take advantage of the parallelism provided by new hardware. In Jones [1996] , we did not
consider at all how we might run multiple collector threads in parallel. We devoted but a
single chapter to incremental and concurrent collection, which seemed exotic then.

We are sensitive throughout this book to the opportunities and limitations provided by
modem hardware. We address locality issues throughout. From the outset, we assume
that application programs may be multithreaded . Although we cover many of the more
simple and traditional algorithms, we also devote nearly half of the book to discussing
parallel, incremental, concurrent and real-time garbage collection.

We hope that this survey will help postgraduate students, researchers and developers
who are interested in the implementation of programming languages . The book should
also be useful to undergraduate students taking advanced courses in programming lan
guages, compiler construction, software engineering or operating systems. Furthermore,
we hope that it will give professional programmers better insight into the issues that the
garbage collector faces and how different collectors work and that, armed with this knowl
edge, they will be better able to select and configure the choice of garbage collectors that
many languages offer. The almost universal adoption of garbage collection by modem
programming languages makes a thorough understanding of this topic essential for any
programmer.

XXV

Structure of the book

Chapter 2 starts by considering why automatic storage reclamation is desirable, and briefly
introduces the ways in which different garbage collection strategies can be compared. It
ends with a description of the abstractions and pseudocode notation used throughout the
rest of the book.

The next four chapters discuss the classical garbage collection building blocks in de
tail. We look at mark-sweep, mark-compact and copying garbage collection, followed by
reference counting. These strategies are covered in depth, with particular focus on their
implementation on modem hardware. Readers looking for a gentler introduction might
also consult our earlier book Garbage Collection: Algorithms for Automatic Dynamic Memory
Management, Richard Jones and Rafael Lins, Wiley, 1996. The next chapter compares the
strategies and algorithms covered in Chapters 2 to 5 in depth, assessing their strengths,
weaknesses and applicability to different contexts.

How storage is reclaimed depends on how it is allocated. Chapter 7 considers different
techniques for allocating memory and examines the extent to which automatic garbage
collection leads to allocator policies that are different to those of explicit ma l l oc/ f r e e

memory management.
The first seven chapters make the implicit assumption that all objects in the heap are

managed in the same way. However, there are many reasons why that would be a poor
design. Chapters 8 to 10 consider why we might want to partition the heap into different
spaces, and how we might manage those spaces. We look at generational garbage col
lection, one of the most successful strategies for managing objects, how to handle large
objects and many other partitioned schemes.

The interface with the rest of the run-time system is one of the trickiest aspects of build
ing a collector. 2 We devote Chapter 11 to the run-time interface, including finding pointers,
safe points at which to collect, and read and write barriers, and Chapter 12 to language
specific concerns such as finalisation and weak references.

Next we tum our attention to concurrency. We set the scene in Chapter 13 by examining
what modem hardware presents to the garbage collection implementer, and looking at
algorithms for synchronisation, progress, termination and consensus. In Chapter 14 we see
how we can execute multiple collector threads in parallel while all the application threads
are halted. In the next four chapters we consider a wide range of concurrent collectors, in
which we relax this 'stop-the-world' requirement in order to allow collection to take place
with only the briefest, if any, interruptions to the user program. Finally, Chapter 19 takes
this to its most challenging extreme, garbage collection for hard real-time systems.

At the end of each chapter, we offer a summary of issues to consider. These are intended
to provoke the reader into asking what requirements their system has and how they can
be met. What questions need to be answered about the behaviour of the client program,
their operating system or the underlying hardware? These summaries are not intended as
a substitute for reading the chapter. Above all, they are not intended as canned solutions,
but we hope that they will provide a focus for further analysis.

Finally, what is missing from the book? We have only considered automatic techniques
for memory management embedded in the run-time system. Thus, even when a language
specification mandates garbage collection, we have not discussed in much depth other
mechanisms for memory management that it may also support. The most obvious example
is the use of 'regions' [Tofte and Talpin, 1994), most prominently used in the Real-Time
Specification for Java. We pay attention only briefly to questions of region inferencing or
stack allocation and very little at all to other compile-time analyses intended to replace, or

2 And one that we passed on in Jones [1996]!

xxvi PREFACE

at least assist, garbage collection. Neither do we address how best to use techniques such
as reference counting in the client program, although this is popular in languages like C++.
Finally, the last decade has seen little new research on distributed garbage collection. In
many ways, this is a shame since we expect lessons learnt in that field also to be useful
to those developing collectors for the next generation of machines with heterogeneous
collections of highly non-uniform memory architectures. Nevertheless, we do not discuss
distributed garbage collection here.

Online resources

The web page accompanying the book can be found at

ht tp : / / www . gchandbo o k . org

I t includes a number of resources including our comprehensive bibliography. The bibliog
raphy at the end of this book contains over 400 references. However, our comprehensive
online database contains over 2500 garbage collection related publications. This database
can be searched online or downloaded as BIBTEX, PostScript or PDF. As well as details of
the article, papers, books, theses and so on, the bibliography also contains abstracts for
some entries and URLs or DOis for most of the electronically available ones.

We continually strive to keep this bibliography up to date as a service to the commu
nity. Richard (R.E.Jones@kent.ac .uk) would be very grateful to receive further entries (or
corrections).

Acknowledgements

We thank our many colleagues for their support for this new book. I t is certain that with
out their encouragement (and pressure), this work would not have got off the ground.
In particular, we thank Steve Blackburn, Hans Boehm, David Bacon, Cliff Click, David
Detlefs, Daniel Frampton, Robin Gamer, Barry Hayes, Laurence Hellyer, Maurice Herlihy,
Martin Hirzel, Tomas Kalibera, Doug Lea, Simon Marlow, Alan Mycroft, Cosmin Oancea,
Erez Petrank, Fil Pizlo, Tony Printezis, John Reppy, David Siegwart, Gil Tene and Mario
Wolczko, all of whom have answered our many questions or given us excellent feedback
on early drafts. We also pay tribute to the many computer scientists who have worked
on automatic memory management since 1958: without them there would be nothing to
write about.

We are very grateful to Randi Cohen, our long-suffering editor at Taylor and Francis,
for her support and patience. She has always been quick to offer help and slow to chide
us for our tardiness. We also thank Elizabeth Haylett and the Society of Authors3 for her
service, which we recommend highly to other authors.

Richard jones, Antony Hosking, Eliot Moss

Above all, I am grateful to Robbie. How she has borne the stress of another book,
whose writing has yet again stretched well over the planned two years, I will never know.
I owe you everything! I also doubt whether this book would have seen the light of day
without the inexhaustible enthusiasm of my co-authors. Tony, Eliot, it has been a pleasure
and an honour writing with knowledgeable and diligent colleagues.

Richard Jones

In the summer of 2002 Richard and I hatched plans to write a follow-up to his 1996
book. There had been lots of new work on GC in those six years, and it seemed there
was demand for an update. Little did we know then that it would be another nine years
before the current volume would appear. Richard, your patience is much appreciated. As
conception turned into concrete planning, Eliot's offer to pitch in was gratefully accepted;
without his sharing the load we would still be labouring anxiously. Much of the early
planning and writing was carried out while I was on sabbatical with Richard in 2008,
with funding from Britain's Engineering and Physical Sciences Research Council and the
United States' National Science Foundation whose support we gratefully acknowledge .
Mandi, without your encouragement and willingness to live out our own Canterbury tale
this project would not have been possible.

Antony Hosking

3 h t t p : / / www . s o c i e t y o fau t h or s . o r g .

xxvii

xxviii ACKNOWLEDGEMENTS

Thank you to my co-authors for inviting me into their project, already largely conceived
and being proposed for publication. You were a pleasure to work with (as always), and
tolerant of my sometimes idiosyncratic writing style. A formal thank you is also due the
Royal Academy of Engineering, who supported my visit to the UK in November 2009,
which greatly advanced the book. Other funding agencies supported the work indirectly
by helping us attend conferences and meetings at which we could gain some face to face
working time for the book as well. And most of all many thanks to my "girls," who en
dured my absences, physical and otherwise. Your support was essential and is deeply
appreciated!

Eliot Moss

Authors

Richard Jones i s Professor o f Computer Systems a t the School of Computing, University
of Kent, Canterbury. He received a BA in Mathematics from Oxford University in 1976.
He spent a few years teaching before returning to higher education at the University of
Kent, where he has remained ever since, receiving an MSc in Computer Science in 1989.
In 1998, he co-founded the International Symposium on Memory Management, of which
he was the inaugural Programme Chair. He has published numerous papers on garbage
collection, heap visualisation and electronic publishing, and he regularly sits on the pro
gramme committees of leading international conferences. He is a member of the Editorial
Board of Software Practice and Experience. He was made an Honorary Fellow of the Univer
sity of Glasgow in 2005 in recognition of his research and scholarship in dynamic memory
management, and a Distinguished Scientist of the Association for Computing Machinery
in 2006. He is married, with three children, and in his spare time he races Dart 18 catama
rans.

Antony Hosking is an Associate Professor in the Department of Computer Science at
Purdue University, West Lafayette . He received a BSc in Mathematical Sciences from the
University of Adelaide, Australia, in 1985, and an MSc in Computer Science from the
University of Waikato, New Zealand, in 1987. He continued his graduate studies at the
University of Massachusetts Amherst, receiving a PhD in Computer Science in 1995. His
work is in the area of programming language design and implementation, with specific
interests in database and persistent programming languages, object-oriented database sys
tems, dynamic memory management, compiler optimisations, and architectural support
for programming languages and applications. He is a Senior Member of the Association
for Computing Machinery and Member of the Institute of Electrical and Electronics Engi
neers. He regularly serves on programme and steering committees of major conferences,
mostly focused on programming language design and implementation. He is married,
with three children. When the opportunity arises, he most enjoys sitting somewhere be
hind the bowler 's arm on the first day of any Test match at the Adelaide Oval.

Eliot Moss is a Professor in the Department of Computer Science at the University of
Massachusetts Amherst. He received a BSEE in 1975, MSEE in 1978, and PhD in Computer
Science in 1981, all from the Massachusetts Institute of Technology, Cambridge. After four
years of military service, he joined the Computer Science faculty at the University of Mas
sachusetts Amherst. He works in the area of programming languages and their implemen
tation, and has built garbage collectors since 1978. In addition to his research on automatic
memory management, he is known for his work on persistent programming languages,
virtual machine implementation, transactional programming and transactional memory.
He worked with IBM researchers to license the Jikes RVM Java virtual machine for aca
demic research, which eventually led to its release as an open source project. In 2007 he

xxix

X X X A UTHORS

was named a Fellow of the Association for Computing Machinery and in 2009 a Fellow of
the Institute of Electrical and Electronics Engineers. He served for four years as Secretary
of the Association for Computing Machinery's Special Interest Group on Programming
Languages, and served on many programme and steering committees of the significant
venues related to his areas of research. Ordained a priest of the Episcopal Church in 2005,
he leads a congregation in addition to his full-time academic position. He is married, with
two children. He enjoys listening to recorded books and movie-going, and has been known
to play the harp .

Chapter 1

Introduction

Developers are increasingly turning to managed languages and run-time systems for the
many virtues they offer, from the increased security they bestow to code to the flexibility
they provide by abstracting away from operating system and architecture. The benefits of
managed code are widely accepted [Butters, 2007] . Because many services are provided by
the virtual machine, programmers have less code to write. Code is safer if it is type-safe
and if the run-time system verifies code as it is loaded, checks for resource access viola
tions and the bounds of arrays and other collections, and manages memory automatically.
Deployment costs are lower since it is easier to deploy applications to different platforms,
even if the mantra 'write once, run anywhere' is over-optimistic. Consequently, program
mers can spend a greater proportion of development time on the logic of their application.

Almost all modern programming languages make use of dynamic memory allocation.
This allows objects to be allocated and deallocated even if their total size was not known
at the time that the program was compiled, and if their lifetime may exceed that of the
subroutine activation1 that allocated them. A dynamically allocated object is stored in a
heap, rather than on the stack (in the activation record or stack frame of the procedure that
allocated it) or statically (whereby the name of an object is bound to a storage location
known at compile or link time) . Heap allocation is particularly important because it allows
the programmer:

• to choose dynamically the size of new objects (thus avoiding program failure through
exceeding hard-coded limits on arrays);

• to define and use recursive data structures such as lists, trees and maps;

• to return newly created objects to the parent procedure (allowing, for example, fac
tory methods);

• to return a function as the result of another function (for example, closures or suspen-
sions in functional languages) .

Heap allocated objects are accessed through references . Typically, a reference i s a pointer to
the object (that is, the address in memory of the object). However, a reference may alterna
tively refer to an object only indirectly, for instance through a handle which in turn points
to the object. Handles offer the advantage of allowing an object to be relocated (updating
its handle) without having to change every reference to that object/handle throughout the
program.

1We shall tend to use the terms method,function, procedure and subroutine interchangeably.

1

2 CHAPTER 1 . INTRODUCTION

A I
8 ; - - - - : - - - - ; CD

____ _. -+---.-: : - 4 - - - � : '----'----' � - - - - � - - - - : '

Figure 1.1: Premature deletion of an object may lead to errors. Here B has
been freed. The live object A now contains a dangling pointer. The space
occupied by C has leaked: C is not reachable but it cannot be freed.

1.1 Explicit deallocation

Any non-trivial program, running in a finite amount of memory, will need from time to
time to recover the storage used by objects that are no longer needed by the computation.
Memory used by heap objects can be reclaimed using explicit deallocation (for example,
with C's f r e e or C++'s de l e t e operator) or automatically by the run-time system, using
reference counting [Collins, 1960] or a tracing garbage collector [McCarthy, 1960] . Manual
reclamation risks programming errors; these may arise in two ways.

Memory may be freed prematurely, while there are still references to it. Such a reference
is called a dangling pointer (see Figure 1 . 1) . If the program subsequently follows a dangling
pointer, the result is unpredictable. The application programmer has no control over what
happens to deallocated memory, so the run-time system may choose, among other options,
to clear (fill with zeroes) the space used by the deleted object, to allocate a new object in
that space or to return that memory to the operating system. The best that the programmer
can hope for is that the program crashes immediately. However, it is more likely that it will
continue for millions of cycles before crashing (making debugging difficult) or simply run
to completion but produce incorrect results (which might not even be easy to detect) . One
way to detect dangling references is to use fat pointers. These can be used to hold the ver
sion number of their target as well as the pointer itself. Operations such as dereferencing
must then check that the version number stored in the pointer matches that stored in the
object. However, this approach is mostly restricted to use with debugging tools because of
its overhead, and it is not completely reliable.2

The second kind of error is that the programmer may fail to free an object no longer
required by the program, leading to a memory leak. In small programs, leaks may be benign
but in large programs they are likely to lead either to substantial performance degradation
(as the memory manager struggles to satisfy new allocation requests) or to failure (if the
program runs out of memory) . Often a single incorrect deallocation may lead to both
dangling pointers and memory leaks (as in Figure 1 . 1) .

Programming errors of this kind are particularly prevalent in the presence of sharing,
when two or more subroutines may hold references to an object. This is even more prob
lematic for concurrent programming when two or more threads may reference an object.
With the increasing ubiquity of multicore processors, considerable effort has gone into the
construction of libraries of data structures that are thread-safe . Algorithms that access
these structures need to guard against a number of problems, including deadlock, livelock
and ABA3 errors. Automatic memory management eases the construction of concurrent
algorithms significantly (for example, by eliminating certain ABA problems) . Without this,
programming solutions are much more complicated [Herlihy and Shavit, 2008] .

The issue is more fundamental than simply being a matter of programmers needing to
take more care. Difficulties of correct memory management are often inherent to the pro-

2Tools such as the memc h e c k leak detector used with the val gr i nd open source instrumentation framework
(see h t t p : I / val g r i nd . o r g) are more reliable, but even slower. There are also a number of commercially
available programs for helping to debug memory issues.

3 ABA error: a memory location is written (A), overwritten (B) and then overwritten again with the previous
value A (see Chapter 13).

1 .2. A UTOMATIC DYNAMIC MEMORY MANAGEMENT 3

gramming problem in question.4 More generally, safe deallocation of an object is complex
because, as Wilson [1994] points out, "liveness is a global property", whereas the decision
to call f r e e on a variable is a local one.

So how do programmers cope in languages not supported by automatic dynamic mem
ory management? Considerable effort has been invested in resolving this dilemma. The
key advice has been to be consistent in the way that they manage the ownership of ob
jects [Belotsky, 2003; Cline and Lomow, 1995] . Belotsky [2003] and others offer several
possible strategies for C++. First, programmers should avoid heap allocation altogether,
wherever possible. For example, objects can be allocated on the stack instead. When the
objects' creating method returns, the popping of the stack will free these objects automat
ically. Secondly, programmers should pass and return objects by value, by copying the
full contents of a parameter I result rather than by passing references. Clearly both of these
approaches remove all allocation/ deallocation errors but they do so at the cost of both
increased memory pressure and the loss of sharing. In some circumstances it may be ap
propriate to use custom allocators, for example, that manage a pool of objects . At the end
of a program phase, the entire pool can be freed as a whole .

C++ has seen several attempts to use special pointer classes and templates to improve
memory management. These overload normal pointer operations in order to provide safe
storage reclamation. However, such smart poin ters have several limitations. The aut o_pt r

class template cannot be used with the Standard Template Library and will be deprecated
in the expected next edition of the C++ standard [Boehm and Spertus, 2009] .5 It will be re
placed by an improved u n i que_pt r that provides strict ownership semantics that allow
the target object to be deleted when the unique pointer is. The standard will also include
a reference counted s h a r e d_pt r,6 but these also have limitations. Reference counted
pointers are unable to manage self-referential (cyclic) data structures. Most smart pointers
are provided as libraries, which restricts their applicability if efficiency is a concern. Pos
sibly, they are most appropriately used to manage very large blocks, references to which
are rarely assigned or passed, in which case they might be significantly cheaper than trac
ing collection. On the other hand, without the cooperation of the compiler and run-time
system, reference counted pointers are not an efficient, general purpose solution to the
management of small objects, especially if pointer manipulation is to be thread-safe.

The plethora of strategies for safe manual memory management throws up yet another
problem. If it is essential for the programmer to manage object ownership consistently,
which approach should she adopt? This is particularly problematic when using library
code. Which approach does the library take? Do all the libraries used by the program use
the same approach?

1.2 Automatic dynamic memory management

Automatic dynamic memory management resolves many of these issues. Garbage collection
(GC) prevents dangling pointers being created: an object is reclaimed only when there is
no pointer to it from a reachable object. Conversely, in principle all garbage is guaranteed
to be freed - any object that is unreachable will eventually be reclaimed by the collector
- with two caveats. The first is that tracing collection uses a definition of 'garbage' that is
decidable and may not include all objects that will never be accessed again. The second
is that in practice, as we shall see in later chapters, garbage collector implementations

4 "When C++ is your hammer, everything looks like a thumb," Steven M. Haflich, Chair of the NCITS/}13
technical committee for ANSI standard for Common Lisp.

5The final committee draft for the next ISO C++ standard is currently referred to as C++Ox.
6 h t t p : / / bo o s t . o rg

4 CHAPTER 1 . INTRODUCTION

may choose for efficiency reasons not to reclaim some objects. Only the collector releases
objects so the double-freeing problem cannot arise. All reclamation decisions are deferred
to the collector, which has global knowledge of the structure of objects in the heap and the
threads that can access them. The problems of explicit deallocation were largely due to
the difficulty of making a global decision in a local context. Automatic dynamic memory
management simply finesses this problem.

Above all, memory management is a software engineering issue. Well-designed pro
grams are built from components (in the loosest sense of the term) that are highly cohesive
and loosely coupled. Increasing the cohesion of modules makes programs easier to main
tain. Ideally, a programmer should be able to understand the behaviour of a module from
the code of that module alone, or at worst a few closely related modules. Reducing the cou
pling between modules means that the behaviour of one module is not dependent on the
implementation of another module. As far as correct memory management is concerned,
this means that modules should not have to know the rules of the memory management
game played by other modules . In contrast, explicit memory management goes against
sound software engineering principles of minimal communication between components;
it clutters interfaces, either explicitly through additional parameters to communicate own
ership rights, or implicitly by requiring programmers to conform to particular idioms. Re
quiring code to understand the rules of engagement limits the reusability of components .

The key argument in favour of garbage collection is not just that it simplifies coding
- which it does - but that it uncouples the problem of memory management from inter
faces, rather than scattering it throughout the code. It improves reusability. This is why
garbage collection, in one form or another, has been a requirement of almost all modern
languages (see Table 1 . 1) . It is even expected that the next C++ standard will require code
to be written so as to allow a garbage-collected implementation [Boehm and Spertus, 2009] .
There is substantial evidence that managed code, including automatic memory manage
ment, reduces development costs [Butters, 2007] . Unfortunately, most of this evidence is
anecdotal or compares development in different languages and systems (hence comparing
more than just memory management strategies), and few detailed comparative studies
have been performed. Nevertheless, one author has suggested that memory management
should be the prime concern in the design of software for complex systems [Nagle, 1995] .
Rovner [1985] estimated that 40% of development time for Xerox's Mesa system was spent
on getting memory management correct. Possibly the strongest corroboration of the case
for automatic dynamic memory management is an indirect, economic one: the continued
existence of a wide variety of vendors and tools for detection of memory errors .

We do not claim that garbage collection is a silver bullet that will eradicate all memory
related programming errors or that it is applicable in all situations. Memory leaks are one
of the most prevalent kinds of memory error. Although garbage collection tends to reduce
the chance of memory leaks, it does not guarantee to eliminate them. If an object structure
becomes unreachable to the rest of the program (for example, through any chain of pointers
from the known roots), then the garbage collector will reclaim it. Since this is the only way
that an object can be deleted, dangling pointers cannot arise. Furthermore, if deletion of an
object causes its children to become unreachable, they too will be reclaimed. Thus, neither
of the scenarios of Figure 1 . 1 are possible. However, garbage collection cannot guarantee
the absence of space leaks . It has no answer to the problem of a data structure that is still
reachable, but grows without limit (for example, if a programmer repeatedly adds data to
a cache but never removes objects from that cache), or that is reachable and simply never
accessed again.

Automatic dynamic memory management is designed to do just what it says. Some
critics of garbage collection have complained that it is unable to provide general resource

1 .3. COMPARING GARBAGE COLLECTION ALGORITHMS

ActionScript (2000} Algol-68 (1965)
AppleScript (1993) AspectJ (2001)
Beta (1983) C# (1999)
Managed C++ (2002) Cecil (1992)
Clean (1984) CLU (1974)
Dylan (1992) Dynace (1993)
Eiffel (1986) Elasti-C (1997)
Erlang (1990) Euphoria (1993)
Fortress (2006) Green (1998)
Groovy (2004) Haskell (1990)
Icon (1977) Java (1994)
Liana (1991) Limbo (1996}
LotusScript (1995) Lua (1994)
MATLAB (1970s) Mercury (1993)
ML (1990) Modula-3 (1988)
Objective-C (2007-) Obliq (1993)
Pike (1996) PHP (1995)
POP-2 (1970) PostScript (1982)
Python (1991) Rexx (1979)
Sather (1990) Scala (2003)
Self (1986) SETL (1969)
SISAL (1983) Smalltalk (1972)
Squeak (1996) Tel (1990)
VB.NET (2001) VBScript (1996)
VHDL (1987) X10 (2004}

APL (1964)
Awk (1977)
Cyclone (2006)
Cedar (1983)
D (2007)
E (1997)
Emerald (1988)
F# (2005)
Go (2010)
Hope (1978)
JavaScript (1994)
Lingo (1991)
Mathematica (1987)
Miranda (1985)
Oberon (1985)
Perl (1986)
Pliant (1999)
Prolog (1972)
Ruby (1993)
Scheme (1975)
Simula (1964)
SNOBOL (1962}
Theta (1994)
Visual Basic (1991)
YAFL (1993)

Table 1.1: Modern languages and garbage collection. These languages all
rely on garbage collection.

Online sources: Dictionary of Programming Languages, Wikipedia and Coogle.

5

management, for example, to close files or windows promptly after their last use. How
ever, this is unfair. Garbage collection is not a universal panacea. It attacks and solves
a specific question: the management of memory resources. Nevertheless, the problem of
general resource management in a garbage collected language is a substantial one. With
explicitly-managed systems there is a straightforward and natural coupling between mem
ory reclamation and the disposal of other resources. Automatic memory management in
troduces the problem of how to structure resource management in the absence of a natural
coupling. However, it is interesting to observe that many resource release scenarios re
quire something akin to a collector in order to detect whether the resource is still in use
(reachable) from the rest of the program.

1.3 Comparing garbage collection algorithms

In this book we discuss a wide range of collectors, each designed with different workloads,
hardware contexts and performance requirements in mind. Unfortunately, it is never pos
sible to identify a 'best' collector for all configurations. For example, Fitzgerald and Tarditi
[2000] found in a study of 20 benchmarks and six collectors that for every collector there
was at least one benchmark that would run at least 1 5% faster with a more appropriate

6 CHAPTER 1 . INTRODUCTION

collector. Singer et al [2007b] applied machine learning techniques to predict the best col
lector configuration for a particular program. Others have explored allowing java virtual
machines to switch collectors as they run if they believe that the characteristics of the work
load being run would benefit from a different collector [Printezis, 2001; Soman et al, 2004] .
In this section, we examine the metrics by which collectors can be compared. Nevertheless,
such comparisons are difficult in both principle and practice . Details of implementation,
locality and the practical significance of the constants in algorithmic complexity formulae
make them less than perfect guides to practice. Moreover, the metrics are not independent
variables. Not only does the performance of an algorithm depend on the topology and
volume of objects in the heap, but also on the access patterns of the application. Worse,
the tuning options in production virtual machines are inter-connected . Variation of one
parameter to achieve a particular goal may lead to other, contradictory effects .

Safety

The prime consideration is that garbage collection should be safe: the collector must never
reclaim the storage of live objects. However, safety comes with a cost, particularly for
concurrent collectors (see Chapter 15) . The safety of conservative collection, which receives
no assistance from the compiler or run-time system, may in principle be vulnerable to
certain compiler optimisations that disguise pointers [Jones, 1996, Chapter 9] .

Throughput

A common goal for end users is that their programs should run faster. However, there
are several aspects to this. One is that the overall time spent in garbage collection should
be as low as possible. This is commonly referred to in the literature as the mark/cons ratio,
comparing the early Lisp activities of the collector ('marking' live objects) and the mutator
(creating or 'consing' new list cells) . However, the user is most likely to want the applica
tion as a whole (mutator plus collector) to execute in as little time as possible . In most well
designed configurations, much more CPU time is spent in the mutator than the collector.
Therefore it may be worthwhile trading some collector performance for increased mutator
throughput. For example, systems managed by mark-sweep collection occasionally per
form more expensive compacting phases in order to reduce fragmentation so as to improve
mutator allocation performance (and possibly mutator performance more generally) .

Completeness and promptness

Ideally, garbage collection should be complete: eventually, all garbage in the heap should be
reclaimed. However, this is not always possible nor even desirable. Pure reference count
ing collectors, for example, are unable to reclaim cyclic garbage (self-referential structures) .
For performance reasons, i t may be desirable not to collect the whole heap at every collec
tion cycle. For example, generational collectors segregate objects by their age into two or
more regions called generations (we discuss generational garbage collection in Chapter 9).
By concentrating effort on the youngest generation, generational collectors can both im
prove total collection time and reduce the average pause time for individual collections.

Concurrent collectors interleave the execution of mutators and collectors; the goal of
such collectors is to avoid, or at least bound, interruptions to the user program. One con
sequence is that objects that become garbage after a collection cycle has started may not be
reclaimed until the end of the next cycle; such objects are called floating garbage. Hence, in a

1 .3. COMPARING GARBAGE COLLECTION ALGORITHMS 7

concurrent setting it may be more appropriate to define completeness as eventual reclama
tion of all garbage, as opposed to reclamation within one cycle. Different collection algo
rithms may vary in their promptness of reclamation, again leading to time/ space trade-offs .

Pause time

On the other hand, an important requirement may be to minimise the collector 's intru
sion on program execution. Many collectors introduce pauses into a program's execution
because they stop all mutator threads while collecting garbage. It is clearly desirable to
make these pauses as short as possible. This might be particularly important for interac
tive applications or servers handling transactions (when failure to meet a deadline might
lead to the transaction being retried, thus building up a backlog of work) . However, mech
anisms for limiting pause times may have side-effects, as we shall see in more detail in
later chapters . For example, generational collectors address this goal by frequently and
quickly collecting a small nursery region, and only occasionally collecting larger, older
generations . Clearly, when tuning a generational collector, there is a balance to be struck
between the sizes of the generations, and hence not only the pause times required to collect
different generations but also the frequency of collections . However, because the sources
of some inter-generational pointers must be recorded, generational collection imposes a
small tax on pointer write operations by the mutator.

Parallel collectors stop the world to collect but reduce pause times by employing multi
ple threads. Concurrent and incremental collectors aim to reduce pause times still further
by occasionally performing a small quantum of collection work interleaved or in parallel
with mutator actions. This too requires taxation of the mutator in order to ensure correct
synchronisation between mutators and collectors . As we shall see in Chapter 15, there are
different ways to handle this synchronisation. The choice of mechanism affects both space
and time costs . It also affects termination of a garbage collection cycle . The cost of the
taxation on mutator time depends on how and which manipulations of the heap by the
mutator (loads or stores) are recorded. The costs on space, and also collector termination,
depends on how much floating garbage (see below) a system tolerates . Multiple muta
tor and collector threads add to the complexity. In any case, decreasing pause time will
increase overall processing time (decrease processing rate) .

Maximum or average pause times on their own are not adequate measures . It is also
important that the mutator makes progress. The distribution of pause times is therefore
also of interest. There are a number of ways that pause time distributions may be reported.
The simplest might be a measure of variation such as standard deviation or a graphical rep
resentation of the distribution. More interesting measures include minimum mutator utili
sation (MMU) and bounded mutator utilisation (BMU). Both the MMU [Cheng and Blelloch,
2001) and BMU [Sachindran et al, 2004] measures seek to display concisely the (minimum)
fraction of time spent in the mutator, for any given time window. The x-axis of Figure 1 .2
represents time, from 0 to total execution time, and its y-axis the fraction of CPU time spent
in the mutator (utilisation) . Thus, not only do MMU and BMU curves show total garbage
collection time as a fraction of overall execution time (the y-intercept, at the top right of the
curves is the mutators' overall share of processor time), but they also show the maximum
pause time (the longest window for which the mutator 's CPU utilisation is zero) as the
x-intercept. In general, curves that are higher and more to the left are preferable since they
tend towards a higher mutator utilisation for a smaller maximum pause. Note that the
MMU is the minimum mutator utilisation (y) in any time window (x) . As a consequence
it is possible for a larger window to have a lower MMU than a smaller window, leading
to dips in the curve. In contrast, BMU curves give the MMU in that time window or any
larger one. Monotonically increasing BMU curves are perhaps more intuitive than MMU.

8

· · · · · · · · · · · · · M M U

-- BMU

1 10 100
time (ms)

CHAPTER 1 . INTRODUCTION

1000

100%

80%

60%

40%

20%

0%
10000

Figure 1.2: Minimum mutator utilisation and bounded mutator utilisation
curves display concisely the (minimum) fraction of time spent in the mutator,
for any given time window. MMU is the minimum mutator utilisation (y)
in any time window (x) whereas BMU is minimum mutator utilisation in
that time window or any larger one. In both cases, the x-intercept gives the
maximum pause time and the y-intercept is the overall fraction of processor
time used by the mutator.

Space overhead

The goal of memory management is safe and efficient use of space . Different memory
managers, both explicit and automatic, impose different space overheads. Some garbage
collectors may impose per-object space costs (for example, to store reference counts); oth
ers may be able to smuggle these overheads into objects' existing layouts (for example, a
mark bit can often be hidden in a header word, or a forwarding pointer may be written
over user data) . Collectors may have a per-heap space overhead. For example, copying
collectors divide the heap into two semispaces. Only one semispace is available to the mu
tator at any time; the other is held as a copy reserve into which the collector will evacuate
live objects at collection time. Collectors may require auxiliary data structures. Tracing
collectors need mark stacks to guide the traversal of the pointer graph in the heap; they
may also store mark bits in separate bitmap tables rather than in the objects themselves.
Concurrent collectors, or collectors that divide the heap into independently collected re
gions, require remembered sets that record where the mutator has changed the value of
pointers, or the locations of pointers that span regions, respectively.

Optimisations for specific languages

Garbage collection algorithms can also be characterised by their applicability to different
language paradigms. Functional languages in particular have offered a rich vein for op
timisations related to memory management. Some languages, such as ML, distinguish
mutable from immutable data. Pure functional languages, such as Haskell, go further and
do not allow the user to modify any values (programs are referentially transparent) . Inter
nally, however, they typically update data structures at most once (from a 'thunk' to weak

1 .4. A PERFORMANCE DISADVANTAGE? 9

head normal form); this gives multi-generation collectors opportunities to promote fully
evaluated data structures eagerly (see Chapter 9) . Authors have also suggested complete
mechanisms for handling cyclic data structures with reference counting. Declarative lan
guages may also allow other mechanisms for efficient management of heap spaces . Any
data created in a logic language after a 'choice point' becomes unreachable after the pro
gram backtracks to that point. With a memory manager that keeps objects laid out in the
heap in their order of allocation, memory allocated after the choice point can be reclaimed
in constant time. Conversely, different language definitions may make specific require
ments of the collector. The most notable are the ability to deal with a variety of pointer
strengths and the need for the collector to cause dead objects to be finalised .

Scalability and portability

The final metrics we identify here are scalability and portability. With the increasing preva
lence of multicore hardware on the desktop and even laptop (rather than just in large
servers), it is becoming increasingly important that garbage collection can take advantage
of the parallel hardware on offer. Furthermore, we expect parallel hardware to increase
in scale (number of cores and sockets) and for heterogeneous processors to become more
common. The demands on servers are also increasing, as heap sizes move into the tens
or hundreds of gigabytes scale and as transaction loads increase. A number of collection
algorithms depend on support from the operating system or hardware (for instance, by
protecting pages or by double mapping virtual memory space, or on the availability of
certain atomic operations on the processor) . Such techniques are not necessarily portable.

1.4 A performance disadvantage?

We conclude the discussion of the comparative merits of automatic and manual dynamic
memory management by asking if automatic memory management must be at a perfor
mance disadvantage compared with manual techniques. In general, the cost of automatic
dynamic memory management is highly dependent on application behaviour and even
hardware, making it impossible to offer simple estimates of overhead. Nevertheless, a long
running criticism of garbage collection has been that it is slow compared to explicit mem
ory management and imposes unacceptable overheads, both in terms of overall through
put and in pauses for garbage collection. While it is true that automatic memory manage
ment does impose a performance penalty on the program, it is not as much as is commonly
assumed. Furthermore, explicit operations like ma l l oc and f r e e also impose a signifi
cant cost. Hertz, Feng, and Berger [2005] measured the true cost of garbage collection for
a variety of Java benchmarks and collection algorithms. They instrumented a Java virtual
machine to discover precisely when objects became unreachable, and then used the reach
ability trace as an oracle to drive a simulator, measuring cycles and cache misses . They
compared a wide variety of garbage collector configurations against different implemen
tations of mal l o c/ f ree : the simulator invoked f ree at the point where the trace indi
cated that an object had become garbage. Although, as expected, results varied between
both collectors and explicit allocators, Hertz et al found garbage collectors could match the
execution time performance of explicit allocation provided they were given a sufficiently
large heap (five times the minimum required) . For more typical heap sizes, the garbage
collection overhead increased to 17% on average.

10 CHAPTER 1 . INTRODUCTION

1.5 Experimental methodology

One of the most welcome changes over the past decade or so has been the improvement
in experimental methodology reported in the literature on memory management. Never
theless, it remains clear that reporting standards in computer science have some way to
improve before they match the quality of the very best practice in the natural or social sci
ences. Mytkowicz et al [2008] find measurement bias to be 'significant and commonplace' .

In a study of a large number of papers on garbage collection, Georges et al [2007] found
the experimental methodology, even where reported, to be inadequately rigorous in many
cases. Many reported performance improvements were sufficiently small, and the reports
lacking in statistical analysis, to raise questions of whether any confidence could be placed
in the results . Errors introduced may be systematic or random. Systematic errors are
largely due to poor experimental practice and can often be reduced by more careful de
sign of experiments . Random errors are typically due to non-determinism in the system
under measurement. By their nature, these are unpredictable and often outside the exper
imenter 's control; they should be addressed statistically.

The use of synthetic or small scale, 'toy', benchmarks has long been criticised as inad
equate [Zorn, 1989] . Such benchmarks risk introducing systematic errors because they do
not reflect the interactions in memory allocation that occur in real programs, or because
their working sets are sufficiently small that they exhibit locality effects that real programs
would not. Wilson et al [1995a] provide an excellent critique of such practices. Fortunately,
other than for stress testing, synthetic and toy benchmarks have been largely abandoned
in favour of larger scale benchmark suites, consisting of widely used programs that are
believed to represent a wide range of typical behaviour (for example, the DaCapo suite for
Java [Blackburn et al, 2006b]) .

Experiments with benchmark suites that contain a large number of realistic programs
can introduce systematic bias. Managed run-times, in particular, offer several opportunities
for the introduction of systematic errors. Experimenters need to take care to distinguish the
context that they are trying to examine: are they interested in start-up costs (important, for
example, for short-lived programs) or in the steady state? For the latter, it is important to
exclude system warm-up effects such as class loading and dynamic code optimisation . In
both cases, it is probably important to disregard cold-start effects such as latency caused by
loading the necessary files into the disk cache: thus Georges et al [2007] advocate running
several invocations of the virtual machine and benchmark and discarding the first.

Dynamic (or run-time) compilation is a major source of non-determinism, and is par
ticularly difficult to deal with when comparing alternative algorithms. One solution is to
remove it. Compiler replay [Blackburn et al, 2006b] allows the user to record which methods
are optimised and to which level in a preparatory run of the benchmark. This record can
then used by the virtual machine to ensure the same level of optimisation in subsequent,
performance runs. However, a problem with this approach is that alternative implemen
tations typically execute different methods, particularly in the component under test. It is
not clear which compilation record should be used . Two separate ones? Their intersection?

Sound experimental practice requires that outcomes are valid even in the presence of
bias (for example, random errors) . This requires repetitions of the experiment and statis
tical comparison of the results . To be able to state with confidence that one approach is
superior to another requires that, first, a confidence level is stated, and second, confidence
intervals for each alternative are derived from the results and that these intervals are not
found to overlap. Georges et al [2007] offer a statistically rigorous methodology to address
non-deterministic and unpredictable errors (including the effects of dynamic compilation) .
They advocate invoking one instance of the virtual machine and executing a benchmark

1 . 6. TERMINOLOGY AND NOTATION

object object

Roots _

re
_
fere_nce

--
1 : : : :

--+
1

-

re_fere_nce
--•

�...,__ _ _____J

- fields -

Figure 1.3: Roots, heap cells and references . Objects, denoted by rectangles,
may be divided into a number of fields, delineated by dashed lines. Refer
ences are shown as solid arrows.

1 1

many times until i t reaches a steady state (that is, when the coefficient of variation7 for
the last k benchmark iterations falls below some preset threshold) . These k iterations can
then be used to compute a mean for the benchmark under steady state. By repeating this
process, an overall mean and a confidence interval can be computed. Better, the whole
distribution (or at least more than one or two moments of it) should be reported .

Garbage collection research needs thorough performance reports . A single 'spot' figure,
even if decorated with a confidence interval, is not sufficient. The reason is that memory
management involves space and time trade-offs . In most circumstances, one way to re
duce collection times is to increase the size of the heap (up to a certain point - after that
locality effects typically cause execution times to deteriorate). Thus, no experiment that
reports a figure for just a single heap size can be taken seriously. It is vital, therefore, that
environments allow the user to control the size of heaps (and spaces within those heaps) in
order to understand fully the performance characteristics of a particular memory manage
ment algorithm. We firmly advocate this even for production virtual machines which may
automatically adapt sizes for optimal performance; while automatic adaptation might be
appropriate for end users, researchers and developers need more insight.

The chaotic nature of garbage collection reinforces this requirement. By calling garbage
collection chaotic, we mean that small changes in configuration can, and commonly do,
lead to large changes in behaviour. One example is the scheduling of collections . Even a
small change to the point at which a garbage collection occurs may mean that a large data
structure either remains reachable or becomes garbage. This can have large effects not
only on the cost of the current collection but on how soon the next collection will occur,
thus making such variation self-amplifying. By providing results for a range of heap sizes
(often expressed in terms of multiples of the smallest heap size in which a program will
run to completion), such 'jitter ' is made readily apparent.

1.6 Terminology and notation

We conclude this chapter by explaining the notation used in the rest of the book. We also
give more precise definitions of some of the terms used earlier.

First, a note about units of storage. We adopt the convention that a byte comprises eight
bits . Similarly, we use kilobyte (KB), megabyte (MB), gigabyte (GB) and terabyte (TB) to mean
a corresponding power of two multiple of the unit byte (210, 220, 230 , 240, respectively), in
flagrant disregard for the standard definitions of the SI decimal prefixes.

The heap

The heap is either a contiguous array of memory words or organised into a set of discon
tiguous blocks of contiguous words. A granule is the smallest unit of allocation, typically

7The coefficient of variation is the standard deviation divided by the mean.

1 2 CHAPTER 1 . INTRODUCTION

a word or double-word, depending on alignment requirements . A chunk is a large contigu
ous group of granules. A cell is a generally smaller contiguous group of granules and may
be allocated or free, or even wasted or unusable for some reason.

An object is a cell allocated for use by the application. An object is usually assumed to be
a contiguous array of addressable bytes or words, divided into slots or fields, as in Figure 1 .3
(although some memory managers for real-time or embedded systems may construct an
individual large object as a pointer structure, this structure is not revealed to the user
program) . A field may contain a reference or some other scalar non-reference value such
as an integer. A reference is either a pointer to a heap object or the distinguished value
nul l . Usually, a reference will be the canonical pointer to the head of the object (that is, its
first address), or it may point to some offset from the head. An object will sometimes also
have a header field which stores metadata used by the run-time system, commonly (but not
always) stored at the head of an object. A derived pointer is a pointer obtained by adding an
offset to an object's canonical pointer. An in terior pointer is a derived pointer to an internal
object field.

A block is an aligned chunk of a particular size, usually a power of two. For complete
ness we mention also that a frame (when not referring to a stack frame) means a large
2k sized portion of address space, and a space is a possibly discontiguous collection of
chunks, or even objects, that receive similar treatment by the system. A page is as defined
by the hardware and operating system's virtual memory mechanism, and a cache line (or
cache block) is as defined by its cache. A card is a 2k aligned chunk, smaller than a page,
related to some schemes for remembering cross-space pointers (Section 11 .8) .

The heap is often characterised as an object graph, which is a directed graph whose nodes
are heap objects and whose directed edges are the references to heap objects stored in their
fields. An edge is a reference from a source node or a root (see below) to a destination node.

The mutator and the collector

Following Dijkstra et al [1976, 1978], a garbage-collected program is divided into two semi
independent parts.

• The mutator executes application code, which allocates new objects and mutates the
object graph by changing reference fields so that they refer to different destination
objects. These reference fields may be contained in heap objects as well as other
places known as roots, such as static variables, thread stacks, and so on. As a result
of such reference updates, any object can end up disconnected from the roots, that is,
unreachable by following any sequence of edges from the roots.

• The collector executes garbage collection code, which discovers unreachable objects
and reclaims their storage.

A program may have more than one mutator thread, but the threads together can usually
be thought of as a single actor over the heap. Equally, there may be one or more collector
threads.

The mutator roots

Separately from the heap memory, we assume some finite set of mutator roots, represent
ing pointers held in storage that is directly accessible to the mutator without going through
other objects. By extension, objects in the heap referred to directly by the roots are called
root objects . The mutator visits objects in the graph by loading pointers from the current
set of root objects (adding new roots as it goes) . The mutator can also discard a root by

1 .6. TERMINOLOGY AND NOTATION 13

overwriting the root pointer's storage with some other reference (that is, nul.J. or a pointer
to another object) . We denote the set of (addresses of) the roots by Root s .

In practice, the roots usually comprise static/global storage and thread-local storage
(such as thread stacks) containing pointers through which mutator threads can directly
manipulate heap objects . As mutator threads execute over time, their state (and so their
roots) will change.

In a type-safe programming language, once an object becomes unreachable in the heap,
and the mutator has discarded all root pointers to that object, then there is no way for the
mutator to reacquire a pointer to the object. The mutator cannot 'rediscover ' the object
arbitrarily (without interaction with the run-time system) - there is no pointer the mutator
can traverse to it and arithmetic construction of new pointers is prohibited. A variety of
languages support finalisation of at least some objects . These appear to the mutator to be
'resurrected' by the run-time system. Our point is that the mutator cannot gain access to
any arbitrary unreachable object by its efforts alone.

References, fields and addresses

In general, we shall refer to a heap node N by using its memory address (though this need
not necessarily be the initial word of an object, but may be to some appropriate standard
point in the layout of the object's data and metadata) . Given an object (at address) N, we
can refer to arbitrary fields of the object - which may or may not contain pointers - by
treating the object as an array of fields: the ith field of an object N will be denoted N [i] ,
counting fields from 0; the number of fields of N is written I N I . We write the usual C
syntax for dereferencing a (non-null) pointer p as * P · Similarly, we use & to obtain the
address of a field. Thus, we write &N [i] for the address of the ith field of N. Given an
object (at address) N the set P o i nt e r s (N) denotes the set of (addresses of) pointer fields of
N. More formally:

P o i nt e r s (N) = {a I a =&N [i] , Vi : 0 :::; i < I N I where N [i] is a pointer}

For convenience, we write P o inters to denote the set of all pointer fields of all objects
in the heap. Similarly, Nodes denotes the set of all (allocated) objects in the heap. For
convenience, we will also treat the set Root s as a pseudo-object (separate from the heap),
and define P o i nters (Root s) =Root s synonymously. By implication, this allows us to
write Root s [i] to refer to the ith root field.

Liveness, correctness and reachability

An object is said to be live if it will be accessed at some time in the future execution of the
mutator. A garbage collector is correct only if it never reclaims live objects . Unfortunately,
liveness is an undecidable property of programs: there is no way to decide for an arbitrary
program whether it will ever access a particular heap object or not.8 Just because a pro
gram continues to hold a pointer to an object does not mean it will access it. Fortunately,
we can approximate liveness by a property that is decidable: pointer reachability. An object
N is reachable from an object M if N can be reached by following a chain of pointers, start
ing from some field f of M. By extension, an object is only usable by a mutator if there is a
chain of pointers from one of the mutator 's roots to the object.

More formally (in the mathematical sense that allows reasoning about reachability), we
can define the immediate 'points-to' relation --+ 1 as follows. For any two heap nodes M, N
in Node s, M -+t N if and only if there is some field location J= & M [i] in P o i nt e r s (M)

8The undecidability o f liveness i s a corollary o f the halting problem.

14 CHAPTER 1. INTRODUCTION

such that * J=N. Similarly, Root s --+ 1 N if and only if there is some field f in Root s such
that * f =N. We say that N is directly reachable from M, written M --+ N, if there is some
field f in P o i n t e r s (M) such that M --+ 1 N (that is, some field f of M points to N). Then,
the set of reachable objects in the heap is the transitive referential closure from the set of
Root s under the --+ relation, that is, the least set

reachable = {N E N o d e s I (:lr E Root s : r --+ N) V (3M E reachable : M --+ N) } (1 . 1)

An object that i s unreachable in the heap, and not pointed to by any mutator root, can
never be accessed by a type-safe mutator. Conversely, any object reachable from the roots
may be accessed by the mutator. Thus, liveness is more profitably defined for garbage col
lectors by reachability. Unreachable objects are certainly dead and can safely be reclaimed.
But any reachable object may still be live and must be retained . Although we realise that
doing so is not strictly accurate, we will tend to use live and dead interchangeably with
reachable and unreachable, and garbage as synonymous with unreachable.

Pseudo-code

We use a common pseudo-code to describe garbage collection algorithms. We offer these
algorithm fragments as illustrative rather than definitive, preferring to resolve ambiguities
informally in the text rather than formally in the pseudocode. Our goal is a concise and
representative description of each algorithm rather than a full-fleshed implementation.

Indentation denotes the extent of procedure bodies and the scope of control statements .
The assignment operator is +- and the equality operator is = . Otherwise we use C-style
symbols for the other logical and relational operators, such as I I (conditional or), && (con
ditional and), �, 2:, -=/=, % (modulus) and so on.

The allocator

The heap allocator, which can be thought of as functionally orthogonal to the collector, sup
ports two operations : a l l ocate, which reserves the underlying memory storage for an
object, and free which returns that storage to the allocator for subsequent re-use. The size
of the storage reserved by a l locat e is passed as an optional parameter; when omitted the
allocation is of a fixed-size object, or the size of the object is not necessary for understand
ing of the algorithm. Where necessary, we may pass further arguments to a l l ocate , for
example to distinguish arrays from other objects, or arrays of pointers from those that do
not contain pointers, or to include other information necessary to initialise object headers .

Mutator read and write operations

As they execute, mutator threads perform several operations of interest to the collector:
New, Read and W r i t e . We adopt the convention of naming mutator operations with a
leading upper-case letter, as opposed to lower-case for collector operations. Generally,
these operations have the expected behaviour: allocating a new object, reading an object
field or writing an object field . Specific memory managers may augment these basic op
erations with additional functionality that turns the operation into a barrier: an action that
results in synchronous or asynchronous communication with the collector. We distinguish
read barriers and write barriers.

1 . 6. TERMINOLOGY AND NOTATION 15

New() . The New operation obtains a new heap object from the heap allocator which re
turns the address of the first word of the newly-allocated object. The mechanism for actual
allocation may vary from one heap implementation to another, but collectors usually need
to be informed that a given object has been allocated in order to initialise metadata for that
object, and before it can be manipulated by the mutator. The trivial default definition of
New simply allocates.

New() :
return a l locat e ()

Read(src,i) . The Read operation accesses an object field in memory (which may hold a
scalar or a pointer) and returns the value stored at that location. Read generalises memory
loads and takes two arguments: (a pointer to) the object and the (index of its) field being
accessed . We allow s rc=Root s if the field s rc [i] is a root (that is, & s rc [i] E Root s) . The
default, trivial definition of Re ad simply returns the contents of the field.

Read (s rc , i) :
return s rc [i]

Write (src,i,val) . The Wr i t e operation modifies a particular location in memory. It
generalises memory stores and takes three arguments: (a pointer to) the source object and
the (index of its) field to be modified, plus the (scalar or pointer) value to be stored. Again,
if s r c=Root s then the field s r c [i] is a root (that is, & s r c [i] E Ro ot s) . The default, trivial
definition of Wr i t e simply updates the field .

Writ e (s rc , i , va l) :
s rc [i] +- val

Atomic operations

In the face of concurrency between mutator threads, collector threads, and between the
mutator and collector, all collector algorithms require that certain code sequences appear
to execute atomically. For example, stopping mutator threads makes the task of garbage
collection appear to occur atomically: the mutator threads will never access the heap in the
middle of garbage collection. Moreover, when running the collector concurrently with the
mutator, the New, Read, and Write operations may need to appear to execute atomically
with respect to the collector and/ or other mutator threads. To simplify the exposition
of collector algorithms we will usually leave implicit the precise mechanism by which
atomicity of operations is achieved, simply marking them with the keyword atomic. The
meaning is clear: all the steps of an atomic operation must appear to execute indivisibly
and instantaneously with respect to other operations. That is, other operations will appear
to execute either before or after the atomic operation, but never interleaved between any
of the steps that constitute the atomic operation. For discussion of different techniques to
achieve atomicity as desired see Chapter 1 1 and Chapter 13 .

Sets, multisets, sequences and tuples

We use abstract data structures where this clarifies the discussion of an algorithm. We use
mathematical notation where it is appropriate but does not obscure simpler concepts. For
the most part, we will be interested in sets and tuples, and simple operations over them to
add, remove or detect elements.

16 CHAPTER 1 . INTRODUCTION

We use the usual definition of a set as a collection of distinct (that is, unique) elements .
The cardinality of a set S, written I S I , is the number of its elements .

In addition to the standard set notation, we also make use of multisets . A multiset's
elements may have repeated membership in the multiset. The cardinality of a multiset is
the total number of its elements, including repeated memberships. The number of times
an element appears is its multiplicity. We adopt the following notation:

• [] denotes the empty multiset

• [a, a, b] denotes the multiset containing two as and one b

• [a, b] + [a] = [a, a, b] denotes multiset union

• [a, a, b] - [a] = [a, b] denotes multiset subtraction

A sequence is an ordered list of elements. Unlike a set (or multiset), order matters. Like a
multiset, the same element can appear multiple times at different positions in the sequence.
We adopt the following notation:

• () denotes the empty sequence

• (a, a, b) denotes the sequence containing two as followed by a b

• (a, b) · (a) = (a, b, a) denotes appending of the sequence (a) to (a , b)

While a tuple of length k can be thought of as being equivalent to a sequence of the same
length, we sometimes find it convenient to use a different notation to emphasise the fixed
length of a tuple as opposed to the variable length of a sequence, and so on. We adopt the
notation below for tuples; we use tuples only of length two or more .

• (a 1 , . . . , ak) denotes the k-tuple whose ith member is a;, for 1 :::; i :::; k

Chapter 2

Mark-sweep garbage collection

All garbage collection schemes are based on one of four fundamental approaches: mark
sweep collection, copying collection, mark-compact collection or reference counting. Different col
lectors may combine these approaches in different ways, for example, by collecting one
region of the heap with one method and another part of the heap with a second method.
The next four chapters focus on these four basic styles of collection. In Chapter 6 we com
pare their characteristics .

For now we shall assume that the mutator is running one or more threads, but that
there is a single collector thread. All mutator threads are stopped while the collector thread
runs. This stop-the-world approach simplifies the construction of collectors considerably.
From the perspective of the mutator threads, collection appears to execute atomically: no
mutator thread will see any intermediate state of the collector, and the collector will not
see interference with its task by the mutator threads. We can assume that each mutator
thread is stopped at a point where it is safe to examine its roots : we look at the details
of the run-time interface in Chapter 1 1 . Stopping the world provides a snapshot of the
heap, so we do not have to worry about mutators rearranging the topology of objects in
the heap while the collector is trying to determine which objects are live. This also means
that there is no need to synchronise the collector thread as it returns free space with other
collector threads or with the allocator as it tries to acquire space. We avoid the question
of how multiple mutator threads can acquire fresh memory until Chapter 7. There are
more complex run-time systems that employ parallel collector threads or allow mutator
and collector threads to execute concurrently; we discuss them in later chapters .

We encourage readers to familiarise themselves with the collectors in the next four
chapters before progressing to the more advanced collectors covered in later chapters . Ex
perienced readers may wish to skip the descriptions of the basic algorithms, although we
hope that the accounts of more sophisticated ways to implement these collectors will prove
of interest. We refer readers who find some of the material in these four chapters rather too
compressed to Chapters 2 to 6 of Jones [1996] , where the classical algorithms are covered
in greater detail with more examples.

The goal of an ideal garbage collector is to reclaim the space used by every object that
will no longer be used by the program. Any automatic memory management system has
three tasks:

1. to allocate space for new objects;

2. to identify live objects; and

3. to reclaim the space occupied by dead objects.

17

18 CHAPTER 2 . MARK-SWEEP GARBAGE COLLECTION

Algorithm 2.1: Mark-sweep : allocation

1 New () :
r ef +- a l l o c a t e ()
if re f = null

c o l l e c t ()
r e f +- a l l o c at e ()
i f re f = null

e r r o r " Out o f memo r y "
return r e f

t o atomic c o l l e ct () :
1 1 markFromRo ot s ()
1 2 sweep (HeapSt a rt , HeapEnd)

/* Heap is ful l 4

I* Heap is still full 4

These tasks are not independent. In particular, the way space is reclaimed affects how fresh
space is allocated. As we noted in Chapter 1, true liveness is an undecidable problem.
Instead, we tum to an over-approximation of the set of live objects: pointer reachability
(defined on page 13) . We accept an object as live if and only if it can be reached by following
a chain of references from a set of known roots. By extension, an object is dead, and its
space can be reclaimed, if it cannot be reached though any such chain of pointers . This is a
safe estimate. Although some objects in the live set may never be accessed again, all those
in the dead set are certainly dead.

The first algorithm that we look at is mark-sweep collection [McCarthy, 1960] . It is a
straightforward embodiment of the recursive definition of pointer reachability. Collection
operates in two phases . First, the collector traverses the graph of objects, starting from the
roots (registers, thread stacks, global variables) through which the program might immedi
ately access objects and then following pointers and marking each object that it finds. Such
a traversal is called tracing. In the second, sweeping phase, the collector examines every
object in the heap: any unmarked object is deemed to be garbage and its space reclaimed.

Mark-sweep is an indirect collection algorithm. It does not detect garbage per se, but
rather identifies all the live objects and then concludes that anything else must be garbage .
Note that it needs to recalculate its estimate of the set of live objects at each invocation. Not
all garbage collection algorithms behave like this. Chapter 5 examines a direct collection
method, reference counting. Unlike indirect methods, direct algorithms determine the
liveness of an object from the object alone, without recourse to tracing.

2.1 The mark-sweep algorithm

From the viewpoint of the garbage collector, mutator threads perform just three operations
of interest, New, Read and Write , which each collection algorithm must redefine appro
priately (the default definitions were given in Chapter 1 on page 15) . The mark-sweep
interface with the mutator is very simple. If a thread is unable to allocate a new object,
the collector is called and the allocation request is retried (Algorithm 2 . 1) . To emphasise
that the collector operates in stop-the-world mode, without concurrent execution of the
mutator threads, we mark the c o l l e c t routine with the atomic keyword. If there is
still insufficient memory available to meet the allocation request, then heap memory is
exhausted. Often this is a fatal error. However, in some languages, New may raise an ex
ception in this circumstance that the programmer may be able to catch. If memory can

2. 1 . THE MARK-SWEEP ALGORITHM

Algorithm 2.2: Mark-sweep: marking

1 ma rkFromRoot s () :
i n i t i a l i s e (wo rk l i s t)
for each fld in Roo t s

r e f +- * f l d
if ref -=/:. null && not i sMa rked (r e f)

setMarked (r e f)
add (work l i s t , ref)
mark ()

1 0 in i t i a l i s e (work l i s t) :
1 1 wo r k l i s t +- emp t y
1 2

1 3 ma r k () :
1 4

1 5

1 6

1 7
1 8

1 9

20

while not i s Empt y (workl i s t)
r e f +- remove (workl i s t)
for each f l d in Point e r s (ref)

chi l d +- * f l d
i f ch i l d -=/:. null && not i sMarked (c h i l d)

setMarked (chi l d)
add (wo r k l i st , chi l d)

19

I* re f is marked *f

be released by deleting references (for example, to cached data structures which could be
recreated later if necessary), then the allocation request could be repeated .

Before traversing the object graph, the collector must first prime the marker 's work
list with starting points for the traversal (ma rkFromRoo t s in Algorithm 2.2) . Each root
object is marked and then added to the work list (we defer discussion of how to find
roots to Chapter 11) . An object can be marked by setting a bit (or a byte), either in the
object's header or in a side table. If an object cannot contain pointers, then because it has
no children there is no need to add it to the work list. Of course the object itself must
still be marked. In order to minimise the size of the work list, ma rkFromRoot s calls
ma rk immediately. Alternatively, it may be desirable to complete scanning the roots of
each thread as quickly as possible. For instance, a concurrent collector might wish to stop
each thread only briefly to scan its stack and then traverse the graph while the mutator is
running. In this case rna r k (line 8) could be moved outside the loop.

For a single-threaded collector, the work list could be implemented as a stack. This
leads to a depth-first traversal of the graph. If mark-bits are co-located with objects, it has
the advantage that the elements that are processed next are those that have been marked
most recently, and hence are likely to still be in the hardware cache. As we shall see re
peatedly, it is essential to pay attention to cache behaviour if the collector is not to sacrifice
performance. Later we discuss techniques for improving locality.

Marking the graph of live objects is straightforward . References are removed from the
work list, and the targets of their fields marked, until the work list is empty. Note that in
this version of ma rk, every item in the work list has its mark-bit set. If a field contains a
null pointer or a pointer to an object that has already been marked, there is no work to do;
otherwise the target is marked and added to the work list.

Termination of the marking phase is enforced by not adding already marked objects
to the work list, so that eventually the list will become empty. At this point, every object

20 CHAPTER 2. MARK-SWEEP GARBAGE COLLECTION

Algorithm 2.3: Mark-sweep : sweeping

sweep(s t a rt , end) :
s can f- s t a rt
while s can < end

if i sMa rked (s c an)
unsetMarked(s c a n)

else free (s c an)
s c an f- next Ob j ect (s c a n)

reachable from the roots will have been visited and its mark-bit will have been set. Any
unmarked object is therefore garbage.

The sweep phase returns unmarked nodes to the allocator (Algorithm 2.3) . Typically,
the collector sweeps the heap linearly, starting from the bottom, freeing unmarked nodes
and resetting the mark-bits of marked nodes in preparation for the next collection cycle.
Note that we can avoid the cost of resetting the mark-bit of live objects if the sense of the
bit is switched between one collection and the next.

We will not discuss the implementation of a l l o c at e and free until Chapter 7, but
note that the mark-sweep collector imposes constraints upon the heap layout. First, this
collector does not move objects. The memory manager must therefore be careful to try to
reduce the chance that the heap becomes so fragmented that the allocator finds it difficult
to meet new requests, which would lead to the collector being called too frequently, or in
the worst case, preventing the allocation of new memory at all. Second, the sweeper must
be able to find each node in the heap. In practice, given a node, sweep must be able to
find the next node even in the presence of padding introduced between objects in order to
observe alignment requirements. Thus, nextOb j ect may have to parse the heap instead
of simply adding the size of the object to its address (line 7 in Algorithm 2.3); we also
discuss heap parsability in Chapter 7.

2.2 The tricolour abstraction

It is very convenient to have a concise way to describe the state of objects during a collec
tion (have they been marked, are they in the work list, and so on) . The tricolour abstraction
[Dijkstra et al, 1976, 1978] is a useful characterisation of tracing collectors that permits rea
soning about collector correctness in terms of invariants that the collector must preserve.
Under the tricolour abstraction, tracing collection partitions the object graph into black
(presumed live) and white (possibly dead) objects. Initially, every node is white; when a
node is first encountered during tracing it is coloured grey; when it has been scanned and
its children identified, it is shaded black. Conceptually, an object is black if the collector
has finished processing it, and grey if the collector knows about it but has not yet finished
processing it (or needs to process it again) . By analogy with object colour, fields can also
be given a colour: grey when the collector first encounters them, and black once traced by
the collector. This analogy also allows reasoning about the mutator roots as if the mutator
were an object [Pirinen, 1998] . A grey mutator has roots that have not yet been scanned
by the collector. A black mutator has roots that have already been scanned by the collector
(and do not need to be scanned again) . Tracing makes progress through the heap by mov
ing the collector wavefront (the grey objects) separating black objects from white objects
until all reachable objects have been traced black.

2.3. IMPROVING MARK-SWEEP

- - --- - -8----- -
mark stack

' ' , , ,

- - - -
' , , , ' � r-���--�

� Roots

Figure 2.1: Marking with the tricolour abstraction. Black objects and their
children have been processed by the collector. The collector knows of grey
objects but has not finished processing them. White objects have not yet been
visited by the collector (and some will never be).

21

Objects are coloured by mark-sweep collection as follows. Figure 2.1 shows a simple
object graph and a mark stack (implementing the work list), mid-way through the mark
phase. Any objects held on the mark stack will be visited again, and so are grey. Any object
that has been marked, and is not on the stack, is black (the root of the graph in the figure) .
All other objects are white (currently, A, B and C). However, once ma rk has completed its
traversal of the graph, the mark stack will be empty (no grey nodes), only C will remain
white (garbage), and all other nodes will have been marked (black) .

The algorithm preserves an important invariant: at the end of each iteration of the
marking loop, there are no references from black to white objects. Thus any white object
that is reachable must be reachable from a grey object. If this invariant were to be broken,
then a live descendant of a black object might not be marked (and hence would be freed in
correctly) since the collector does not process black nodes further. The tricolour view of the
state of garbage collection is particularly useful when algorithms for concurrent garbage
collection are considered, where mutator threads run concurrently with the collector.

2.3 Improving mark-sweep

It is not uncommon for an application's performance to be dominated by its cache be
haviour. The latency to load a value from main memory is possibly hundreds of clock
cycles whereas the latency for Level 1 caches may only be three or four cycles. Caches im
prove performance because applications typically exhibit good temporal locality: if a mem
ory location has been accessed recently, it is very likely that it will be accessed again soon,
and so it is worth caching its value. Applications may also exhibit good spatial locality: if
a location is accessed, it is likely adjacent locations will also be accessed soon. Modem
hardware can take advantage of this property in two ways. Rather than transferring single
words between a cache and lower levels of memory, each entry in the cache (the cache line
or cache block) holds a fixed number of bytes, typically 32-128 bytes. Secondly, processors
may use hardware prefetching. For example, the Intel Core micro-architecture can detect a
regular stride in the memory access pattern and fetch streams of data in advance. Explicit
prefetching instructions are also commonly available for program-directed prefetching.

22 CHAPTER 2. MARK-SWEEP GARBAGE COLLECTION

Unfortunately, garbage collectors do not behave like typical applications . The tempo
ral locality of mark-sweep collection is poor. In the mark phase, the collector typically
reads and writes an object's header just once, since most objects are not shared (that is,
they are referenced by just one pointer), although a small number of objects may be very
popular [Printezis and Garthwaite, 2002] . The mark-bit is read, and set if the object has not
already been marked: it is unlikely to be accessed again in this phase. Typically, the header
also contains a pointer to type information (possibly also an object itself), needed so that
the collector can find the reference fields in this object. This information may contain either
a descriptor identifying these fields, or it may be code that will mark and push the object's
descendants onto the mark stack. Because programs use only a limited number of types,
and their frequency distribution is heavily skewed in favour of a small number of heavily
used types, type information may be a good candidate for caching. But, otherwise, objects
tend to be touched just once in this phase. Hardware prefetching is not tuned for this kind
of pointer chasing.

We now consider ways in which the performance of a mark-sweep collector can be
improved.

2.4 Bitmap marking

Space for a mark-bit can usually be found in an object header word. Alternatively, mark
bits can be stored in a separate bitmap table to the side of the heap, with a bit associated
with every address at which an object might be allocated. The space needed for the bit
map depends on the object alignment requirements of the virtual machine. Either a single
bitmap can be used or, in a block structured heap, a separate bitmap can be used for each
block. The latter organisation has the advantage that no space is wasted if the heap is
not contiguous. Per-block bitmaps might be stored in the blocks. However, placing the
bitmap at a fixed position in each block risks degrading performance. This is because the
bitmaps will contend for the same sets in a set-associative cache. Also, accessing the bit
map implies touching the page. Thus it may be better to use more instructions to access
the bit rather than to incur locality overheads due to paging and cache associativity. To
avoid the cache associativity issue, the position of the bitmap in the block can be varied by
computing some simple hash of the block's address to determine an offset for the bit map.
Alternatively, the bitmap can be stored to the side [Boehm and Weiser, 1988], but using a
table that is somehow indexed by block, perhaps by hashing. This avoids both paging and
cache conflicts .

Bit maps suffice if there is only a single marking thread . Otherwise, setting a bit in a
bitmap is vulnerable to losing updates to races whereas setting a bit in an object header
only risks setting the same bit twice: the operation is idempotent. Instead of a bitmap,
byte-maps are commonly used (at the cost of an 8-fold increase in space), thereby making
marking races benign. Alternatively, a bitmap must use a synchronised operation to set a
bit. In practice, matters are often more complicated for header bits in systems that allow
marking concurrently with mutators, since header words are typically shared with muta
tor data such as locks or hash codes. With care, it may be possible to place this data and
mark-bits in different bytes of a header word . Otherwise, even mark-bits in headers must
be set atomically.

Mark bitmaps have a number of potential advantages. We identify these now, and then
examine whether they materialise in practice on modem hardware. A bitmap stores marks
much more densely than if they are stored in object headers. Consider how mark-sweep
behaves with a mark bitmap. With a bitmap, marking will not modify any object, but

2.4. BITMAP MARKING 23

will only read pointer fields of live objects . Other than loading the type descriptor field,
no other part of pointer-free objects will be accessed . Sweeping will not read or write to
any live object although it may overwrite fields of garbage objects as part of freeing them
(for example to link them into a free-list) . Thus bitmap marking is likely to modify fewer
words, and to dirty fewer cache lines so less data needs to be written back to memory.

Bitmap marking was originally adopted for a conservative collector designed to pro
vide automatic memory management for uncooperative languages like C and C++ [Boehm
and Weiser, 1988] . Type-accurate systems can precisely identify every slot that contains a
pointer, whether it is in an object, the stack frame of a thread or another root. Conservative
collectors, on the other hand, do not receive this level of support from the compiler or run
time system and so have to make conservative decisions on pointer identity. If the value
held in a slot looks sufficiently like an object reference, it is assumed to be one. We discuss
the problems of pointer finding in more detail in Chapter 1 1 . Conservative collection may
interpret a slot as a pointer when it is not; this has two consequences for safety. First, the
collector must not alter the value stored in any location owned by the mutator (including
objects and roots) . This rules out all algorithms that move objects since this would require
updating every reference to a moved object. It also rules out storing mark-bits in object
headers since the 'object' in question might not be an object if it was reached by following
a false pointer. Setting or clearing a bit might destroy user data . Second, it is very useful to
minimise the chance of the mutator interfering with the collector 's data. Adding a header
word for the collector's use, contiguous to every object, is riskier than keeping collector
metadata such as mark-bits in a separate data structure.

Bitmap marking was also motivated by the concern to minimise the amount of paging
caused by the collector [Boehm, 2000] . However, in modern systems, any paging at all due
to the collector is generally considered unacceptable. The question for today is whether
bitmap marking can improve cache performance. There is considerable evidence that ob
jects tend to live and die in clusters [Hayes, 1991; Jones and Ryder, 2008] . Many allocators
will tend to allocate these objects close to each other. Sweeping with a bitmap has two ad
vantages . It allows the mark-bits of clusters of objects to be tested and cleared in groups as
the common case will be that either every bit/byte is set or every bit/byte is clear in a map
word. A corollary is that it is simple from the bitmap to determine whether a complete
block of objects is garbage, thus allowing the whole block to be returned to the allocator.

Many memory managers use a block structured heap (for example, Boehm and Weiser
[1988]) . A straightforward implementation might reserve a prefix of each block for its bit
map. As previously discussed this leads to unnecessary cache conflicts and page accesses,
so collectors tend to store bitmaps separately from user data blocks.

Garner et al [2007] adopt a hybrid approach, associating each block in a segregated fits
allocator's data structure with a byte in a map, as well as marking a bit in object headers.
The byte is set if and only if the corresponding block contains at least one object. The byte
map of used/unused blocks thus allows the sweeper to determine easily which blocks are
completely empty (of live objects) and can be recycled as a whole. This has two advan
tages. Both the bit in the object header and the byte in the byte-map, corresponding to
the block in which the object resides, can be set without using synchronised operations .
Furthermore, there are no data dependencies on either write (which might lead to cache
stalls), and writing the byte in the byte-map is unconditional.

Printezis and Detlefs [2000] use bitmaps to reduce the amount of space used for mark
stacks in a mostly-concurrent, generational collector. First, as usual, mutator roots are
marked by setting a bit in the map. Then, the marking thread linearly searches this bit
map, looking for live objects. Algorithm 2.4 strives to maintain the invariant that marked
objects below the current 'finger', cur in the mark routine, are black and those above it are

24 CHAPTER 2. MARK-SWEEP GARBAGE COLLECTION

Algorithm 2.4: Printezis and Detlefs's bitmap marking

1 ma r k ()
cur +-- next i nB i t map ()
while c u r < HeapEnd I* marked ref is black if and only if re f < cur *I

add(work l i st , c u r)
markStep (c u r)
cur +-- next i nB i tmap ()

s ma rkStep (s t a rt) :
while not i s Empt y (work l i s t)

10 re f +-- remove (work l i s t)
n for each f l d in P o i nt e r s (re f)
1 2 c h i l d +-- * f l d
1 3 if chi l d -=I= null && not i sMarke d (c h i ld)
M setMarked (chi ld)
1s if ch i l d < s t a rt
16 add(work l i st , chi l d)

I* re f is marked *I

grey. When the next live (marked) object cur is found, it is pushed onto the stack and we
enter the usual marking loop to restore the invariant: objects are popped from the stack
and their children marked recursively until the mark stack is empty. If an item is below
c u r in the heap, it is pushed onto the mark stack; otherwise its processing is deferred to
later in the linear search. The main difference between this algorithm and Algorithm 2.1 is
its conditional insertion of children onto the stack at line 15. Objects are only marked re
cursively (thus consuming mark stack space) if they are behind the black wavefront which
moves linearly through the heap . Although the complexity of this algorithm is propor
tional to the size of the space being collected, in practice searching a bitmap is cheap.

A similar approach can be used to deal with mark stack overflow. When the stack
overflows, this is noted and the object is marked but not pushed onto the stack. Marking
continues until the stack is exhausted . Now we must find those marked objects that could
not be added to the stack. The collector searches the heap, looking for any marked objects
with one or more unmarked children and continues the trace from these children. The
most straightforward way to do this is with a linear sweep of the heap. Sweeping a bitmap
will be more efficient than examining a bit in the header of each object in the heap .

2.5 Lazy sweeping

The complexity of the mark phase is O(L) , where L is the size of the live data in the heap;
the complexity of the sweep phase is O(H) where H is the size of the heap. Since H > L, at
first sight it might seem that the mark-sweep algorithm is dominated by the cost of sweep
ing. However, in practice, this is not the case. Chasing pointers in the mark phase leads
to unpredictable memory access patterns, whereas sweep behaviour is more predictable .
Further, the cost of sweeping an object tends to be much less than the cost of tracing it. One
way to improve the cache behaviour of the sweep phase is to prefetch objects. In order to
avoid fragmentation, allocators supporting mark-sweep collectors typically lay out objects
of the same size consecutively (see Chapter 7 on page 93) leading to a fixed stride as a block
of same-sized objects is swept. Not only does this pattern allow software prefetching, but
it is also ideal for the hardware prefetching mechanisms found in modem processors.

2.5. LAZY SWEEPING 25

Algorithm 2.5: Lazy sweeping with a block structured heap

1 atomic c o l l e c t () :
ma rkFromRoot s ()
for each bl ock in B l o c k s

i f not i sMa rked(b l o c k)
add (b l ockAl locat o r, block)

else
add(reclaimL i s t , b lock)

9 atomic a l l o c at e (s z) :
10 result +-- remove (s z)
n if result = null
1 2 la zySweep (s z)
n result +-- remove (s z)
w return r e s u l t
15

16 l a zySweep (s z) :
11 repeat

I* no objects marked in this block? *f
I* return block to block allocator *f

I* queue block for lazy sweeping *f

I* allocate from size class for s z *I
I* if no free slots for this size . . . *I

I* sweep a little *I

I* if still null, collect *f

1s block +-- nextB l o c k (reclaimL i s t , s z)
19 if b l o c k =I null
20 sweep (s t art (bl o c k) , end(bl o c k))
D if spa ceFound (block)
22

23
24

25

return
until b l o c k = null
a l locS l ow (s z)

26 a l l o c S low (s z) :
21 block +-- a l l o cateBl o c k ()
2s if block -1 null
29 in i t i a l i s e (block, s z)

I* reclaim list for th is size class is empty *I
I* get an empty block *I

I* allocation slow path *I
I* from the block allocator *I

Can the time for which the mutators are stopped during the sweep phase be reduced or
even eliminated? We observe two properties of objects and their mark-bits. First, once an
object is garbage, it remains garbage: it can neither be seen nor be resurrected by a mutator.
Second, mutators cannot access mark-bits. Thus, the sweeper can be executed in parallel
with mutator threads, modifying mark-bits and even overwriting fields of garbage objects
to link them into allocator structures. The sweeper (or sweepers) could be executed as sep
arate threads, running concurrently with the mutator threads, but a simple solution is to
use lazy sweeping [Hughes, 1982] . Lazy sweeping amortises the cost of sweeping by having
the allocator perform the sweep. Rather than a separate sweep phase, the responsibility
for finding free space is devolved to a l l ocat e . At its simplest, a l l ocate advances the
sweep pointer until it finds sufficient space in a sequence of unmarked objects. However,
it is more practical to sweep a block of several objects at a time.

Algorithm 2.5 shows a lazy sweeper that operates on a block of memory at a time. It is
common for allocators to place objects of the same size class into a block (we discuss this in
detail in Chapter 7) . Each size class class will have one or more current blocks from which
it can allocate and a reclaim list of blocks not yet swept. As usual the collector will mark
all live objects in the heap, but instead of eagerly sweeping the whole heap, col l e c t will

26 CHAPTER 2. MARK-SWEEP GARBAGE COLLECTION

simply return any completely empty blocks to the block level allocator (line 5) . All other
blocks are added to the reclaim queue for their size-class. Once the stop-the-world phase
of the collection cycle is complete, the mutators are restarted. The a l l o c a t e method
first attempts to acquire a free slot of the required size from an appropriate size class (in
the same way as Algorithm 7.2 would) . If that fails, the lazy sweeper is called to sweep
one or more remaining blocks of this size class, but only until the request can be satisfied
(line 12) . However, it may be the case that no blocks remain to be swept or that none of
the blocks swept contained any free slots. In this case, the sweeper attempts to acquire
a whole fresh block from a lower level, block allocator. This fresh block is initialised by
setting up its metadata - for example, threading a free-list through its slots or creating a
mark byte-map . However, if no fresh blocks are available, the collector must be called.

There is a subtle issue that arises from lazy sweeping a block-structured heap such as
one that allocates from different size-classes. Hughes [1982] worked with a contiguous
heap and thus guaranteed that the allocator would sweep every node before it ran out of
space and invoked the garbage collector again. However, lazily sweeping separate size
classes does not make this guarantee since it is almost certain that the allocator will exhaust
one size-class (and all the empty blocks) before it has swept every block in every other
size-class. This leads to two problems. First, garbage objects in unswept blocks will not
the reclaimed, leading to a memory leak. If the block also contains a truly live object, this
leak is harmless since these slots would not have been recycled anyway until the mutator
made a request for an object of this size-class. Second, if all the objects in the unswept
block subsequently become garbage, we have lost the opportunity to reclaim the whole
block and recycle it to more heavily used size-classes.

The simplest solution is to complete sweeping all blocks in the heap before starting
to mark. However, it might be preferable to give a block more opportunities to be lazily
swept. Garner et al [2007] trade some leakage for avoiding any eager sweeps. They achieve
this for Jikes RVM /MMTk [Blackburn et al, 2004b] by marking objects with a bounded in
teger rather than a bit. This does not usually add space costs since there is often room to
use more than one bit if marks are stored in object headers, and separate mark tables often
mark with bytes rather than bits. Each collection cycle increments modulo 2K the value
used as the mark representing 'live', where K is the number of mark-bits used, thus rolling
the mark back to zero on overflow. In this way, the collector can distinguish between an
object marked in this cycle and one marked in a previous cycle . Only marks equal to the
current mark value are considered to be set. Marking value wrap-around is safe because,
immediately before the wrap-around, any live object in the heap is either unmarked (al
located since the last collection) or has the maximum mark-bit value. Any object with a
mark equal to the next value to be used must have been marked last some multiple of 2K

collections ago. Therefore it must be floating garbage and will not be visited by the marker.
This potential leak is addressed somewhat by block marking. Whenever the MMTk col
lector marks an object, it also marks its block. If none of the objects in a block has been
marked with the current value, then the block will not have been marked either and so
will be reclaimed as a whole at line 5 in Algorithm 2.5. Given the tendency for objects to
live and die in clumps, this is an effective tactic.

Lazy sweeping offers a number of benefits. It has good locality: object slots tend to
be used soon after they are swept . It reduces the algorithmic complexity of mark-sweep
to be proportional to the size of the live data in the heap, the same as semispace copying
collection, which we discuss in Chapter 4. In particular, Boehm [1995] suggests that mark
and lazy sweep will perform best in the same circumstance that copying performs best:
when most of the heap is empty, as the lazy sweep's search for unmarked objects will
terminate quickly. In practice, the mutator 's cost of initialising objects is likely to dominate
the cost of sweeping and allocation.

2.6. CACHE MISSES IN THE MARKING LOOP

-��
J addr

mark stac k

/

~
add () ' '

' '
' A P' CJJ CIJ' []· I I I I

I I I I
I I I I

I I I I I : remove ()

obj
FIFO

prefetch {)

Figure 2.2: Marking with a FIFO prefetch buffer. As usual, references are
added to the work list by being pushed onto the mark stack. However, to
remove an item from the work list, the oldest item is removed from the FIFO
buffer and the entry at the top of the stack is inserted into it. The object to
which this entry refers is prefetched so that it should be in the cache by the
time this entry leaves the buffer.

2.6 Cache misses in the marking loop

27

We have seen how prefetching can improve the performance o f the sweep phase. We now
examine how it can also be employed to advantage in the mark phase. For example, by
densely packing mark-bits into a bitmap, the number of cache misses incurred by testing
and setting marks can be reduced. However, cache misses will be incurred as the fields
of an unmarked object are read as part of the traversal. Thus, much of the potential cache
advantage of using mark bitmaps in the mark phase will be lost as object fields are loaded.

If an object is pointer-free, it is not necessary to load any of its fields. Although matters
will vary by language and by application, it is likely that the heap may contain a significant
volume of objects with no user-defined pointer fields. Whether or not an object contains
pointers is an aspect of its type. One way that this can be determined is from the type
information slot in an object's header. However, it is also possible to obtain information
about an object from its address, for example if objects with similar characteristics are lo
cated together. Lisp systems have often used a big bag of pages allocation (BiBoP) technique,
allocating objects of only one type (such as cons cells) on a page, thus allowing type in
formation to be compactly associated with the page rather than each object [Foderaro et al,
1985] . Similarly, pointer-full and pointer-free objects could be segregated. In the past, type
information has also been encoded in pointers themselves [Steenkiste, 1987] .

Boehm [2000] observes that marking dominates collection time, with the cost of fetch
ing the first pointer from an object accounting for a third of the time spent marking on
an Intel Pentium III system. He suggests prefetching on grey: fetching the first cache line
of an object as that object is greyed (added to the mark stack, line 20 of Algorithm 2.2),
and prefetching a modest number of cache lines ahead as very large objects are scanned.
However, this technique relies on the timing of the prefetch. If the cache line is prefetched
too soon, it may be evicted from the cache before it is used. If it is fetched too late, then the
cache miss will occur anyway.

28 CHAPTER 2. MARK-SWEEP GARBAGE COLLECTION

Algorithm 2.6: Marking with a FIFO prefetch buffer

1 add(wo r k l i st , i t em) :
ma rkStack +- get S t a c k (wo r k l i s t)
pu sh (ma r k S t a ck , i t em)

s remove (wo r k l i st) :
ma rkSt ack +- get S t a c k (wo rk l i s t)
addr +- pop(ma rk S t a c k)
prefet ch (addr)
f i f o +- get F i f o (workl i s t)

w prepend(f i fo, addr)
n return remove (f i fo)

Algorithm 2.7: Marking graph edges rather than nodes

1 ma rk () :
while not i sEmpty (wo r kl i s t)

ob j +- remove (workl i s t)
i f not i sMa rked (ob j)

s etMa rked (ob j)
for each f l d in P o i nt e r s (ob j)

chi l d +- dld
if c h i l d =I null

add(wo r k l i st , ch i l d)

Cher et al [2004] observe that the fundamental problem is that cache lines are fetched
in a breadth-Jirst,first-in,first-out (FIFO), order but the mark-sweep algorithm traverses the
graph depth-first, last-in,first-out (LIFO). Their solution is to insert a first-in, first-out queue
in front of the mark stack (Figure 2.2 and Algorithm 2.6) . As usual, when mark adds an
object to its work list, a reference to the object is pushed onto a mark stack. However, when
rna r k wants to acquire an object from the work list, a reference is popped from the mark
stack but inserted into the queue, and the oldest item in the queue is returned to ma rk. The
reference popped from the stack is also prefetched, the length of the queue determining the
prefetch distance. Prefetching a few lines beyond the popped reference will help to ensure
that sufficient fields of the object to be scanned are loaded without cache misses.

Prefetching the object to be marked through the first-in, first-out queue enables rna r k
to load the object to be scanned without cache misses (lines 16-17 in Algorithm 2.2). How
ever, testing and setting the mark of the child nodes will incur a cache miss (line 18) .
Garner et al [2007] realised that ma rk's tracing loop can be restructured to offer greater
opportunities for prefetching. Algorithm 2.2 added each node of the live object graph to
the work list exactly once; an alternative would be to traverse and add each edge exactly
once. Instead of adding children to the work list only if they are unmarked, this algorithm
inserts the children of unmarked objects unconditionally (Algorithm 2.7) . Edge enqueu
ing requires more instructions to be executed and leads to larger work lists than node
enqueuing since graphs must contain more edges than nodes (Gamer et al suggest that
typical Java applications have about 40% more edges than nodes) . However, if the cost of
adding and removing these additional work list entries is sufficiently small then the gains

2.7. ISSUES TO CONSIDER 29

from reducing cache misses will outweigh the cost of this extra work. Algorithm 2.7 hoists
marking out of the inner loop. The actions that might lead to cache misses, i sMa r k e d and
P o i nt e r s , now operate on the same object ob j , which has been prefetched through the
first-in, first-out queue, rather than on different objects, ob j and its children, as previously.
Gamer et al observe that tracing edges rather than nodes can improve performance even
without software prefetching, speculating that the structure of the loop and the first-in,
first-out queue enables more aggressive hardware speculation through more predictable
access patterns.

2. 7 Issues to consider

Despite its antiquity as the first algorithm developed for garbage collection [McCarthy,
1960], there are many reasons why mark-sweep collection remains an attractive option for
developers and users.

Mutator overhead

Mark-sweep in its simplest form imposes no overhead on mutator read and write opera
tions. In contrast, reference counting (which we introduce in Chapter 5) imposes a signifi
cant overhead on the mutator. However, note that mark-sweep is also commonly used as
a base algorithm for more sophisticated collectors which do require some synchronisation
between mutator and collector. Both generational collectors (Chapter 9), and concurrent
and incremental collectors (Chapter 15), require the mutator to inform the collector when
they modify pointers . However, the overhead of doing so is typically small, a few percent
of overall execution time.

Throughput

Combined with lazy sweeping, mark-sweep offers good throughput. The mark phase is
comparatively cheap, and dominated by the cost of pointer chasing. It simply needs to
set a bit or byte for each live object discovered, in contrast to algorithms like semispace
copying collection (Chapter 4) or mark-compact (Chapter 3) which must copy or move
objects. On the other hand, like all the tracing collectors in these initial chapters, mark
sweep requires that all mutators be stopped while the collector runs. The pause-time for
collection depends on the program being run and its input, but can easily extend to several
seconds or worse for large systems.

Space usage

Mark-sweep has significantly better space usage than approaches based on semispace
copying. It also potentially has better space usage than reference counting algorithms.
Mark-bits can often be stored at no cost in spare bits in object headers . Alternatively, if a
side bitmap table is used, the space overhead depend on object alignment requirements;
it will be no worse 1 /alignment of the heap (-k or -l4 of the heap, depending on architec
ture), and possibly better depending on alignment restrictions. Reference counting, on the
other hand, requires a full slot in each object header to store counts (although this can be
reduced if a limit is placed on the maximum reference count stored) . Copying collectors
make even worse use of available memory, dividing the available heap into two equally
sized semispaces, only one of which is used by the mutator at any time. On the debit
side, non-compacting collectors, like mark-sweep and reference counting, require more

30 CHAPTER 2. MARK-SWEEP GARBAGE COLLECTION

complex allocators, such as segregated fits free-lists. The structures needed to support
such collectors impose a further, non-negligible overhead. Furthermore, non-compacting
collectors can suffer from fragmentation, thus increasing their effective space usage.

However, mark-sweep is a tracing algorithm. Like other tracing algorithms, it must
identify all live objects in a space before it can reclaim the memory used by any dead
objects. This is an expensive operation and so should be done infrequently. This means
that tracing collectors must be given some headroom in which to operate in the heap. If
the live objects occupy too large a proportion of the heap, and the allocators allocate too
fast, then a mark-sweep collector will be called too often: it will thrash. For moderate to
large heaps, the headroom necessary may be between 20% and 50% of the heap Uones,
1996] though Hertz and Berger [2005] show that, in order to provide the same throughput,
Java programs managed by mark-sweep collection may need a heap several times larger
than if it were to be managed by explicit deallocation.

To move or not to move?

Not moving objects has both advantages and disadvantages . Its benefit is that it makes
mark-sweep a suitable candidate for use in uncooperative environments where there is
no communication between language compiler and garbage collector (see Chapter 1 1) .
Without type-accurate information about the mutators' roots and the fields of objects, they
cannot be updated with the new locations of moved objects - the putative 'root' might not
be a pointer but other user data . In some cases, hybrid mostly-copying collection is possible
[Bartlett, 1988a; Hosking, 2006] . Here, a program's roots must be treated conservatively (if
it looks like a pointer, assume it is a pointer), so the collector cannot move their referents.
However, type-accurate information about the layout of objects is available to the collector
so it can move others that are not otherwise p inned to their location.

Safety in uncooperative systems managed by a conservative collector precludes the col
lector 's modifying user data, including object headers. It also encourages placing collector
metadata separate from user or other run-time system data, to reduce the risk of modifi
cation by the mutator. For both reasons, it is desirable to store mark-bits in bitmaps rather
than object headers.

The problem with not moving objects is that, in long running applications, the heap
tends to become fragmented. Non-moving memory allocators require space O(log '::,��)
larger than the minimum possible, where min and max are the smallest and largest possible
object sizes [Robson, 1971, 1974] . Thus a non-compacting collector may have to be called
more frequently than one that compacts. Note that all tracing collectors need sufficient
headroom (say, 20-50%) in the heap in order to avoid thrashing the collector.

To avoid having performance suffer due to excessive fragmentation, many production
collectors that use mark-sweep to manage a region of the heap also periodically use an
other algorithm such as mark-compact to defragment it. This is particularly true if the
application does not maintain fairly constant ratios of object sizes or allocates many very
large objects . If the application allocates more large objects than it previously did, the re
sult may be many small holes in the heap no longer being reused for new allocations of
objects of the same size. Conversely, if the application begins to allocate smaller objects
than before, these smaller objects might be allocated in gaps previously occupied by larger
objects, with the remaining space in each gap being wasted. However, careful heap man
agement can reduce the tendency to fragment by taking advantage of objects' tendency to
live and die in clumps [Dimpsey et al, 2000; Blackburn and McKinley, 2008] . Allocation
with segregated-fits can also reduce the need to compact.

Chapter 3

Mark-compact garbage collection

Fragmentation1 can be a problem for non-moving collectors . Although there may be space
available in the heap, either there may be no contiguous chunk of free space sufficiently
large to handle an allocation request, or the time taken to allocate may become excessive
as the memory manager has to search for suitable free space. Allocators may alleviate this
problem by storing small objects of the same size together in blocks [Boehm and Weiser,
1988] especially, as we noted earlier, for applications that do not allocate many very large
objects and whose ratios of different objects sizes do not change much. However, many
long running applications, managed by non-moving collectors, will fragment the heap and
performance will suffer.

In this and the next chapter we discuss two strategies for compacting live objects in
the heap in order to eliminate external fragmentation. The major benefit of a compacted
heap is that it allows very fast, sequential allocation, simply by testing against a heap limit
and 'bumping' a free pointer by the size of the allocation request (we discuss allocation
mechanisms further in Chapter 7) . The strategy we consider in this chapter is in-place
compaction2 of objects into one end of the same region. In the next chapter we discuss
a second strategy, copying collection - the evacuation of live objects from one region to
another (for example, between semispaces) .

Mark-compact algorithms operate in a number of phases. The first phase is always a
marking phase, which we discussed in the previous chapter. Then, further compacting
phases compact the live data by relocating objects and updating the pointer values of all
live references to objects that have moved. The number of passes over the heap, the order
in which these are executed and the way in which objects are relocated varies from algo
rithm to algorithm. The compaction order has locality implications. Any moving collector
may rearrange objects in the heap in one of three ways.

Arbitrary: objects are relocated without regard for their original order or whether they
point to one another.

Linearising: objects are relocated so that they are adjacent to related objects, such as ones
to which they refer, which refer to them, which are siblings in a data structure, and
so on, as far as this is possible.

Sliding: objects are slid to one end of the heap, squeezing out garbage, thereby maintain
ing their original allocation order in the heap .

1 We discuss fragmentation in more detail in Section 7.3.
20ften called compactifying in older papers.

31

32 CHAPTER 3. MARK-COMPACT GARBAGE COLLECTION

Most compacting collectors of which we are aware use arbitrary or sliding orders. Ar
bitrary order compactors are simple to implement and fast to execute, particularly if all
nodes are of a fixed size, but lead to poor spatial locality for the mutator because related
objects may be dispersed to different cache lines or virtual memory pages. All modern
mark-compact collectors implement sliding compaction, which does not interfere with
mutator locality by changing the relative order of object placement. Copying collectors
can even improve mutator locality by varying the order in which objects are laid out by
placing them close to their parents or siblings. Conversely, recent experiments with a col
lector that compacts in an arbitrary order confirm that its rearrangement of objects' layout
can lead to drastic reductions in application throughput [Abuaiadh et al, 2004] .

Compaction algorithms may impose further constraints. Arbitrary order algorithms
handle objects of only a single size or compact objects of different sizes separately. Com
paction may require two or three passes through the heap. It may be necessary to provide
an extra slot in object headers to hold relocation information: such an overhead is likely
to be significant for a general purpose memory manager. Compaction algorithms may im
pose restrictions on pointers. For example, in which direction may references point? Are
interior pointers allowed? We discuss the issues they present in Chapter 1 1 .

We examine several styles of compaction algorithm. First, we introduce Edwards's
Two-Finger collector [Saunders, 1974] . Although this algorithm is simple to implement
and fast to execute, it disturbs the layout of objects in the heap. The second compacting
collector is a widely used sliding collector, the Lisp 2 algorithm. However, unlike the
Two-Finger algorithm, it requires an additional slot in each object's header to store its
forwarding address, the location to which it will be moved. Our third example, Jonkers's
threaded compaction [1979] , slides objects without any space overhead. However, it makes
two passes over the heap, both of which tend to be expensive. The final class of compacting
algorithms that we consider are fast, modern sliding collectors that similarly require no
per-object storage overhead . Instead, they compute forwarding addresses on-the-fly. All
compaction algorithms are invoked as follows:

atomic c o l l e c t () :

ma r k F r omRo o t s ()
c ompa ct ()

3 .1 Two-finger compaction

Edwards's Two-Finger algorithm [Saunders, 1974] is a two-pass, arbitrary order algorithm,
best suited to compacted regions containing objects of a fixed size. The idea is simple:
given the volume of live data in the region to be compacted, we know where the high
water mark of the region will be after compaction. Live objects above this threshold are
moved into gaps below the threshold. Algorithm 3.1 starts with two pointers or 'fingers',
f r e e which points to the start of the region and s c a n which starts at the end of the re
gion. The first pass repeatedly advances the f r e e pointer until it finds a gap (an unmarked
object) in the heap, and retreats the s c a n pointer until it finds a live object. If the f r e e

and s c a n fingers pass each other, the phase i s complete . Otherwise, the object a t s c an is
moved into the gap at f r ee , overwriting a field of the old copy (at s c a n) with a forward
ing address, and the process continues. This is illustrated in Figure 3 . 1 , where object A has
been moved to its new location A' and some slot of A (say, the first slot) has been over
written with the address A'. Note that the quality of compaction depends on the size of
the gap at f re e closely matching the size of the live object at s can . Unless this algorithm
is used on fixed-size objects, the degree of defragmentation might be very poor indeed.

3. 1 . TWO-FINGER COMPACTION 33

10
11
12

13
14

IS
16

17
18

19

20

21
22

23

A' L free -.

h igh-water

threshold

I i I I I I I l l
scan J A

Figure 3.1: Edwards's Two-Finger algorithm. Live objects at the top of the
heap are moved into free gaps at the bottom of the heap. Here, the object at
A has been moved to A'. The algorithm terminates when the free and scan
pointers meet.

Algorithm 3.1: The Two-Finger compaction algorithm

compact () :
re l ocate (Heap S t a rt, HeapEnd)
updateRe ferenc e s (Heap S t a rt , free)

rel o c a t e (s t a rt, end) :
f ree +-- s t a rt
s can +-- end

while free < s can
while i sMarked (free)

unsetMarked (free)
free +- free + s i z e (free)

while not i sMarked(s can) && s c an > free

I* find next hole 4

s can +- s can - s i z e (s can) l* find previous live object *f

if s can > free
unsetMa rked (s can)
move (s can, free)
* S can +- free
free +-- free +
s c an +-- s c an -

I* leave forwarding address (destructively) 4
s i ze (free)
s i ze (scan)

24 updateRe ferences (st art , end) :
� for each f l d in Root s I* update roots that pointed to moved objects *I
26

27

28

29
30
31

32

33

35

36

re f +-- * f l d
if r e f 2: end

* f l d +- * ref I* use the forwarding address left in first pass 4

scan +-- start
while s can < end

for each f l d in P o i nters (scan)
ref +- * f ld
if re f 2: end

I* update fields in live region 4

* f 1 d +-- * re f I* use the forwarding address left in first pass 4
s can +-- s can + s i ze (s can) I* next object 4

34 CHAPTER 3. MARK-COMPACT GARBAGE COLLECTION

At the end of this phase, f r e e points at the high-water mark. The second pass updates
the old values of pointers that referred to locations beyond the high-water mark with the
forwarding addresses found in those locations, that is, with the objects' new locations.

The benefits of this algorithm are that it is simple and fast, doing minimal work at each
iteration. It has no memory overhead, since forwarding addresses are written into slots
above the high-water mark only after the live object at that location has been relocated: no
information is destroyed. The algorithm supports interior pointers. Its memory access pat
terns are predictable, and hence provide opportunities for prefetching (by either hardware
or software) which should lead to good cache behaviour in the collector. However, the
movement of the s can pointer in r e l ocate does require that the heap (or at least the live
objects) can be parsed 'backwards'; this could be done by storing mark-bits in a separate
bitmap, or recording the start of each object in a bitmap when it is allocated. Unfortunately,
the order of objects in the heap that results from this style of compaction is arbitrary, and
this tends to harm the mutator 's locality. Nevertheless, it is easy to imagine how mutator
locality might be improved somewhat. Since related objects tend to live and die together
in clumps, rather than moving individual objects, we could move groups of consecutive
live objects into large gaps. In the remainder of this chapter, we look at sliding collectors
which maintain the layout order of the mutator.

3.2 The Lisp 2 algorithm

The Lisp 2 collector (Algorithm 3 .2) is widely used, either in its original form or adapted
for parallel collection [Flood et al, 2001] . It can be used with objects of varying sizes and,
although it makes three passes over the heap, each iteration does little work (compared,
for example, with threaded compactors). Although all mark-compact collectors have rela
tively poor throughput, a complexity study by Cohen and Nicolau [1983] found the Lisp 2
compactor to be the fastest of the compaction algorithms they studied. However, they did
not take cache or paging behaviour into account, which is an important factor as we have
seen before. The chief drawback of the Lisp 2 algorithm is that it requires an additional
full-slot field in every object header to store the address to which the object is to be moved;
this field can also be used for the mark-bit.

The first pass over the heap (after marking) computes the location to which each live
object will be moved, and stores this address in the object's f o rwardingAdd r e s s field
(Algorithm 3.2) . The compu t e L o c a t i o n s routine takes three arguments: the addresses
of the start and the end of the region of the heap to be compacted, and the start of the
region into which the compacted objects are to be moved. Typically the destination region
will be the same as the region being compacted, but parallel compactor threads may use
their own distinct source and destination regions. The c ompu t e Locat i o n s procedure
moves two 'fingers' through the heap: s c an iterates through each object (live or dead) in
the source region, and free points to the next free location in the destination region. If the
object discovered by scan is live, it will (eventually) be moved to the location pointed to
by f ree so f r e e is written into its forwa rd i n gAddre s s field, and is then incremented
by the size of the object (plus any alignment padding) . If the object is dead, it is ignored.

The second pass (updat e Re f e rences in Algorithm 3.2) updates the roots of mutator
threads and references in marked objects so that they refer to the new locations of their
targets, using the forwarding address stored in each about-to-be-relocated object's header
by the first pass. Finally, in the third pass, re l o c a t e moves each live (marked) object in a
region to its new destination.

Notice that the direction of the passes (upward, from lower to higher addresses in our
code) is opposite to the direction in which the objects will move (downward, from higher

3.2. THE LISP 2 ALGORITHM

Algorithm 3.2: The Lisp 2 compaction algorithm

c ompa c t () :
c omputeLocat i ons (HeapS t a r t , HeapEnd, HeapS t a r t)
updateRefe rences (HeapS t a r t , HeapEnd)
r e l o cate (HeapS t art, HeapEnd)

6 c omput eLocat i o n s (s t a rt , end, t oRegion) :
s c an +-- s t a r t
f r e e +-- t oRegion
while s can < end

w if i sMarked (s can)
n forwa r d ingAddres s (s c an) +-- free
u free +-- free + s i z e (s can)
n s can +-- s can + s i z e (s c an)
1 4

1 s updateRe feren c e s (s t art , end) :
1 6 for each f l d in Roo t s
1 7

1 8

1 9

20

21

22

23
24

25
26

27

28

ref +-- * f l d
if ref 1= null

* f ld +-- forwardi ngAddr e s s (r e f)

s c an +-- s t a r t
while s can < end

if i sMarked (s can)
for each f l d in P o i nt e r s (s can)

if * f l d 1= null
* f l d +-- forwardingAddr e s s (* f l d)

s can +-- s can + s i z e (s c an)

29 r e l o c a t e (s t a rt , end) :
30 s can +-- s t a r t
Jt while s can < end
n if i sMarked (s can)
n de s t +-- forwardi n gAddres s (s ca n)
34 move (s c an, des t)
� uns etMa r ked(de s t)
36 s can +-- s can + s i z e (s ca n)

35

I* update roots *I

I* update fields *f

36 CHAPTER 3. MARK-COMPACT GARBAGE COLLECTION

(a) Before threading: three objects refer to N

A l : oOibTI· I B · �C • • I � I I I I I I C I I I I I I •- I I I I I

N

(b) After threading: all pointers to N have been
'threaded' so that the objects that previously re
ferred to N can now be found from N . The value
previously stored in the header word of N, which is
now used to store the threading pointer, has been
(temporarily) moved to the first field (in A) that re
ferred to N .

Figure 3.2: Threading pointers

to lower addresses) . This guarantees that when the third pass copies an object, it is to
a location that has already been vacated. Some parallel compactors that divide the heap
into blocks slide the contents of alternating blocks in opposite directions . This results in
larger 'clumps', and hence larger free gaps, than sliding each block's contents in the same
direction [Flood et al, 2001] . An example is shown in Figure 14.8.

This algorithm can be improved in several ways. Data can be prefetched in similar
ways as for the sweep phase of mark-sweep collectors . Adjacent garbage can be merged
after line 10 of comput e L o c at i on s in order to improve the speed of subsequent passes.

3.3 Threaded compaction

The most immediate drawbacks of the Lisp 2 algorithm are (i) that it requires three com
plete passes over the heap, and (ii) that space is added to each object for a forwarding
address. The one is the consequence of the other. Sliding compacting garbage collection is
a destructive operation which overwrites old copies of live data with new copies of other
live data . It is essential to preserve forwarding address information until all objects have
been moved and all references updated . The Lisp 2 algorithm is non-destructive at the cost
of requiring an extra slot in the object header to store the forwarding address. The Two
Finger algorithm is non-destructive because the forwarding addresses are written beyond
the live data high-water mark into objects that have already been moved, but it reorders
objects arbitrarily which is undesirable.

Fisher [1974] solved the pointer update problem with a different technique, threading,
that requires no extra storage yet supports sliding compaction. Threading needs there to be
sufficient room in object headers to store an address (if necessary overwriting other data),
which is not an onerous requirement, and that pointers can be distinguished from other
values, which may be harder. The best known threading is probably that due to Morris

3.3. lliREADED COMPACTION

Algorithm 3.3: Jonkers's threaded compactor

c ompa ct () :

upda t e F o rwardRe f e r e n c e s ()
updateBac kwardRe f e r e n c e s ()

37

5 t h r ead (r e f) : I* thread a reference 4
if * r e f 1= null

* r e f, * * r e f +--- * * r e f, r e f

9 updat e (r e f, addr) : I* unthread all references, replacing with addr 4
1 0 tmp +--- * re f

n while i s Re fe r e n c e (t mp)
1 2 * tmp, t mp +--- addr, * t mp

1 3 * r e f +--- t mp

14

m updat eForwa rdRe f e r en c e s () :

16 for each f l d in Roo t s

11 thread (* f l d)
1 8

1 9 f r e e +--- HeapStart

20 s c an +--- HeapStart

21 while s c a n � HeapE n d

n if i sMa r k ed (s can)
23 upda t e (s can, f r e e) I* forward refs to s c an set to f r e e 4
24 for each f l d in P o i nt e r s (s c an)
25 t h r ead (f l d)
26 f r e e +--- free + s i z e (s can)
21 s can +--- s can + s i z e (s c an)
28

� updat eBackwardRe f e r en c e s () :

3o f r e e +--- HeapStart

31

32

33

34
35

36
37

s can +--- HeapStart

while s c an � HeapE nd

if i sMa rked (s can)
updat e (s can, f r e e)
move (s c an, f r e e)
f r e e +--- free + s i z e (s can)

s can +--- s c an + s i z e (s c an)

I* backward refs to s c an set to f r e e *I
I* slide s c an back to f r e e *I

[1978, 1979, 1982] but Jonkers [1979] imposes fewer restrictions (for example, on the direc
tion of pointers) . The goal of threading is to allow all references to a node N to be found
from N . It does so by temporarily reversing the direction of pointers . Figure 3.2 shows
how fields previously referring to N can be found by following the threaded pointers from
N . Notice that, after threading as in Figure 3.2b, the contents i n f o of N 's header has been
written into a pointer field of A. When the collector chases the pointers to unthread and
update them, it must be able to recognise that this field does not hold a threaded pointer.

Jonkers requires two passes over the heap, the first to thread references that point for
ward in the heap, and the second to thread backward pointers (see Algorithm 3.3) . The

38 CHAPTER 3. MARK-COMPACT GARBAGE COLLECTION

first pass starts by threading the roots. It then sweeps through the heap, start to finish,
computing a new address f r e e for each live object encountered, determined by summing
the volume of live data encountered so far. It is easiest to understand this algorithm by
considering a single marked (live) node N . When the first pass reaches A, it will thread
the reference to N . By the time that the pass reaches N, all the forward pointers to N will
have been threaded (see Figure 3 .2b) . This pass can then update all the forward references
to N by following this chain and writing the value of f ree, the address of the location to
which N will be moved, into each previously referring slot. When it reaches the end of
the chain, the collector will restore N's i n f o header word. The next step on this pass is
to increment f r e e and thread N 's children. By the end of this pass, all forward references
will have been updated to point to their new locations and all backward pointers will have
been threaded. The second pass similarly updates references to N, this time by following
the chain of backward pointers . This pass also moves N .

The chief advantage of this algorithm i s that i t does not require any additional space,
although object headers must be large enough to hold a pointer (which must be distin
guishable from a normal value) . However, threading algorithms suffer a number of dis
advantages. They modify each pointer field of live objects twice, once to thread and once
to unthread and update references . Threading requires chasing pointers so is just as cache
unfriendly as marking but has to chase pointers three times (marking, threading and un
threading) in Jonkers's algorithm. Martin [1982] claimed that combining the mark phase
with the first compaction pass improved collection time by a third but this is a testament to
the cost of pointer chasing and modifying pointer fields. Because Jonkers modifies point
ers in a destructive way, it is inherently sequential and so cannot be used for concurrent
compaction. For instance, in Figure 3.2b, once the references to N have been threaded,
there is no way to discover that the first pointer field of B held a reference to N (unless that
pointer is stored at the end of the chain as an extra slot in A's header, defeating the goal
of avoiding additional storage overhead) . Finally, Jonkers does not support interior point
ers, which may be an important concern for some environments. However, the threaded
compactor from Morris [1982] can accommodate interior pointers at the cost of an addi
tional tag bit per field, and the restriction that the second compaction pass must be in the
opposite direction to the first (adding to the problem of heap parsability) .

3.4 One-pass algorithms

If we are to reduce the number of passes a sliding collector makes over the heap to two
(one to mark and one to slide objects), and avoid the expense of threading, then we must
store forwarding addresses in a side table that is preserved throughout compaction. Abua
iadh et al [2004] , and Kermany and Petrank [2006] both designed high performance mark
compact algorithms for multiprocessors that do precisely this. The former is a parallel,
stop-the-world algorithm (it employs multiple compaction threads); the latter can be can
also be configured to be concurrent (allowing mutator threads to run alongside collector
threads), and incremental (periodically suspending a mutator thread briefly to perform a
small quantum of compaction work) . We discuss the parallel, concurrent and incremen
tal aspects of these algorithms in later chapters. Here, we focus on the core compaction
algorithms in a stop-the-world setting.

Both algorithms use a number of side tables or vectors. Common to many collectors,
marking uses a bitmap with one bit for each granule (say, a word) . Marking sets the bits
corresponding to the first and last granules of each live object. For example, bits 16 and
19 are set for the object marked old in Figure 3 .3 . By scrutinising the mark bitmap in the
compaction phase, the collector can calculate the size of any live object.

3.4. ONE-PASS ALGORITHMS

offsetinBlock (3) Mark·bit vector
e�--��--e��-�-�s-�-��-9§-�����s

0

0

' ' ' '

: block (2) :

0 I I I I I old
1

/ - - - - - - - - 't_blocR1 - - - -..i- - - - - - offS!l
---- l -- - -

0 I I new I : L...___j
offsetinBlock 2 3

Heap (befor�)

Offset vectQr

Heap(atterl

Figure 3.3: The heap (before and after compaction) and metadata used by
Compressor [Kermany and Petrank, 2006] . Bits in the mark-bit vector indi
cate the start and end of each live object. Words in the offset vector hold
the address to which the first live object in their corresponding block will be
moved. Forwarding addresses are not stored but are calculated when needed
from the offset and mark-bit vectors.

39

Second, a table is used to store forwarding addresses. It would be prohibitively expen
sive to do this for every object (especially if we assume that objects are word-aligned) so
both these algorithms divide the heap into small, equal-sized blocks (256 or 512 bytes, re
spectively). The o f f s e t table stores the forwarding address of the first live object in each
block. The new locations of the other live objects in a block can be computed on-the-fly
from the offset and mark-bit vectors. Similarly, given a reference to any object, we can
compute its block number and thus derive its forwarding address from the entry in the
offset table and the mark-bits for that block. This allows the algorithms to replace multi
ple passes over the full heap to relocate objects and to update pointers with a single pass
over the mark-bit vector to construct the offset vector and a single pass over the heap (after
marking) to move objects and update references by consulting these summary vectors. Re
ducing the number of heap passes has consequent advantages for locality. Let us consider
the details as they appear in Algorithm 3.4.

After marking is complete, the c omput eLocat i o n s routine passes over the mark-bit
vector to produce the o f f s e t vector. Essentially, it performs the same calculation as in
Lisp 2 (Algorithm 3.2) but does not need to touch any object in the heap. For example,
consider the first marked object in block 2, shown with a bold border in Figure 3.3. Bits 2
and 3, and 6 and 7 are set in the first block, and bits 3 and 5 in the second (in this example,
each block comprises eight slots) . This represents 7 granules (words) that are marked in
the bitmap before this object. Thus the first live object in block 2 will be relocated to the
seventh slot in the heap. This address is recorded in the o f f s e t vector for the block (see
the dashed arrow marked o f f s e t [b l o c k] in the figure).

Once the o f f s e t vector has been calculated, the roots and live fields are updated to
reflect the new locations. The Lisp 2 algorithm had to separate the updating of references
and moving of objects because relocation information was held in the heap and object
movement destroyed this information as relocated objects are slid over old objects. In con
trast, Compressor-type algorithms relocate objects and update references in a single pass,
upda t eRe fe r e nc e s Re l o cat e in Algorithm 3.4. This is possible because new addresses
can be calculated reasonably quickly from the mark bitmap and the o f f s e t vector on
the-fly: Compressor does not have to store forwarding addresses in the heap. Given the
address of any object in the heap, newAddre s s obtains its block number (through shift

40 CHAPTER 3. MARK-COMPA CT GARBAGE COLLECTION

Algorithm 3.4: Compressor

compa c t () :

compu t e Locat i o n s (H e apSt art, He apEnd, Heap S t a rt)
updat eRe ference s R e l o cate (H e ap S t a rt, HeapEnd)

5 comput e L o c a t ions (s t a r t , end, t oR e g i o n) :

l o c +--- t oReg io n

b l o c k +--- getBl o c kNum(s t a rt)
for b +--- 0 to numB i t s (s t a r t , end) - 1

if b % B I TS_I N_BLOCK = 0
10 o f fset [b l o c k] +--- l o c

I* crossed block boundary? 4
I* first object will be moved to l o c 4

n b l o c k +--- b l o ck + 1

1 2 if bi tmap [b] = MARKED
13 l o c +--- l o c + BYTES_P E R B I T I* advance by size of live objects *I
14

1 5 newAdd r e s s (old) :

1 6 b l o c k +--- get B l o c kNum (old)
1 1 return o f fset [b l o c k] + o f f s e t i nBlock (o l d)
1 8

1 9 updateRe f e rencesRe l o c a t e (s t a r t , e nd) :

20 for each fld in R o o t s

21 r e f +--- * fld

22 if r e f =F nul.l.
23 * f ld +--- n e wAddre s s (re f)
24

25

26

27

28

29

30

31

32

s c an +--- s t a rt

whil.e s c an < e n d

s c a n +--- nextMa r k edOb j e c t (s c an)
for each f l d in P o i nt e r s (s can)

r e f +--- * f l d

if r e f =F nul.l.
* fld +--- n e wAddre s s (r e f)

de s t +--- newAdd r e s s (s can)
move (s can, de s t)

I* use the bitmap 4
/* update references 4

and mask operations), and uses this as an index into the o f f s et vector. The o f f s et vec
tor gives the forwarding address of the first object in that block. Compressor must then
consult the bitmap for that block to discover how much live data precedes this object in its
block, and therefore how much to add to the offset. This can be done in constant time by
a table lookup . For example, the o l d object in the figure has an offset of 3 marked slots in
its block so it is moved to slot 10 : o f fset [b l o c k] = 7 plus o f f s et i nB l o c k (o l d) = 3 .

3.5 Issues to consider

Is compaction necessary?

Mark-sweep garbage collection uses less memory than other techniques such as copying
collection (which we discuss in the next chapter) . Furthermore, since it does not move ob
jects, a mark-sweep collector need only identify (a superset of) the roots of the collection; it

3.5. ISSUES TO CONSIDER 41

does not need to modify them. Both of these considerations may be important in environ
ments where memory is tight or where the run-time system cannot provide type-accurate
identification of references (see Section 1 1 .2) .

As a non-moving collector, mark-sweep is vulnerable to fragmentation. Using a parsi
monious allocation strategy like sequential-fits (see Section 7.4) reduces the likelihood of
of fragmentation becoming a problem, provided that the application does not allocate very
many large objects and that the ratio of object sizes does not change much. However, frag
mentation is certainly likely to be a problem if a general-purpose, non-moving allocator is
used to allocate a wide variety of objects in a long-running application. For this reason,
most production Java virtual machines use moving collectors that can compact the heap.

Throughput costs of compaction

Sequential allocation in a compacted heap is fast. If the heap is large compared to the
amount of memory available, mark-compact is an appropriate moving collection strategy.
It has half the memory requirements of copying collectors. Algorithms like Compressor
are also easier to use with multiple collector threads than many copying algorithms (as we
shall see in Chapter 14) . There is, of course, a price to be paid . Mark-compact collection
is likely to be slower than either mark-sweep or copying collection . Furthermore, many
compaction algorithms incur additional overheads or place restrictions on the mutator.

Mark-compact algorithms offer worse throughput than mark-sweep or copying collec
tion largely because they tend to make more passes over objects in the heap; Compressor
is an exception. Each pass tends to be expensive, not least because many require access to
type information and object pointer fields, and these are the costs that tend to dominate
after 'pointer chasing', as we saw in Chapter 2. A common solution is to run with mark
sweep collection for as long as possible, switching to mark-compact collection only when
fragmentation metrics suggest that this be profitable [Printezis, 2001 ; Soman et al, 2004] .

Long-lived data

It is not uncommon for long-lived or even immortal data to accumulate near the beginning
of the heap in moving collectors. Copying collectors handle such objects poorly, repeatedly
copying them from one semispace to another. On the other hand, generational collectors
(which we examine in Chapter 9) deal with these well, by moving them to a different space
which is collected only infrequently. However, a generational solution might not be accept
able if heap space is tight. It is also obviously not a solution if the space being collected is
the oldest generation of a generational collector! Mark-compact, however, can simply elect
not to compact objects in this 'sediment' . Hanson [1977] was the first to observe that these
objects tended to accumulate at the bottom of the 'transient object area' in his SITBOL sys
tem. His solution was to track the height of this 'sediment' dynamically, and simply avoid
collecting it unless absolutely necessary, at the expense of a small amount of fragmenta
tion. Sun Microsystems' HotSpot Java virtual machine uses mark-compact as the default
collector for its old generation. It too avoids compacting objects in the user-configurable
'dense prefix' of the heap [Sun Microsystems, 2006] . If bitmap marking is used, the extent
of a live prefix of desired density can be determined simply by examining the bitmap.

Locality

Mark-compact collectors may preserve the allocation order of objects in the heap or they
may rearrange them arbitrarily. Although arbitrary order collectors may be faster than
other mark-compact collectors and impose no space overheads, the mutator 's locality is

42 CHAPTER 3. MARK-COMPACT GARBAGE COLLECTION

likely to suffer from an arbitrary scrambling of object order. Sliding compaction has a
further benefit for some systems: the space occupied by all objects allocated after a certain
point can be reclaimed in constant time, just by retreating the free space pointer.

Limitations of mark-compact algorithms

A wide variety of mark-compact collection algorithms has been proposed. A fuller account
of many older compaction strategies can be found in Chapter 5 of Jones [1996] . Many of
these have properties that may be undesirable or unacceptable. The issues to consider
include what space overheads may be incurred to store forwarding pointers (although this
cost will be lower than that of a copying collector) . Some compaction algorithms place
restrictions on the mutator. Simple compactors like the Two-Finger algorithm can only
manage fixed-size objects. It is certainly possible to segregate objects by size class, but in
this case, to what extent is compaction necessary? Threaded compaction requires that it
be possible to distinguish pointers from non-pointer values temporarily stored in pointer
fields. Threading is also incompatible with concurrent collection because it (temporarily)
destroys information in pointer fields. Morris's [1978,1979,1982] threaded algorithm also
restricts the direction in which references may point. Finally, most compaction algorithms
preclude the use of interior pointers: the Two-Finger algorithm is an exception.

Chapter 4

Copying garbage collection

So far we have seen that mark-sweep has comparatively cheap collection costs but may
suffer from fragmentation. Given that garbage collection should account for only a small
proportion of overall execution time in any well configured system, it is essential that over
heads on the mutator are kept to a minimum and, in particular, that allocation is fast, since
mutator costs dominate those of the collector. Mark-compact collectors eliminate frag
mentation and support very fast, 'bump a pointer ' allocation (see Chapter 7) but require
multiple passes over live objects, and significantly increase collection times. In this chap
ter, we discuss a third style of tracing garbage collection, semispace copying [Fenichel and
Yochelson, 1969; Cheney, 1970] . Copying compacts the heap, thus allowing fast allocation,
yet requires only a single pass over the live objects in the heap. Its chief disadvantage is
that it reduces the size of the available heap by half.

4.1 Semispace copying collection

Basic copying collectors divide the heap into two, equally sized semispaces, called fromspace
and tospace. For simplicity, Algorithm 4.1 assumes that the heap is one contiguous region
of memory, but this is not essential . New objects are allocated in tospace by incrementing
the value of a f r e e pointer if there is sufficient room.1 Otherwise, the role of the two
semispaces is flipped (line 2 in Algorithm 4.2) before the collector copies all live objects from
what is now the fromspace to the tospace. This collector simply picks out - evacuating or
scavenging - live objects from the old semispace. At the end of the collection, all live
objects will have been placed in a dense prefix of tospace. The collector simply abandons
fromspace (and the objects it contains) until the next collection. In practice, however, many
collectors will zero that space for safety during the initialisation of the next collection cycle
(see Chapter 11 where we discuss the interface with the run-time system) .

After initialisation, semispace copying collectors populate their work list by copying
the root objects into tospace (line 4). Copied but not yet scanned objects are grey. Each
pointer field of a grey object will hold either null or a reference to a fromspace object. The
copying scan traces each grey field, updating it to point to the tospace replica of its tar
get. When the trace visits a fromspace object, copy checks whether it has been evacuated
(forwarded) yet. If not, the object is copied now to the location in tospace to which f r e e

points, and the f re e pointer is incremented by the size o f the object (as for allocation) . It

1 Note: our a l l o c a t e and c o p y routines ignore issues of alignment and padding, and also the possibility that
a copied object may have a different format, such as an explicit rather than an implicit hash code for Java objects.

43

44 CHAPTER 4. COPYING GARBAGE COLLECTION

Algorithm 4.1: Semispace copying garbage collection: initialisation and allocation. For
simplicity this assumes that the heap is a single contiguous region.

1 c reat e S emi spac e s () :

t o space f- H e ap S t art

extent f- (H e ap E nd - Heap S t a rt) I 2

t op f- f roms p a c e f- HeapS t a rt + ext e n t

f r e e f- t o sp a c e

1 atomic a l l ocat e (s i z e) :

re s u l t f- f r e e

n e w f re e f- re s u l t +
10 if newfree > t op

s i z e

/* size of a semispace 4

I I return null /* signal 'Memory exh a u s t ed ' 4
1 2 f r e e f- new f r e e

1 3 return res u l t

i s essential that collectors preserve the topology of live objects in the tospace copy o f the
heap. This is achieved by storing the address of each tospace object as a forwarding address
in its old, fromspace replica when the object is copied (line 34) . The f o r w a rd routine,
tracing from a tospace field, uses this forwarding address to update the field, regardless of
whether the copy was made in this tracing step or a previous one (line 22). Collection is
complete when all tospace objects have been scanned.

Unlike most mark-compact collectors, semispace copying does not require any extra
space in object headers. Any slot in a fromspace object can be used for the forwarding ad
dress (at least, in stop-the-world implementations), since that copy of the object is not used
after the collection. This makes copying collection suitable even for header-less objects.

Work list implementations

Like all tracing collectors, semispace copying needs a work list of objects to process. The
work list can be implemented in different ways, leading to different orders of traversing
the object graph and different space requirements. Fenichel and Yochelson [1969] imple
mented the work list as a simple auxiliary stack, just as the mark-sweep collectors de
scribed in Chapter 2 did. Copying is complete when the stack is empty.

The elegant Cheney scanning algorithm Cheney [1970] uses the grey objects in tospace
as a first-in, first-out queue. It requires no additional storage other than a single pointer,
s c an, which points to the next unscanned object. When the semispaces are flipped, both
the f re e and s c an pointers are set to point to (the start of) t o space (see i n i t i al i s e in
Algorithm 4.3) . After the root objects are copied, the work list - the set of grey objects -
comprises precisely those (copied but unscanned) objects between s c a n and free . This
invariant is maintained throughout the collection. The s c an pointer is advanced as to
space fields are scanned and updated (line 9). Collection is complete when the work list
is empty: when the s c a n pointer catches up with the f r e e pointer. Thus, the actions of
this implementation are very simple. To determine termination, i s Empt y does no more
than compare the s can and f re e pointers; r emove just returns the s c a n pointer; and no
action is required to add work to the work list.

4. 1 . SEMISPACE COPYING COLLECTION 45

Algorithm 4.2: Semispace copying garbage collection

1 atomic c o l lect () :

f l ip ()
i n i t i a l i s e (w o rk l i st)
for each f l d in Root s

p r o ce s s (f l d)
while not i s Empty (work l i s t)

re f f- remove (wo rkl i s t)
s c an (re f)

10 f l ip () :

n f r omspace, t o s p a c e f- t o s p a ce, fromsp a c e

12 t op f- tospace + ext ent

1 3 f r e e f- t o sp a c e

14

1 5 s c an (re f) :

1 6 for each f l d in P o i nt e r s (r e f)
v p r o ce s s (f l d)
18

I* empty *f
I* copy the roots *f

I* copy transitive closure *f

I* switch semispaces *f

19 proce s s (f l d) : I* update field with reference to tospace replica 4
20 f r omRe f f- * f l d

21 if f r omRe f � null
22 * f l d f- f o rward (fromRe f)
23

24 f o rward (fromRe f) :

25 t oRe f f- f o rwardi ngAddr e s s (f romRe f)
26 if t oRe f = null
21 t oRe f f- copy (fromRe f)
� return toRe f

29

I* update with tospace reference *I

I* not copied (not marked) *f

3o copy (f romRe f) : I* copy object and return forwarding address *f
31

32

33

34
35

t oRe f f- free

f r e e f- free + s i z e (f romRe f)
move (fromRe f, t oRe f)
f o rwardi ngAddre s s (fromRe f) f- toRe f

add (wo r k l i s t , t oRe f)
� return toRe f

I* mark *f

46 CHAPTER 4. COPYING GARBAGE COLLECTION

Algorithm 4.3: Copying with Cheney's work list

i n i t i a l i s e (wo rk l i s t) :

s c an +-- f ree

4 i s Empt y (wo rk l i s t) :

return s c an = f ree

7 remove (wo r k l i s t) :

r e f +-- s can

s c an +-- s can + s i z e (s can)
w return re f

1 1

1 2 add (wo r k l i st , re f) :

13 /* nop 4

An example

Figure 4.1 shows an example of how a Cheney scan would copy L, a linked list structure
with pointers to the head and tail of the list. Figure 4. la shows fromspace before the collec
tion starts . At the start of the collection, the roles of the semis paces are flipped and L, which
we assume is directly reachable from the roots, is copied to tospace (advancing the free

pointer) and a forwarding reference to the new location L ' is written into L (for instance,
over the first field) . The s c a n pointer points to the first object in tospace (Figure 4.lb). The
collector is now ready to start copying the transitive closure of the roots. The s can pointer
points to the first object to process. L' holds references to A and E in fromspace, so these
objects are evacuated to the location pointed at by free in tospace (advancing free), the
references in L' are updated to point to the new locations A' and E' (Figure 4 . lc), and s ca n

i s advanced to the next grey object. Note that the collector i s finished with L ' so i t i s concep
tually black, whereas the next objects to scan, A' and E', are grey. This process is repeated
for each tospace object until the s can and f r ee pointers meet (Figure 4 . 1 f) . Observe that,
in Figure 4 . le, D' holds a reference to E, which has already been copied. The referring field
in D' is therefore updated with the forwarding address stored in E, thereby preserving the
shape of the graph. As with other tracing algorithms, copying garbage collection can cope
with all shapes of graphs, including cyclic data structures, preserving sharing properly.

4.2 Traversal order and locality

Mutator and collector locality can have a significant impact on program performance. As
we saw in the previous chapter, the collector can harm the mutator's locality and hence its
performance if it moves objects to arbitrary new locations without regard for either pointer
relationships or the original allocation order [Abuaiadh et al, 2004] . However, there is a
performance trade-off between locality benefits for the mutator, and for the collector and
the frequency of collections. Compare mark-sweep and copying collection. Mark-sweep
collectors have twice as much usable heap space available as do copying collectors, and
hence will perform half as many collections, all other things being equal . Consequently,
we might expect that mark-sweep collection offer better overall performance. Blackburn
et al [2004a] found that this was indeed the case for collection in tight heaps, where he
used a segregated-fits allocator for the non-moving collector. Conversely, in large heaps

4.2. TRAVERSAL ORDER AND LOCALITY

/ / /

(a) Fromspace before collection

Fromspace

Tospace

/ A I I ��[13---![13----!1
'\, ':-"'--'----J �

'--------'---'
\ � Fromspace

\. \ Tospace

I'
l'

scanj
(b) Copy the root, L

Lfree
(c) Scan L's replica

Figure 4.1: Copying garbage collection: an example

47

48 CHAPTER 4. COPYING GARBAGE COLLECTION

/ / /A---..------,
I
I
I
I
I

\ �

(d) Scan A's replica, and so on . . .

/ / (A I '<, +�I ',l.,�rl <, t:L�L�- -L��---;; '------'
1

,
__::__ _ _,__ � 1 t Fromspace

\ , I I � " - - - '"' � � Tospace

/ /

I I I I
I I I I

: : : : I
C' D'

scanj
(e) Scan C's replica.

(,' A�����-; ' � � � - � - �� ---'-----'
\ ', - - � - - - - - - - -t - - -

\ � ' " ... - - -
From space

Tospace

scanlfree

(f) Scan D's replica. s c a n = f r e e so collection is complete.

Figure 4.1 (continued): Copying garbage collection: an example

4.2. TRAVERSAL ORDER AND LOCALITY

@]
(a) The tree to copy

Depth-first l 1 I 2 4 8 9 1 5 10 1 1 3 6 12 13 7 14 15
Breadth-first l 1 I 2 3 4 5 1 6 7 8 9 10 11 12 13 14 15

Hierarchical decomposition l 1 I 2 3 4 8 1 9 5 10 1 1 6 12 13 7 14 15
Onl ine object reordering l 1 I 2 3 7 5 I ll 10 4 15 14 6 l3 9 8 12

(b) Placement of obJects in the heap af er copying

Figure 4.2: Copying a tree with different traversal orders. Each row shows
how a traversal order lays out objects in tospace, assuming that three objects
can be placed on a page (indicated by the thick borders) . For online object
reordering, prime numbered (bold italic) fields are considered to be hot.

49

the locality benefits to the mutator of sequential allocation outweighed the space efficiency
of mark-sweep collection, leading to better miss rates at all levels of the cache hierarchy.
This was particularly true for newly allocated objects which tend to experience higher
mutation rates than older objects [Blackburn and McKinley, 2003] .

The Blackburn et al [2004a] study copied objects depth-first. In contrast, Cheney's copy
ing collector traverses the graph breadth-first. Although this is implemented by a linear
scan of - and hence predictable access to - the work list of grey tospace objects, breadth
first copying adversely affects mutator locality because it tends to separate parents and
children. The table in Figure 4.2b compares the effect of different traversal orders on object
layout, given the tree in Figure 4.2a. Each row shows where different tracing orders would
place objects in tospace . If we examine row 2, we see that breadth-first traversal places
only objects 2 and 3 near their parent. In this section we look more closely at traversal
order and its consequences for locality.

White [1980] suggested long ago that the garbage collector could be used to improve
the performance of the mutator. Both copying and compacting garbage collectors move
objects, thus potentially affecting the mutators' locality patterns. Sliding is generally con
sidered to be best order for mark-compact algorithms since it reserves the order of layout
of objects established by the allocator. This is a safe, conservative policy, but can we do bet
ter? Mark-compact algorithms condense the heap in place, either by moving objects into
holes (arbitrary order compactors) or by sliding live data (overwriting only garbage or ob
jects that have already been moved), and thus have no opportunity for more locality-aware
reorganisation. However, any collector that evacuates live objects to a fresh region of the
heap without destroying the original data can rearrange their layout in order to improve
the performance of the mutator.

Unfortunately there are two reasons why we cannot find an optimal layout of objects,
that minimises the number of cache misses suffered by the program. First of all, the collec
tor cannot know what the pattern of future accesses to objects will be. But worse, Petrank
and Rawitz [2002] show that the placement problem is NP-complete: even given a perfect

50 CHAPTER 4. COPYING GARBAGE COLLECTION

Algorithm 4.4: Approximately depth-first copying [Moon, 1984) (we assume that objects
do not span pages)

i n i t i a l i s e (work l i s t) :

s c an f- free

p a r t i a l S can f- free

5 i s Emp t y (work l i s t) :

return s c an = f ree

a remove (w o rk l i s t) :

if (part i a l S c an < free)
w r e f f- part i a l S can

n p a r t i a l S c an f- part i a l S c a n

1 2 else
1 3 re f f- s c an

14 s c an f- s c an + s i z e (s c an)
1 5 return r e f

16

I* as per Cheney *I

I* prefer secondary scan *f
+ s i z e (p a r t i a l S can)

I* primary scan *I

1 1 add (w o rk l i s t , re f) : I* secondary scan on the most recently allocated page *f
1 s p a r t i a l S can f- max (part i a l S can , s t a r t O f P age (r e f))

knowledge of future accesses, there is no efficient algorithm to compute a n optimal place
ment. The only solution is to use heuristics. One possibility is to use past behaviour as a
predictor of future behaviour. Some researchers have used either profiling, on the assump
tion that programs behave similarly for different inputs [Calder et al, 1998] , or online sam
pling, assuming that behaviour remains unchanged from one period to the next [Chilimbi
et al, 1999] . Another heuristic is to preserve allocation order, as sliding compaction does.
A third strategy is to try to place children close to one of their parents, since the only way
to access a child is by loading a reference from one of its parents. Cheney's algorithm uses
breadth-first traversal, but its unfortunate consequence is that it separates related data,
tending to co-locate distant cousins rather than parents and children. Depth-first traversal
(row one), on the other hand, tends to place children closer to their parents.

Early studies of the locality benefits of different copying orders focused on trying to
minimise page faults: the goal was to place related items on the same page. Stamos found
that simulations of Smalltalk systems suggested that depth-first ordering gave a modest
improvement over breadth-first ordering but worse paging behaviour than the original ob
ject creation order [Stamos, 1982; Blau, 1983; Stamos, 1984] . However, Wilson et al [1991] ar
gue that these simulations ignore the topology of real Lisp and Smalltalk programs which
tended to create wide but shallow trees, rooted in hash tables, designed to spread their
keys in order to avoid clashes.

If we are prepared to pay the cost of an auxiliary last-in, first-out marking stack, then
the Fenichel and Yochelson algorithm leads to a depth-first traversal. However, it is possi
ble to obtain a pseudo-depth-first traversal without paying the space costs that come from
using a stack. Moon [1984) modified Cheney's algorithm to make it 'approximately depth
first' . He added a second, p a r t i a l S c an pointer in addition to the primary s c an pointer
(see Figure 4.3) . Whenever an object is copied, Moon's algorithm starts a secondary scan
from the last page of tospace that has not been completely scanned. Once the last tospace
page has been scanned, the primary scan continues from the first incompletely scanned

4.2. TRAVERSAL ORDER AND LOCALITY

page
,-------,

. IIJ D IIJ D liJ
scan J partialScan J L free

Figure 4.3: Moon's approximately depth-first copying. Each block represents
a page. As usual, scanned fields are black, and copied but not yet scanned
ones are grey. Free space is shown in white.

�

• child

��· Fromspace

remove ()

I addr o b j
mark stack

prefetch (}
Tospace

•1 1 1 ! ! 1
X S Y Z C

Figure 4.4: A FIFO prefetch buffer (discussed in Chapter 2) does not improve
locality with copying as distant cousins (C, Y, Z), rather than parents and
children, tend to be placed together.

51

page (Algorithm 4.4) . In effect, the work list i s implemented as a pair of Cheney queues.
The advantage of this hierarchical decomposition scheme is that it is more effective than pure
breadth-first search at depositing parents on the same page as their children. The hierar
chical decomposition line of Figure 4.2b shows how this algorithm would copy the tree,
assuming a page size of three objects.

The disadvantage of Moon's algorithm is that objects may be scanned twice since he
records only a pair of scan pointers, thus forgetting blocks between s c a n and free that
have already been partially scanned; indeed, Wilson et al [1991] suggest that around 30%
may be rescanned. They modified this algorithm to provide each page with its own scan
and free pointers, making the work list now a list of partially scanned blocks to complete.
This means that the primary scan does not have to revisit objects on pages already pro
cessed by a secondary scan.

When we discussed how to improve the marking loop of a mark-sweep collector in
Section 2.6, we mentioned that Cher et al [2004] argued that using a stack to guide tracing
leads to a depth-first traversal of the graph but cache lines are fetched breadth-first. A
natural question to ask is can we combine stack-based, depth-first copying with the first
in, first-out prefetch queue suggested by Cher et al [2004]? Unfortunately it seems not,
because although first-in, first-out helps the copying loop avoid cache miss stalls, it sep
arates parents from children since it visits an object to follow its references only when it
is removed from the queue, not from the stack.2 Imagine that a string object S is popped

2Tony Printezis, personal communication.

52 CHAPTER 4. COPYING GARBAGE COLLECTION

Algorithm 4.5: Online object reordering

1 atomic c o l lect () :

f l i p ()
i n i t i a l i se (hot L i s t , coldL i s t)
for each fld in Root s

a dv i cePro c e s s (f l d)
repeat

while not i s Empt y (hot L i s t)
adv i ce S c a n (remove (hot L i s t))

while not i s Empty (coldL i s t)
10 advi ceP r o c e s s (remove (c o ldL i s t))
u until i sEmpt y (h o t L i st)
1 2

1 3 i n i t i a l i s e (hotLi s t , c o ldL i s t) :

1 4 hot L i s t +-- empt y

1 s c o l dL i s t +-- emp t y

1 6

1 7 adv i ceP r o c e s s (f l d) :

1 s f romRe f +-- * f l d

1 9 if f r omRe f =F nul l
20 * f l d +-- fo r w a r d (fromRe f)
2 1

22 adv i c e S can (ob j) :

23 for each fld in P o i nt e r s (ob j)
24 if i s Hot (f l d)
a adv i ceP r o c e s s (fld)
26 else
27 add(co ldLi s t , fld)

from the stack . Desirably, S should be placed adjacent to its associated character array C
in tospace, as the depth-first algorithm would do. Using the first-in, first-out queue, after
S is popped from the stack, it is added to the queue. Suppose that the queue is full, so the
oldest entry X is removed, copied and its references Y and Z pushed on the stack, as illus
trated in Figure 4.4. Unfortunately, Y and Z will be removed from the queue and copied
after S but before C.

The reorganisations above are static: the algorithms pay no attention to the behaviour
of individual applications. However, it is clear that the benefits of layout reordering
schemes depend on the behaviour of the mutator. Lam et al [1992] found that both al
gorithms were sensitive to the mix and shape of program data structures, giving disap
pointing performance for structures that were not tree-like. Siegwart and Hirzel [2006]
also observed that a parallel hierarchical decomposition collector led to benefits for some
benchmarks but little improvement overall for others. Huang et al [2004] address this by
dynamically profiling the application and trying to copy 'hot' fields of objects alongside
their parent. Their online object reordering scheme and its effect are shown in Algorithm 4.5
and the last row of Figure 4 .2b . The main scanning loop of their algorithm (line 6) pro
cesses all hot fields in its work lists before any cold fields . Piggybacking on the method
sampling mechanism of an adaptive dynamic compiler allows these fields to be identified
comparatively cheaply (Huang et al report less than 2% of total execution time) . Their

4.3. ISSUES TO CONSIDER 53

implementation also accommodates changes of behaviour in different program phases by
allowing the 'heat' of fields to decay and be resampled . They find that the performance of
their system matches or improves that of static reorderings such as breadth-first.

Chen et al [2006] and Chilimbi and Larus [1998] proactively invoke the collector to im
prove locality in a generational collector. Their mechanism is expensive so is not always
on. Instead, they use changes in allocation rates as their primary trigger to collection in
order to improve locality; changes in data translation lookaside buffer (TLB) or Level 2 cache
miss rate are used as a secondary trigger. They record object accesses in a fixed-size, cir
cular buffer (they argue that profiling at the node level rather than the field level leads
to overheads less than 5%, since most nodes in object-oriented programs are smaller than
32 bytes). An expensive (but aggressively optimised) read barrier3 operates during bursty
sampling phases to identify hot objects as the mutators load references to them. Their
collector copies hot objects in two phases. First, contemporaneously accessed objects are
copied to a temporary buffer. Then, to improve paging, the collector appends hot objects
to this buffer, using hierarchical decomposition [Wilson et al, 1991] . The original locations
of copied objects are marked free, and the rearranged group of objects is moved from the
temporary buffer to one end of the heap. The scheme aims to improve both cache perfor
mance and paging behaviour: the benefit of combining both optimisations was found to
be greater than the sum of either applied on its own, and gave an average improvement
in execution time for a range of large C# applications. Although it is possible that some
garbage objects may be preserved, in practice the volume is very small .

Other authors have also suggested custom, static reordering by object type [Wilson et al,
1991 ; Lam et al, 1992], particularly for system data structures. By allowing class authors to
specify the order in which fields are copied, Novark et al [2006] reduce the cache miss rate
significantly for certain data structures. Shuf et al [2002] use off-line profiling to identify
prolific types. The allocator is modified so that, when a parent is created, adjacent space
is left for its children, thus both improving locality and encouraging clustering of objects
with similar lifetimes. This approach may address to some extent the problem identified
on page 51 of combining a first-in, first-out prefetch queue with depth-first copying.

4.3 Issues to consider

Copying collection offers two immediately attractive advantages over non-moving collec
tors like mark-sweep : fast allocation and the elimination of fragmentation (other than to
satisfy alignment requirements) . Simple copying collectors are also easier to implement
than mark-sweep or mark-compact collectors. The trade-off is that copying collection uses
twice as much virtual memory as other collectors in order to match their frequency of
collections.

Allocation

Allocation in a compacted heap is fast because it is simple. In the common case, it simply
requires a test against a heap or block limit and that a free pointer be implemented . If a
block-structured rather than a contiguous heap is used, occasionally the test will fail and a
new block must be acquired. The slow path frequency will depend on the ratio of the aver
age size of objects allocated and the block size. Sequential allocation also works well with
multithreaded applications since each mutator can be given its own local allocation buffer
in which to allocate without needing to synchronise with other threads. This arrange
ment is simpler and requires little metadata, in contrast with local allocation schemes for

3We discuss barriers in Chapter 1 1 .

54 CHAPTER 4. COPYING GARBAGE COLLECTION

non-moving collectors where each thread might need its own size-class data structures for
segregated-fits allocation.

The code sequence for such a bump-a-pointer allocation is short but, even better, it is
well behaved with respect to the cache as allocation advances linearly through the heap.
Although the combination of sequential allocation, typically short object lifetimes and
semispaces means that the next location to be allocated is likely to be the one least re
cently used, the prefetching abilities of modern processors are likely to hide the latency
that might otherwise result. If this behaviour conflicts with the operating system's least
recently used (LRU) page eviction policy to the extent that paging becomes a problem, it is
time to reconsider the configuration of the system. Either it requires more physical mem
ory to run the application satisfactorily, or another collection policy - maybe one of the
generational collectors we discuss in Chapter 9 - should be used.

Blackburn et al [2004a] found that although sequential allocation had an 1 1% advan
tage over free-list allocation in a micro-benchmark limit study, allocation itself accounted
for less than 10% of overall running time in real applications. Thus, the difference in cost
between bump-a-pointer allocation and free-list allocation may not be significant. How
ever, allocation is only part of the picture for the mutator since the cost of creating a new
object is likely to be dominated by its initialisation, certainly in systems that distinguish
these actions. Furthermore, objects share similar life-cycles in many applications. The mu
tator creates some semantically related objects at around the same time, uses them, and
finally tends to abandon them all at once. Here, compacted heaps offer good spatial local
ity, with related objects typically allocated on the same page and maybe in the same cache
line if they are small. Such a layout is likely to lead to fewer cache misses than if related
objects are allocated from different free-lists.

Space and locality

The immediate disadvantage of semispace copying is the need to maintain a second semi
space, sometimes called a copy reserve. For a given memory budget and ignoring the data
structures needed by the collector itself, semispace copying provides only half the heap
space of that offered by other whole heap collectors. The consequence is that copying col
lectors will perform more garbage collection cycles than other collectors. Whether or not
this translates into better or worse performance depends on trade-offs between the muta
tor and the collector, the characteristics of the application program and the volume of heap
space available.

Simple asymptotic complexity analyses might prefer copying over mark-sweep collec
tion. Let M be the total size of the heap, and L be the volume of live data . Semispace
collectors must copy, scan and update pointers in live data. Mark-sweep collectors must
similarly trace all the live objects but then sweep the whole heap . Jones [1996] defines the
time complexities for copying and mark-sweep collection as, respectively:

tcopy = cL tMs = m L + sM

The amount of memory reclaimed by each collector is:

mcopy = M/2 - L mMs = M - L

Let r = L/ M be the proportion of live memory, which we assume to be constant. The
efficiency of an algorithm can be described by its mark/ cons ratio, e, the amount of work
done by the collector per unit allocated. The efficiency of these two algorithms is therefore:

2cr
ecopy =

1 - 2r

mr + s
eMs = ---1 - r

4.3. ISSUES TO CONSIDER

- - -

s - - -

0 0.5

mark-sweep

smaller heaps

1
l ive ratio

Figure 4.5: Mark/ cons ratios for mark-sweep and copying collection (lower
is better) .

55

The mark/ cons ratio curves presented in Figure 4.5 show that copying collection can
be made more efficient that mark-sweep collection, provided that the heap is large enough
and r is small enough. However, such a simple analysis ignores several matters. Modem
mark-sweep collectors are likely to use lazy sweeping, thus reducing the constant s and
lowering mark-sweep's mark/cons ratio . Complexity analyses need to be treated with
some caution since they ignore implementation details, although Hertz and Berger [2005]
confirm experimentally the general shape of the curves (for example, that the cost of mark
sweep collection is inversely proportional to the size of the heap) . However, pragmatic
details are important for real collectors . These are not captured by complexity analyses.
One example is the locality benefit of sequential allocation [Blackburn et al, 2004a] .

So, sequential allocation tends to lay out contemporaneously accessed objects contigu
ously, which helps to improve the mutator 's cache miss rate. But copying collection then
reorders surviving objects in the heap. Although Cheney-style collectors need no aux
iliary stack to guide the trace, their breadth-first traversal tends to separate parents and
children. Hierarchical decomposition offers a compromise between paying the costs of a
tracing stack and improving the layout of objects in the heap. However, although careful
reordering has benefits for some programs, it often has negligible effects. Why is this?
Most objects have short lifetimes and do not survive a collection. Moreover, many appli
cations concentrate accesses, and especially writes, on these young objects [Blackburn and
McKinley, 2003] . Collector traversal policies cannot affect the locality properties of objects
that are never moved.

Printezis has also pointed out that whether parallel collector threads are used or not
will influence the choice of copying mechanism. It may be simpler to do very fine-grained
load-balancing by work stealing from per-thread stacks as opposed to using a Cheney
queue.4 We discuss these issues in depth in Chapter 14.

Moving obj ects

The choice of a copying collector will depend in part on whether it is possible to move ob
jects and the cost of doing so. In some environments objects cannot be moved. One reason
is that lack of type accuracy means that it would not be safe to modify the slot holding
a reference to a putative object. Another is that a reference to the object has been passed
to unmanaged code (perhaps, as an argument in a system call) that does not expect the
reference to change. Furthermore, the problem of pointer finding can often be simpler in

4Tony Printezis, personal communication.

56 CHAPTER 4. COPYING GARBAGE COLLECTION

a mark-sweep context than that of a moving collector. It suffices to find at least one refer
ence to a live object with a non-moving collector. On the other hand, a moving collector
must find and update all references to an evacuated object. As we will see in Chapter 17,
this also makes the problem of concurrent moving collection much harder than concur
rent non-moving collection since all the references to an object must appear to be updated
atomically.

It is expensive to copy some objects. Although copying even a small object is likely
to be more expensive than marking it, the cost and latency of doing so is often absorbed
by the costs of chasing pointers and discovering type information. On the other hand,
repeatedly copying large, pointer-free objects will lead to poor performance. One solution
is simply not to copy them but instead devolve the management of large objects to a non
moving collector. Another is to copy them virtually but not physically. This can be done
either by holding such objects on a linked list maintained by the collector, or by allocating
large objects on their own virtual memory pages which can be remapped. We consider
such techniques in Chapters 8 to 10 .

Chapter 5

Reference counting

The algorithms considered so far have all been indirect. Each has traced the graph of live
objects from a set of known roots to identify all live objects . In this chapter, we consider
the last class of fundamental algorithms, reference counting [Collins, 1960] . Rather than
tracing reachable objects and then inferring that all unvisited objects must be garbage,
reference counting operates directly on objects as references are created or destroyed .

Reference counting maintains a simple invariant: an object is presumed to be live if
and only if the number of references to that object is greater than zero. 1 Reference counting
therefore associates a reference coun t with each object managed; typically this count is stored
as an additional slot in the object's header. In its most nai"ve implementation, shown in
Algorithm 5.1, reference counts are incremented or decremented as references to objects
are created or destroyed. Procedure W r i t e increments the reference count of the new
target and then decrements the count of the old target. Note that it is called even for
updates of local variables. We also assume it is called to write null into local variables
before each procedure returns. The operations addRe fe rence and de leteRe f e r e n c e

increment and decrement respectively the reference counts o f their object argument. Note
that it is essential that the reference counts are adjusted in this order (lines 9-10) to prevent
premature reclamation of the target in the case when the old and the new targets of the
pointer are the same, that is, s r c [i] = re f . Once a reference count is zero (line 20), the
object can be freed and the reference counts of all its children decremented, which may in
turn lead to their reclamation and so on recursively.

The W r i t e method in Algorithm 5 .1 is an example of a write barrier. For these, the
compiler emits a short code sequence around the actual pointer write. As we shall see
later in this book, mutators are required to execute barriers in many systems. More pre
cisely, they are required whenever collectors do not consider the liveness of the entire object
graph, atomically with respect to the mutator. Such collectors may execute concurrently, ei
ther in lock-step with the mutator as for reference counting or asynchronously in another
thread . Alternatively, the collector may process different regions of the heap at different
frequencies, as do generational collectors. In all these cases, mutator barriers must be exe
cuted in order to preserve the invariants of the collector algorithm.

1 Reference listing algorithms, commonly used by distributed systems such as Java's RMI libraries, modify this
invariant so that an object is deemed to be live if and only if the set of clients believed to be holding a reference
to the object is non-empty. This offers certain fault tolerance benefits, for example, set insertion or deletion is
idempotent, unlike counter arithmetic.

57

58 CHAPTER 5. REFERENCE COUNTING

Algorithm 5.1: Simple reference counting

1 New () :

ref t-- a l locate ()
i f r e f = null

e r r o r " Out o f memo ry "

rc (re f) t-- 0
return r e f

atomic W r i t e (s rc, i , r e f) :

addRe f e r e n ce (re f)
1 0 de l e t e Re f e rence (s r c [i])
n s r c [i] t-- r e f

1 2

1 3 addRe f e r e n c e (ref) :

1 4 if re f "I null
1 s r c (r e f) t-- r c (r e f) + 1

1 6

v de leteRe f e rence (r e f) :

1 s if r e f "I null
1 9 r c (re f) t-- r c (r e f) - 1

20 if r c (ref) = 0
21 for each f l d in P o i nt e r s (r e f)
n de leteRe f e rence (• f l d)
23 f ree (ref)

5.1 Advantages and disadvantages of reference counting

There are a number of reasons why reference counting might be an attractive option. Mem
ory management costs are distributed throughout the computation. Potentially, reference
counting can recycle memory as soon as an object becomes garbage (but we shall see below
why this may not always be desirable) . Consequently, it may continue to operate satisfac
torily in a nearly full heap, unlike tracing collectors which need some headroom. Since
reference counting operates directly on the sources and targets of pointers, the locality of
a reference counting algorithm may be no worse than that of its client program. Client
programs can use destructive updates rather than copying objects if they can prove that
an object is not shared. Reference counting can be implemented without assistance from
or knowledge of the run-time system. In particular, it is not necessary to know the roots of
the program. Reference counting can reclaim some memory even if parts of the system are
unavailable: this is particularly useful in distributed systems [Rodrigues and Jones, 1998] .

For these reasons, reference counting has been adopted for many systems including
programming language implementations (early versions of Smalltalk and Lisp; also awk,
peri and python); applications such as Photoshop, Real Networks' Rhapsody Music Ser
vice, Oce printers, scanners and document management systems; as well as operating sys
tems' file managers. Libraries to support safe reclamation of objects are widely available
for languages like C++ that do not yet require automatic memory management. Such
libraries often use smart pointers to access objects . Smart pointers typically overload con
structors and operators such as assignment, either to enforce unique ownership of objects
or to provide reference counting. Unique pointers ensure that an object has a single 'owner' .

5. 1 . ADVANTAGES AND DISADVANTAGES OF REFERENCE COUNTING 59

When this owner is destroyed, the object also can be destroyed. For example, the next
C++ standard is expected to include a uni que_pt r template . Many C++ programmers
use smart pointers to provide reference counting to manage memory automatically. The
best known smart pointer library for C++ is the Boost library/ which provides reference
counting through shared pointer objects. One drawback of smart pointers is that they have
semantics different from those of the raw pointers that they imitate [Edelson, 1992] .

Unfortunately, there are also a number of disadvantages to reference counting. First,
reference counting imposes a time overhead on the mutator. In contrast to the tracing al
gorithms we considered in earlier chapters, Algorithm 5.1 redefined all pointer Read and
W r i t e operations in order to manipulate reference counts. Even non-destructive opera
tions such as iteration require the reference counts of each element in the list to be incre
mented and then decremented as a pointer moves across a data structure such as a list.
From a performance point of view, it is particularly undesirable to add overhead to opera
tions that manipulate registers or thread stack slots. For this reason alone, this naive algo
rithm is impractical for use as a general purpose, high volume, high performance memory
manager. Fortunately, as we shall see, the cost of reference counted pointer manipulations
can be reduced substantially.

Second, both the reference count manipulations and the pointer load or store must be a
single atomic action in order to prevent races between mutator threads which would risk
premature reclamation of objects. It is insufficient to protect the integrity of the reference
count operation alone. For now, we simply assert that actions are atomic, without explain
ing how this might be achieved. We reconsider this in Chapter 18 when examine reference
counting and concurrency in detail. Some smart pointer libraries that provide reference
counting require careful use by the programmer if races are to be avoided. For example,
in the Boost library, concurrent threads can read the same s h a r e d_pt r instance simul
taneously, or can modify different s h a red_pt r instances simultaneously, but the library
enforces atomicity only upon reference count manipulations. The combination of pointer
read or write and reference count increment is not a single atomic action. Thus, the appli
cation programmer must take care to prevent races to update a pointer slot, which might
lead to undefined behaviour.

Third, na'ive reference counting turns read-only operations into ones requiring stores
to memory (to update reference counts) . Similarly, it requires reading and writing the old
referent of a pointer field when changing that field to refer to a different object. These
writes 'pollute' the cache and induce extra memory traffic.

Fourth, reference counting cannot reclaim cyclic data structures (that is, data structures
that contain references to themselves) . Even if such a structure is isolated from the rest of
the object graph - it is unreachable - the reference counts of its components will never
drop to zero. Unfortunately, self-referential structures are common (doubly-linked lists,
trees whose nodes hold a back pointer to the root, and so on), although their frequency
varies widely between applications [Bacon and Rajan, 2001] .

Fifth, i n the worst case, the number of references t o an object could be equal t o the num
ber of objects in the heap. This means that the reference count field must be pointer sized,
that is, a whole slot. Given that the average size of nodes in object-oriented languages is
small (for example, Java instance objects are typically 20--64 bytes long [Dieckmann and
Holzle, 1999, 2001; Blackburn et al, 2006a], and Lisp cons cells usually fit into two or three
slots), this overhead can be significant.

Finally, reference counting may still induce pauses. When the last reference to the head
of a large pointer structure is deleted, reference counting must recursively delete each de
scendant of the root. Boehm [2004] suggests that thread-safe implementations of reference

2The Boost libraries for C++, www . b o o s t . o rg.

60 CHAPTER 5. REFERENCE COUNTING

counting may even lead to longer maximum pause times than tracing collectors. Weizen
baum [1969] suggested lazy reference counting: rather than immediately freeing garbage
pointer structures, de leteRe f e r e n c e adds an object with a zero reference count to a
to-be-freed list, without destroying its contents. When the object is later acquired by the
allocator, its children can be processed similarly, without recursive freeing. Unfortunately,
this technique allows large garbage structures to be hidden by smaller ones, and hence
increases overall space requirements [Boehm, 2004] .

Let us now see the extent to which we can resolve two of the major problems facing
reference counting: the cost of reference count manipulations and collecting cyclic garbage.
It turns out that common solutions to both of these problems involve a stop-the-world
pause. We mention these in this chapter but examine how this requirement can be relaxed
in Chapter 18.

5.2 Improving efficiency

There are two ways in which the efficiency of reference counting can be improved. Either
the number of barrier operations must be reduced or expensive synchronised operations
must be replaced by cheaper, unsynchronised ones. Blackburn and McKinley [2003] define
a useful taxonomy of solutions.

Deferral Deferred reference counting trades fine grained incrementality (the immediate re
covery of all garbage) for efficiency. The identification of some garbage objects is
deferred to a reclamation phase at the end of some period. These schemes eliminate
some barrier operations.

Coalescing Many reference count adjustments are temporary and hence 'unnecessary';
programmers often remove them by hand. In some special cases, this can also be
done by the compiler. However, it is also possible to do this more generally at run
time by tracking only the state of an object at the beginning and end of some period.
This coalesced reference counting ignores all but the first modification to a field of an
object in each period.

Buffering Buffered reference counting also defers identification of garbage. However, unlike
deferred or coalesced reference counting, it buffers all reference count increments
and decrements for later processing. Only the collector thread is allowed to apply
reference count modifications. Buffering considers when to apply reference count
modifications not whether to.

One fundamental obstacle to efficiency is that object reference counts are part of the
global state of the program, but operations on (thread) local state are usually more effi
cient. The three classes of solution above share a common approach to this problem: they
divide execution into periods or epochs. Within an epoch, some or all synchronised refer
ence counting operations can be either eliminated or replaced by unsynchronised writes
(to thread-local buffers) . Identification of garbage is performed only at the end of an
epoch, either with mutator threads halted, or concurrently by a separate collector thread
(or threads). In all cases, changes to local reference count state are not revealed (that is,
applied to the global state using an atomic action) until an epoch boundary.

In this chapter, we consider two sequential approaches, deferred and coalesced refer
ence counting. Here, collection epochs are separated by stop-the-world pauses to repair
reference counts. In Chapter 18, we shall see first how buffered reference counting de
volves responsibility for reference count manipulations to a concurrent thread, and then
how we can coalesce reference counts concurrently.

5.3. DEFERRED REFERENCE COUNTING

defer

RC space

Figure 5.1: Deferred reference counting schematic, showing whether refer
ence counting operations on pointer loads or stores should be deferred or
be performed eagerly. The arrows indicate the source and target of pointers
loaded or stored.

Blackburn and McKinley [2003], doi: 1 0 . 1 1 4 5 / 9 4 9 3 0 5 . 94 9 3 3 6 .

© 2003 Association for Computing Machinery, Inc. Reprinted by permission.

5.3 Deferred reference counting

61

Manipulating reference counts is expensive compared with the cost to the mutator of sim
ple tracing algorithms. Although, as we shall see in later chapters, generational and con
current algorithms also impose a small overhead on the mutator, these are much lower
than the overhead of safely manipulating reference counts. To overwrite a pointer, Wr i t e

in Algorithm 5.1 executed a dozen or so instructions (though in some cases the compiler
could statically elide some tests) . The reference count adjustments must be atomic opera
tions and be kept consistent with pointer updates. Furthermore, W r i t e modifies both the
old and new targets of the field in question, possibly polluting the cache with dirty words
that will not be reused soon. Optimisation to remove matching increments and decrements
is error prone if done by hand, but has proved effective as a compiler optimisation [Cann
and Oldehoeft, 1988] .

Most high-performance reference counting systems (for example, that of Blackburn and
McKinley [2003]) use deferred reference counting. The overwhelming majority of pointer
loads are to local and temporary variables, that is, to registers or stack slots. Long ago,
Deutsch and Bobrow [1976] showed how to remove reference count manipulations from
these operations by adjusting counts only when pointers are stored into heap objects. Fig
ure 5 .1 shows an abstract view of deferred reference counting in which operations on heap
objects are performed immediately but those involving stacks or registers are deferred.
There is, of course, a cost to pay. If reference count manipulations on local variables are
ignored, then counts will no longer be accurate. It is therefore no longer safe to reclaim
an object just because its reference count is zero. In order to reclaim any garbage, deferred
reference counting must periodically correct counts during stop-the-world pauses. Fortu
nately, these pauses are likely to be short compared with those of tracing collectors, such
as mark-sweep [Ungar, 1984] .

Algorithm 5.2 loads object references using the simple, unbarriered implementation of
Read from Chapter 1. Similarly, references can also be written to roots using an unbarri
ered store (line 14). In contrast, writes to heap objects must be barriered. In this case, the
reference count of the new target is incremented as usual (line 17) . However, if decrement
ing the reference count of the old target causes it to drop to zero, the W r i t e barrier adds
the object whose reference count is zero to a zero count table (ZCT) rather than immediately
reclaiming it (line 26) . The zero count table can be implemented in a variety of ways, for
example with a bitmap [Baden, 1983] or a hash table [Deutsch and Bobrow, 1976] . An ob
ject with a reference count of zero cannot be reclaimed at this point because there might be
an uncounted reference to it from the program stack. Conceptually, the zero count table
contains objects whose reference counts are zero but may be live. Depending on the im-

62 CHAPTER 5. REFERENCE COUNTING

Algorithm 5.2: Deferred reference counting

1 New() :
ref +- a l locat e ()
i f re f = null

c o l l e c t ()
re f +- al locat e ()
i f ref = null

e r ror " Out o f memory "
rc (r e f) +- 0
add (z c t , ref)

1 0 return ref
I I
1 2 Write (s rc , i , ref) :
13 if s r c = Root s
1 4 s r c [i] +--- re f
1 s else
1 6 atomic
v addRe fe r e n c e (ref)
1s remove (z c t , r e f)
1 9 de leteRe fe re n ceToZCT (s rc [i])
20 s rc [i] +--- re f
2 1

u deleteRe fe renceTo ZC T (re f) :
23 if re f ":1 null
24 r c (re f) +--- rc (re f) 1

2s if r c (ref) = 0
26 add(zct , re f)
27

28 atomic c o l lect () :
29 for each fld in Ro o t s
3o addRe ference (* f l d)
3 1 sweep Z C T ()
32 for each fld in Ro ot s
D de l e t eRefere n c e To ZCT(* fld)
34
3s sweepZCT () :
� while not i sEmpt y (z ct)
37 re f +- remove (z c t)
38 if r c (ref) = 0
39

40

41

for each f l d in Point e r s (ref)
delet eRe fe rence (* f l d)

f ree (ref)

I* defer freeing 4

I* mark the stacks 4

I* unmark the stacks 4

I* now reclaim garbage 4

5.4. COALESCED REFERENCE COUNTING 63

plementation of the zero count table and whether it is desirable to limit the size of the zero
count table, we can also choose to remove the new target from the zero count table when
writing a reference into a heap object, as its true reference count must be positive (line 19) .

However, at some point garbage objects must be collected if the program is not to run
out of memory. Periodically, for example when the allocator fails to return memory to
New, all threads are stopped while each object in the zero count table is scrutinised to de
termine whether its true reference count should be zero . An object in the zero count table
with reference count zero can only be live if there are one or more references to it from the
roots. The simplest way to discover this is to scan the roots and 'mark' any objects found
by incrementing their reference counts (line 29) . After this, no object referenced from the
stack can have a reference count of zero, so any object with a zero count must be garbage.
We could now sweep the entire heap, as with mark-sweep collection (for example, Al
gorithm 2.3), looking for and reclaiming 'unmarked' objects with zero reference counts.
However, it is sufficient to confine this search to the zero count table. The entries in the
zero count table are scanned and any objects with zero counts are immediately processed
and freed, in the same way as in the simple Algorithm 5 . 1 . Finally, the 'mark' operations
must be reversed: the stack is scanned again and the reference counts of any objects found
are decremented (reverted to their previous value) . If an object's reference count becomes
zero, it is reinstated in the zero count table.

Deferred reference counting removes the cost of manipulating reference counts on local
variables from the mutator. Several, older, studies have suggested that it can reduce the
cost of pointer manipulations by 80% or more [Ungar, 1984; Baden, 1983) . Given the in
creased importance of locality, we can speculate that its performance advantage over na'ive
reference counting will be even larger on modem hardware. However, reference count ad
justments due to object field updates must still be performed eagerly rather than deferred,
and must be atomic. Next, we explore how to replace expensive atomic reference count
manipulations caused by updates to objects' fields with simple instructions, and how to
reduce the number of modifications necessary.

5.4 Coalesced reference counting

Deferred reference counting addresses the problem of the cost of applying reference count
operations to local variables. This leaves the question of how to reduce the reference count
ing overhead of writing to objects' pointer fields. Levanoni and Petrank [1999] observed
that, in any period and for any object field, only the values of the field at the start and the
end of the period need be considered; intermediate operations can be ignored. Thus sev
eral states of the object can be coalesced to just these two. For example, suppose an object X
has a field f which originally refers to object Oo, and that this field is repeatedly modified
to refer to objects 01 , Oz, . . . , On . This would incur the reference counting operations

rc (Oo) - -, 1 rc (01) + + , r c (Ol) -- � � r c (Oz) + +,. . . � r c (On) + + .

The pairs of intermediate operations (shown boxed) cancel each other and can be omit
ted. Levanoni and Petrank eliminate them by copying objects to a local log before their first
modification in an epoch. When a pointer slot of a clean object is updated, Algorithm 5.3
logs the object by saving its address and the values of its pointer fields to a local update
buffer (line 5) . The modified object is marked as dirty.

The log procedure attempts to avoid duplicating entries in the thread's local log by
first appending the original values of the object's pointer fields to the log (line 1 1) . Next

64 CHAPTER 5. REFERENCE COUNTING

Algorithm 5.3: Coalesced reference counting: write barrier

1 me f- myThreadid

3 Writ e (s rc , i , ref) :
if not d i rty (s r c)

l o g (s rc)
s r c [i] f- ref

s log (ob j) :
for each fld in P o i nt e r s (ob j)

1 0 if * fld =F null
1 1 append(updat e s [me] , * f ld)
1 2 if not d i rty (ob j)
1 3 s l ot f- appendAndCommit (up dat e s [me] , ob j)
1 4 s e t D i rty (ob j , s l ot)
1 5

1 6 dirty (ob j) :
1 1 return l ogPo int e r (ob j) =F C LEAN
1 8

1 9 setD i rt y (ob j , s l o t)
20 logP o i nt e r (ob j) f- s l ot /* address of entry for ob j in updat e s [me] */

it checks that s rc is still not dirty, and only then is the entry committed by writing src to
the log (appendAndCommi t) , tagged so that it can be recognised as an object entry rather
than a field entry, and the log's internal cursor is advanced (line 13). The object is marked
dirty by writing a pointer to this log entry in its header. Note that even if a race leads
to records being created in more than one thread's local buffer, the algorithm guarantees
that all these records will contain identical information so it does not matter to which log's
entry the header points. Note that, depending on the processor 's memory consistency
model, this write barrier may not require any synchronisation operations.

Later, we will discuss how coalesced reference counts can be processed concurrently
with mutator threads, but here we simply stop the world periodically to process the logs.
At the start of each collection cycle, Algorithm 5.4 halts every thread, transfers their up
date buffers to the collector 's log, and allocates fresh ones. As we noted above, race con
ditions mean that an entry for an object may appear in more than one thread's update
buffer. This is harmless provided the collector processes each dirty object only once. The
proce s sRe fe r enceCount s procedure tests whether an object is still dirty before updat
ing the reference counts. The counts of the children of an object before its first modification
in this epoch are decremented, and then those of its children at the time of the collection
are incremented. In a simple system, any object whose reference count drops to zero could
be freed recursively. However, if reference counting on local variables is deferred, or if for
efficiency the algorithm does not guarantee to process all increments before decrements,
we simply remember any object whose count has dropped to zero. The algorithm cleans
the object so that it will not be processed again in this cycle. Pointers to an object's previous
children can be found directly from the log entry. Its current children can be found from
the object itself (recall that the log contains a reference to that object) . Notice that there
is opportunity for prefetching objects or reference count fields in both the increment and
decrement loops [Paz and Petrank, 2007] .

5.4. COALESCED REFERENCE COUNTING 65

Algorithm 5.4: Coalesced reference counting: update reference counts

1 atomic c o l l e ct () :
c o l le ctBu ffe r s ()
proces sRe fe renceCount s ()
sweepZCT ()

6 c o l l e ctBuffe r s () :
c o l le ct o rLog f- �
for each t in Threads

c o l l e c t o rLog f- c o l l e ct o rLog + updates [t]
1 0

u p r o c e s sRe fere nceCount s () :
1 2 for each ent ry in c o l l e ct o rLog
1 3 ob j f- ob j F romLog (e n t ry)
14 if d i r t y (ob j)
1 s logP o i n t e r (ob j) f- CLEAN
� inc rementNew (ob j)
1 1 de c rementOld (ent ry)
1 8

19 de c rementOld (ent ry) :

I* Do not process duplicates */

20 for each fld in P o i nt e r s (entry) f* use the values in the collector's log 4
21 ch i l d f- * f ld
22 if c h i l d -:/:- null
23 r c (chi l d) f- r c (ch i ld) - 1

24 if r c (ch i l d) = 0
zs add(z ct , chi l d)
26

21 i n c rementNew (ob j) :
2s for each fld in P o i nt e r s (ob j)
29 ch i l d f- * f ld
JO if ch i l d -:/:- null
31 r c (c h i l d) f- r c (c h i l d) + 1

/* use the values in the object */

66

Collector's
log

n u-

CHAPTER 5. REFERENCE COUNTING

Figure 5.2: Coalesced reference counting: if A was modified in the previous
epoch, for example by overwriting the reference to C with a reference to D,
A's reference fields will have been copied to the log. The old referent C can be
found in the collector's log and the most recent new referent D can be found
directly from A.

Let us look at the example in Figure 5.2. Suppose that A was modified in the previous
epoch to swing its pointer from C to D. The old values of the object's fields (B and C) will
have been recorded in a log which has been passed to the collector (shown on the left of
the figure) . The collector will therefore decrement the reference counts of B and C and
increment those of B and D. This retains the original value of B's reference count since the
pointer from A to B was never modified.

Thus, through a combination of deferred reference counting and coalescing, much of
reference counting's overhead on the mutator has been removed. In particular, we have
removed any necessity for mutator threads to employ expensive synchronisation opera
tions. However, this benefit has come at some cost. We have reintroduced pauses for
garbage collection although we expect these to be shorter than those required for tracing
collection. We have reduced the promptness of collection (since no object is reclaimed until
the end of an epoch) and added space overheads for the buffers and zero count table. Coa
lesced reference counting may also require the collector to decrement and then increment
the same children of unmodified slots.

5.5 Cyclic reference counting

Because the reference counts of objects making up a cyclic data structure must necessarily
be at least one, reference counting on its own cannot reclaim such structures. However,
cycles are common, created both by application programmers and by the run-time system.
Applications often use doubly-linked lists and circular buffers. Object-relation mapping
systems may require that databases know their tables and vice versa. Some real-world
structures are naturally cyclic, such as roads in geographical information systems. Lazy
functional language implementations commonly use cycles to express recursion [Turner,
1979, the Y combinator]. A number of techniques have been proposed to solve the cycle
problem; we review some of these now.

The simplest approach is to combine reference counting with occasional, backup trac
ing collection. The hope is that most objects will not be reachable from cycles and hence
will be reclaimed promptly by reference counting; the remaining cyclic structures will be
handled by the tracing collector. This simply reduces the frequency of full, tracing col
lections. At the language level, Friedman and Wise [1979] observed that cycles can only
be created in pure functional languages by recursive definitions, and hence can be treated

5.5. CYCLIC REFERENCE COUNTING 67

specially provided certain restrictions are observed. Bobrow [1980] required the program
mer to identify reference counted groups of cells, which are then collected en masse.

Several authors have suggested distinguishing writes of pointers that close cycles from
those of other pointers [Friedman and Wise, 1979; Brownbridge, 1985; Salkild, 1987; Pe
pels et al, 1988; Axford, 1990] . Normal references are denoted strong and cycle-closing
ones weak. If strong pointers are never allowed to form a cycle, then the strong-pointer
graph will be amenable to standard reference counting. Brownbridge's algorithm has been
widely cited . In brief, each object is given a strong and a weak reference count. The write
barrier checks the strength of pointers and targets, and weakens any pointer that would
close a cycle. Reference deletion may require the strength of pointers to be modified in
order to preserve the invariants that all reachable objects are strongly reachable without
creating any cycles of strong references. Unfortunately, this algorithm is unsafe and may
reclaim objects prematurely: see Salkild's counter-example [Jones, 1996, Chapter 6.5] . Salk
ild [1987] amended the algorithm to make it safe but at the cost of non-termination in some
cases. Pepels et al [1988] provided a very complex solution but it is expensive both in terms
of space, with double the space overheads of normal reference counting, and in terms of
performance, having twice the cost of standard reference counting in most cases and being
exponential in the worst case.

The most widely adopted mechanisms for handling cycles through reference counting
use a technique called trial deletion . The key observation is that it is not necessary for a
backup tracing collector to visit the whole live object graph. Instead, its attention can be
confined to those parts of the graph where a pointer deletion might have created a garbage
cycle. Note that:

• In any garbage pointer structure, all reference counts must be due to internal pointers
(that is, pointers between objects within the structure) .

• Garbage cycles can arise only from a pointer deletion that leaves a reference count
greater than zero.

Partial tracing algorithms take advantage of these observations by tracing the subgraph
rooted at an object suspected of being garbage. These algorithms trial-delete each reference
encountered by temporarily decrementing reference counts, in effect removing the contri
bution of these internal pointers. If the reference count of any object remains non-zero,
it must be because there is a pointer to the object from outside the subgraph, and hence
neither the object nor its transitive closure is garbage.

The Recycler [Bacon et al, 2001; Bacon and Rajan, 2001; Paz et al, 2007] supports con
current cyclic reference counting. In Algorithm 5.5, we show the simpler, synchronous,
version, deferring the asynchronous collector to Chapter 15. The cycle collection algorithm
operates in three phases .

1 . First, the collector traces partial graphs, starting from objects identified as possible
members of garbage cycles, decrementing reference counts due to internal pointers
(ma rkCandidat e s) . Objects visited are coloured grey.

2. Second, the reference count of each node in these subgraphs is checked: if it is non
zero, the object must be live due to a reference external to the sub graph being traced,
and so the effect of the first phase must be undone (s can), recolouring live grey
objects black. Other grey objects are coloured white.

3. Finally, any members of the subgraph that are still white must be garbage and are
reclaimed (co l l e c tCandidate s) .

68 CHAPTER � REFERENCE COUNTING

Algorithm 5.5: The Recycler

1 New () :

10

ref t--- a l l o c a t e ()
i f r e f = null

c o l lect ()
ref t--- a l l o ca t e ()
if r e f = null

error " Ou t o f memo r y "
r c (ref) t--- 0
return ref

n addRe fe rence (re f) :
1 2 if ref f= null
I 3 rc (ref) t--- r c (ref) + 1
14 c o l ou r (re f) t--- black
1 5

1 6 de let eRe fe rence (re f) :
1 1 if ref f= null
1s r c (ref) t--- r c (re f) - 1
19 if rc (re f) = 0
w re l e a s e (r e f)
21 else
n candi dat e (ref)
23

24 re l e a s e (ref) :
� for each fld in P o i nt e r s (r e f)
� de let eRe fe rence (fld)
21 c o l o u r (ref) t--- b l ack
� if not re f in candidat e s
29 free (re f)
30

31 candidate (ref) :
32 if co lour (r e f) f= purple
33 co lour (r e f) t--- purple

I* the cycle collector 4

I* cannot be in a garbage cycle 4

I* might isolate a garbage cycle 4

I* objects on the free-list are black 4
I* deal with candidates later 4

I* colour as a candidate and add to the set 4

34 candidat e s t--- candida t e s U { re f }
35

36 atomic collect () :
� ma rkCandida t e s ()
� for each r e f in candidat e s
39 scan (ref)
4o c o l l e ctCandida t e s ()

5.5. CYCLIC REFERENCE COUNTING

Algorithm 5.5 (continued): The Recycler

41 markCandidat e s ()
� for re f in candidat e s
� if c o l ou r (re f) = purp l e
� ma rkGre y (r e f)
45 else
46

47

48

49

remove (candidates , r e f)
if c o l o u r (r e f) = b l a c k && r c (re f)

free (re f)

5o markGre y (re f) :
51 if c o l o u r (ref) "I grey
52 c o l o u r (ref) f- grey
53 for each fld in P o i nt e r s (ref)
� ch i l d f- * f l d
s5 if ch i l d "I null
56 r c (ch i l d) f- r c (c h i l d) - 1
57 markGrey (child)
58

59 s ca n (r e f) :
60 if c o l o u r (re f) = grey
&I if r c (ref) > 0

0

69

f* trial deletion *f

� s canBl ack (ref) f* there must be a n external reference *I
63 else
64 c o l ou r (re f) f- wh i t e
&5 for each f l d in P o i nt e rs (r e f)
66 ch i l d f- * f ld
&7 if ch i l d "I null
68 s c a n (ch i l d)

/* looks like garbage. . . *f
/* . . . so continue *f

10 s canB l a c k (re f) : f* repair the reference counts of live data *f
71 c o l o u r (re f) f- black
n for each fld in P o inte r s (r e f)
� ch i l d f- * f l d
74 if ch i l d "I null
75 r c (ch i l d) f- r c (ch i l d) + 1 /* undo the trial deletion *f
n if c o l o u r (ch i l d) "I b l ack
n scanBlack (ch i ld)

70 CHAPTER S. REFERENCE COUNTING

Algorithm 5.5 (continued): The Recycler

78 co l l e c t C andidat e s () :
79 while not i sEmp t y (candidat e s)
ao r e f +-- remove (c andidate s)
� c o l lectWh i t e (re f)
82

83 co l l ect White (ref) :
84 if c o l ou r (ref) = white && not ref
8s c o l ou r (ref) +-- b l ack
86 for each f l d in Point e r s (re f)
87 chi ld +-- * f l d
88 if chi l d i= null
� co l l e c t White (chi l d)
90 free (ref)

in c a n didates
/*free-list objects are black 4

In its synchronous mode, the Recycler uses five colours to identify nodes . As usual,
black means live (or free) and white is garbage. Grey is now a possible member of a
garbage cycle, and we add the colour purple to indicate objects that are candidates for
roots of garbage cycles.

Deleting any reference other than the last to an object may isolate a garbage cycle. In
this case, Algorithm 5.5 colours the object purple and adds it to a set of candidate members
of garbage cycles (line 22) . Otherwise, the object is garbage and its reference count must be
zero. Procedure re lease resets its colour to black, processes its children recursively and,
if it is not a candidate, frees the object. The reclamation of any objects in the c andidate s
set is postponed to the ma r k C andidat e s phase. For example, in Figure 5 .3a, some refer
ence to object A has been deleted. A's reference count was non-zero, so it has been added
to the candi dat e s set.

In the first phase of collecting cycles, the ma rkCandida t e s procedure establishes the
extent of possible garbage structures, and removes the effect of internal references from
the counts . It considers every object in the set of garbage c andidat e s . If the object is
still purple (hence, no references to the object have been added since it was added to the
set), its transitive closure is marked grey. Otherwise it is removed from the set and, if it is
a black object with reference count zero, it is freed. As markGrey traces a reference, the
reference count of its target is decremented . Thus, in Figure 5 .3b, the subgraph rooted at A
has been marked grey and the contribution of references internal to the sub graph has been
removed from the reference counts.

In the second phase of collection, each candidate and its grey transitive closure is
scanned for external references. If a reference count is non-zero, it can only be because
there is a reference to this object from outside the grey sub-graph. In this case, the effect
of markGrey is undone by s c anBl ack: reference counts are incremented and objects are
reverted to black. On the other hand, if the reference count is zero, the object is coloured
white and the scan continues to its children. Note that at this point we cannot say that
a white object is definitely garbage as it might be revisited later by s c a n B l ack starting
from another node in the sub graph. For example, in Figure 5 .3b, objects Y and Z have zero
reference counts but are externally reachable via X. When s c an reaches X, which has a
non-zero reference count, it will invoke s c anBl ack on the grey transitive closure of X,
restoring reference counts, leaving the graph in the state shown in Figure 5 .3c.

5.5. CYCLIC REFERENCE COUNTING

ca n d id ates

Lf=E\ X
l>

\���----�:--�� v i.--
2 �i �,�� ::_:;-1--.-----,

(a) Before ma rkGrey.

-t--;�1 0

(b) After ma r k G r e y, all objects reachable from a can
didate object have been marked grey and the effect of
references internal to this grey subgraph have been
removed. Note that X, which is still reachable, has a
non-zero reference count.

(c) After s ca n , all reachable objects are black and
their reference counts have been corrected to reflect
live references.

Figure 5.3: Cyclic reference counting. The first field of each object is its refer
ence count.

71

72 CHAPTER 5. REFERENCE COUNTING

Figure 5.4: The synchronous Recycler state transition diagram, showing mu
tator and collector operations and the colours of objects .

With kind permission from Springer Science+ Business Media: Bacon and Rajan [2001] ,
figure 3, page 214.

Finally, the third, c o l l e ctWhite phase reclaims white (garbage) objects . The set of
candi dat e s is emptied, and the colour of each object inspected . Each white object found
is freed (its colour reset to black) and its children inspected recursively. Note that the algo
rithm does not process child objects found to be in the candidates set, but defers reclaiming
these to a subsequent iteration of the inner loop of c o l l e c t Candi dat e s in this cycle.

The asynchronous Recycler algorithm improves over earlier trial deletion algorithms,
such as that of Martinez et al [1990], which performed the trial deletion eagerly as soon as
a candidate was discovered . Lins [1992] also processed candidates lazily like the Recycler
in the hope that candidates will be eliminated by later mutator actions, which might either
remove the last reference so that the object can be freed immediately or add a fresh refer
ence to it. Unfortunately, Lins performed all three phases of the collection cycle separately
on each object, which led to complexity quadratic in the size of the graph in the worst case .
In contrast, the complexity of the Recycler is O(N + E) , where N is the number of nodes
and E the number of edges. This seemingly small change made a substantial difference
to performance, reducing the garbage collection time for moderately sized Java programs
from minutes (Lins) to a maximum of a few milliseconds (Recycler) .

Further improvements can be gained by recognising statically that certain classes of
object, including but not limited to those that contain no pointers, can never be members
of cycles. The Recycler allocates objects of these types as green rather than black, and never
adds them to the candidate set nor traces through them. Bacon and Rajan [2001] found that
this reduced the size of the candidate set by an order of magnitude. Figure 5.4 illustrates
the full state transition system of the synchronous Recycler, including green nodes.

5.6 Limited-field reference counting

The remaining concern is the space overhead incurred by storing reference counts in object
headers. In theory, the reference count field of an object should be large enough to hold
a pointer-sized value since an object may be referenced by every other object in the heap.
An additional field of this size represents a significant overhead to small objects. However,
only contrived applications will cause counts to grow so large; in practice most objects

5.7. ISSUES TO CONSIDER 73

have small reference counts. Indeed, most objects are not shared at all and so the space
they use could be reused immediately the pointer to them is deleted [Clark and Green,
1977; Stoye et al, 1984; Hartel, 1988] . In functional languages, this allows objects such as
arrays to be updated in place rather than having to modify a copy of the object. Given
a priori knowledge of the upper bound on reference counts, it would be possible to use a
smaller field for the reference count. Unfortunately, it is common for some objects to be
very popular [Printezis and Garthwaite, 2002] .

However, it is still possible to limit the size of the reference count field provided that
some backup mechanism is occasionally invoked to deal with reference count overflow.
Once a reference count has been incremented to the maximum permissible value, it be
comes a sticky reference count, not changed by any subsequent pointer updates. The most
extreme option is to use a single bit for the reference count, thus concentrating reference
counting on the common case of objects that are not shared. The bit can either be stored in
the object itself [Wise and Friedman, 1977] or in the pointer [Stoye et al, 1984] . The corol
lary of limited-field reference counts is that once objects become stuck they can no longer
be reclaimed by reference counting. A backup tracing collector is needed to handle such
objects . As the tracing collector traverses each pointer, it can restore the correct reference
counts (wherever this is no greater than the sticky value); Wise [1993a] shows that, with
some effort, a mark-compact or copying collector can also restore uniqueness information .
Such a backup tracing collector would be needed to reclaim garbage cycles in any case.

5.7 Issues to consider

Reference counting is attractive for the promptness with which it reclaims garbage objects
and its good locality properties. Simple reference counting can reclaim the space occupied
by an object as soon as the last pointer to that object is removed. Its operation involves only
the targets of old and new pointers read or written, unlike tracing collection which visits
every live object in the heap . However, these strengths are also the weaknesses of simple
reference counting. Because it cannot reclaim an object until the last pointer to that object
has been removed, it cannot reclaim cycles of garbage. Reference counting taxes every
pointer read and write operation and thus imposes a much larger tax on throughput than
tracing does. Furthermore, multithreaded applications require the manipulation of refer
ence counts and updating of pointers to be expensively synchronised. This tight coupling
of mutator actions and memory manager risks some fragility, especially if 'unnecessary'
reference count updates are optimised away by hand. Finally, reference counts increase
the sizes of objects.

The environment

Despite these concerns, it would be wrong to dismiss reference counting without further
thought. Certainly, its drawbacks make simple reference counting uncompetitive as a gen
eral purpose memory management component of a virtual machine, especially if the ma
jority of objects managed are small, cycles are common and the rate of pointer mutation is
high. However, there are environments which are favourable to reference counting. Ref
erence counting can play well in a mixed ecology where the lifetimes of most objects are
sufficiently simple to be managed explicitly. It can be restricted to managing a smaller
number of resources with more complex owner relationships. Often such resources will
be large, in which case the overhead for an additional reference count field in the header
will be negligible . Data such as bitmaps for images and so on will not contain any point
ers, so the problem of reclaiming cyclic structures does not arise. Furthermore, reference

74 CHAPTER 5. REFERENCE COUNTING

counting can be implemented as part of a library rather than being baked into the lan
guage's run-time system. It can therefore give the programmer complete control over its
use, allowing her to make the decision between performance overhead and guarantees of
safety. Nevertheless, it is essential that reference counting be used carefully. In particu
lar, the programmer must ensure that races between pointer modifications and reference
count updates are avoided. If reference counting is implemented through smart pointers,
he must also be aware that the semantics of pointers and smart pointers differ. As Edelson
[1992] wrote, 'They are smart, but they are not pointers' .

Advanced solutions

Sophisticated reference counting algorithms can offer solutions to many of the problems
faced by na'ive reference counting but, paradoxically, these algorithms often introduce be
haviours similar to those of stop-the-world tracing collectors. We examine this duality
further in the next chapter.

Garbage cycles can be reclaimed by a backup, tracing collector or by using the trial dele
tion algorithms we discussed in Section 5.5. In both cases, this requires mutator threads to
be suspended while we reclaim cyclic data (although we show how these stop-the-world
pauses can be removed in later chapters) .

Although the worst case requires reference count fields to be almost as large as pointer
fields, most applications hold only a few references to most objects. Often, it is possible
for the reference count to hij ack a few bits from an existing header word (for example,
one used for object hashing or for locks) . However, it is common for a very few objects to
be heavily referenced. If limited-field reference counting is used, these objects will either
leak - which may not be a serious problem if they are few in number or have very long
lifetimes - or must be reclaimed by a backup tracing collector. Note, however, that in
comparing the space overhead of reference counting and, say, mark-sweep collection it
is not sufficient simply to measure the cost of the reference count fields. In order not to
thrash, tracing collectors require some headroom in the heap . If the application is given
a heap of, say, 20% larger than its maximum volume of live data, then at least 10% of the
heap will be 'wasted' on average. This fraction may be similar to the overhead of reference
counting (depending on the average size of objects it manages) .

The throughput overhead of reference counting can be addressed by omitting to count
some pointer manipulations and by reducing the cost of others . Deferred reference count
ing ignores mutator operations on local variables. This allows the counts of objects reach
able from roots to be lower than their true value, and hence prevents their prompt reclama
tion (since a reference count of zero no longer necessarily means that the object is garbage) .
Coalesced reference counting accounts for the state of an object only at the beginning and
end of an epoch: it ignores pointer manipulations in between. In one sense, this automates
the behaviour of programmers who often optimise away temporary adjustments to ref
erence counts (for example, to an iterator as it traverses a list) . However, once again, one
consequence of deferred and coalesced reference counting is to reintroduce stop-the-world
pauses during which reference counts are corrected.

As well as removing some reference counting operations, both deferred and coalesced
reference counting reduce the synchronisation cost of other operations. Deferred reference
counting does so simply by omitting to manipulate reference counts on local variables.
Coalesced reference counting does not need synchronisation because races are benign: at
worst, the same values might be written to the logs of two different threads. However,
both solutions add space overhead to the cost of reference counting, either to store the
zero count table or to store update logs.

5.7. ISSUES TO CONSIDER 75

A further attraction of these advanced reference counting techniques is that they scale
well with large heaps. Their cost is proportional only to the number of pointer writes
made, and not to the volume of live data . As we shall see in Chapter 10, hybrid collec
tors are possible, combining tracing collection for short-lived, heavily mutated data with
reference counting for longer-lived, more stable data .

In the next chapter, we compare all four forms of collection we have examined so far:
mark-sweep, mark-compact, copying and reference counting. We then consider a remark
able abstraction of tracing and advanced reference counting collection that reveals that
they are surprisingly similar in many ways.

Chapter 6

Comparing garbage collectors

In the preceding chapters, we presented four different styles of garbage collection. In this
chapter, we compare them in more detail. We examine the collectors in two different ways.
First, we consider criteria by which we may assess the algorithms and the strengths and
weaknesses of the different approaches in different circumstances . We then present ab
stractions of tracing and reference counting algorithms due to Bacon et al [2004] . These
abstractions reveal that while the algorithms exhibit superficial differences they also bear
a deep and remarkable similarity.

It is common to ask: which is the best garbage collector to use? However, the tempta
tion to provide a simple answer needs to be resisted. First, what does 'best' mean? Do we
want the collector that provides the application with the best throughput, or do we want
the shortest pause times? Is space utilisation important? Or is a compromise that com
bines these desirable properties required? Second, it is clear that, even if a single metric
is chosen, the ranking of different collectors will vary between different applications. For
example, in a study of twenty Java benchmarks and six different collectors, Fitzgerald and
Tarditi [2000] found that for each collector there was at least one benchmark that would
have been at least 15% faster with a more appropriate collector. And furthermore, not
only do programs tend to run faster given larger heaps, but also the relative performance
of collectors varies according the amount of heap space available. To complicate matters
yet further, excessively large heaps may disperse temporally related objects, leading to
worsened locality that may slow down applications.

6.1 Throughput

The first item on many users' wish lists is likely to be overall application throughput. This
might be the primary goal for a 'batch' application or for a web server where pauses might
be tolerable or obscured by aspects of the system such as network delays. Although it is
important that garbage collector actions be performed as quickly as possible, employing
a faster collector does not necessarily mean that a computation will necessarily execute
faster. In a well configured system, garbage collection should account for only a small
fraction of overall execution time. If the price to be paid for faster collection is a larger
tax on mutator operations, then it is quite possible for the application's execution time to
become longer rather than shorter. The cost to the mutator may be explicit or implicit. Ex
plicit actions include read and write barrier actions, such as those that reference counting
requires. However, the performance of the mutator may also be affected implicitly, for ex
ample because a copying collector has rearranged objects in such a way as to affect cache

77

78 CHAPTER 6. COMPARING GARBAGE COLLECTORS

behaviour adversely, or because a reference count decrement has touched a cold object. It
is also important to avoid wherever possible any need to synchronise operations. Unfortu
nately, reference count modifications must be synchronised in order not to miss updates.
Deferred and coalesced reference counting can eliminate much of these synchronisation
costs.

One can consider the algorithmic complexity of different algorithms. For mark-sweep
collection, we would need to include the cost of the tracing (mark) and the sweep phases,
whereas the cost of copying collection depends only on tracing . Tracing requires visiting
every live object whereas sweeping requires visiting every object (live and dead) . It is
tempting to assume that the cost of mark-sweep collection must therefore necessarily be
greater than copying collection. However, the number of instructions executed to visit an
object for mark-sweep tracing are fewer than those for copying tracing. Locality plays a
significant part here as well . We saw in Section 2 .6 how prefetching techniques could be
used to hide cache misses. However, it is an open question as to whether such techniques
can be applied to copying collection without losing the benefits to the mutator of depth
first copying. In either of these tracing collectors, the cost of chasing pointers is likely to
dominate. Furthermore, if marking is combined with lazy sweeping, we obtain greatest
benefit in the same circumstances that copying performs best: when the proportion of live
data in the heap is small.

6.2 Pause time

The next item for many users is the extent to which garbage collection interrupts program
execution. Low pause times are important not only for interactive applications but also
for others such as transaction processors for which delays may cause backlogs of work to
build up. The tracing collectors considered so far have all been stop-the-world : all mutator
threads must be brought to a halt before the collector runs to completion. Garbage collec
tion pause times in early systems were legendary but, even on modem hardware, stop
the-world collectors may pause very large applications for over a second. The immediate
attraction of reference counting is that it should avoid such pauses, instead distributing
the costs of memory management throughout the program. However, as we have seen,
this benefit is not realised in high performance reference counting systems. First, the re
moval of the last reference to a large pointer structure leads to recursive reference count
modifications and freeing of components . Fortunately, reference count modifications on
garbage objects are not contended, though they may cause contention on the cache lines
containing the objects. More importantly, we saw that deferred and coalesced reference
counting, the most effective ways to improve reference counting performance, both rein
troduce a stop-the-world pause to reconcile reference counts and reclaim garbage objects
in the zero count table. As we shall see in Section 6 .6, high performance reference counting
and tracing schemes are not so different as they might first appear.

6.3 Space

Memory footprint is important if there are tight physical constraints on memory, if appli
cations are very large, or in order to allow applications to scale well . All garbage collection
algorithms incur space overheads. Several factors contribute to this overhead . Algorithms
may pay a per-object penalty, for example for reference count fields. Semispace copying
collectors need additional heap space for a copy reserve; to be safe, this needs to be as large
as the volume of data currently allocated, unless a fall-back mechanism is used (for exam
ple, mark-compact collection) . Non-moving collectors face the problem of fragmentation,

6.4. IMPLEMENTATION 79

reducing the amount of heap usable to the application . It is important not to ignore the
costs of non-heap, metadata space. Tracing collectors may require marking stacks, mark
bitmaps or other auxiliary data structures. Any non-compacting memory manager, in
cluding explicit managers, will use space for their own data structures, such as segregated
free-lists and so on. Finally, if a tracing or a deferred reference counting collector is not
to thrash by collecting too frequently, it requires sufficient room for garbage in the heap .
Systems are typically configured to use a heap anything from 30% to 200% or 300% larger
than the minimum required by the program. Many systems also allow the heap to expand
when necessary, for example in order to avoid thrashing the collector. Hertz and Berger
[2005] suggest that a garbage collected heap three to six times larger than that required by
explicitly managed heaps is needed to achieve comparable application performance.

In contrast, simple reference counting frees objects as soon as they become unlinked
from the graph of live objects. Apart from the obvious advantage of preventing the ac
cumulation of garbage in the heap, this may offer other potential benefits . Space is likely
to be reused shortly after it is freed, which may improve cache performance. It may also
be possible in some circumstances for the compiler to detect when an object becomes free,
and to reuse it immediately, without recycling it through the memory manager.

It is desirable for collectors to be not only complete (to reclaim all dead objects eventu
ally) but also to be prompt, that is, to reclaim all dead objects at each collection cycle. The
basic tracing collectors presented in earlier chapters achieve this, but at the cost of tracing
all live objects at every collection. However, modern high-performance collectors typically
trade immediacy for performance, allowing some garbage to float in the heap from one
collection to a subsequent one. Reference counting faces the additional problem of being
incomplete; specifically, it is unable to reclaim cyclic garbage structures without recourse
to tracing.

6.4 Implementation

Garbage collection algorithms are difficult to implement correctly, and concurrent algo
rithms notoriously so. The interface between the collector and the compiler is critical.
Errors made by the collector often manifest themselves long afterwards (maybe many col
lections afterwards), and then typically as a mutator attempts to follow a reference that
is no longer valid . It is important, therefore, that garbage collectors be constructed to be
robust as well as fast. Blackburn et al [2004a] have shown that this performance-critical
system component can be designed with respect for good software engineering practices
of modularity and composability, leading to maintainable code.

One advantage of simple tracing collectors is that the interface between the collector
and the mutator is simple: when the allocator exhausts memory, the collector is called.
The chief source of complexity in this interface is determining the roots of collection, in
cluding global variables, and references held in registers and stack slots . We discuss this
in more detail in Chapter 1 1 . However, we note here that the task facing copying and
compacting collectors is more complex than that facing non-moving collectors. A moving
collector must identify every root and update the reference accordingly, whereas a non
moving collector need only identify at least one reference to each live object, and never
needs to change the value of a pointer. So-called conservative collectors [Boehm and Weiser,
1988] can reclaim memory without accurate knowledge of mutator stack or indeed object
layouts . Instead they make intelligent (but safe, conservative) guesses about whether a
value really is a reference . Because non-moving collectors do not update references, the
risk of misidentifying a value as a heap pointer is confined to introducing a space leak : the
value itself will not be corrupted. A full discussion of conservative garbage collection can
be found in Jones [1996, Chapters 9 and 10] .

80 CHAPTER 6. COMPARING GARBAGE COLLECTORS

Reference counting has both the advantages and disadvantages of being tightly cou
pled to the mutator. The advantages are that reference counting can be implemented in a
library, making it possible for the programmer to decide selectively which objects should
be managed by reference counting and which should be managed explicitly. The disad
vantages are that this coupling introduces the processing overheads discussed above and
that it is essential that all reference count manipulations are correct.

The performance of any modem language that makes heavy use of dynamically allo
cated data is heavily dependent on the memory manager. The critical actions typically
include allocation, mutator updates including barriers, and the garbage collector 's inner
loops. Wherever possible, the code sequences for these critical actions needs to be inlined
but this has to be done carefully to avoid exploding the size of the generated code. If
the processor 's instruction cache is sufficiently large and the code expansion is sufficiently
small (in older systems with much smaller caches, Steenkiste [1989] suggested less than
30%), this blowup may have negligible effect on performance. Otherwise, it will be nec
essary to distinguish in these actions the common case which needs to be small enough
to be inlined (the 'fast path'), whilst calling out to a procedure for the less common 'slow
path' [Blackburn and McKinley, 2002] . There are two lessons to be learnt here. The output
from the compiler matters and it is essential to examine the assembler code produced. The
effect on the caches also has a major impact on performance.

6.5 Adaptive systems

Commercial systems often offer the user a choice of garbage collectors, each of which
comes with a large number of tuning options. To complicate matters further, the tun
ing levers provided with these collectors tend not to be independent of one another. A
number of researchers have suggested having systems adapt to the environment at hand.
The Java run-time developed by Soman et al [2004] adapts dynamically by switching col
lectors at run time, according to heap size available. Their system either requires off-line
profiling runs to annotate programs with the best collector /heap-size combination, or it
can switch based on comparing the current space usage of the program with the maxi
mum heap available. Singer et al [2007a], in contrast, apply machine learning techniques
to predict the best collector from static properties of the program (and thus require only
a single training run) . Sun's Ergonomic tuning1 attempts to tune their HotSpot collector 's
performance against user-supplied throughput and maximum pause time goals, adjusting
the size of spaces within the heap accordingly.

The best, and possibly the only, advice that we can offer to developers is, know your
application. Measure its behaviour, and the size and lifetime distributions of the objects it
uses. Then experiment with the different collector configurations on offer. Unfortunately
this needs to be done with real data sets . Synthetic and toy benchmarks are likely to mis
lead.

6.6 A unified theory of garbage collection

In the preceding chapters, we considered two styles of collection: direct, reference counting
and indirect, tracing collection. Bacon et al [2004] show that these collectors share remark
able similarities. Their abstract framework allows us to express a wide variety of different
collectors in a way that highlights precisely where they are similar and where they differ.

1 h t t p : / / j av a . s un . com / do c s / h ot spot / g c 5 . 0 / e r g o 5 . html .

6.6. A UNIFIED THEORY OF GARBAGE COLLECTION 81

Abstract garbage collection

In place of concrete data structures, the following abstract framework makes use of sim
ple abstract data structures whose implementations can vary. We start by observing that
garbage collection can be expressed as a fixed-point computation that assigns reference
counts p (n) to nodes n E Node s . Reference counts include contributions from the root
set and incoming edges from nodes with non-zero reference counts :

Vre f E Node s :
p (re f) l { fld E Root s : * f l d = ref } I (6 .1)

+ l { fld E P o i nt e r s (n) : n E Node s /\ p (n) > 0 1\ * f l d = re f } I
Having assigned reference counts, nodes with a non-zero count are retained and the rest
should be reclaimed. Reference counts need not be precise, but may simply be a safe ap
proximation of the true value. Abstract garbage collection algorithms compute such fixed
points using a work list W of objects to be processed. When W is empty these algorithms
terminate. In the following, W is a multiset, since every entry in W represents a distinct
source for each reference.

Tracing garbage collection

The abstraction casts tracing collection as a form of reference counting. Abstract tracing
collection is illustrated by Algorithm 6.1, which starts with the reference counts of all nodes
being zero. At the end of each collection cycle sweepT r a c i ng resets the count of all nodes
to zero, and New initialises new nodes with a zero reference count. The col lect T r a c ing
procedure accumulates all non-null root pointers using root s T r a c i ng and passes them
to s canTracing as the work list W.

Collection proceeds as we would expect by tracing the object graph to discover all
the nodes reachable from the roots. The procedure s canT r a c i n g accomplishes this by
tracing elements from the work list, reconstructing the reference count of each node, by
incrementing its reference count each time it is encountered (recall how we suggested in
Section 5.6 that a tracing collector could be used to correct sticky reference counts) . When
a reachable node s rc is discovered for the first time (when p (s r c) is set to 1, line 10), the
collector recurses through all the out-edges of s r c by scanning its fields and adding the
(pointers to) child nodes found in those fields to the work list W.2

Termination of the while loop yields all the live nodes, each of which has a non-zero
reference count equal to the number of its in-edges. The sweepT r a c i ng procedure then
frees unused nodes, and resets the reference counts for the next round of collection. Note
that a practical implementation of tracing can use a single-bit value for each node's refer
ence count, in other words a mark-bit rather than a full-sized reference count, to record
whether the node has already been visited. The mark-bit is thus a coarse approximation of
the true reference count.

The tracing collector computes the least fixed-point solution to Equation 6 .1 : the refer
ence counts on the nodes are the lowest counts that satisfy it.

We can interpret garbage collection algorithms in terms of the tricolour abstraction
discussed in Section 2.2. In Algorithm 6.1, nodes with reference count 0 are white, while
nodes with non-zero reference count are black. The transition of a node from white via
grey to black occurs as that node is first traced and then scanned. Thus, we can re-cast the
abstract tracing algorithm as partitioning the nodes into two sets, black being reachable
and white being garbage.

2 Alternatively, the object could be added to the log in order to trade the size of the log for improved cache
performance in the tracing loop (see Section 2.6) but this does not match so well the reference counting abstraction
of Algorithm 6.2 .

82 CHAPTER 6. COMPARING GARBAGE COLLECTORS

Algorithm 6.1: Abstract tracing garbage collection

atomic c o l l ectTrac i n g () :
root s T r a c ing(W)
scanT r a c ing(W)
sweepTra c i ng ()

s canTrac i n g (W) :
while not i sEmpt y (W)

s r c f- remove (W)
p (s rc) +- p (s r c) + l

w if p (s rc) = 1
I I

1 2

for each f l d in Point e r s (s rc)
r ef +- * f l d

1 3 if re f =/:. null
1 4 W f- W + [ref]
1 5

1 6 sweepTra c i ng () :
17 for each node in Node s
1 s if p (n o de) = 0
1 9 f ree (node)
20 else
2 1 p (node) +- 0
22
23 New() :
24 ref +- a l locat e ()
25 if ref = null
26 col l e ctTrac i n g ()
27 ref +- allocat e ()
2s if r e f = null
B e r r o r " Out o f memory "
30 p(re f) +- 0
3 1 return re f
32

33 root sTra c i ng (R) :
� for each fld in Root s
35 ref +- * fld
� if r e f =/:. null
37 R f- R + [re f]

Reference counting garbage collection

I* shade s rc 4
I* s r c was white, now grey *I

I* node is white 4

I* node is black 4
I* reset node to white 4

I* node is white 4

The abstract reference counting collection Algorithm 6.2 shows reference count operations
being buffered by the mutator 's i n c and de c procedures rather than performed immedi
ately, in order to highlight the similarity with tracing. This buffering technique turns out to
be very practical for multithreaded applications; we consider it further in Chapter 18. This
logging of actions also shares similarities with coalesced reference counting, discussed in
Section 5.4. The garbage collector, c o l lectCount ing, performs the deferred increments
I with apply I n c rement s and the deferred decrements D with s c anCount i ng .

6.6. A UNIFIED THEORY OF GARBAGE COLLECTION

Algorithm 6.2: Abstract reference counting garbage collection

1 atomic c o l l e ctCount ing (I,D) :
apply i n c rement s (I)
s canCoun t i ng(D)
sweepC ount ing ()

6 s c anCount ing (W) :
while not i sEmpt y (W)

s rc f- remove (W)
p (s r c) f- p (s r c) - 1

t o if p (s rc) = 0
1 1

1 2

for each f l d in P o inte r s (s r c)
re f f- * f l d

13 if ref ":1 null
1 4 W f- W + [r ef]
1 5

t 6 sweepCount ing () :
11 for each node in Node s
t s if p (node) = 0
t 9 free (node)
20

2 1

22

23 New () :
24 ref f- a l locat e ()
zs if re f = null
26 c o l l e ctCount ing (I,D)
21 re f f- a l locat e ()
28 if r e f = null
� e r r o r " Out of memo ry "
30 p (ref) f- 0
3t return ref
32

n de c (ref) :
34 if re f ":1 null
35 D f- D + [re f]
36
37 i n c (ref) :
38 if re f ":1 null
39 I f- I + [ref]
40

4t atomic Wri t e (s rc, i, ds t) :
42 inc (ds t)
43 dec (s rc [i])
44 s rc [i] f- dst
45

46 app l y i n c rement s (I) :
47 while not i sEmpt y (I)
48 re f f- remove (I)
49 p (r e f) f- p (re f) + l

83

84 CHAPTER 6. COMPARING GARBAGE COLLECTORS

Algorithm 6.3: Abstract deferred reference counting garbage collection

atomic co l l e ctDrc (I,D) :
root s T r a c ing(I)
apply i n c rement s (I)
scanCount ing(D)
sweepC ount ing()
root s T r a c ing(D)
app l yD e c rement s (D)

9 New() :
w ref f- a l locat e ()
n if re f = null
1 2 co l l e ctDrc (I, D)
1 3 ref +-- a l l ocat e ()
1 4 if r e f = null
1 s e r ro r "Out of memory "
1 6 p (ref) +-- 0
1 1 return r e f
1 8

1 9 atomic Wr i t e (s rc, i , ds t) :
20 if s r c f= Root s
ll i n c (d s t)
22 de c (s r c [i])
23 s rc [i] +-- dst
24

25 applyDec reme nt s (D) :
26 while not i sEmpt y (D)
21 re f f- remove (D)
28 p (re f) f- p (re f) - 1

Mutation, using the Wri t e procedure, stores a new destination reference d s t into a
field s rc [i] . In doing so, it buffers an increment for the new destination, i n c (d s t) , and
buffers a decrement for the old referent, dec (s r c [i]) , before storing the new destination
to the field, s rc [i] +--dst .

Each collection begins by applying all deferred increments to bring them up to date.
The deferred decrements are applied in the next phase. The s c a nCount ing procedure
begins with reference counts that over-estimate the true counts. Thus, it must decrement
the counts of nodes in the work list as it encounters them. Any source node whose count,
p (s rc) , is decremented to zero in this phase is treated as garbage, and its child nodes are
added to the work list. Finally, the procedure sweepCount i ng frees the garbage nodes.

The tracing and reference counting algorithms are identical but for minor differences.
Each has a scan procedure: the s canTrac i ng collector uses reference count increments
whereas the s c anCount ing collector uses decrements. In both cases the recursion condi
tion checks for a zero reference count. Each has a sweep procedure that frees the space oc
cupied by garbage nodes. In fact, the outline structures of the first 31 lines in Algorithm 6.1
and Algorithm 6.2 are identical. Deferred reference counting, which defers counting refer
ences from the roots, is similarly captured by this framework (see Algorithm 6.3) .

6.6. A UNIFIED THEORY OF GARBAGE COLLECTION 85

Figure 6.1: A simple cycle

Finally, we noted earlier that computing reference counts is tricky when it comes to
cycles in the object graph. The trivial object graph in Figure 6 . 1 shows a simple isolated
cycle, where assuming A has reference count zero allows B also to have reference count
zero (since only source nodes with a non-zero count contribute to the reference counts
of their destinations) . But there is a chicken-and-egg problem here, since the reference
counts of A and B are mutually dependent. It is just as feasible for us to claim that A
has reference count 1, because of its reference from B, leading us to claim that B also has
reference count 1 .

This seeming anomaly arises generally for fixed-point computations, where there may
be several different feasible solutions. In Figure 6 .1 we have the case that Node s = {A, B }
and Root s = { } . There are two fixed-point solutions of Equation 6 . 1 for this simple graph:
a least fixed-point p (A) = p (B) = 0 and a greatest fixed-point p (A) = p (B) = 1 . Tracing
collectors compute the least fixed-point, whereas reference counting collectors compute
the greatest, so they cannot (by themselves) reclaim cyclic garbage. The difference be
tween these two solutions is precisely the set of objects reachable only from garbage cy
cles . We saw in Section 5.5 that reference counting algorithms can use partial tracing to
reclaim garbage cycles. They do so by starting from the greatest fixed-point solution and
contracting the set of unreclaimed objects to the least fixed-point solution.

Chapter 7

Allocation

There are three aspects to a memory management system: (i) allocation of memory in the
first place, (ii) identification of live data and (iii) reclamation for future use of memory
previously allocated but currently occupied by dead objects. Garbage collectors address
these issues differently than do explicit memory managers, and different automatic mem
ory managers use different algorithms to manage these actions. However, in all cases
allocation and reclamation of memory are tightly linked: how memory is reclaimed places
constraints on how it is allocated .

The problem of allocating and freeing memory dynamically under program control
has been addressed since the 1950s. Most of the techniques devised over the decades
are of potential relevance to allocating in garbage collected systems, but there are several
key differences between automatic and explicit freeing that have an impact on desirable
allocation strategies and performance.

• Garbage collected systems free space all at once rather than one object at a time.
Further, some garbage collection algorithms (those that copy or compact) free large
contiguous regions at one time.

• Many systems that use garbage collection have available more information when
allocating, such as static knowledge of the size and type of object being allocated.

• Because of the availability of garbage collection, users will write programs in a dif-
ferent style and are likely to use heap allocation more often.

We proceed by describing key allocation mechanisms according to a taxonomy similar to
that of Standish [1980], and later return to discuss how the points above affect the choices
a designer might make in constructing the allocators for a garbage collected system.

There are two fundamental strategies, sequential allocation and free-list allocation. We
then take up the more complex case of allocation from multiple free-lists. After that we de
scribe a range of additional, more practical, considerations, before summarising the factors
to take into account in choosing an allocation scheme.

7.1 Sequential allocation

Sequential allocation uses a large free chunk of memory. Given a request for n bytes, it
allocates that much from one end of the free chunk. The data structure for sequential
allocation is quite simple, consisting of a free pointer and a limit pointer. Algorithm 7.1
shows pseudocode for allocation that proceeds from lower addresses to higher ones, and

87

88

I

CHAPTER 7. ALLOCATION

Algorithm 7.1: Sequential allocation

s e quent i a lAl l ocate (n) :
res u l t +- free

"0 I � ttl u
.2
tij

newF r e e +- result + n
if newFree > l imit

return null
free +- newFree
return r e s ult

avai lab le I

/* signal 'Memory exh a u s t ed ' */

a l ignment "j:,
"C "0 2 � ttl "' ava i l able u u .2 .2 ro iii

f r e ej Llimit
(a) Before (b) After

Figure 7.1: Sequential allocation: a call to s e quent ia lAl l ocate (n) which
advances the free pointer by the size of the allocation request, n, plus any
padding necessary for proper alignment.

Figure 7.1 illustrates the technique. Sequential allocation is colloquially called bump pointer
allocation because of the way it 'bumps' the free pointer. It is also sometimes called linear
allocation because the sequence of allocation addresses is linear for a given chunk. See
Section 7.6 and Algorithm 7.8 for details concerning any necessary alignment and padding
when allocating. The properties of sequential allocation include the following.

• It is simple.

• It is efficient, although Blackburn et al [2004a] have shown that the fundamental per
formance difference between sequential allocation and segregated-fits free-list allo
cation (see Section 7.4) for a Java system is on the order of 1% of total execution time.

• It appears to result in better cache locality than does free-list allocation, especially for
initial allocation of objects in moving collectors [Blackburn et al, 2004a] .

• I t may be less suitable than free-list allocation for non-moving collectors, i f uncol
lected objects break up larger chunks of space into smaller ones, resulting in many
small sequential allocation chunks as opposed to one or a small number of large ones.

7.2 Free-list allocation

The alternative to sequential allocation is free-list allocation. In free-list allocation, a data
structure records the location and size of free cells of memory. Strictly speaking, the data
structure describes a set of free cells, and some organisations are in fact not list-like, but

7.2. FREE-LIST ALLOCATION

Algorithm 7.2: First-fit allocation

f i r s t F itAl locate (n) :
prev f- addre s sOf (head)
loop

curr f- next (prev)
if cu r r = null

89

return null /* signal 'Memo ry exha u s t e d ' 4

1 0

1 1

else if s i z e (curr) < n
prev f- curr

else
return l i s tAl l o ca t e (prev, cu r r, n)

12 l i s tAl locate (prev, curr , n) :
13 result f- curr
1 4 if shoul dSpl it (s i z e (c u r r) , n)
1s remai nde r f- re s u l t + n
1 6 next (rema inde r) f- next (curr)
1 1 s i ze (rema inde r) f- s i z e (curr) - n
1s next (prev) f- rema i nde r
19 else
20 next (prev) f- next (c u r r)
21 return re s u l t

Algorithm 7.3: First fit allocation: an alternative way to split a cell

l i s tAl locat eAlt (prev, cu r r, n) :
if shou ldSp l i t (s i z e (c u r r) , n)

s i z e (cu r r) f- s i z e (c u r r) - n ;
re sult f- curr + s i z e (curr)

else
next (prev) f- next (c u r r)
result f- curr

return r e s u l t

w e will use the traditional term 'free-list' for them anyway. One can think of sequential
allocation as a degenerate case of free-list allocation, but its special properties and simple
implementation distinguish it in practice.

We consider first the case of organising the set as a single list of free cells. The allocator
considers each free cell in turn, and according to some policy, chooses one to allocate. This
general approach is called sequential fits allocation, since the algorithm searches sequentially
for a cell into which the request will fit . The classical versions of sequential fits are first-fit,
next-fit and best-fit [Knuth, 1973, Section 2.5], which we now describe in turn.

First-fit allocation

When trying to satisfy an allocation request, a first-fit allocator will use the first cell it finds
that can satisfy the request. If the cell is larger than required, the allocator may split the
cell and return the remainder to the free-list. However, if the remainder is too small (allo-

90 CHAPTER 7. ALLOCATION

cation data structures and algorithms usually constrain the smallest allocatable cell size),
then the allocator cannot split the cell. Further, the allocator may follow a policy of not
splitting unless the remainder is larger than some absolute or percentage size threshold.
Algorithm 7.2 gives code for first-fit. Notice that it assumes that each free cell has room
to record its own size and the address of the next free cell . It maintains a single global
variable head that refers to the first free cell in the list.

A variation that leads to simpler code in the splitting case is to return the portion at
the end of the cell being split, illustrated in Algorithm 7.3. A possible disadvantage of this
approach is the different alignment of objects, but this could cut either way. First-fit tends
to exhibit the following characteristics [Wilson et al, 1995a, page 31] :

• Small remainder cells accumulate near the front of the list, slowing down allocation.

• In terms of space utilisation, it may behave rather similarly to best-fit since cells in
the free-list end up roughly sorted from smallest to largest.

An interesting issue with first-fit is the order of cells in the list. When supporting ex
plicit freeing, there are a number of options as to where in the list to enter a newly freed
cell. For example, the allocator can insert the cell at the head, at the tail, or according to
some order such as by address or size. When supporting garbage collection with a sin
gle free-list, it is usually more natural to build the list in address order, which is what a
mark-sweep collector does .

Next-fit allocation

Next-fit is a variation of first-fit that starts the search for a cell of suitable size from the
point in the list where the last search succeeded [Knuth, 1973] . This is the variable p rev in
the code sketched by Algorithm 7.4. When it reaches the end of the list it starts over from
the beginning, and so is sometimes called circular first-fit allocation . The idea is to reduce
the need to iterate repeatedly past the small cells at the head of the list. While next-fit is
intuitively appealing, in practice it exhibits drawbacks.

• Objects from different phases of mutator execution become mixed together. Because
they become unreachable at different times, this can affect fragmentation (see Sec
tion 7.3) .

• Accesses through the roving pointer have poor locality because the pointer cycles
through all the free cells .

• The allocated objects may also exhibit poor locality, being spread out through mem
ory and interspersed with objects allocated by previous mutator phases .

B est-fit allocation

Best-fit allocation finds the cell whose size most closely matches the request. The idea is
to minimise waste, as well as to avoid splitting large cells unnecessarily. Algorithm 7.5
sketches the code. In practice best-fit seems to perform well for most programs, giving
relatively low wasted space in spite of its bad worst-case performance [Robson, 1977] .
Though such measurements were for explicit freeing, we would expect the space utilisa
tion to remain high for garbage collected systems as well.

7.2. FREE-UST ALLOCATION 91

1 0

1 1

1 2

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

Algorithm 7.4: Next-fit allocation

nextF itAl locate (n) :
s t a rt f- p rev
loop

curr f- next (prev)
if curr = null

prev f- addre s s O f (head) /* res tart from the beginning of the free- list 4
cu r r f- next (prev)

if prev = s t a rt
return null

else if s i z e (curr) < n
prev f- curr

else

I* signal 'Memo ry exha u s t ed ' 4

return l i stAl l o c a t e (prev, c u r r, n)

Algorithm 7.5: Best-fit allocation

be s t F i tAl l o c a t e (n) :
be st f- null
be s t S i z e f- oo
prev f- addre s sof (head)
loop

curr f- next (prev)
if curr = null I I s i z e (curr) = n

if curr f= null
be s t P rev f- p rev
best f- c u r r

else if be st = null
return null /* signal 'Memo ry exha u s t e d ' 4

return l i stAl l o c a t e (bes t P rev, best , n)
else if s i z e (curr) < n I I be s t S i z e < s i z e (c u r r)

prev f- curr
else

be s t f- curr
be s t P rev f- prev
be s t S i z e f- s i z e (c u r r)

92 CHAPTER 7. ALLOCATION

Algorithm 7.6: Searching in Cartesian trees

firstFitAl l ocateCa rt e s i an (n) :
parent +- null
cur r +- root
loop

if l e ft (cur r) "I null && max (left (cu r r)) :2: n
p a rent +- c u r r
c u r r +- le ft (c u r r)

e l s e if prev < curr && s i z e (curr) :2: n
p rev +- curr

1 0 return t re eAl l ocate (cu r r, parent , n)
n else if right (c u r r) "I null && max (r i gh t (curr)) :2: n
1 2 p a rent +- c u r r
1 3 c u r r +- r i gh t (curr)
u else
1 5 return null

Speeding free-list allocation

/* signal 'Memory exha u s t ed ' */

Allocating from a single sequential list may not scale very well to large memories . There
fore researchers have devised a number of more sophisticated organisations of the set of
free cells, to speed free-list allocation according to various policies. One obvious choice is
to use a balanced binary tree of the free cells. These might be sorted by size (for best-fit) or
by address (for first-fit or next-fit) . When sorting by size, it saves time to enter only one cell
of each size into the tree, and to chain the rest of the cells of that size from that tree node.
Not only does the search complete faster, but the tree needs reorganisation less frequently
since this happens only when adding a new size or removing the last cell of a given size.

To use balanced trees for first-fit or next-fit, one needs to use a Cartesian tree [Vuillemin,
1980] . This indexes by both address (primary key) and size (secondary key) . It is totally
ordered on addresses, but organised as a 'heap' for the sizes, which allows quick search for
the first or next fit that will satisfy a given size request. This technique is also known as fast
fits allocation [Tadman, 1978; Standish, 1980; Stephenson, 1983] . A node in the Cartesian tree
must record the address and size of the free cell, the pointers to the left and right child, and
the maximum of the sizes of all cells in its subtree. It is easy to compute this maximum from
the maximum values recorded in the node's children and it own size. Hence the minimum
possible size for a node is larger than for simple list-based schemes. While we omit code
for inserting and removing nodes from the tree, to clarify the approach we give sample
code for searching under the first-fit policy, in Algorithm 7.6. The code uses the single
global variable r o o t, which refers to the root of the binary tree. Each node n maintains a
value max (n) that gives the maximum size of any nodes in that node's subtree. Next-fit is
only slightly more complicated than first-fit.

Balanced binary trees improve worst-case behaviour from linear to logarithmic in the
number of free cells. Self-adjusting (splay) trees [Sleator and Tarjan, 1985] have similar
(amortised time) benefits.

Another useful approach to address-ordered first-fit or next-fit allocation is bitmapped
fits allocation. A bitmap on the side has one bit for each granule of the allocatable heap.
Rather than scanning the heap itself, we scan the bitmap. We can scan a byte at a time by
using the byte value to index pre-calculated tables giving the size of the largest run of free
granules within the eight-granule unit represented by the byte. The bitmap can also be

7.3. FRAGMENTATION 93

augmented with run-length information that speeds calculating the size of larger free or
allocated cells, in order to skip over them more quickly. Bitmaps have several virtues:

• They are 'on the side' and thus less vulnerable to corruption. This is especially im
portant for less safe languages such as C and C++, but also helpful in improving the
reliability and debuggability of collectors for other, more safe, languages.

• They do not require information to be recorded in the free and allocated cells, and
thus minimise constraints on cell size. This effect can more than pay back the 3%
storage overhead of one bit per 32-bit word. However, other considerations may
require headers in objects, so this does not always hold.

• They are compact, so scanning them causes few cache misses, thereby improving
locality.

7.3 Fragmentation

At the beginning an allocation system generally has one, or a small number, of large cells
of contiguous free memory. As a program runs, allocating and freeing cells, it typically
produces a larger number of free cells, which can individually be small . This dispersal
of free memory across a possibly large number of small free cells is called fragmentation.
Fragmentation has at least two negative effects in an allocation system:

• It can prevent allocation from succeeding. There can be enough free memory, in
total, to satisfy a request, but not enough in any particular free cell . In non-garbage
collected systems this generally forces a program to terminate. In a garbage collected
system, it may trigger collection sooner than would otherwise be necessary.

• Even if there is enough memory to satisfy a request, fragmentation may cause a pro
gram to use more address space, more resident pages and more cache lines than it
would otherwise.

It is impractical to avoid fragmentation altogether. For one thing, the allocator usually
cannot know what the future request sequence will be. For another, even given a known
request sequence, optimal allocation - that is, using the smallest amount of space neces
sary for an entire sequence of allocate and free requests to succeed - is NP-hard [Robson,
1980] . However, some approaches tend to be better than others; while we cannot eliminate
fragmentation, we have some hope of managing it. Generally speaking, we should expect
a rough trade-off between allocation speed and fragmentation, while also expecting that
fragmentation is quite difficult to predict in any given case.

For example, best-fit intuitively seems good with respect to fragmentation, but it can
lead to a number of quite small fragments scattered through the heap. First-fit can also
lead to a large number of small fragments, which tend to cluster near the beginning of the
free-list. Next-fit will tend to distribute small fragments more evenly across the heap, but
that is not necessarily better. The only total solution to fragmentation is compaction or
copying collection.

7.4 Segregated-fits allocation

Much of the time consumed by a basic free-list allocator is spent searching for a free cell
of appropriate size . Hence, using multiple free-lists whose members are segregated by

94 CHAPTER 7. ALLOCATION

size can speed allocation [Comfort, 1964] . In Chapter 9 we describe collectors that manage
multiple spaces . While multiple spaces will almost always be managed using multiple
allocators, when we speak of segregated-fits we mean multiple lists being used for allocat
ing for the same (logical) space . The distinction is not always precise. For example, some
collectors segregate large objects, or large objects that contain no outgoing references (such
as images or other binary data) . They do this partly for performance reasons, and perhaps
also partly because such objects have different lifetime characteristics. The large objects
may be in a different space, receiving different treatment during collection. Alternatively,
each space may have a segregated set of large objects. The latter is more like segregated
fits, though smaller objects might be allocated sequentially rather than from a free-list.
There are many ways to combine approaches .

The basic idea behind segregated-fits is that there is some number k of size values,
s0 < s1 < · · · < sk- l · The number k might vary, but is often fixed. There are k + 1 free
lists, fo, . . . , fk · The size b of a free cell on list f; is constrained by s;_1 < b :::;; s ; , where we
set s_ 1 = 0 and sk = +oo. Since the point is to avoid searching for a cell of suitable size,
we restrict the condition further: the size of a free cell on list f; must be exactly s ; . The one
exception is fkl which holds all cells larger than sk_ 1 , the largest size of the single-size lists.
Thus, when requesting a cell of size b � sk_ 1 , the allocator rounds the request size up to
the smallest s; such that b :::;; s; . The sizes s; are called size classes, and the size class for a
cell size b is therefore that s; such that s;_ 1 < b :::;; s ; .

List /b for cells larger than sb is organised to use one of the basic single-list algorithms
we previously presented. In this case a Cartesian tree or other data structure with good
expected-time performance is probably a good choice. For one thing, larger objects are
usually allocated less frequently. Even if that is not the case, just initialising them takes the
application longer, so if the per-ceil overheads are a bit higher for these larger cells than
for allocating from the one-size lists, it will still not impact total execution time much as a
percentage.

There are a variety of ways to speed the calculation of the size class s; when given the
desired object size b. For example, size classes so through sk- l might be evenly spaced,
that is, s; = so + c · i, for some suitable c > 0. Then the size class is sk if b > sk- l and
otherwise Sj where j = l (b - s0 + c - 1) /cJ (using linear fit, where adding c - 1 does the
appropriate rounding up) . For example, an allocation scheme might have so = 8, c = 8
and k = 16, giving size classes as multiples of eight from eight to 128 and using a general
free-list algorithm for b > 128. The typical unit here is one byte, which makes sense for
byte-addressed machines, as would a unit of one word for word-addressed machines . Still,
even when bytes are the unit for describing size, a granule is more likely the size of a word,
or even larger. Having c be a power of two speeds the division in the formula by allowing
substitution of a shift for the generally slower division operation.

In addition to a very dense range of small size classes, a system might provide one or
more ranges of somewhat larger sizes, less densely packed, as opposed to switching imme
diately to a general free-list mechanism. For example, the Boehm-Demers-Weiser collector
has separate lists for each size from the minimum up to eight words, and then for even
numbers of words up to 16, and for multiples of four words up to 32 [Boehm and Weiser,
1988] . Above that size it determines size classes somewhat dynamically, filling in an array
that maps requested size (in bytes) to allocated size (in words) . It then directly indexes an
array of free-lists using the allocated size. Only those sizes used will be populated.

If the set of size classes is built in to a system (that is, fixed at system build time), then a
compiler can in principle determine the appropriate free-list in advance for any allocation
call whose size is known at compile time. This can substantially improve the common case
cost for most allocations.

7.4. SEGREGATED-FITS ALLOCATION 95

Algorithm 7.7: Segregated-fits allocation

1 segregat e dF i tAl l ocat e (j) :
re s u l t f- remove (freeLi st s [j])
i f re s u l t = null

l a rge f- a l l o c ateBlock ()
i f l a rge = null

return null
in i t i a l i se (l arge, s i z e s [j])
re s u l t f- remove (f reeLi s t s [j])

return resu lt

/* j is the index of a size class Sj *f

/* signal 'Memory exh a u s t e d ' *f

To sum up concerning the time required to allocate a cell, schemes with single free-lists
may search sequentially (first-fit, best-fit, and so on), which can take a long time to find
a cell satisfying a given request. They may also use a balanced tree to attain worst-case
or amortised logarithmic time. The particular advantage of segregated-fits is that for size
classes other than Skf allocation typically requires constant time, as shown in Algorithm 7.7;
see also the lazy sweeping variant in Algorithm 2.5 .

Fragmentation

In the simpler free-list allocators we discussed previously, there was only one kind of frag
mentation: free cells that were too small to satisfy a request. This is known as external
fragmentation, because it is unusable space outside any allocated cell . When we introduce
size classes, if the sizes are at all spread out then there is also internal fragmentation, where
space is wasted inside an individual cell because the requested size was rounded up. The
need for specific alignment may introduce fragmentation in a similar way, although strictly
speaking it is external fragmentation (between allocated cells) . Segregated-fits introduces
a trade-off between internal fragmentation and the number of size classes.

Populating size classes

It should now be reasonably dear how segregated-fits allocation works, except for the
important consideration of how to populate each free-list. We discuss two approaches:
dedicating whole blocks to particular sizes, also called big bag of pages, and splitting.

Big bag of pages block-based allocation. In this approach, we choose some block size
B, a power of two. We provide an allocator for blocks, designed also to support requests
for objects larger than one block by allocating multiple contiguous blocks. For a size class
s < B, when we need more cells of size s we allocate a block and then immediately slice
it into cells of size s, putting them on that free-list. Typically we also associate with the
block the fact that it is dedicated to cells of size s. While that information might be stored
in the block itself, along with other metadata such as mark bits for the cells in the block,
Boehm and Weiser [1988] suggest that it is better to store this information in a separate
area. Using a separate area results in fewer translation lookaside buffer misses or page
faults when consulting or updating only the metadata, and it also avoids aligning every
block's metadata so that they compete for the same cache sets .

96 CHAPTER 7. ALLOCATION

When we discussed lazy sweeping in Section 2.5, we described basic block-based allo
cation. Block-based allocation complicates the issue of fragmentation. Because we dedicate
a whole block to cells of a given size, we will waste (on average) half a block, and we could
waste up to the fraction (B - s) I B of the storage for a given size (if we have exactly one cell
used in each block) . However, we reduce the per-cell metadata . There is also some space
waste if there is an unused portion of size less than s at the end of the block. 1 Whether we
call these cases of unusable space internal or external fragmentation depends on our point
of view: they are internal to a block, but external to cells .

In some systems the metadata associated with a cell includes not just the size s, but
also the type of object allocated into the cell. While such segregation of types can result
in greater fragmentation (since two types might be of the same size, but we must allocate
them from separate blocks and maintain separate free-lists for them), for small objects the
savings (by not having to record type information in each object) can be great. Examples
include Lisp cons cells.

Beyond the combining of small cells' metadata across an entire block, block-based al
location has the virtue of making the recombining of free cells particularly simple and
efficient: it does not recombine unless all cells in a block are free, and then it returns the
block to the block pool. Its common case for allocation, grabbing an available cell from a
known list, is quite efficient, and if the list is empty, populating it is straightforward . Its
primary disadvantage is its worst-case fragmentation .

Splitting. We have already seen cell splitting as a way to obtain cells of a given size s :
the various simple free-list schemes will split a larger cell if that is the only way to satisfy
a request. If we use a fairly dense collection of size classes, then when we split a cell, we
will be likely to have a suitable free-list to receive the portion not allocated. There are
some particular organisations of less dense size classes that also have that property. One
such scheme is the buddy system, which uses sizes that are powers of two [Knowlton, 1965;
Peterson and Norman, 1977] . It is clear that we can split a cell of size i+l into two cells of
size 2i . We can also recombine (or coalesce) two adjacent cells of size i into one cell of size
i+ 1 . A buddy system will only recombine that way if the cells were split from the same
cell of size 2i+l originally. Hence cells of size i come in pairs, that is, are buddies. Given
the high internal fragmentation of this approach (its average is 25% for arbitrarily chosen
allocation requests), it is now largely of historical as opposed to practical interest.

A variation of the i buddy system is the Fibonacci buddy system [Hirschberg, 1973; Bur
ton, 1976; Peterson and Norman, 1977], in which the size classes form a Fibonacci sequence:
si+2 = si+l + si , with a suitable so and SJ to start. Because the ratio of adjacent sizes is
smaller than in the power-of-two buddy system, the average internal fragmentation will
be lower (as a percentage of allocated memory) . However, locating adjacent cells for re
combining free cells after collection is slightly more complicated, since a buddy can have
the next size larger or smaller depending on which member of a buddy pair is under con
sideration.

Other variations on the buddy system have been described by Wise [1978] , Page and
Hagins [1986] and Wilson et al [1995b] .

7.5 Combining segregated-fits with first-, best- and next-fit

We can use segregated-fits as an accelerating front end to the schemes that use a single
free-list. In this case, we place a cell that falls into a given size class onto the list for that

1 Boehm and Weiser [1988] place this portion at the start of the block rather than its end, presumably to reduce
competition for cache lines near the beginning of blocks. This helps more for small cache lines, since it is effective
only for (some) cell sizes large than a cache line.

7.6. ADDITIONAL CONSIDERATIONS 97

class. If a request finds that the free-list for its size class is empty, we can implement best
fit by searching the larger size classes in order of increasing size looking for a non-empty
free-list. Having a segregated-fits front end modifies first- and next-fit, leading to a design
choice of what to do when the free-list for the desired size class is empty. But in any case,
if we end up searching list fkf the list of all cells of size greater than sk_ 1 , then we apply
the single-list scheme (first-fit, best-fit or next-fit) .

Another way of seeing this is that we really have a segregated-fits scheme, and are
simply deciding how we are going to manage [k . To summarise, we can manage it in these
ways:

• As a single free-list, using first-fit, best-fit, next-fit or one of the variations on them
previously discussed, including Cartesian trees or other data structures that reduce
search time.

• Using block-based allocation.

• Using a buddy system.

7.6 Additional considerations

Actual allocators often must take into account some additional considerations. We now
discuss these: alignment, size constraints, boundary tags, heap parsability, locality, wilder
ness preservation and crossing maps.

Alignment

Depending on constraints of the underlying machine and its instruction set, or for better
packing and improved memory hierarchy performance (cache, translation lookaside buffer
or paging), an allocated object may require special alignment. For example, consider a
Java array of double. On some machines, the double-word floating point values must be
aligned on double-word boundaries, that is, their addresses must be 0 modulo 8 (with the
three low bits of the address equal to zero) . One way to address the overall problem is
to make double-words the granule of allocation. In that case, all allocated and free cells
are a multiple of eight bytes in size, and are aligned on an eight-byte boundary. This
is simple, but perhaps slightly wasteful . Further, when allocating an array of double,
there is still some special work that might be required. Suppose that the Java heap design
requires two header words for scalar (non-array) objects, one to refer to the object's class
information (for virtual method dispatch, type determination and so on) and one for the
object's hash code and Java synchronisation (locking) . This is a typical design. Array
objects require a third word, giving the number of elements in the array. If we store these
three header words at the start of the allocated space and follow them immediately by the
array elements, the elements will be aligned on an odd word boundary, not an even one
as required. If we use double-words as the granule, then we simply use four words (two
double-words) for the three-word header and waste a word.

But suppose our granule is one word, and we wish to avoid wasting a word whenever
we can. In that case, if a free cell we are considering is aligned on an odd word boundary
(that is, its address is 4 modulo 8), we can simply use the cell as is, putting the three
header words first, immediately followed by the array element, which will be double
word aligned as required. If the cell starts on an even word boundary, we have to skip
a word to get the proper alignment. Notice that this complicates our determination of
whether a request will fit in a given cell: it may or may not fit, depending on the required
and actual alignment - see Algorithm 7.8.

98 CHAPTER 7. ALLOCATION

Algorithm 7.8: Incorporating alignment requirements

f i t s (n, a, m, b1k) :
/* need n bytes, alignment a modulo m, m a power of2 . Can b l k satisfy this request? 4
z +--- b l k - a I* back up 4
z +--- (z + m - 1) & - (m - 1) /* round up 4
z +--- z + a /* go forward 4
pad +--- z - b1k
return n + pad < s i z e (curr)

Size constraints

Some collection schemes require a minimum amount of space in each object (cell) for man
aging the collection process. For example, basic compacting collection needs room for the
new address in each object. Some collectors may need two words, such as a lock/status
word plus a forwarding pointer. This implies that even if the language needs only one
word, the allocator will still need to allocate two words. In fact, if a program allocates
some objects that contain no data and serve only as distinct unique identifiers, for some
languages they could in principle consume no storage at all ! In practice this does not work
since the address of the object forms its unique identity (or else you must calculate a unique
value and store it in the object), so the object must consume at least one byte.

Boundary tags

In order to support recombination when freeing objects, many allocate-free systems asso
ciate an additional header or boundary tag with each cell, outside the storage available to
the program [Knuth, 1973] . The boundary tag indicates the size of the cell and whether it
is allocated or free. It may also indicate the size of the previous cell, making it easier to
find its flag indicating whether it is free, and its free-list chaining pointers if it is free. Thus,
a boundary tag may be two words long, though with additional effort and possibly more
overhead in the allocation and freeing routines, it may be possible to pack it into one word .

Using bit tables on the side to indicate which granules are allocated and free avoids the
need for boundary tags, and may be more robust as we previously observed . Which ap
proach uses less storage depends on the average object size and the allocation granularity.

We further observe that because garbage collection frees objects all at once, a given
algorithm may not need boundary tags, or may need less information in them. Further, in
managed languages we will generally know the size of a cell by examining its type and so
do not need to record that information separately.

Heap parsability

The sweeping phase of a mark-sweep collector must be able to advance from cell to cell in
the heap. This capability is what we call heap parsability. Other kinds of collectors may not
requ ire parsability, but it can be a great help in debugging collectors so it is good to support
parsability if possible and the cost is not too high.

Generally we need parsability only in one direction, most commonly in order of in
creasing address . A typical language will use one or two words to record an object's type
and other necessary information. We call this the object's header. For example, many Java
implementations use one word to record what amounts to a type (a pointer to type infor
mation, including a vector of addresses of methods of the object's class) and one word for

7.6. ADDITIONAL CONSIDERATIONS

word
.------,

offset
type word -3
sync word -2
length (2) -1

object -- - - - - - - - - -

refere� element 0 0

element 1 1

word
.------,offset

type word -3
sync word -2
first field -1

--- second field 0

next object ! next object !

(a) Array (b) Scalar (non-Array)

word
.----___,

offset

type word -3

sync word -2
type word ! -1

- - - - - - - - - - - J

-- sync word ! o
- - - - - - - - - - - -:

first field ! 1
next object · · · · · ·d· � · ;d· ·: refere� secon e : 2 - - - - - - - - - - - -.

third field ! 3
(c) No-Fields

Figure 7.2: A Java object header design for heap parsability. Grey indicates
the words forming the referent object. Neighbouring objects are shown with
dashed lines.

99

a hash code, synchronisation information, garbage collection mark bit and so on. In order
to make indexing into arrays efficient on most machines, it helps if the object reference
refers to the first element of the array, with successive elements at successively higher ad
dresses. Since the language run-time and the collector need to find the type of an object
in a uniform way given a reference to the object, we place the header immediately before
the object data. Thus, the object reference points not to the first allocated byte, but into the
middle of the allocated cell, after the header. Having the header come before the object
contents therefore facilitates upward parsing of the heap.

Again using a Java system as an example, array instances need to record the length of
the individual array. For easy parsability, it helps if the le ngth field comes after the two
word header used for every object. Therefore the first array element falls at the third word
of the allocated cell, the length is at word - 1 and the rest of the header is at words -2
and -3 . A scalar (non-array) object needs to place its header a t words -2 and -3 as well.
This would appear to leave word -1 as a 'hole', but in fact there is no problem placing
the first (scalar) field of the object there (assuming that the machine can index by a small
negative constant just as well as by a small positive one, and most can). Further, if the
object has no additional fields, there is still no problem: the header of the next object can
legally appear at the address to which the object reference points! We illustrate all this in
Figure 7.2.

A particular issue arises if an implementation desires to over-write one object with an
other (necessarily smaller) one, as a number of functional language implementations do in
replacing a closure with its evaluated value. If the implementation takes no further action,
a scan that parses the heap may land in the middle of 'unformatted' bits and get quite con
fused. Non-Stop Haskell solves this problem by inserting filler objects [Cheadle et al, 2004] .
In the usual case they need only to insert a reference to metadata indicating a pointer
free object of the appropriate size; they pre-construct metadata for sizes one through eight
words. Larger fillers are quite rare, but would require creating metadata dynamically.2

One final consideration arises from alignment requirements. If an individual object
needs to be shifted one or more words from the beginning of its cell for proper alignment,

2They do not offer details, but it seems reasonable to us to place the metadata in the filler in that case, thus
avoiding any run-time allocation to restore heap parsability.

100 CHAPTER 7. ALLOCATION

we need to record something in the gap so that in heap parsing we will know to skip. If
ordinary object headers cannot begin with an all-zero word, and if we zero all free space
in advance, then when parsing we can simply skip words whose value is zero. A simple
alternative is to devise a distinct range of values to write at the start of gap, identifying it as
a gap and giving its length. For example, Sun have long used what they call a 'self-parsing'
heap. When they free an object (in a non-moving space), they overwrite its memory with
a filler object, which includes a field giving its size (think of it as an array of words) . This
is particularly useful for skipping ahead to the next real object when sweeping the heap.

A bit map on the side, indicating where each object starts, makes heap parsing easy and
simplifies the design constraints on object header formats. However, such bits consume
additional space and require additional time to set during allocation. Allocation bitmaps
are useful in many collectors, especially parallel and concurrent ones.

While we mentioned a design for Java, similar considerations apply to other languages.
Furthermore, block-based allocation offers simple parsing for the small cells, and it is also
easy to handle the large blocks. For improved cache performance, the location of a large
object inside a sequence of one or more blocks is something we might randomise, that
is, we randomise how much of the wasted space comes before, and how much after, the
application object. It is easy to record at the start of the block where the object is, in order
to support parsability.

Locality

Locality issues come up several ways in allocation. There is locality of the allocation pro
cess itself, and of freeing. Other things being equal, an address-ordered free-list may im
prove locality of allocator memory accesses . Sequential allocation also leads naturally to
sequential accesses with good locality. In fact, software prefetching a bit ahead of the allo
cator can help [Appel, 1994], though for certain hardware that is unnecessary [Diwan et al,
1 994] . But there is an entirely different notion of locality that is also useful to consider:
objects that may become unreachable at about the same time. If some objects become
unreachable at the same time, and they are allocated adjacent to one another, then after
collection their space will coalesce into a single free chunk, thus minimising fragmenta
tion. Empirically, objects allocated at about the same time often become unreachable at
about the same time. This makes non-moving systems less problematic than might be
presumed [Hayes, 1991; Dimpsey et al, 2000; Blackburn and McKinley, 2008] . It also sug
gests applying a heuristic of trying to allocate next to, or at least near, the most recently
allocated object. Specifically, if the previous allocation request was satisfied by splitting a
larger chunk, then it can help reduce fragmentation to prefer splitting the same chunk for
requests in the near future, if the future request cannot be satisfied directly from a free-list
for objects of the appropriate size .

Wilderness preservation

A typical heap organisation consists of a large contiguous part of the machine's address
space, often bounded at the low end by the program's static code and data areas. The
other end is often not occupied, but rather is open for expansion. This boundary in Unix
systems is called the 'break' and the sbrk call can grow (or shrink) the available space
by adjusting the boundary. Space beyond the boundary may not even be in the virtual
memory map. The last free chunk in the heap is thus expandable. Since it begins what
could be called 'unoccupied territory,' it is called the wilderness, and Korn and Vo [1985]
found that wilderness preservation - allocating from the wilderness only as a last resort -

7.7. ALLOCATION IN CONCURRENT SYSTEMS 101

helped reduce fragmentation. It also has the salutary effect of tending to defer the need to
grow the heap, and thus conserves overall system resources .

Crossing maps

Some collection schemes, or their write barriers, require the allocator to fill in a crossing
map. This map indicates, for each aligned segment of the heap of size 2k for some suit
able k, the address (or offset within the 2k segment) of the last object that begins in that
segment. Combined with heap parsability, this allows a barrier or collector to determine
fairly quickly, from an address within an object, the start of the object, and thus to access
the object's headers, and so on. We discuss crossing maps in more detail in Section 1 1 .8.

7.7 Allocation in concurrent systems

If multiple threads attempt to allocate simultaneously, then since most steps in allocation
need to be atomic to preserve the integrity of the allocation data structures, they will need
to use atomic operations or locks. Allocation can thus become a serial bottleneck. The ba
sic solution is to give each thread its own allocation area. If a thread runs out, it can obtain
another chunk of free space in which to allocate from a global pool. Only interactions with
the global pool need to be atomic. Individual threads may vary in their allocation rates, so
to improve both time and space performance it can help to employ an adaptive algorithm
to adjust the size of the free space chunks handed out to each thread - a slowly allocat
ing thread might receive a small chunk while a rapidly allocating one gets a large chunk.
Dimpsey et al [2000] noted substantial performance improvement in a multiprocessor Java
system using a suitably organised local allocation buffer (LAB) for each thread .3 They fur
ther note that since the local allocation buffers absorb almost all allocation of small objects,
it was beneficial to retune the global free-list-based allocator since its typical request was
for a new local allocation buffer chunk.

Garthwaite et al [2005] discussed adaptive sizing of local allocation buffers, and found
benefit from associating them with processors rather than threads . They describe the origi
nal mechanism for sizing per-thread local allocation buffers as follows. Initially a thread
requests a 24-word (96 byte) local allocation buffer. Each time it requests another local allo
cation buffer, it multiplies the size by 1 .5. However, when the collector runs, it decays each
thread's local allocation buffer size by dividing by two. The scheme also involves adjust
ment to the young generation's size according to the number of different threads allocat
ing. The per-processor local allocation buffer scheme relies on multiprocessor restartable
critical sections, which Garthwaite et al introduced. This mechanism allows a thread to
determine whether it has been preempted and rescheduled, which implies that it may be
running on a different processor. By having such preemption modify a register used in ad
dressing the per-processor data, they can cause stores after preemption to produce a trap,
and the trap handler can restart the interrupted allocation. Even though per-processor
local allocation buffers involve more instructions, their latency was the same, and they re
quired less sophisticated sizing mechanisms to work well. They also found that for small
numbers of threads, per-thread local allocation buffers were better (consider especially the
case where there are fewer threads than processors), and per-processor local allocation
buffers were better when there are many allocating threads. Therefore, they designed their
system to support switching between the two approaches dynamically.

3Some authors use the term 'thread-local heap'. We use local allocation buffer when the point is separate
allocation, and reserve use of 'thread-local heap' for the case where the local areas are collected separately. Thus,
while a 'thread-local heap' is almost certainly a local allocation buffer, the reverse need not be true.

102 CHAPTER 7. ALLOCATION

A typical local allocation buffer is used for sequential allocation. Another design is for
each thread (or processor) to maintain its own set of segregated free-lists, in conjunction
with incremental sweeping. When a thread sweeps a block incrementally during alloca
tion, it puts the free cells into its own free-lists. This design has certain problems that arise
when it is used for explicit storage management, as addressed by Berger et al [2000] . For
example, if the application uses a producer-consumer model, then the producer allocates
message buffers and the consumer frees them, leading to a net transfer of buffers from
one to the other. In the garbage collected world, the collection process may return buffers
to a global pool . However, incremental sweeping that places free cells on the sweeper 's
free-lists naturally returns free buffers to threads that allocate them most frequently.

7.8 Issues to consider

There are some particular issues to consider when designing an allocator for a garbage
collected system: Allocation cannot be considered independently of the collection algo
rithm. In particular, non-moving collectors such as mark-sweep more or less demand a
free-list approach as opposed to sequential allocation - but see Section 10.3 for contrary
views on this, and some local allocation buffer approaches also use sequential allocation
in conjunction with mark-sweep collection. Conversely, sequential allocation makes the
most sense for copying and compacting collectors, because it is fast and simple. It is not
necessarily much faster than segregated-fits free-list allocation, but its simplicity may offer
better overall reliability.

If a collector uses mark-sweep but offers occasional or emergency compaction to elim
inate fragmentation, then it needs to provide for updating the allocation data structures to
reflect the state of the world after compaction.

Bit tables on the side for recording free/ allocated granules and where cells or objects
start add robustness and simplify object header design. They can also speed collector
operations and improve the collector's memory hierarchy performance. Their space cost
is modest, but they do add some time cost during allocation, even in the common case.

Block-based allocation can reduce per-object overheads, both for the language imple
mentation (for example, if a block is dedicated to objects of a single type) and for collector
meta data. This may be offset by the space consumed by unallocated cells and the unusable
space within some blocks. Block-based allocation may also fit well with organisations that
support multiple spaces with different allocation and collection techniques.

Segregated-fits is generally faster than single free-list schemes . This is of greater im
portance in a garbage collected context since programs coded assuming garbage collection
tend to do more allocation than ones coded using explicit freeing.

Because a collector frees objects in batches, the techniques designed for recombining
free cells for explicit freeing systems are less relevant. The sweep phase of mark-sweep can
rebuild a free-list efficiently from scratch. In the case of compacting collectors, in the end
there is usually just one large free chunk appropriate for sequential allocation. Copying
similarly frees whole semispaces without needing to free each individual cell.

Chapter 8

Partitioning the heap

So far we have assumed a monolithic approach to garbage collection: all objects are man
aged by the same collection algorithm and all are collected at the same time. However
there is no reason why this should be so and substantial performance benefits accrue from
a more discriminating treatment of objects. The best known example is generational col
lection [Lieberman and Hewitt, 1983; Ungar, 1984], which segregates objects by age and
preferentially collects younger objects. There are many reasons why it might be beneficial
to treat different categories of object in different ways. Some but not all of these reasons are
related to the collector technology that might be used to manage them. As we saw in earlier
chapters, objects can be managed either by a direct algorithm (such as reference counting)
or by an indirect, tracing algorithm. Tracing algorithms may move objects (mark-compact
or copying) or not (mark-sweep) . We might therefore consider whether or not we wish
to have the collector move different categories of object and, if so, how we might wish
to move them. We might wish to distinguish, quickly by their address, which collection
or allocation algorithm to apply to different objects. Most commonly, we might wish to
distinguish when we collect different categories of object.

8.1 Terminology

It is useful to distinguish the sets of objects to which we want to apply certain memory
management policies from the mechanisms that are used to implement those policies effi
ciently. We shall use the term space to indicate a logical set of objects that receive similar
treatment. A space may use one or more chunks of address space. Chunks are contiguous
and often power-of-two sized and aligned.

8.2 Why to partition

It is often effective to split the heap into partitions, each managed under a different pol
icy or with a different mechanism. These ideas were first explored in Bishop's influential
thesis [1977] . These reasons include object mobility, size, lower space overheads, easier
identification of object properties, improved garbage collection yield, reduced pause time,
better locality, and so on. We examine these motivations now, before considering partic
ular models of garbage collection and object management that take advantage of heap
partitioning.

103

104 CHAPTER 8. PARTITIONING THE HEAP

Partitioning by mobility

In a hybrid collector it may be necessary to distinguish objects that can be moved from
those that either cannot be moved or which it is costly to move. It may be impossible to
move objects due to lack of communication between the run-time system and the compiler,
or because an object is passed to the operating system (for example, an 1/0 buffer) . Chase
[1987, 1988] suggests that asynchronous movement may also be particularly detrimental
to compiler optimisations. In order to move an object, we must be able to discover every
reference to that object so that each can be updated to point to the object's new location.
In contrast, if collection is non-moving, it suffices that a tracing collector finds at least one
reference. Thus, objects cannot be moved if a reference has been passed to a library (for
example, through the Java Native Interface) that does not expect garbage collection. Either
such objects must be pinned or we must ensure that garbage collection is not enabled for
that space while the object is accessible to the library. 1

The references that must be updated in order to move objects include the root set.
Determining an accurate map of root references is one of the more challenging parts of
building the interface between a managed language and its run-time. We discuss this in
detail in Chapter 1 1 . One commonly chosen route, sometimes to an initial implementa
tion, is to scan roots (thread stacks and registers) conservatively rather than construct a
type-accurate map of which stack frame slots and so on contain object references. This
tactic is inevitable if the compiler does not provide type-accurate information (for exam
ple, compilers for languages like C and C++) . Conservative stack scanning [Boehm and
Weiser, 1988] treats every slot in every stack frame as a potential reference, applying tests
to discard those values found that cannot be pointers (for example, because they 'point'
outside the range of the heap or to a location in the heap at which no object has been al
located) . Since conservative stack scanning identifies a superset of the true pointer slots
in the stack, it is not possible to change the values of any of these (since we might inad
vertently change an integer that just happened to look like a pointer) . Thus, conservative
collection cannot move any object directly referenced by the roots. However, if appropriate
information (which need not be full type information) is provided for objects in the heap,
then a mostly-copying collector can safely move any object except for one which appears
to be directly reachable from ambiguous roots [Bartlett, 1988a] .

Partitioning by size

It may also be undesirable (rather than impossible) to move some objects . For example, the
cost of moving large objects may outweigh the fragmentation costs of not moving them. A
common strategy is to allocate objects larger than a certain threshold into a separate large
object space (LOS). We have already seen how segregated-fits allocators treat large and small
objects differently. Large objects are typically placed on separate pages (so a minimum size
might be half a page), and are managed by a non-moving collector such as mark-sweep.
Notice that, by placing an object on its own page, it can also be 'copied' virtually, either by
Baker's Treadmill [1992a] or by remapping virtual memory pages [Withington, 1991] .

Partitioning for space

It may be useful to segregate objects in order to reduce overall heap space requirements .
It is desirable to create objects in a space managed by a strategy that supports fast alloca-

1 An alternative to passing a direct object reference into the library is to pass an indirect reference (or handle),
which can be registered with the collector for updating as necessary. This is the typical solution for the Java
Native Interface.

8.2. WHY TO PARTITION 105

tion and offers good spatial locality (as a sequence of objects is allocated and initialised) .
Blackburn et al [2004a] showed that the difference in cost between sequential and free-list
allocation is small (accounting for only 1% of total execution time) and is dominated by
the second order effect of improved locality, particularly for young objects which benefit
from being laid out in allocation order.

Both copying and sliding collectors eliminate fragmentation and allow sequential allo
cation. However, copying collectors require twice the address space of non-moving col
lectors and mark-compact collection is comparatively slow. It is therefore often useful to
segregate objects so that different spaces can be managed by different memory managers .
Those objects that are expected to live for some time, and for which fragmentation is not
likely to be an immediate concern, can be kept in a space that is primarily non-moving
but visited by occasional compaction passes. Those objects with higher rates of allocation
and higher expected mortality can be placed in a space managed by a copying collector
for fast allocation and cheap collection (proportional to the number of survivors, which is
expected to be low). Note that the expense of reserving copy space for large objects is a
further reason for managing large object spaces with a non-copying collector.

Partitioning by kind

Physically segregating objects of different categories also allows a particular property, such
as type, to be determined simply from the address of the object rather than by retrieving
the value of one of its field or, worse, by chasing a pointer. This has several benefits. First, it
offers a cache advantage since it removes the necessity to load a further field (particularly
if the placement of objects of a particular category is made statically and so the address
comparison is against a compile-time constant). Second, segregation by property, whereby
all objects sharing the same property are placed in the same contiguous chunk in order to
allow a quick address-based identification of the space, allows the property to be associ
ated with the space rather than replicated in each object's header. Third, the kind of the
object is significant for some collectors. Objects that do not contain pointers do not need to
be scanned by a tracing collector. Large pointer-free objects may benefit from being stored
in their own space, whereas the cost of processing a large array of pointers is likely to be
dominated by the cost of tracing the pointers rather than, say, the cost of moving the ob
ject. Conservative collectors benefit particularly from placing large compressed bitmaps
in areas that are never scanned as they are a frequent source of false pointers [Boehm, 1993] .
Cycle-collecting tracing collectors can also benefit from segregating inherently acyclic ob
jects which cannot be candidate roots of garbage cycles.

Virtual machines often generate and store code sequences in the heap. Moving and re
claiming code has special problems such as identifying, and keeping consistent, references
to code, or determining when code is no longer used and hence can be unloaded (note
that class reloading is generally not transparent since the class may have state) . Code ob
jects also tend to be large and long lived . For these reasons, it is often desirable not to
relocate code objects [Reppy, 1993], and to consider unloading code as an exceptional case
particular to certain applications.

Partitioning for yield

The best known reason for segregation is to exploit object demographics. It is common for
some objects to remain in use from the moment they are allocated to the end of the program
while others have very short lives. As long ago as 1976 Deutsch and Bobrow noted that
"statistics show that a newly allocated datum is likely to be either 'nailed down' or aban
doned within a relatively short time". Indeed, it is even common for a significant fraction

106 CHAPTER 8. PARTITIONING THE HEAP

of allocation points in Java programs to create objects with a bimodal lifetime distribu
tion Uones and Ryder, 2008] . Numerous studies have confirmed that the object lifetime
behaviour of many (but not all) applications supports the weak generational hypothesis that
"most objects die young" [Ungar, 1984] . The insight behind a range of strategies, both gen
erational and quasi-generational, is that the best way to reclaim the most storage space for
the least effort is to concentrate collection effort on those objects most likely to be garbage.

If the distribution of object lifetimes is sufficiently skewed, then it is worth repeatedly
collecting a subset (or subsets) of the heap rather than the entire heap [Baker, 1993] .

For example, generational collectors typically collect a single space of the heap (the
young generation or nursery) many times for every time that they collect the entire heap.
Note that there is a trade-off here. By not tracing the whole heap at every collection, the
collector allows some garbage to go unreclaimed (to float in the heap) . This means that
the space available for the allocation of new objects is smaller than it would have been
otherwise, and hence that the collector is invoked more often. Furthermore, as we shall
see later, segregating the heap into collected and uncollected spaces imposes more book
keeping effort on both the mutator and the collector. Nevertheless, provided that the space
chosen for collection has a sufficiently low survival rate, a partitioned collection strategy
can be very effective.

Partitioning to reduce pause time

The cost of collection to a tracing collector is largely dependent on the volume of live ob
jects to be traced. If a copying collector is used, the cost of the scavenge depends only on
the volume of live objects; even in a mark-sweep collector, the cost of tracing dominates
the cost of sweeping. By restricting the size of the condemned space that the collector traces,
we bound the volume of objects scavenged or marked, and hence the time required for a
garbage collection. In a stop-the-world collector, this means shorter pause times. Unfortu
nately, collecting a subset of the heap improves only expected times. Since collection of a
single space may return insufficient free space for computation to continue, it may still be
necessary to collect the whole heap . Thus, in general, partitioned collection cannot reduce
worst-case pause times.

The extreme case for partitioning is to allow a space to be reclaimed in constant time.
If no objects within a condemned region are reachable from outside that region, then there
is no tracing work for a collector to do to reclaim the region: the memory occupied by that
region can be returned en masse to the allocator. Determining that a region is unreachable
requires the combination of appropriate object access disciplines and heap structures (such
as stacks of scoped regions) . The responsibility for correct usage is typically placed entirely
on the programmer (as for example with the Real-time Specification for Java). However,
given a suitably tractable language, such as ML, regions can also be inferred automatically
[Tofte and Talpin, 1994] . The Cyclone extension to C reduces the burden on programmers
though a complex type system which allows some type and region inference [Grossman
et al, 2002] .

Partitioning for locality

The importance of locality for good performance continues to increase as the memory hi
erarchy becomes more complex (more levels, multiple CPU cores and sockets, and non
uniform memory access) . Simple collectors tend to interact poorly with virtual memory
and caches. Tracing collectors touch every live object as part of the trace. Mark-sweep
collectors may touch dead objects as well. Copying collectors may touch every page of the
heap even though only half of it is in use for live objects at any time.

8.2. WHY TO PARTITION 107

Researchers have long argued that a collector should not be used simply to reclaim
garbage but should also be used to improve the locality of the system as a whole [Fenichel
and Yochelson, 1969; White, 1980] . We saw in Chapter 4 how the traversal order of copying
collectors can be varied in order to improve mutator locality by co-locating parents and
children. Generational collectors can obtain further locality improvements for both the
collector the mutator. The collector benefits from concentrating most effort on a subsection
of the heap likely to return the most free space for the least effort. The mutator benefits
from reducing its working set size, since younger objects typically have higher mutation
rates than older ones [Blackburn et al, 2004b] .

Partitioning by thread

Garbage collection requires synchronisation between mutator and collector threads. On
the-fly collection, which never pauses more than one mutator thread at a time, may re
quire a complex system of handshakes with the mutator threads but even stop-the-world
collection requires synchronisation to bring all mutator threads to a halt. This cost can be
reduced if we halt just a single thread at a time and collect only those objects that were
allocated by that thread and which cannot have escaped to become reachable by other
threads. To achieve this, the collector must be able to distinguish those objects that are ac
cessible from only one thread from those that may be shared, for example by allocating in
thread-local heaplets [Doligez and Leroy, 1993; Doligez and Gonthier, 1994; Steensgaard,
2000; Jones and King, 2005] .

At a larger granularity, i t may be desirable to distinguish the objects accessible to partic
ular tasks, where a task comprises a set of cooperating threads. For example, a server may
run multiple managed applications, each of which usually requires its own complete vir
tual machine to be loaded and initialised. In contrast, a multi-tasking virtual machine (MVM)
allows many applications (tasks) to run within a single invocation of the multi-tasking vir
tual machine [Palacz et al, 1994; Soman et al, 2006, 2008; Wegiel and Krintz, 2008] . Care is
clearly needed to ensure that different tasks cannot interfere with one another, either di
rectly (by obtaining access to another's data) or indirectly (through denying another task
fair access to system resources such as memory, CPU time, and so on) . It is particularly
desirable to be able to unload all the resources of a task when it has completed without
having to disturb other tasks (for example, without having to run the garbage collector) .
All these matters are simplified by segregating unshared data owned by different threads.

Partitioning by availability

One reason for not wishing to touch objects that are accessible to other threads is to reduce
synchronisation overheads. However, we may also wish to partition objects by their usage
because their geography leads to different demographic behaviours. Xian et al [2007] ob
served that remotable objects instantiated as part of client requests in an application server
tend to live longer than local objects; extending Sun's HotSpot generational collector to
recognise this allowed the server to handle larger workloads. More generally, in a system
managed by distributed garbage collection, it will be desirable to manage local and remote
objects and references with different policies and mechanisms, since the cost of accessing
a remote object will be many orders of magnitude more expensive than accessing a local
object.

Distribution is not the only reason why the cost of object access may not be uniform.
Earlier we paid particular attention to how tracing collectors might minimise the cost of
cache misses . The cost of a cache miss may be a few hundred cycles whereas accessing

108 CHAPTER 8. PARTITIONING THE HEAP

an object on a page that is swapped out will incur millions of cycles. Avoiding frequent
page misses was a priority for an earlier generation of collectors whereas today a config
uration that leads to heavy paging might be considered irredeemably broken.2 Physical
page organisation (in memory or swapped-out) can be considered as another form of heap
partitioning, and indeed one that can be exploited . The Bookmarking collector [Hertz et al,
2005] cooperates with the virtual memory system in order first of all to improve the choice
(from the collector 's point of view) of the page to be swapped out and, second, to allow a
collector's trace to complete without access to objects on non-resident pages.

Similarly, non-uniform memory access machines have some banks of memory closer
to particular processors than others. Sun's HotSpot collector recognises this property and
will preferentially allocate objects in 'near' memory to minimise latency on large servers
where access times to memory vary significantly.

Partitioning by mutability

Finally, we might wish to partition objects according to their mutability. Recently cre
ated objects tend to be modified more frequently (for example to initialise their fields)
than longer lived objects [Wolczko and Williams, 1992; Bacon and Rajan, 2001; Blackburn
and McKinley, 2003; Levanoni and Petrank, 2006] . Memory managers based on reference
counting tend to incur a high per-update overhead and thus are less suitable for objects
that are modified frequently. On the other hand, in very large heaps, only a comparatively
small proportion of objects will be updated in any period but a tracing collector must nev
ertheless visit all objects that are candidates for garbage. Reference counting might be
better suited to this scenario.

Doligez and Gonthier segregate ML objects by mutability (and by thread) in order to
allow each thread to have its own space of immutable, unshared objects, as well as a single
shared space [Doligez and Leroy, 1993; Doligez and Gonthier, 1994] . Their scheme requires
a strong property from references: there must be no pointers to objects inside a thread's
local heap from objects outside that local heap (that is, from other threads' local heaps
or from the shared space) . References into a thread's private heap are prevented from
escaping to the shared heap by a copy on write policy; this is semantically transparent since
the target of the reference is immutable. Together, these properties allow each thread's
private heap to be collected asynchronously. A further advantage of this approach is that,
unlike most schemes in which spaces are collected independently, it is not necessary to
track pointers that cross spaces (though the mutator must still detect them) .

8.3 How to partition

Probably the most obvious, and the most common, way to partition the heap is by divid
ing it into non-overlapping ranges of addresses . At its simplest, each space occupies a
contiguous chunk of heap memory so this mapping is one to one. It is more efficient to
align chunks on power of two boundaries. In that case an object's space is encoded into
the highest bits of its address and can be found by a shift or mask operation. Once the
space identity is known, the collector can decide how to process the object (for example,
mark it, copy it, ignore it and so on) . If the layout of the spaces is known at compile time,
this test can be particularly efficient - a comparison against a constant. Otherwise, the
space can be looked up, using these bits as an index into a table.

20n the other hand, many current generation netbooks have limited memory and page thrashing is a concern.

8.4. WHEN TO PARTITION 109

However, contiguous areas may not make efficient use of memory in 32-bit systems,
as the range of virtual address space they may occupy must be reserved in advance. Al
though this does not commit physical memory pages, which can be mapped in and out of
the contiguous space on demand, contiguous spaces are nevertheless inflexible and may
lead to virtual memory exhaustion even though there are sufficient physical pages avail
able. An additional difficulty in many cases is the tendency of the operating system to
map code segments for libraries in unpredictable places - sometimes intentionally un
predictable in order to improve security. This makes it difficult to reserve large contiguous
ranges of virtual address space. For the most part, these problems can be eliminated in a
64-bit address space.

The alternative is to implement spaces as discontiguous sets of chunks of address space.
Typically, a discontiguous space comprises a list of fixed size frames of contiguous virtual
address space. As before, operations on frames are more efficient if frames are aligned on
2n boundaries and are a multiple of the operating system's page size. Again, the disad
vantage is that an object's space may need to be looked up in a table .

It is not always necessary to implement spaces by segregating objects physically. In
stead, an object's space may be indicated by some bits in its header [Domani et al, 2002] .
Although this precludes determining its space through a fast address comparison, this
approach nevertheless has some advantages . First, it allows objects to be partitioned ac
cording to properties that vary at run time, such as age or thread reachability, even in the
case where the collector does not move objects . Second, it may facilitate handling objects
that need to be pinned temporarily, for example because they are accessible to code that
is not collector aware. Finally, run-time partitioning may be more accurate than choices
made statically. For example, static escape analyses provide only a conservative estimate
of whether an object may be shared. Static analyses do not yet scale to the very largest
programs, and the presence of dynamic class loading commonly necessitates excessively
conservative analysis, although Jones and King [2005] show how to obtain a more accurate
static estimate of escapement in the context of thread-local allocation. If object escapement
is tracked dynamically, then the distinction is between objects that are currently thread
local and those that are (or have been) accessible to more than one thread.3 The downside
of dynamic segregation is that it imposes more work on the write barrier. Whenever a
pointer update causes its referent to become potentially shared, then the referent and its
transitive closure must be marked as shared.

Finally in this section, we note that collecting only a subset of the partitions of the
heap necessarily leads to a collector that is incomplete: it cannot reclaim any garbage in
partitions that are not collected . Even if the collector takes care to scavenge every partition
at some time, say on a round-robin basis, garbage cycles that span partitions will not be
collected. In order to ensure completeness, some discipline must be imposed on the order
in which partitions are collected and the destination partition to which unreclaimed objects
are moved . A simple, and widely used, solution is to collect the entire heap when other
tactics fail . However, more sophisticated strategies are possible as we shall see when we
consider Mature Object Spaces (also called the Train collector) [Hudson and Moss, 1992] .

8.4 When to partition

Partitioning decisions can be made statically (at compile time) or dynamically - when an
object is allocated, at collection time or by the mutator as it accesses objects.

The best known partitioning scheme is generational, whereby objects are segregated
by age, but this is just one form of age related partitioning. Age related collectors segre-

3We do not know of any system that reverts objects that were once shared, but are no longer, back to local.

1 10 CHAPTER 8. PARTITIONING THE HEAP

gate objects by their age into a number of spaces . In this case, partitioning is performed
dynamically, by the collector. As an object's age increases beyond some threshold, it is
promoted(moved physically or logically) into the next space.

Objects may also be segregated by the collector because of constraints on moving ob
jects. For example, mostly-copying collectors may not be able to move some objects while
they are considered pinned - accessible by code that is not aware that objects' locations
may change.

Partitioning decisions may be also made by the allocator. Most commonly, allocators
determine from the size of an allocation request whether the object should be allocated
in a large object space. In systems supporting explicit memory regions visible to the pro
grammer or inferred by the compiler (such as scoped regions), the allocator or compiler
can place objects in a particular region . Allocators in thread-local systems place objects in
a heaplet of the executing thread unless they are directed that the object is shared. Some
generational systems may attempt to co-locate a new object in the same region as one that
will point to it, on the grounds that eventually it will be promoted there anyway [Guyer
and McKinley, 2004] .

An object's space may also be decided statically, by its type, because it is code, or
through some other analysis . If it is known a priori that all objects of a particular kind
share a common property, such as immortality, then the compiler can determine the space
in which these objects should be allocated, and generate the appropriate code sequence.
Generational collectors normally allocate in a nursery region set aside for new objects;
later, the collector may decide to promote some of these objects to an older generation.
However, if the compiler 'knows' that certain objects (for instance, those allocated at a par
ticular point in the code) will usually be promoted, then it can pretenure these objects by
allocating them directly into that generation [Cheng et al, 1998; Blackburn et al, 2001 , 2007;
Marion et al, 2007] .

Finally, objects may be repartitioned by the mutator as it runs if the heap is managed by
a concurrent collector (Chapter 15) . Mutator access to objects may be mediated by read or
write barriers, each of which may cause one or more objects to be moved or marked. The
colouring of objects (black, grey, white) and the old/new space holding the object may
be thought of as a partitioning. The mutator can also dynamically discriminate objects
according to other properties. As we saw above, the write barrier used by Domani et al
[2002] logically segregates objects as they escape their allocating thread. Collaboration
between the run-time system and the operating system can repartition objects as pages are
swapped in and out [Hertz et al, 2005] .

In the next two chapters, we investigate a variety of partitioned garbage collectors.
Chapter 9 looks at generational collectors in detail, while Chapter 10 examines a wide va
riety of other schemes, including both those based on different ways of exploiting object's
ages and those based on non-temporal properties .

Chapter 9

Generational garb age collection

The goal of a collector is to find dead objects and reclaim the space they occupy. Tracing
collectors (and copying collectors in particular) are most efficient if the space they manage
contains few live objects. On the other hand, long-lived objects are handled poorly if the
collector processes them repeatedly, either marking and sweeping or copying them again
and again from one semispace to another. We noted in Chapter 3 that long-lived objects
tend to accumulate in the bottom of a heap managed by a mark-compact collector, and
that some collectors avoid compacting this dense prefix. While this eliminates the cost of
relocating these objects, they must still be traced and all references they contain must be
updated.

Generational collectors extend this idea by not considering the oldest objects whenever
possible. By concentrating reclamation effort on the youngest objects in order to exploit
the weak generational hypothesis that most objects die young, they hope to maximise yield
(recovered space) while minimising effort. Generational collectors segregate objects by age
into generations, typically physically distinct areas of the heap . Younger generations are
collected in preference to older ones, and objects that survive long enough are promoted
(or tenured) from the generation being collected to an older one.

Most generational collectors manage younger generations by copying. If, as expected,
few objects are live in the generation being collected, then the mark/ cons ratio between
the volume of data processed by the collector and the volume allocated for that collection
will be low. The time taken to collect the youngest generation (or nursery) will in general
depend on its size. By tuning its size, we can control the expected pause times for collec
tion of a generation. Young generation pause times for a well configured collector (running
an application that conforms to the weak generational hypothesis) are typically of the or
der of ten milliseconds on current hardware. Provided the interval between collections is
sufficient, such a collector will be unobtrusive to many applications .

Occasionally a generational collector must collect the whole heap, for example when
the allocator runs out of space and the collector estimates that insufficient space would be
recovered by collecting only the younger generations. Generational collection therefore
improves only expected pause times, not the worst case. On its own, it is not sufficient for
real-time systems. We consider the requirements for garbage collection in a hard real-time
environment and how to achieve them in Chapter 19.

Generational collection can also improve throughput by avoiding repeatedly process
ing long-lived objects. However, there are costs to pay. Any garbage in an old generation
cannot be reclaimed by collection of younger generations: collection of long-lived objects
that become garbage is not prompt. In order to be able to collect one generation without
collecting others, generational collectors impose a bookkeeping overhead on mutators in

1 1 1

1 12

old

young

CHAPTER 9. GENERATIONAL GARBAGE COLLECTION

- - - -m
- - - -

- - - - -

remset

Figure 9.1: Intergenerational pointers. If live objects in the young generation
are to be preserved without tracing the whole heap, a mechanism and a data
structure are needed to remember objects S and U in the old generation that
hold references to objects in the young generation.

order to track references that span generations, an overhead hoped to be small compared to
the benefits of generational collection. Tuning generational collectors to meet throughput
and pause-time goals simultaneously is a subtle art.

9.1 Example

Figure 9.1 shows a simple example of generational collection. This collector is using two
generations. Objects are created in the young generation. At each minor collection (or nurs
ery collection), objects in the young generation are promoted to the old generation if they
are sufficiently old. Before the first collection, the young generation in this example con
tains four objects, N, P, V and Q, and the old generation three objects, R, S and U. R and N
are reachable from outside the generational space; maybe some roots point to them. The
collector is about to collect the young generation. Suppose that N, P and V were allocated
some time ago but Q was created only shortly before the collector was invoked. The ques
tion of which objects should be promoted raises important issues.

A generational collector will promote objects it discovers from the young generation
to the old one, provided they are old enough. This decision requires that a generational
collector has a way of measuring time and a mechanism for recording ages. In our example,
no objects in the young generation other than N are directly reachable from the roots, but
P and Q are also clearly live since they are reachable from the roots via R and S . Most
generational collectors do not examine the whole heap, but trace only the generation(s)
being collected. Since the old generation is not to be traced here, a generational system
must record inter-generational pointers such as the one from S to P in order that the collector
may discover P and Q.

Such inter-generational pointers can arise in two ways. First, the mutator creates a
pointer that requires tracking whenever it writes a pointer to an object in a generation G1
into a field of an object in a generation G2 that will be collected later than G1 . Second, the
collector itself may create inter-generational pointers when it promotes an object. In the
example, the collector will create such a pointer if it promotes P but not Q. In both cases,
the inter-generational pointer can be detected with a write barrier. The mutator requires
a barrier on pointer writes that records whether a pointer between generations has been

9.2. MEASURING TIME 113

written. A generational collector needs a similar copy write barrier to detect any inter
generational references created by promotion. In the example, the remembered set (remset)
records the location of any objects (or fields) that may contain an inter-generational pointer
of interest to the garbage collector, in this case S and U .

Unfortunately, treating the source o f inter-generational pointers a s roots for a minor col
lection exacerbates the problem of floating garbage. Minor collections are frequent but do
not reclaim garbage in the old generation, such as U . Worse, U holds an inter-generational
pointer so must be considered a root for the young generation. This nepotism will lead to
the young garbage child V of the old garbage object being promoted rather than reclaimed,
thus further reducing the space available for live objects in the older generation.

9.2 Measuring time

Before objects can be segregated by their age, we need to decide how time is to be mea
sured. There are two choices : bytes allocated or seconds elapsed . Wall-dock time is useful
for understanding a system's external behaviour. How long does it run? What are the
pause times for garbage collection and how are they distributed? Answers to these ques
tions determine whether a system is fit for purpose: will it complete its task in sufficient
time and will it be sufficiently responsive? One requirement might be that it does not
disturb an interactive human user. Another requirement might be to meet a hard real
time guarantee (say, in an embedded system) or a soft one (where occasionally missing a
deadline is not disastrous but missing many is) . On the other hand, internally, object life
times are better measured by the number of bytes of heap space allocated between their
birth and their death. Space allocated is a largely machine-independent measure, although
clearly a system with 64-bit addresses or integers will use more space than a 32-bit one.
Bytes-allocated also directly measures the pressure placed upon the memory manager; it
is closely related to the frequency with which the collector must be called.

Unfortunately measuring time in terms of bytes allocated is tricky in multithreaded
systems (where there are multiple application or system threads) . A simple global measure
of the volume of allocation may inflate the lifetime of an object, since the counter will
include allocation by threads unrelated to the object in question [Jones and Ryder, 2008] .

In practice generational collectors often measure time in terms of how many collections
an object has survived, because this is more convenient to record and requires fewer bits,
but the collections survived is appropriately considered to be an approximate proxy for
actual age in terms of bytes allocated.

9.3 Generational hypotheses

The weak generational hypothesis, that most objects die young, appears to be widely valid,
regardless of programming paradigm or implementation language. Foderaro and Fateman
[1981] found that, for a computer algebra system written in MacLisp, 98% of the volume
of data recovered by a collection had been allocated since the previous one. Zorn [1989] re
ported that between 50% and 90% of Common Lisp objects survive less than ten kilobytes
of allocation. The story is similar for functional languages. For Haskell, between 75% and
95% of heap data died before they were ten kilobytes old and only 5% lived longer than one
megabyte [Sansom and Peyton Jones, 1993] . Appel [1992] observed that Standard ML/NJ
reclaimed 98% of any given generation at each collection, and Stefanovic and Moss [1994]
found that only 2% to 8% of heap allocated data survived the 100 kilobyte threshold.

1 14 CHAPTER 9. GENERATIONAL GARBAGE COLLECTION

It also holds for many programs written in object-oriented languages. Ungar [1986]
found that less than 7% of Smalltalk lived beyond 140 kilobytes. Dieckmann and Holzle
[1999] reported that the volume of Java objects in the SPECjvm98 benchmark suite sur
viving 100 kilobytes varied between 1% and 40%, and that less than 21% lived beyond
one megabyte although the proportion varied significantly from one application to an
other. Blackburn et al [2006a] found that on average less than 9% of objects allocated by
the SPECjvm98 and DaCapo benchmark suites escaped from a four megabyte nursery, al
though there was wide variation between benchmarks; note that this is an upper bound
on the volume of objects living longer than four megabytes since some escapees may have
been allocated only shortly before the nursery was collected. Jones and Ryder [2008] found
bimodal lifetime distributions common in Java applications; between 65% and 96% of Da
Capo objects survived no longer than 64 kilobytes, with 3% to 16% being immortal or liv
ing longer than four megabytes. Even in imperative languages without automatic memory
management support, the lifetimes of many objects are short. Barrett and Zorn [1993] re
ported that more than 50% of heap allocated data died within ten kilobytes and less than
10% survived 32 kilobytes.

On the other hand, there is much less evidence for the strong generational hypothesis that,
even for objects that are not newly-created, younger objects will have a lower survival
rate than older ones [Hayes, 1991] . Simple models like the weak generational hypothesis
account adequately in many programs for the behaviour of objects overall. However, once
the shortest lived objects are discounted, objects' demographics over a longer timescale are
more complex. Object lifetimes are not random. They commonly live in clumps and die
all at the same time, because programs operate in phases [Dieckmann and Holzle, 1999;
Jones and Ryder, 2008] . A significant number of objects may never die. The lifetime of
objects may be correlated with their size, although opinion has differed on this [Caudill
and Wirfs-Brock, 1986; Ungar and Jackson, 1988; Barrett and Zorn, 1993] . However, as we
saw above, there are other reasons why we might want to treat large objects specially.

9.4 Generations and heap layout

A wide variety of strategies have been used to organise generations. Collectors may use
two or more generations, which may be segregated physically or logically. Each generation
may be bounded in size or the size of one space may be traded against that of another. The
structure within a generation may be flat or it may comprise a number of age-based sub
spaces, called steps or buckets . Generations may also hold their own large object subspaces.
Each generation may be managed by a different algorithm.

The primary goals of generational garbage collection are reduced pause times and im
proved throughput. Assuming that the youngest generation is processed by copying col
lection, expected pause times depend largely on the volume of data that survives a minor
collection of that generation, which in turn depends on the size of the generation. How
ever, if the size of the nursery is too small, collection will be fast but little memory will be
reclaimed as the objects in the nursery will have had insufficient time to die. This will have
many undesirable consequences .

First, young generation collections will be too frequent; as well as its copying cost pro
portional to the volume of surviving objects - which will be higher since object have had
less time to die - each collection must also bear the cost of stopping threads and scanning
their stacks.

Second, the older generation will fill too fast and then it too will have to be collected.
High promotion rates will cause time-consuming older generation or full heap collections
to take place too frequently. In addition, premature promotion will increase the incidence

9.5. MULTIPLE GENERATIONS 115

of nepotism, as 'tenured' garbage objects in the old generation preserve their offspring in
the young generation, artificially inflating the survivor rate as those dead children will also
be promoted.

Third, there is considerable evidence that newly created objects are modified more fre
quently than older ones. If these young objects are promoted prematurely, their high mu
tation rate will put further pressure on the mutator 's write barrier; this is particularly
undesirable if the cost of the write barrier is high. Any transfer of overheads between
mutator and collector needs careful evaluation with realistic workloads. Typically, the col
lector will account for a much smaller proportion of execution time than the mutator in
any well configured system. For example, suppose a write barrier comprises just a few
instructions in its fast path yet accounts for 5% of overall execution time; suppose further
that the collector accounts for 10% of overall run time. It would be quite easy for an al
ternative write barrier implementation to double the cost of the barrier, thus adding 5% to
overall execution time. To recover this, garbage collection time must be reduced by 50%,
which would be hard to do.

Finally, by promoting objects the program's working set may be diluted. Generational
organisation is a balancing act between keeping minor collections as short as possible,
minimising the number of minor and the much more expensive full, major collections, and
avoiding passing too much of the cost of memory management to the mutator. We now
look at how this can be achieved.

9.5 Multiple generations

Adding further generations is one solution to the dilemma of how to preserve short pause
times for nursery collections without incurring excessively frequent full heap collections,
because the oldest generation has filled too soon. The role of the intermediate genera
tions is to filter out objects that have survived collection of the youngest generation but
do not live much longer. If a collector promotes all live objects en masse from the youngest
generation, the survivors will include the most recently allocated objects despite the expec
tation that most of these will die very soon. By using multiple generations, the size of the
youngest generation can be kept small enough to meet expected pause time requirements
without increasing the volume of objects dying in the oldest generation shortly after their
promotion.

Using multiple generations has a number of drawbacks. Most systems will collect all
younger generations when any older generation is collected. This offers the benefit that
pointers need to be tracked in one direction only: old to young, which occur less fre
quently than young to old. Although the time taken to collect an intermediate generation
will be less than that required to collect the full heap, pause times will be longer than
those for nursery collections. Multiple generation collectors are also more complex to im
plement and may introduce additional overheads to the collector 's tracing loop, as this
performance critical code must now distinguish between multiple generations rather than
just two (which can often be accomplished with a single check against an address, maybe
a compile-time constant) . Increasing the number of generations will tend to increase the
number of inter-generational pointers created, which in turn may increase the pressure on
the mutator 's write barrier, depending on implementation. It will also increase the size of
the root set for younger generations since objects have been promoted that would not have
been if some of the space used for the intermediate generations had been used to increase
the size of the young generation.

Although many early generational collectors for Smalltalk and Lisp offered multiple
generations, most modem generational collectors for object-oriented systems provide just

1 1 6 CHAPTER 9. GENERATIONAL GARBAGE COLLECTION

two. Even where collectors provide more than two generations, such as those for func
tional languages where allocation and death rates are prodigiously high, often only two
generations are used by default [Marlow et al, 2008] . Instead, mechanisms within genera
tions, especially the youngest generation, can be used to control promotion rates.

9.6 Age recording

En masse promotion

Age recording and promotion policy are tightly coupled. Multiple generations provide an
imprecise way of recording objects' ages. Figure 9.2 shows four ways in which a young
generation can be structured to control object promotion. We discuss each of these in tum.
The simplest arrangement is for each generation except the oldest to be implemented as a
single semispace (see Figure 9.2a) . When that generation is collected all surviving objects
are promoted en masse to the next. This structure has the advantages of simplicity and
optimal utilisation of the memory devoted to the young generation. There is neither any
need to record per-object ages nor is there any necessity for copy reserve space in each gen
eration (except for the last if indeed it is managed by copying) . The generational collectors
used by the MMTk memory manager in the Jikes RVM Java virtual machine use en masse
promotion in this way [Blackburn et al, 2004b] . However, Zorn [1993] has suggested that
en masse promotion of every live object (in a Lisp system) may lead to promotion rates 50%
to 100% higher than can be achieved by requiring objects to survive more than one minor
collection before they are promoted.

Figure 9.3, due to Wilson and Moher [1989b] , illustrates the survival rates from the
youngest generation that might be obtained by delaying promotion for one or two collec
tions. The curves show the fraction of objects that survive a future scavenge if they were
allocated at time t, assuming that most objects die young. The closer an object is born to
a collection the more likely it is to survive that collection. Let us focus on the area of the
graph between scavenges n and n + 1 . Curve (b) shows the proportion of objects that will
survive one scavenge: most objects will die without being collected: these are the data in
the light grey area. The data in the black area below curve (c) will survive two scavenges.
If the policy is to promote en masse all objects that survive the collection, then the data in
the dark grey and black areas below curve (b) will be promoted . However, if promotion
is restricted to those objects that survive two collections, then only the data in the black
area below curve (c) will be tenured . By requiring a copy count greater than one, the very
youngest objects (which we can expect to die soon) are denied tenure, and the promotion
rate is substantially reduced. In general, increasing the copy count for promotion beyond
two is likely to pay diminishing returns [Ungar, 1984; Shaw, 1988; Ungar and Jackson,
1988]; Wilson [1989] suggests that it may be necessary to increase the count by a factor of
four or more to reduce the number of remaining survivors by half.

Aging semis paces

Promotion can be delayed by structuring a generation into two or more aging spaces . This
allows objects to be copied between the fromspace and tospace an arbitrary number of
times within the generation before they are promoted. In Lieberman and Hewitt's original
generational collector [1983] , a generation is collected several times before all survivors
are eventually promoted en masse. In terms of the aging semispaces of Figure 9.2b, ei
ther all live objects in fromspace are evacuated to tospace within this generation or all
are promoted to the next generation, depending on the age of the generation as a whole.

1
� ::;)

j
i

"C
5 1

(a) (b) (c)

Figure 9.2: Semispace organisation in a generational collector. Dark grey indicates newly allocated data, light
grey copied or promoted data. In each case, the x-axis is time and the y-axis is the volume of allocation.
(a) en masse promotion; (b) aging semispaces (records per space age); (c) aging semispaces (records per object
age); (d) survivor spaces promotion (records per object age) .

Jones (1996). Reprinted by permission.

(d)

�
9\
�
�
�
8 :;:;;, �
�

......
......
'.:]

1 1 8

1

c: 0 'C u
�
llD c:

·s:
-� ::> VI

CHAPTER 9. GENERATIONAL GARBAGE COLLECTION

HWM

never copied

0 �-----------------
scavenge n-1 scavenge n scavenge n+1 scavenge n+2

Time

Figure 9.3: Survival rates with a copy count of 1 or 2. The curves show the
fraction of objects that will survive a future collection if they were born at
time x. Curve (b) shows the proportion that will survive one collection and
curve (c) the proportion that will survive two. The coloured areas show the
proportions of objects that will be not be copied or will be promoted (copied)
under different copy count regimes.

Wilson and Moher [1989b], doi: 1 0 . 1 1 4 5 / 7 4 8 7 7 . 7 4 8 8 2 .

© 1989 Association for Computing Machinery, Inc. Reprinted b y permission.

While this arrangement allows the older members of the generation time to die, the very
youngest will still be promoted, possibly prematurely.

Sun's ExactVM1 also implemented the younger of two generations as a pair of semis
paces (see Figure 9.2c) but controlled promotion of an individual object by stealing five
bits from one of two header words to record its age. In this case, individual live objects
can either be evacuated to tospace or promoted to the next generation. While this throttles
the promotion of the youngest objects, it adds a test and an addition operation to the work
done to process live objects in the young generation.

Bucket brigade and step systems allow a somewhat finer discrimination between object
ages without maintaining per-object ages. Here, a generation is divided into a number of
subspaces and objects are advanced from one bucket or step to the next at each collection.
Some step systems advance all surviving objects from one step to the next at each collec
tion: live objects from the oldest step are promoted to the next generation. Here, an n-step
system guarantees that objects will not reach the next generation until they have survived
n scavenges. Glasgow Haskell allows an arbitrary number of steps in each generation (al
though the default is two in the young generation and one in others), as does the UMass
GC Toolkit Hudson et al [1991] . Shaw [1988] further divides each step into a pair of semis
paces in his bucket brigade scheme. Survivors are copied between each pair of semispaces
b times before advancing to the next step. Thus, the two-bucket scheme guarantees that
objects will not reach the next generation until they have survived between 2b and 2b - 1
scavenges. Shaw arranged his scheme to simplify promotion. Figure 9.4 shows an in
stance of his scheme with two buckets: n = 3 so objects are copied up to three times within
a bucket before being evacuated to the aging bucket or promoted. Because Shaw's gener
ations are contiguous, he can merge the aging bucket with the old generation by delaying

1 Later called the Sun Microsystems Laboratories Virtual Machine for Research, http : I I r e s e a r ch . sun .

coml feature s l t e n y e a r s lvo l c d l p a p e r s lhe l l e r . htm.

9.6. AGE RECORDING

Young �1�"

r
Old

generation

Aging

Aging

New data
Copied data c:::::J

Aging Young
"To"

r
Old

generation

Time

Figure 9.4: Shaw's bucket brigade system. Objects are copied within the
young generation from a creation space to an aging semispace. By placing
the aging semispace adjacent to the old generation at even numbered collec
tions, objects can be promoted to the old generation simply by moving the
boundary between generations.

Jones [1996]. Reprinted by permission.

1 19

the promotion step until the oldest bucket's tospace is adjacent to the old generation. At
this point the bucket is promoted by adjusting the boundary between the generations. The
aging spaces of Figure 9.2c have some similarities with a two-bucket scheme but pay the
cost of manipulating age bits in the headers of survivors.

It is important to understand the differences between steps and generations. Both
segregate objects by age, but different generations are collected at different frequencies
whereas all the steps of a generation are collected at the same time. Generations also differ
in how pointers that span spaces are concerned. Because one generation may be collected
later than another it is essential to track pointers from an older generation to a younger
one. On the other hand, there is no need to track inter-step pointers. By using steps in
the youngest generation (where most mutation occurs), and by reducing premature col
lection, the load on the write barrier can be reduced while also controlling promotion,
without need for per-object age records.

Survivor spaces and flexibility

All the semispace organisations described above are wasteful of space since they reserve
half the space in the generation for copying. Ungar [1984] organised the young generation
as one large creation space (sometimes called eden) and two smaller buckets or survivor
semispaces (see Figure 9.2d) . As usual, objects are allocated in eden, which is scavenged
alongside the survivor fromspace at each minor collection. All live eden objects are pro
moted to the survivor tospace. Live objects in survivor fromspace are either evacuated to
tospace within the young generation or promoted to the next generation, depending on
their age. This organisation can improve space utilisation because the eden region is very

120 CHAPTER 9. GENERATIONAL GARBAGE COLLECTION

New data

1
t Creation bucket 0 space

high � - - - - ��r]
Younger

Generation

j
bucket 1

j
i

Next
Generation

!
Time

Figure 9.5: High water marks. Objects are copied from a fixed creation space
to an aging semispace within a younger generation and then promoted to
an older generation. Although all survivors in an aging semispace are pro
moted, by adjusting a 'high water mark', we can choose to copy or promote
an object in the creation space simply through an address comparison.

Wilson and Moher (1989b), doi: 1 0 . 1 1 4 5 / 7 4 8 7 7 . 7 4 8 8 2 .

© 1989 Association for Computing Machinery, Inc. Reprinted b y permission.

much larger than the two semispaces. For example, Sun's HotSpot Java virtual machine
[Sun Microsystems, 2006] has a default eden versus survivor space ratio of 32:1, thus using
a copy reserve of less than 3% of the young generation.2 HotSpot's promotion policy does
not impose a fixed age limit for promotion but instead attempts to keep the survivor space
half empty. In contrast, the other semispace schemes waste half of the nursery space on
copy reserve.

The Opportunistic garbage collector [Wilson and Moher, 1989b] used a bucket brigade
system with the space parsimony of survivor spaces and some flexibility in promotion
age. The age at which objects are promoted can be varied down to the granularity of an
individual object without the overhead of having to store or manipulate each object's age.
As before, the young generation is divided into a creation space and a pair of aging spaces.
The aging spaces are not semispaces but simply act as steps. At each minor collection,
survivors from the creation space are evacuated to one of the aging spaces; survivors of
the other aging space are promoted. With just this organisation, promoted objects would
have a copy count of two. However, Wilson and Moher observe that objects are placed
in the creation space in allocation order. By drawing a high water mark across creation
space, younger objects (above the line in Figure 9.5) can be distinguished from older ones
by a simple address comparison. Younger members of the creation space are treated as
members of bucket 0. Older members and all of the aging space are become bucket 1;
survivors of this bucket are promoted.

2It is interesting to observe the development of hardware and configurations. Ungar (1984) used an eden of
just 140 kilobytes with 28 kilobyte survivor spaces, and a 940 kilobyte old generation. HotSpot's default size
for the young generation is 2228 kilobytes on the 32-bit Solaris operating system. We have even heard of a real
configuration as extreme as a 3 gigabyte eden, 128 kilobyte survivor spaces and a 512 megabyte old generation.

9.7. ADAPTING TO PROGRAM BEHAVIOUR 121

This scheme limits the promotion age to a maximum of two minor collections, and so
does not offer as wide a range of promotion age as those that explicitly store ages in objects
or associate them with spaces (such as the semispace organisations we considered earlier) .
However, any non-integral promotion threshold between one and two can be selected, and
modified at any time, including during scavenges. We can see the effect in Figure 9.3. Any
data in the dark grey or black regions to the left of the dashed white high water mark line
will be promoted at their first collection . Those to the right of the high water mark line
will be promoted if they are in the black area below curve (c), or evacuated to die later in
the aging space if they are in the grey area above the curve. Wilson and Moher used this
scheme with three generations for the byte-coded Scheme-48; it was also used in Standard
ML with up to 14 generations [Reppy, 1993] .

9.7 Adap�ing to program behaviour

The Opportunistic collector is an example of a garbage collector that can adapt its promo
tion policy as a program runs. It provides a particularly fine-grained and simple mech
anism. Adaptation is needed because objects' lifetime demographics are neither random
nor stationary. Instead real programs (unlike toy ones or synthetic benchmarks) tend to
operate in phases. There are a wide range of common patterns of behaviour. A set of
live objects may gradually accumulate and then die all at once. Alternatively, its size may
reach a plateau after which the objects live for a long time. Ungar and Jackson [1988] cite
the example of objects born in a clump that slowly diminishes, 'rather like a pig that has
been swallowed by a python' . Demographics that do not adhere strictly to the weak gen
erational hypothesis can cause problems for generational collectors. If a large volume of
data lives for sufficient time to reach an older generation and then dies, performance will
suffer. To deal with this, Ungar and Jackson have argued for flexible mechanisms that
control tenuring [1988; 1992] .

It is useful to be able to adapt garbage collectors in general to the mutator 's behaviour,
for example to reduce expected pause time or to improve overall throughput. The sim
plest scheduling mechanism is to invoke the collector only when the allocator runs out of
space, but a generational memory manager can control pause times by adjusting the size
of the youngest generation: smaller nurseries reduce the volume of objects that must be
scavenged by young generation collection. The size of the space also affects the rate of
promotion from one generation to another. If a space is too small to give young objects
sufficient time to die, then the promotion rate will be higher. Conversely, if the nursery is
very large, the interval between collections will be greater and a smaller fraction of objects
will survive to reach the older generation.

Appel-style garbage collection

Appel [1989a] introduced an adaptive generational layout for Standard ML that gives as
much room as possible to the young generation for a given memory budget, rather than
using fixed size spaces. This scheme is designed for environments where infant mortality
is high: typically only 2% of ML's young generation survived a collection. The heap is
divided into three regions: the old generation, a copy reserve, and the young generation
(see Figure 9.6a) . Nursery collections promote all young survivors en masse to the end
of the old generation (Figure 9.6b) . After the collection, any space not needed for old
generation objects is split equally to create the copy reserve and a new young generation.
If the space allocatable to the young generation falls below some threshold, the full heap
is collected.

122 CHAPTER 9. GENERATIONAL GARBAGE COLLECTION

old copy reserve young free

equal equal

(a) Before a minor collection, the copy reserve must be at least as large as the young
generation.

old ; old' copy reserve : you n g free

equal equal

(b) At a minor collection, survivors are copied into the copy reserve, extending the
old generation. The copy reserve and young generation are reduced but still of equal
size.

old copy reserve

equal equal

(c) After a minor collection and before a major collection. Only objects in the oldest
region, old, will be evacuated into the copy reserve. After the evacuation, all live old
objects can be moved to the beginning of the heap.

Figure 9.6: Appel's simple generational collector. Grey areas are empty.

As in any scheme managed by copying, Appel must ensure that the copy reserve is
sufficient to accommodate the worst case, that all old and young objects are live. The most
conservative way is to ensure that old + young ::; reserve. However, Appel can initiate full
heap collections less frequently, requiring only that old ::; reserve 1\ young ::; reserve for
safety, arguing as follows. Before a minor collection, the reserve is sufficient even if all
young objects survive. Immediately after a minor collection, all newly promoted objects
in old' are live: they do not need to be moved. The reserve is sufficient to accommodate
all previously promoted objects in old (Figure 9.6c). Following the scavenge of old, all
surviving data (now at the top of the heap) can be block moved to the bottom of the heap.
We note that in this collect-twice approach any cycle of dead objects that lies partly in the
nursery and partly in the old generation will be preserved. However, it will be collected
during the next full collection since it is then contained entirely in the old generation.

The entire generational universe in Appel was contiguous, but Appel-style collectors
can also be implemented in block structured heaps, which avoids the necessity of sliding
the live data to the start of the heap after a major collection. Shrinking nurseries can also
be used in conjunction with an old generation managed by a non-moving algorithm, such
as mark-sweep.

The advantage of Appel-style collection is that by dynamically adapting the size of
the copy reserve it offers good memory utilisation and reduces the number of collections
needed compared with configurations that use en masse promotion and fix the size of the
young generation. However, some caution is necessary to avoid thrashing the collector.
Benchmarks that have high allocation rates but promote little data from the young genera
tion are common: indeed this was one of the motivations for Appel's design. This can lead
to the situation where the space allotted to the nursery shrinks to become so small that it
leads to overly frequent minor collections but never enough data is promoted to trigger
a major collection. To combat this, the old generation should be collected whenever the
young generation's size falls below a minimum.

9.8. INTER-GENERATIONAL POINTERS 123

Feedback controlled promotion

Other schemes for controlling promotion rate are more directly related to pause time goals.
Demographic feedback-mediated tenuring [Ungar and Jackson, 1988, 1992] attempts to smooth
out long pauses incurred by bursts of promotion of objects that die soon after promotion.
The volume of objects promoted at one collection is used as a predictor for the length
of the next collection, and to throttle or accelerate promotion. The excess of survivors
above a desired maximum becomes an index into a table indicating the age threshold for
promotion that should be used at the next collection. Although this mechanism can control
promotion rates, it cannot demote objects from an older to a younger generation. Barrett
and Zorn [1995] vary a threatening boundary between two generations in both directions.
The cost is that they must track more pointers as they cannot predict where the inter
generational boundary will lie.

In version 1 .5 .0, Sun's HotSpot family of collectors introduced Ergonomics, an adaptive
mechanism for resizing generations based on user provided goals . Ergonomics focuses
on three soft goals rather than attempting to provide hard real time guarantees. It first
attempts to meet a maximum pause time goal. Once that is met, it targets throughput
(measured as the fraction of overall time spent in garbage collection) and finally, once other
goals are satisfied, it shrinks the footprint. Pause time goals are addressed by shrinking the
size of generations, one at a time, starting with the one whose pause time is longest, based
on statistics acquired at each collection. Throughput is improved by increasing the size
of the heap and the generations, the latter in proportion to the time taken to collect each
generation. By default, sizes are increased more aggressively than they are decreased.

Vengerov [2009] offers an analytical model for the throughput of HotSpot. From this
model he derives a practical algorithm for tuning the collector by adjusting the relative
sizes of HotSpot's two generations and the promotion threshold, the number of collections
that a young object must survive before it is promoted. He makes an important observa
tion that it is insufficient to consider whether to adjust the promotion threshold simply on
the basis of whether it would reduce the number of objects promoted. Instead, it is essen
tial also to consider the ratio of free space in the old generation after a major collection to
the volume promoted into it at each minor collection. His ThruMax algorithm provides
a co-evolutionary framework for alternately adjusting the size of the young generation
and the promotion threshold. In brief, ThruMax is invoked after the first major collection
and once the volume of data in HotSpot's survivor spaces reaches a steady state (between
75% and 90% of the young generation's survivor space for two consecutive minor collec
tions) . ThruMax first increases the nursery size S until it reaches the neighbourhood of
an optimum value (discovered by observing that S has been decreased and so it is proba
bly oscillating around this value) . Then ThruMax adjusts the tenuring threshold until the
model shows that a further change would decrease throughput. After this, a new episode
of adjustments is begun provided that there is no pressure to decrease S and sufficient
minor collections are expected before the next major collection.

Overall, sophisticated collectors like HotSpot present the user with a large number of
tuning knobs, each of which is likely to be interdependent.

9.8 Inter-generational pointers

A generation's roots must be discovered before it can be collected. As we saw in the ex
ample in Figure 9 . 1 , the roots for a generation consist not only of pointer values held in
registers, stacks and globals but also any references to objects in this generation from ob
jects in other parts of the heap that are not being collected at the same time. These typically
include older generations and spaces outside the generational heap, such as large object

124 CHAPTER 9. GENERATIONAL GARBAGE COLLECTION

spaces and spaces that are never collected, including those for immortal objects and pos
sibly code. As we noted above, inter-generational pointers are created in just three ways,
by initialising writes as an object is created, by other mutator updates to pointer slots and
when objects are moved to different generations. In general such pointers must be detected
as they are created and recorded so that they can be used as roots when a generation is col
lected. We shall call any pointer that must be recorded an interesting pointer.

An interesting case of objects outside the generational heap are objects in the boot image:
those objects present when the system starts . A generational system can handle them in
at least three ways: it can trace through the boot image objects, which has the benefit of
not retaining objects reachable only from boot image objects that have become unreach
able; it can scan the boot image objects to find references from them into the generational
heap; or it can remember the interesting pointers that reside in boot image objects. Trac
ing can be expensive, and might be applied only during full collections. Thus it would
be applied in conjunction with scanning or remembered sets. Scanning has the virtue of
not requiring a write barrier on updates to boot image objects, but the down side that the
collector must consider more field to find the interesting pointers. If used in conjunction
with tracing, then after a trace the collector should zero the fields of unreachable boot im
age objects, to prevent misinterpretation of pointers that may refer to old garbage now
reclaimed. Remembered sets have their usual virtues and costs, and also do not require
zeroing of unreachable boot image objects' fields.

Remembered sets

The data structures used to record inter-generational pointers are called remembered sets.3

Remembered sets record the location of possible sources of pointers (for example, U and the
second slot of 5 in the example) from one space of the heap to another. The source rather
than the target of an interesting pointer is recorded for two reasons. It allows a moving col
lector to update the source field with the new address of an object that has been copied or
promoted. A source field may be updated more than once between successive collections,
so remembering the source ensures that the collector processes only the object that is refer
enced by the field at the time of the collection, and not the targets of any obsolete pointers.
Thus, the remembered set for any generation holds those locations at which a potentially
interesting pointer to an object in this generation has been stored. Remembered set im
plementations vary in the precision with which they record these locations. The choice of
precision is a trade-off between overhead on the mutator, space for the remembered sets
and the collector 's cost of processing them. Note that the term remembered 'set' is some
times a misnomer because an implementation may allow duplicate entries (and hence be
a multiset) .

Clearly it is important to detect and record as few pointers as possible. Pointer writes
by the collector as it moves objects are easily identified . Pointer stores by the mutator can
be detected by a software write barrier, emitted by the compiler before each pointer store.
This may not be possible if an uncooperative compiler is used . In this case, the locations
where writes have occurred can often be determined from the operating system's virtual
memory manager.

The prevalence of pointer stores will vary between different programming languages
and their implementations. From a static analysis of a suite of SPUR Lisp programs, Zorn
[1990] found the frequency of pointer stores to be 13% to 15%, although Appel found a

30ur terminology di ffers from that of Jones [1996) who distinguished card table schemes from other remem
bered set implementations.

9.8. INTER-GENERATIONAL POINTERS 125

lower static frequency of 3% for Lisp [1987] and a dynamic, run-time frequency of 1% for
ML [1989a] . State-based languages can be expected to have a higher incidence of destruc
tive pointer writes. Java programs vary widely in terms of the frequency of pointer stores:
for example, Dieckmann and Holzle [1999] found that between 6% and 70% of heap ac
cesses were stores (the latter was an outlier, the next highest was 46%) .

Pointer direction

Fortunately, not all stores need to be detected or recorded . Some languages (such as im
plementations of ML) store procedure activation records in the heap. If these frames are
scanned as part of the root set at every collection, the pointer slots they contain can be dis
covered by the techniques we discuss later in Chapter 1 1 . If stack writes can be identified
as such by the compiler, then no barrier need be emitted on writes to these stack frames .
Furthermore, many stores will refer to objects in the same partition. Although such stores
will probably be detected, the pointers are not interesting from a generational point of
view, and need not be recorded.

If we impose a discipline on the order in which generations are collected then the num
ber of inter-generational pointers that need to be recorded can be reduced further. By guar
anteeing that younger generations will be collected whenever an older one is, young-to-old
pointers need not be recorded (for example, the pointer in N in Figure 9 . 1) . Many pointer
writes are initialising stores to newly created objects - Zorn [1990] estimated that 90%
to 95% of Lisp pointer stores were initialising (and that of the remaining non-initialising
stores two-thirds were to objects in the young generation) . By definition, these pointers
must refer to older objects . Unfortunately, many languages separate the allocation of ob
jects from the initialisation of their fields, making it hard to separate the non-initialising
stores that may create old-young pointers . Other languages provide more support for the
compiler to identify pointer stores that do not require a write barrier. For example, the ma
jority of pointer writes in a pure, lazy functional language like Haskell will refer to older
objects; old-new pointers can arise only when a thunk (a function applied to its arguments)
is evaluated and overwritten with a pointer value. ML, a strict language with side-effects,
requires the programmer to annotate mutable variables explicitly; writes to these objects
are the only source of old-to-young references.

Object-oriented languages like Java present a more complex scene. Here the program
ming paradigm centres on updating objects' states, which naturally leads to old-young
pointers being more frequent. Nevertheless, many programmers write in a somewhat
functional style, eschewing side effects, and for many applications the overwhelming ma
jority of pointer stores will be to initialise objects in the young generation. However, Black
bum et al [2006a] demonstrate that there is considerable variation in behaviour not only
between applications but also within individual ones. Their report strikingly contrasts
pointer stores - in terms of their direction and distance (between the time the source and
target objects were created) - and pointers discovered in the graph. One cause of these
differences is that there may be many writes to the same location: this has implications for
how remembered sets are implemented.

Different pointer filtering will be necessary in heaps with multiple independently col
lected spaces. For example, a collector may apply heuristics to decide which space to
scavenge with the intention of prioritising those spaces containing the smallest volume of
live objects . In this case, the write barrier must remember pointers in both directions, al
though if the policy decision is made always to collect the young generation at the same
time, we can ignore writes to the nursery (which we expect to be prevalent) . Because this
design is likely to increase the number of pointers to be remembered, it is best used with

126 CHAPTER 9. GENERATIONAL GARBAGE COLLECTION

an implementation where the size of the remembered set does not depend on the number
of pointers remembered. We discuss implementation of write barriers and remembered
sets in Chapter 1 1 .

9.9 Space management

Young generations are usually managed by evacuation, either copying surviving objects
to a fresh semispace in the same generation or to a space in an older generation. Young
generation collections are expected to be frequent and brief, on the assumption of few
survivors and hence little to trace. Collections of older generations, on the other hand,
are expected to be infrequent, but when they do occur, they are expensive as all younger
generations must also be collected unless we are willing to pay the cost of a bidirectional
write barrier. Commonly, a collection of the oldest generation will also collect all other
spaces in the heap except any immortal spaces or the boot image, although references held
in these spaces must be used as roots and may be updated. A full heap collection will not
use remembered sets (except for locations in the immortal space or boot image, and even
these are unnecessary if those spaces are scanned).

A wider range of strategies can be used to manage the oldest generation. One possibil
ity is semispace copying but this may not be the best choice. It requires a copy reserve of
half the generational heap, and so limits the room available for its own fromspace and to
younger generations, thus increasing the frequency of collections at all levels . It also leads
to long lived data being moved repeatedly. Mark-sweep collection offers better utilisation
of memory, especially in small heaps [Blackburn et al, 2004a] . The argument against free
list allocation has been that is slower than sequential allocation and its locality is not so
predictable. But this is more a problem for object creation, where allocation rates are high,
allocation order provides good spatial locality for young objects [Blackburn et al, 2004a] .
The drawback of of mark-sweep collection is that it is non-moving and may eventually
degrade as the old generation fragments. The solution is to run an additional compacting
pass over the old generation, not necessarily every time but certainly when fragmentation
is damaging performance. Compaction can also treat very long lived data specially. As we
noted in Chapter 3, these will tend to end up compacted into a 'dense prefix' at the bottom
of the old generation. The HotSpot mark-compact collector, for example, avoids moving
this sediment at the cost of some (user-specified) degree of fragmentation.

Generational collectors almost always distinguish generations by physical segregation.
This requires younger generations to be managed by copying collection. A copying collec
tor such as Appel's conservatively requires copy reserve space equal to the size of genera
tion being collected as all objects may survive in the worst case. However, in practice most
objects do not survive a young generation collection.

Better space utilisation can be obtained with a smaller copy reserve and switching from
copying to compacting collection whenever the reserve is too small [McGachey and Hosk
ing, 2006] . Here, the collector must be able to switch between copying and marking on
the fly because it will only discover that the copy reserve is too small during a collection.
Figure 9.7a shows the state of the heap once all survivors have been identified: copied ob
jects are shown in black and the remaining live young objects are marked grey. The next
step is to compact the marked objects to one end of the nursery (Figure 9.7b); as usual this
takes several passes . Unfortunately compaction will destroy the forwarding addresses left
in the black objects in the young generation. McGachey and Hosking solve this problem
by requiring the first pass over the grey young generation objects to fix up references to
copied objects . Next, they move the marked objects with Jonkers's sliding compactor (see
Section 3.3 in Chapter 3) because this threaded algorithm does not require additional space

9. 10. OLDER-FIRST GARBAGE COLLECTION

old

old

young
(a) Objects copied or marked

(b) Marked objects compacted

young

Figure 9.7: Switching between copying and marking the young generation.
(a) The copy reserve is full. Black objects from the young generation have
been copied into the old generation. Grey objects have been marked but not
copied. All other new objects are dead. (b) The compaction pass has slid the
grey objects into the old generation.

127

in object headers. A better solution might be to adapt Compressor for this purpose (dis
cussed in Section 3.4), since it neither requires extra space in object headers nor overwrites
any part of live objects. With a copy reserve of 10% of the heap, they gained improvements
in performance of 4% on average - but some times up to 20% - over MMTk collectors
that manage the old generation by either copying or mark-sweep collection.

9.10 Older-first garbage collection

Generational garbage collection has proved to be a highly effective way of managing short
lived objects for a wide range of applications. However, as we saw in Section 9.7, longer
lived objects may be more problematic. Generational collectors operate by collecting a
youngest prefix of the set of objects in the heap and ignoring other objects. This prefix may
be one or more generations depending on whether a collection is a nursery collection, an
intermediate collection (in a configuration that uses more than two generations) or a full
heap collection. Adaptive techniques that control the promotion of objects can be thought
of as ways of varying the age boundary of the young (to be collected) prefix in order to
give young objects more time to die. However, generational garbage collection is but one
design that avoids collecting the whole heap (we look at schemes outside an age-based
context in the next chapter). Possibilities for age-based collection include:

Youngest-only (generational) collection: The collector condemns only the youngest ob
jects in the heap.

Oldest-only collection: Similarly, we could imagine a collector that only considered the
oldest objects in the heap, that is, those that have had the longest opportunity to
die. However, it is unlikely that such a strategy would be effective as it would spend
much of its time repeatedly processing immortal or very long-lived objects. We noted
earlier that some collectors deliberately avoid processing this ancient sediment for
precisely this reason.

Older-first collection: The collector aims to focus effort on middle-aged objects. It gives the
youngest objects sufficient time to die but reduces the time spent considering very
long-lived objects (although these are examined from time to time).

128 CHAPTER 9. GENERATIONAL GARBAGE COLLECTION

k j steps

window

youngest

Figure 9.8: Renewal Older First garbage collection. At each collection, the
objects least recently collected are scavenged and survivors are placed after
the youngest objects.

Older-first collection presents two challenges: how to identify those objects considered to
be 'older ' and the increased complexity of managing pointers into the condemned set since
interesting pointers may point in either direction (oldest to older, or youngest to older). In
the rest of this section we consider two different solutions to these problems.

Renewal Older-First garbage collection. One approach is to consider the 'age' of an ob
ject to be the time since it was created or last collected, whichever is most recent [Clinger
and Hansen, 1997; Hansen, 2000; Hansen and Clinger, 2002] . Renewal Older-First always
collects the 'oldest' prefix of the heap. To simplify remembered set management, the heap
is divided into k equally sized steps. Allocation is always into the lowest-numbered empty
step. When the heap is full, the oldest k - j steps (the grey window in Figure 9.8) are con
demned, and any survivors are evacuated to a copy reserve at the youngest end of the heap
(the black region in the figure) . Thus, survivors are 're-newed' and the youngest steps j to
1 are now the oldest. In the figure, the heap advances rightwards through virtual address
space. This simplifies the write barrier: only pointers from right to left in the figure, and
whose source is an address larger than j, need to be remembered by the mutator. Although
this arrangement might be feasible for some programs in a 64-bit address space, it would
soon exhaust a 32-bit address space. In this case, Renewal Older-First must renumber all
the steps in preparation for the next cycle, and its write barrier must filter pointers by com
paring the step numbers of the source and targets; this requires table lookups rather than
simple address comparisons. A second potential disadvantage of Renewal Older-First is
that it does not preserve the order of objects in the heap by their true ages but irreversibly
mixes them. Although Hansen filters out many pointers in the Larceny implementation of
Scheme by adding a standard generational nursery (and using Renewal Older-First only
to manage the old generation), his remembered sets are large.

Deferred Older-First garbage collection. The alternative does preserve the true age or
der of objects in the heap [Stefanovic, 1999; Stefanovic et al, 1999] . Deferred Older-First
slides a fixed size collection window (the grey region in Figure 9.9) from the oldest to the

9. 10. OLDER-FIRST GARBAGE COLLECTION

al locate

window

...___ll _ ___,____ ___ ___j

I
oldest youngest

Figure 9.9: Deferred Older First garbage collection. A middle-aged window
of the heap is selected for collection. Survivors are placed after the survivors
of the previous collection. The goal is that the collector will discover a sweet
spot, where the survival rate is very low and the window advances very
slowly.

129

youngest end of the heap. When the heap is full the window is collected, ignoring any
older or younger objects (the white regions). Any survivors (the black region) are moved
to immediately after the oldest region of the heap and any space freed is added to the
youngest (rightmost) end of the heap. The next collection window is immediately to the
right (younger end) of the survivors. The intuition behind Deferred Older-First is that will
seek out a sweet spot in the heap where the collection window finds few survivors. At
this point, the collector 's mark-cons ratio will be low and the window will move only very
slowly (as in the lower rows of the figure). However, at some point the window will reach
the youngest end of the heap, where the collector must reset it to the oldest end of the heap.
Although objects are stored in true-age order, Deferred Older-First requires a more com
plicated write barrier. The mutator 's write barrier must remember all pointers from the
oldest region into either the collection window or the youngest region and all young-old
pointers (except those whose source is in the condemned window). Similarly, the collec
tor 's copy write barrier must remember all pointers from survivors to other regions and
all young survivor-old survivor pointers. Once again, Deferred Older-First collectors typi
cally divide the heap into blocks; they associate a 'time of death' with each block (ensuring
that older blocks have a higher time of death than younger ones). Barriers can be imple
mented through block time-of-death comparisons and care will be needed to handle time
of death overflow [Stefanovic et al, 2002] .

Although Deferred Older-First was found to improve over other generational schemes
on maximum pause time, like Renewal Older-First it too needed to track more pointers.
It appears that in smaller address spaces older-first algorithms have difficulty competing
with the best of other schemes because of the cost of the more complex write barrier for
remembering in older-first heap layouts. However, in larger address spaces, such as for 64
bits, its write barrier is much simplified and it may be more competitive.

9.11 Beltway

In this chapter we have looked at a wide range of designs for age-based collection. Five
key insights have shaped most of these.

• 'Most objects die young': the weak generational hypothesis [Ungar, 1984] .

• As a corollary, generational collectors avoid repeatedly collecting old objects.

• Response times have been improved by exploiting incrementality. Generational col
lectors commonly use small nurseries; other techniques such as the Mature Object
Space (often called the 'Train') collector [Hudson and Moss, 1992] also bound the
size of spaces collected.

• Small nurseries managed by sequential allocators improve data locality [Blackburn
et al, 2004a] .

• Objects need sufficient time to die.

The Beltway garbage collection framework [Blackburn et al, 2002] combines all these in
sights. It can be configured to behave as any other region-based copying collector. The
Beltway unit of collection is called an increment. Increments can be grouped into queues,
called belts. In Figure 9 . 10 each row represents a belt with increments shown as 'trays' on
each belt. Increments on a belt are collected independently first-in, first-out, as also are
belts, although typically the increment selected for collection is the oldest non-empty in
crement on the youngest belt. A promotion policy dictates the destination of objects that
survive a collection: they may be copied to another increment on the same belt or they
may be promoted to an increment on a higher belt. Note that Beltway is not just another
generational collector and belts are not generations. A generational collector would collect
all increments on a belt; Beltway collects each increment independently.

Figure 9 . 10 shows examples of existing and new collectors. A simple semispace collec
tor comprises a single belt with two increments (Figure 9 . 1 Oa): each increment is half of the
heap. All survivors from the first increment (fromspace) on the belt are copied to the sec
ond (tospace) increment. Generational collectors use a belt per generation. Fixed-size nurs
ery collectors limit the size of belt 0 increment (Figure 9 . 1 Ob) whereas A ppel-style collectors
allow both increments to grow to consume all usable memory (Figure 9 . 10c) . Aging semis
paces can be modelled by increasing the number of increments on belt 0 (Figure 9 . 10d).
However, unlike the aging semispace discussed in Section 9.6, this design trades increased
space for reduced collection time: unreachable objects in the second increment are not re
claimed in this collection cycle. Renewal Older-First and Deferred Older-First can also be
modelled. Figure 9 .10e shows clearly how objects of different ages are mixed by Renewal
Older-First collectors. Deferred Older-First collectors use two belts, whose roles are flipped
when the collection window reaches the youngest end of the first belt. Blackburn et al also
used the Beltway framework to introduce new copying collection algorithms. Beltway.X.X
(Figure 9 . 10g) adds incrementality to an Appel-style collector: when belt 1 is full, i t collects
only the first increment. In this configuration X is the maximum size of the increment as
a fraction of usable memory: thus, Beltway. 100.100 corresponds to a standard Appel-style
generational collector. If X < 100, Beltway.X.X is not guaranteed to be complete since
garbage cycles may span belt 1 increments. Beltway.X .X.lOO provides completeness by
adding a third belt that contains only one increment, which is allowed to grow sufficiently
large to hold the whole heap .

Assuming that every configuration collects only oldest increments on youngest belts
implies that Beltway's write barrier needs to remember references from older to younger

9. 1 1 . BELTWAY 131

survive�
(a) Semispaces (b) Fixed nursery generational

111111111�
0 .__ _____ __,

(c) Appel-style generational (d) Aging semispaces

LJ LJ LJ LJ LJ LJ - L_j) (LJLJ �:o��
(e) Renewal Older-First (f) Deferred Older-First

Figure 9.10: Beltway can be configured as any copying collector. Each figure
shows the increment used for allocation, the increment to be collected and
the increment to which survivors will be copied for each configuration.

Blackburn et al [2002), doi: 1 0 . 1 1 4 5 / 5 1 2 5 2 9 . 5 1 2 5 4 8 .

© 2002 Association for Computing Machinery, Inc. Reprinted by permission.

belts, and younger to older increments on the same belt. If we number belts upwards
from 0 (youngest), and increments in each belt in the order in which they are created, an
increment can be identified by the pair (b, i) where b is its belt number and i its creation
order in belt b. In that numbering a pointer from (b;, i) to (bj, j) is interesting if bi <
b; V (bj = b; 1\ i < j. However, the collector can associate a unique small number n; with
each increment i such that a pointer from i to j is interesting exactly when ni < n; . It may
need to renumber occasionally, such as when fresh increments are added to belts. A typical
implementation breaks up the address space using frames, assigning each increment a
disjoint set of frames. In a large address space it may be possible to lay increments out such
that direct address comparisons work rather than having to map to increment numbers
first, similar to such layouts for older-first algorithms.

The performance of Beltway collectors is sensitive to their configuration. The layout of
belts in the heap and the implementation of write barriers is crucially important, not only
to determine whether pointers need to be remembered but also to decide whether objects
need to be copied and if so, to where.

132 CHAPTER 9. GENERATIONAL GARBAGE COLLECTION

9.12 Analytic support for generational collection

Generational collectors handle short-lived objects well but do not manage longer lived
ones optimally. There are two problems. First, collection of garbage in older generations
is not prompt: unfortunately there are no solutions as yet that schedule old generation
collection as soon as possible after the death of significant volumes of old objects . Sec
ond, long-lived objects must be copied from the young generation to the old generation.
Collectors that are concerned about objects dying soon after they reach an older generation
require objects to have been copied several times before they are promoted. This copying is
wasted work: it would be better if long lived objects were directly allocated or pretenured
into the generation that they will eventually reach.

Several researchers have tackled this problem by analysing the lifetime distributions
of objects allocated by particular points in a program. Sometimes this can be done by the
virtual machine implementer who may know that certain virtual machine data structures
are permanent, or that certain libraries or code objects cannot or at least are unlikely to be
unloaded. Pretenuring of these objects can be baked into the virtual machine.

Researchers have also used profiling to identify longevity. Cheng et al [1998] recorded
which allocation sites consistently created objects that were promoted. Blackburn et al
[2001 ; 2007] used lifetime metrics that compared the longevity of objects allocated at a par
ticular program point with some fraction of the program's largest heap footprint in order
to discriminate between short lived, long lived and immortal objects . Both techniques ne
cessitated the time consuming gathering of off-line traces. This information was then used
to optimise the code so that new objects were allocated in the most appropriate generation
or the immortal space. Some pretenuring decisions may be specific to a single program
although Blackburn et al computed generic advice for allocation sites used by all programs
(that is, those in the boot image or library code). The effectiveness of such generic advice
make the necessary profiling more reasonable.

In contrast, the approach used by Marion et al [2007] is generic, and provides true pre
diction rather than self-prediction: they obtain pretenuring advice by syntactic comparison
of programs' micro-patterns [Gil and Maman, 2005] against a pre-existing knowledge bank
(derived by using machine learning techniques on a large set of program traces to predict
lifetimes from micro-patterns) . Harris [2000] and Jump et al [2004] obtain modest per
formance improvements by pretenuring through online sampling. All these approaches
obtained most benefit from the identification of those program points which allocated ob
jects that tended to be immortal rather than those that were simply long-lived. Gains for
medium lived objects were modest.

Guyer and McKinley [2004] sought to co-locate connected objects, on the basis that they
are likely to share similar lifetimes. They combined a compiler analysis, that identifies the
object to which a new object might be connected, with a specialised allocator, that places
the new object in the same space as the connectee. The analysis is neither required to be
sound nor did it rely on a site tending to allocate objects with similar lifetimes. As well as
reducing copying and obtaining significant reductions in collection time, co-location also
reduced pressure on the write barrier.

Generational collectors for lazy functional languages require write barriers only on up
dates to suspended computations (or thunks) as all other stores must refer to younger
objects . Thunks are updated at most once; all other objects are immutable. In a step-based
generational collector, Marlow et al [2008] take advantage of this observation to promote an
object eagerly to the same generation or step as an object referring to it: ideally this would
be to the oldest from which the target is reachable. Even for mutable objects, no write to
a newly created object can be interesting. Zee and Rinard [2002] used a static analysis for
Java to eliminate write barriers on these objects, obtaining small improvements in overall
execution time for some programs.

9. 13. ISSUES TO CONSIDER 133

9.13 Issues to consider

Generational garbage collection has proved to be a highly effective organisation, offering
significant performance improvements for a wide range of applications. By limiting the
size of the youngest generation, and concentrating collection effort on that generation,
expected pause times can be reduced to a point where they are usually unnoticeable in
many environments. This tactic can also increase overall throughput in two ways. First,
it reduces the frequency with which long lived data is processed, and thereby not only
reduces processing effort but also gives older objects more time to die (so that they need not
be traced at all) . Second, generational collectors usually allocate young objects sequentially
in a nursery area. Sequential allocation obtains cache locality benefits because the memory
consumption pattern is predictable and, furthermore, with generational collectors most
writes are made to the youngest objects,

Generational collection is not a universal panacea, however. Its effectiveness depends
strongly on the lifetime demographics of the application program. The cost of more fre
quent collections of the nursery and of write barriers must be amortised by obtaining a
much better than average pay-back from collecting young generations. If object mortality
statistics are not heavily skewed in favour of the young generation - in other words, if
the overwhelming majority of objects do not die young - then generational collection will
not be an appropriate solution.

Furthermore, generational collection improves only expected pauses times; eventually
the collector must collect the full heap and generational collection on its own cannot solve
the problem of the worst-case pause time, which may be excessive for large heaps. Conse
quently, generational collection cannot provide the guarantees required for hard real-time
collection where deadlines must always be met.

It is simpler to implement generational collection if the collector can move objects in
order to segregate young and old objects. Physical segregation not only offers the locality
benefits noted above, but can also offer more efficient space tests, needed by the write
barrier or while tracing a young generation. Nevertheless, objects can also be segregated
virtually, maybe by the value of a bit in their header or in a bitmap.

Generational collectors raise many tuning questions, both for the implementer and for
the end user. Not only are there a wide variety of design choices but also any given gen
erational collector needs careful configuration to match a given application. Generational
collectors offer many more tuning parameters than the simple choice of heap size.

The first implementation decision is likely to be whether to offer more than two gen
erations. The choice depends largely upon the anticipated lifetime distributions of the
applications that the collector is expected to support. If a significant fraction of objects are
expected to survive the young generation but to die shortly after promotion to an older
generation, then the addition of intermediate generations may be worthwhile. However,
in our experience, most systems offer only two generations plus an immortal generation, at
least as the default configuration. The problem that the use of multiple generations seeks
to solve is that of premature promotion, and there are other ways to deal with this.

In the first place, promotion rate depends on the size of the young generation: larger
nurseries allow objects more time to die. Some generational collectors may allow the user
to set a fixed size for the youngest generation. Others allow the young generation to ex
pand on demand until it fills all of the heap except that required by other spaces (including
the old generation and any necessary reserve for copying) . More sophisticated collectors
may vary the young generation size in order to meet particular throughput of pause time
goals, making resizing decisions based on profiling the collector 's behaviour.

Second, promotion can be limited by controlling the age at which objects are tenured.
One approach is en masse promotion in which all survivors of the generation being col
lected are evacuated to an older generation. This is the simplest promotion to implement,

134 CHAPTER 9. GENERATIONAL GARBAGE COLLECTION

since remembered set for the young generation can be discarded after collection. Alterna
tively, a collector may require an object to survive more than one collection before being
promoted. In this case, we need a mechanism to record object ages . Either some bits
in the header of each object in the younger generations must be used to hold its age, or
the generation must be divided into subspaces each of which holds objects of a particular
age, or both. Common configurations include step-based schemes and eden plus survivor
semispaces. In all cases, the subspaces of a generation are collected together.

Finally, it is often possible to avoid having to promote certain objects. Many collectors
reserve an immortal space for objects that will survive until the end of the program. Often
the objects placed in an immortal area can be recognised either at the time the collector
is built or by the compiler. Such objects might include the collector 's own data structures
or objects representing the code being executed (assuming that it will not be necessary to
unload code).

Promotion rates may also affect the cost of the write barrier and size of remembered
sets . Higher rates of promotion may lead to more inter-generational pointers that must
be recorded. Whether or not this affects the performance of the write barrier depends on
its implementation, a subject considered in more detail in Section 1 1 .8 . Write barriers may
record pointer writes unconditionally or they may filter out writes of no interest to the
collector. The space requirements for card tables are independent of the number of writes
recorded, in contrast to remembered sets implemented as sequential store buffers or hash
tables .

The frequency with which write barriers are invoked also depends on whether genera
tions can be collected independently. Independent collection requires all inter-generational
pointers to be recorded. However, if we are prepared to give up this flexibility in favour
of collecting all younger generations whenever an older one is collected, then the write
barrier needs to record only old-young pointers, which we can expect to be far fewer. The
number of pointers recorded also depends on whether we record the field or the object into
which a pointer is written. For card tables, the choice is likely to be irrelevant. However,
by noting in the object whether it has already been recorded as a possible source of an
inter-generational pointer, we can reduce the size of the remembered set if we use object
remembering rather than field-remembering.

The different mechanisms used by the mutator to record the possible sources of inter
generational pointers affect the cost of collection. Although less precise recording mech
anisms may reduce the cost of the write barrier, they are likely to increase the amount
of work done by the collector. Field-recording with sequential store buffers may be the
most precise mechanism, although the buffer may contain duplicate entries. Both object
recording and card tables require the collector to scan the object or card to find any inter
generational pointers.

In conclusion, generations are but one way of partitioning the heap to improve garbage
collection. In the next chapter, we look at other partitioning methods .

9.14 Abstract generational garbage collection

Finally, let us see how the abstract collection framework we introduced in Section 6.6 can
be applied to generational collection. Recall that Bacon et al [2004] cast abstract tracing
as a form of reference counting, incrementing the count of each object as it is marked.
An abstract representation of a conventional, two generation, en masse promotion, nursery
collection algorithm is shown in Algorithm 9 . 1 .

For analogy to the previous abstract collection algorithms, this algorithm maintains a
multiset I of 'deferred' reference count increments to nursery objects . Recall that a remem-

9. 14. ABSTRACT GENERATIONAL GARBAGE COLLECTION 135

Algorithm 9.1: Abstract generational garbage collection: collector routines

1 atomic co l l e ctNu r s e ry (I) :
root sNu r s e ry (I)
s canNu r s e ry (I)
sweepNu r s e ry ()

6 s canNu r s e r y (W) :
while not i sEmpt y (W)

s r c f- remove (W)
p (s r c) f- p (s rc) + l

10 if p (s r c) = 1
n for each f l d in P o i nt e r s (s r c)
1 2

1 3

1 4

1 5

r e f f- * f l d
i f r e f i n Nu r sery

W f- W + [re f]

1 o sweepNu r s e r y () :
1 7 while not i sEmpt y (Nu r s e ry)
1 s node f- remove (Nu r s ery)
1 • if p (node) = 0
w f ree (node)
21

22 root sNu r s e r y (I)
23 for each f l d E Ro ot s
24

25

26

r e f f- * f ld
if ref � null and r e f E Nu r s e r y

I f- I + [re f]

I* shade s rc *f
I* s r c was white, now grey *f

I* en ma s s e promotion *I
I* node is white *f

bered set is a set of fields that together include all references from the older generation(s)
to the nursery. The multiset I contains exactly the nursery references from those locations,
which is why decNu r s e ry removes elements from the multiset: a (possibly) remembered
slot is being overwritten. The result is that if a nursery object n appears in I then n will be
retained by the generational collector. The number of times n appears in I is n's reference
count, not counting references from the nursery or roots . A tracing algorithm summarises
in a single mark bit the truth of n E I .

When co l le c t Nu r sery is invoked, multiset I is the set of non-zero reference counts,
restricted to the nursery, counting only references from old objects. It is the complement of
deferred reference counting's zero count table. After adding references from roots to the
nursery (root sNu r s e ry}, the nursery is traced from I (s canNu r s e r y} and is then swept,
removing survivors from Nur s e r y, which implicitly adds them to the older generation,
and freeing unreachable nursery objects, that is, those whose abstract reference count is
zero. Note that the statement in line 18 performs en masse promotion of all the live nursery
objects: it would be straightforward to modify this to model other promotion policies .

136 CHAPTER 9. GENERATIONAL GARBAGE COLLECTION

Algorithm 9.1 (continued): Abstract generational garbage collection: mutator routines

27 New() :
28
29

30

31

32

re f +-- a l locat e ()
i f r e f = null

c o l l ectNu r s e r y (I)
r e f +-- a l l o c a t e ()
i f r e f = null

33 c o l lect () /* tracing, counting, o r other full-heap G C 4
34

35

36
37

38

r e f +-- a l l o c a t e ()
if ref = null

error " Out of memo ry "
p(r e f) +-- 0
Nur s e ry +-- Nur s e ry U { re f }

39 return ref
40

41 incNu r s e ry (node) :
u if node in Nur s e ry
43 I +-- I + [node]
44
45 decNu r s e ry (node) :
46 if n o de in Nu r s e ry
47 I +-- I - [node]
48
49 Writ e (s rc , i, ref) :
� if s r c � Root s and src � Nu r s e ry
51 i n cNursery (re f)
52 de cNursery (s r c [i])
53 s r c [i] +-- re f

/* node is black 4
I* allocate in nursery */

Chapter 10

Other partitioned schemes

In the previous chapter we looked at generational and other age-based collection schemes.
Those algorithms partitioned objects by their age and chose a partition to collect based on
some age-related property. For example, generational collectors preferentially collect the
youngest partition (or generation) . Although this strategy in particular is highly effective
for a wide range of applications, it does not address all the problems facing the collector.
In this chapter we examine schemes outside the age-based collection framework but still
based on partitioning the heap.

We start by considering one of the commonest forms of segregation, allocating large
objects in a separate space. We then examine collectors that partition the heap based on
the topology of the object graph, before looking at possibilities for allocation on thread
stacks or into scoped regions. We conclude by discussing hybrid algorithms that partition
the heap and collect different spaces at different times or using different algorithms, or
both.

10.1 Large object spaces

Large object spaces are one of the most common ways to partition the heap. The definition
of 'large' can be chosen on the basis of either the absolute size of an object (say, greater
than 1024 bytes [Ungar and Jackson, 1988] or its size relative to that of the blocks used by
the allocator [Boehm and Weiser, 1988]), or relative to the heap [Hosking et al, 1992] . Large
objects meet several of the criteria for segregation that we identified in Chapter 8. They
are more expensive to allocate and more likely to induce fragmentation, both internal and
external. It is therefore worthwhile using policies and mechanisms to manage them that
would be inefficient if applied to smaller ones. Allocation in a copying space is particu
larly expensive since additional space must also be reserved so that they can be copied.
Performing the copy may also be expensive, although that cost is likely to be dominated
by the cost of updating the object's fields processing child pointers if the object is a large
array of pointers . For these reasons, large object spaces are often managed by collectors
that usually do not physically move their objects, although the trade-off between the per
formance advantages of not moving objects and the costs of fragmentation make it likely
that even large objects may need to be compacted occasionally [Lang and Dupont, 1987;
Hudson and Moss, 1992] .

There are a number of ways in which large object spaces might be implemented and
managed. The simplest is to use one of the free-list allocators described in Chapter 7 and
to reclaim objects with a mark-sweep collector. It is also possible to combine a non-moving

137

138 CHAPTER 1 0. OiliER PARTITIONED SCHEMES

Tospace

new objects

From space

Figure 10.1: The Treadmill collector: objects are held on a double-linked list.
Each of the four segments hold objects of a different colour, so that the colour
of an object can be changed by 'unsnapping' it from one segment and 'snap
ping' it into another. The pointers controlling the Treadmill are the same as
for other incremental copying collectors [Baker, 1978] : scanning is complete
when s c a n meets T, and memory is exhausted when f ree meets B.

Jones [1996]. Reprinted by permission.

large object space with a wider range of algorithms including copying. Several implemen
tations have separated large objects into a small (possibly fixed-size) header and a body
[Caudill and Wirfs-Brock, 1986; Ungar and Jackson, 1988, 1992; Hosking et al, 1992) . The
body is kept in a non-moving area, but the header is managed in the same way as other
small objects. The header may also be handled by a generational garbage collector; opin
ions differ on whether large object headers should be promoted by the collector [Hudson
et al, 1991] or not (so that the large amount of space that they occupy can be reclaimed
as soon as possible after the object's death [Ungar and Jackson, 1992]) . Other Java vir
tual machines, including Sun's ExactVM [Printezis, 2001] , Oracle's JRockit and Microsoft's
Marmot [Fitzgerald and Tarditi, 2000], have not used a separate space but allocated large
objects directly into the old generation. Since large objects are by their nature likely to
survive for some time, this approach saves copying them from the young generation.

The Treadmill garbage collector

It is also possible to copy or move objects logically without moving them physically. In this
section we discuss the Treadmill; in the next section we consider how to move objects with
operating system support. In terms of the tricolour abstraction, a tracing garbage collector

10. 1 . LARGE OBJECT SPACES 139

partitions heap objects into four sets: black (scanned), grey (visited but not fully scanned),
white (not yet visited) and free; it processes the grey set until it is empty. Each collection
algorithm provides a different way to represent these sets . The Treadmill [Baker, 1992a]
provides some of the advantages of semispace copying algorithms but in a non-moving
collector. Although it was intended as an incremental collector its virtues have also led it
to be used in stop-the-world configurations for managing large objects .

The Treadmill is organised as a cyclic, double-linked list of objects (Figure 10.1) so that,
considered anticlockwise, the black segment is followed by the grey segment then the
white segment and finally the free segment. The black and grey segments comprise the
tospace, and the white segment the fromspace of the heap. Four pointers are used to
operate the Treadmill . Just as with Cheney's algorithm, s c an points to the start of the grey
segment and divides that segment from the black one. B and T point to the bottom and top
of the white fromspace list respectively, and f ree divides the free segment from the black
segment.

Before a stop-the-world collection, all objects are black and in tospace. An object is
allocated by advancing the f ree pointer clockwise, thus removing it from the free seg
ment and adding it to the start of black segment. When the f ree pointer meets the B

pointer at the bottom of fromspace, free memory is exhausted and it is time to flip. At this
point, the Treadmill contains at most two colours, black and white. The black segment is
reinterpreted as white and the T and B pointers are swapped. The collector then behaves
much as any semispace copying collector. As grey objects are scanned, the s c an pointer is
moved anticlockwise to add the object to the end of black segment. When a white object in
fromspace is visited by the collector, it is evacuated to tospace by unsnapping it from the
white segment and snapping it into the grey segment. When the scan pointer meets the T

pointer, the grey segment is empty and the collection is complete.
The Treadmill has several benefits . Allocation and 'copying' are fairly fast. A concur

rent Treadmill can allocate objects of any colour simply by snapping them into the appro
priate segment. As objects are not moved physically by snapping, allocation and 'copying'
are constant time operations not dependent on the size of the object. Snapping simpli
fies the choice of traversal order compared with other techniques discussed in Chapter 4 .
Snapping objects to the end of the grey segment (before the T pointer) gives breadth-first
traversal. Snapping objects at the start of the segment (at the s can pointer) gives depth
first traversal without needing an explicit auxiliary stack, although effectively a stack is
embedded in the links of the Treadmill for all traversal orders.

One disadvantage of the Treadmill for general purpose collection is the per-object over
head of the two links. However, for copying collection, this overhead is offset by removing
the need for any copy reserve as the Treadmill does not physically copy objects. Another
issue for the Treadmill is how to accommodate objects of different sizes (see [Brent, 1989;
White, 1990; Baker et al, 1985]) . One solution is to use separate Treadmills for each size
class [Wilson and Johnstone, 1993] . However, these disadvantages are less of an issue for
large objects . Large object Treadmills (for example, as used in Jikes RVM) keep each object
on its own page (or sequences of pages) . If links are kept in the pages themselves, they
may simply consume some of the space otherwise wasted when rounding up the size to
an integral number of pages. Alternatively, the links can be stored together, outside the
pages . The best reason for keeping links separate from user data is to reduce the risk of
rogue code corrupting the collector 's metadata, but doing so may also reduce cache and
paging overheads.

Moving obj ects with operating system support

It is also possible to 'copy' or 'compact' large objects without physically moving them,
using support from the operating system. In this case, each large object must again be

140 CHAPTER 10. OTHER PARTITIONED SCHEMES

allocated to its own set of pages. Instead of copying the object word by word, its pages
can be re-mapped to fresh virtual memory addresses [Withington, 1991] . It is also possible
to use operating system support to initialise large objects incrementally. 1 Rather than zero
the space for the whole object in one step, the object's pages can be memory protected. Any
attempt to access uninitialised sections of the object will spring this trap, at which point
the page in question can be zeroed and unprotected; see also our discussion of zeroing in
Section 1 1 . 1 .

Pointer-free obj ects

There are good reasons for segregating typically large objects not directly related to their
size. If an object does not contain any pointers, it is unnecessary to scan it. Segregation
allows knowledge of whether the object is pointer-free to be derived from its address. If
the mark-bit for the object is kept in a side table, then it is not necessary to touch the object
at all. Allocating large bitmaps and strings in their own area, managed by a specialised
scanner, can lead to significant performance improvements, even if the size of the area is
modest. For example, Ungar and Jackson [1988] obtained a fourfold pause time reduction
by using a separate space of only 330 kilobytes, tiny by today's standards.

10.2 Topological collectors

One way of arranging objects in the heap is to relate their placement to the topology of
pointer structures in the heap. This arrangement offers opportunities for new garbage
collection algorithms, which we consider in this section.

Mature obj ect space garbage collection

One of the goals of generational garbage collection is to reduce pause times . By and large
the pause to collect the youngest generation can be bounded by controlling the size of
the youngest generation. However, the amount of work done to collect the oldest gener
ation is limited only by the volume of live data in the heap. As we saw in Chapter 9, the
Beltway.X.X generational configuration [Blackburn et al, 2002] attempted to address this
by collecting each belt in fixed-size increments. However, this approach trades one prob
lem for another: cycles of garbage too large to be accommodated in a single increment
cannot be reclaimed. Both Bishop [1977] and Beltway.X .X. lOO add a further area/incre
ment of unlimited size to provide a collector that is complete but that no longer bounds
the work done in each collection cycle.

Hudson and Moss [1992] seek to manage a mature object space (MOS) outside an age
based scheme. They too divide this space into a number of fixed-size areas. At each col
lection, a single area is condemned and any survivors are copied to other areas. Hudson
and Moss resolve the cycle problem by structuring the areas, which they call cars, into a
number of first-in, first-out lists called trains: hence, the algorithm is colloquially known
as the 'Train collector ' . As might be expected, at each collection they condemn a single car
but they also impose a discipline on the destination cars to which they copy any survivors.
This ensures that a garbage cycle will eventually be copied to a train of its own, all of which
can be reclaimed in isolation from other trains. The algorithm proceeds as follows.

1 . Select the lowest numbered car c of the lowest numbered train t as the from-car.

1 h t t p : / / www . memo rymanageme n t . o rg / .

10.2. TOPOLOGICAL COLLECTORS 141

2 . If there are no root references to t and if t 's remembered set is empty, then reclaim
this train as a whole as its contents are unreachable. Otherwise . . .

3. Copy any object in c that is referenced by a root to a to-car c' in a higher numbered
train t', possibly a fresh one.

4. Recursively copy objects in c that are reachable from to-car c' to that car; if c' is full,
append a fresh car to t' .

5. Move any object promoted from the generational scheme to a train holding a refer
ence to it.

6. Scan the remembered set of from-car c. If an object o in c is reachable from another
train, copy it to that train.

7. Copy any other object reachable from other cars in this train t to the last car of t,
appending a new car if necessary.

Step 2 reclaims whole trains that contain only garbage, even if this includes pointer
structures (such as cycles) that span several cars of the train. As the train's remembered
set is empty, there can be no references to it from any other train. Steps 3 and 4 move into a
different train all objects in the from-car that are reachable from roots via reference chains
contained in this car. These objects are certainly live, and this step segregates them from
any possibly-garbage objects in the current train. For example, in Figure 10.2, objects A
and B in car Cl, train Tl are copied to the first car of a new train T3. The last two steps
start to disentangle linked garbage structures from other live structures . Step 6 removes
objects from this train if they are reachable from another one: in this example, P is moved
to train 2, car 2. Finally, step 7 moves the remaining potentially live objects in this car (for
example, X) to the end of its train. It is essential that these steps are done in this order since
a single object may be reachable from more than one train. Following step 7, any objects
remaining in car c are unreachable from outside it and so this from-car is discarded, just as
a semispace collector would do.

The Train algorithm has a number of virtues. It is incremental and bounds the amount
of copying done at each collection cycle to the size of a single car. Furthermore, it attempts
to co-locate objects with those that refer to them. Because of the discipline imposed on the
order in which trains and cars are collected, it requires only references from high to low
numbered trains/cars to be remembered. If it is used with a young generation collector
so that all spaces outside the mature object space are collected at each cycle, no references
from outside that space need be remembered.

Unfortunately, the Train collector can be challenged by several common mutator be
haviours.2 Isolating a garbage structure into its own train may require a number of garbage
collection cycles quadratic in the number of cars over which the structure is distributed. As
presented above, the algorithm may fail to make progress in certain conditions. Consider
the example in Figure 1 0.3a where there is insufficient room for both objects (or pointer
structures) to fit in a single car. Object A will be moved to a fresh car at the end of the
current train when the first car is collected. Provided that none of the pointers in this ex
ample are modified, the next collection will find an external reference to the leading car,
so B will be evacuated to a higher numbered train. Similarly, the third collection will find
a reference to A from B's train and so move A there. There are no cars left in this train, so
we can dispose of it. The next cycle will collect the first car of the next train, as desired.
However, now suppose that, after each collection cycle, the mutator switches the external

21t was superseded as the ' low pause' collector in Sun Microsystems' JDK after Java 5 in favour of a concurrent
collector.

142 CHAPTER 10. OTHER PARTITIONED SCHEMES

T2Cl T2C2

(a) Before collecting car 1, train 1 {TlCl) .

T1C2

T3Cl

(b) After collecting car 1, train 1. X moved to the same car as its referent Y, A and 8
to a fresh train T3. The next collection cycle will isolate T2 and reclaim it wholesale.
Numbered labels show the copies made in each algorithm step.

Figure 10.2: The Train copying collector.

Jones [1996). Reprinted by permission.

10.2. TOPOLOGICAL COLLECTORS

A B

(a) Before collecting the first car (b) Before collecting the next car

Figure 10.3: A 'futile' collection. After a collection which moves A to a fresh
car, the external reference is updated to refer to A rather than B. This presents
the same situation to the collector as before, so no progress can be made.

143

reference to the object in the second car, as in Figure 10.3b. The Train collector never dis
covers an external reference to the object in the leading car, and so the object will forever be
moved to the last car of the current train, which will never empty. The collector can never
progress to collect other trains. Seligmann and Grarup [1995] called these 'futile' collec
tions. They solve the problem by remembering external pointers further down the train
and using these in futile collections, thereby forcing progress by eventually evacuating the
whole train.

The Train algorithm bounds the amount of copying done in each collection cycle but
does not bound other work, such as remembered set scanning and updating references.
Any 'popular ', highly referenced objects will induce large remembered sets and require
many referring fields to be updated when they are moved to another car. Hudson and
Moss suggest dealing with such objects by moving them to the end of the newest train,
into their own car, which can be moved logically rather than physically in future collections
without need to update references. Unfortunately this does not guarantee to segregate a
garbage cycle that spans popular cars. Even if a popular car is allowed to contain more
than one popular item, it may still be necessary to disentangle these to separate cars unless
that are part of the same structure. Both Seligmann and Grarup [1995] and Printezis and
Garthwaite [2002] have found popular objects to be common in practice. The latter address
this by allowing remembered sets to expand up to some threshold (say 4,096 entries) after
which they coarsen a set by rehashing its entries into a set of the same size but using a
coarser hashing function. Seligmann and Grarup tune the frequency of train collections by
tracking a running estimate of the garbage collected (a low estimate allows the collection
frequency to be reduced) . But Printezis and Garthwaite found it to be common for an
application to have a few very long trains of long lived data; this defeats such a tuning
mechanism.

Connectivity-based garbage collection

Management of remembered sets can contribute significantly to the time and space costs of
the Train algorithm. The performance of a partitioned collector would be improved if the
number of inter-partition pointers that need to be remembered could be reduced or even
eliminated. In the previous chapter, we saw how Guyer and McKinley [2004] used a static
analysis to place new objects in the same generation as the object to which they would
be connected, and Zee and Rinard [2002] eliminated write barriers for the initialisation
of the newest object in a generational collector. Hirzel et al [2003] explored connectivity
based allocation and collection further. They observed that the lifetimes of Java objects are
strongly correlated with their connectivity. Those reachable only from the stack tend to
be short-lived whereas those reachable from globals tend to live for most of the execution

144 CHAPTER 1 0. OTHER PARTITIONED SCHEMES

of the program (and they note that this property is largely independent of the precise
definition of short- or long-lived) . Furthermore, objects connected by a chain of pointers
tend to die at the same time.

Based on this observation, they proposed a new model of connectivity-based collection
(CBGC) [Hirzel et al, 2003] . Their model has four components. A conservative pointer
analysis divides the object graph into stable partitions: if an object a may point to an object
b then either a and b share a partition or there is an edge from a's partition to b's partition in
the directed acyclic graph (DAG) of partitions. Although new partitions may be added (for
example, as classes are loaded), partitions are never split. The collector can then choose
any partition (or set of partitions) to collect provided it also collects all its predecessor par
titions in the DAG. Partitions in the condemned set are collected in topological order. This
approach has two benefits . The collector requires neither write barriers nor remembered
sets . Partitions can be reclaimed early. By collecting in topological order, as soon as the
collector has finished tracing objects in a partition, any unvisited (white) objects in that
partition or earlier ones must be unreachable and so can be reclaimed. Note that this also
allows popular child partitions to be ignored.

Hirzel et al suggest that the performance of connectivity-based garbage collectors de
pends strongly on the quality of partitioning, their estimate of the survivor volume of each
partition and their choice of partitions to collect. However, they obtained disappointing
results (from simulation) for a configuration based on partitioning by the declared types of
objects and their fields, estimating a partition's chance of survival from its global or stack
reachability, moderated by a partition age based decay function, and using a greedy al
gorithm to choose partitions to collect. Although mark/ cons ratios were somewhat better
than those of a semis pace copying collector, they were much worse than those of an Appel
style generational collector. On the other hand, worst-case pause times were always better.
Comparison with an oracular collector, that received perfect advice on the choice of par
tition, suggested that there was a performance gap that might be exploited by a better
configuration. Dynamic partitioning based on allocation site also improved performance
of the collector at the cost of re-introducing a write barrier to combine partitions .

Thread-local garb age collection

One way to reduce garbage collection pause times is to run the collector concurrently with
the mutator threads . A variation on this is to perform collection work incrementally, inter
leaving the mutator and collector. Both approaches increase the complexity of implemen
tations, chiefly by requiring greater synchronisation between collectors and mutators; we
defer discussion of incremental and concurrent garbage collection to later chapters. How
ever, if we can prove that a set of objects can only ever be accessed by a single thread,
and if these objects are stored in their own thread-local heaplet, then these heaplets can
be managed without synchronisation: the problem is reduced to stop-the-world collection
for each thread. In this section, we investigate different designs for thread-local collection.
Of course, thread-local approaches cannot deal with objects that may be shared; they must
still be dealt with by halting all mutator threads during collection or by more complex
concurrent or incremental techniques .

The key to thread-local collection is to segregate objects that can be reached by just one
thread from those that are potentially shared. Typically, heaps configured for thread-local
collection use a single shared space and a set of per-thread heaplets . This requires strict
regulation on the direction of pointers. An object in a thread-local heaplet may point to
another object in the same heaplet or to a shared object. Shared objects may not refer
ence thread-local ones, nor may thread-local objects refer to objects in other thread-local
heaplets .. The segregation of objects may be made statically, using a pointer analysis, or
it may be dynamic, requiring infringements of the pointer direction rule to be detected

1 0.2. TOPOLOGICAL COLLECTORS

0
G

thread 1 thread 2

Figure 10.4: Thread-local heaplet organisation, indicating permitted pointer
directions between purely local (L}, optimistically-local (OL) and shared
heaplets (G) [Jones and King, 2005] .

145

at run time. Note that any organisation can be used within a heaplet (for example, a flat
arrangement or with generations). However, it is also possible to mark objects as shared
on an object by object basis.

Steensgaard [2000] used a fast but conservative pointer analysis similar to that of Ruf
[2000] to identify Java objects potentially reachable from a global variable and by more
than one thread. The goal of his flow-insensitive, context-sensitive escape analysis is to
allow methods that create objects to be specialised in order to allocate the object in either
the thread's local heaplet or the shared heaplet. Each heaplet comprises an old and a
young generation. His collector is only mostly thread-local. Because Steensgaard treats
all static fields as roots for a local heaplet, each collection requires a global rendezvous. A
single thread scans the globals and all thread stacks in order to copy any directly reachable
objects, before Cheney-scanning the shared heaplet. The local threads are released only
after the shared scan is complete in order to finish independent collections of their own
heaplets . These threads may encounter uncopied objects in the shared heaplet: if so a
global lock must be acquired before the object is copied.

Static segregation of shared and thread-local objects requires a whole program analy
sis. This is a problem for any language that permits classes to be loaded dynamically, since
polymorphic methods in sub-classes loaded after the analysis is complete may 'leak' refer
ences to local objects by writing references into fields of globally reachable ones. Jones and
King address this problem and provide a design for a truly thread-local collector [King,
2004; Jones and King, 2005] . Their escape analysis builds on Steensgaard's but is com
positional: it supports Java's dynamic class loading, dealing safely with classes loaded
after the analysis is complete. Designed for long running Java applications, the analy
sis was sufficiently fast to be deployed at run time in a background thread, with Sun's
ExactVM Java virtual machine running on a multiprocessor under Solaris. They provide
each thread with two local heaplets: one for objects that are guaranteed to be reachable
by only the thread that allocated them, no matter what further classes may be loaded, and
one for optimistically-local objects: those that are accessible by no more than one thread at
the time of the analysis but which may become shared if an antagonistic class is loaded.
Purely thread-local objects turn out to be comparatively rare: these are mostly objects
that do not escape their allocating method. Optimistically-local objects are fairly com
mon, however. The rules for pointer directionality are extended. Local objects may also
point to optimistically-local ones, but not vice-versa; optimistically-local objects may refer
to global ones. A schematic of permissible pointers is shown in Figure 10.4. Jones and King

146 CHAPTER 1 0. OTHER PARTITIONED SCHEMES

collect each thread independently, with no global rendezvous. Both a thread's local and
optimistically-local heaplets are collected together, provided no classes have been loaded
that compromise the analysis. Whenever a class is loaded dynamically, it is analysed both
to specialise its methods, and to discover whether it extends a class already loaded and
whether any of its methods potentially cause an allocation site marked optimistically
local to become shared. If so - and such 'non-conforming' methods are very rare - the
optimistically-local heaplets of all threads that may use this method are marked shared
and no longer collected thread-locally, but instead are collected alongside the shared heap.

Steensgaard segregated objects statically, at the cost of a global rendezvous; Jones and
King also used a static escape analysis but collect purely thread-locally, with a dynamic
class loading check to handle non-conforming methods. However, it is also possible to
detect objects dynamically as they escape from their allocating thread. Domani et al [2002]
created objects in thread-local allocation buffers but detect escapement precisely, using a
write barrier. Because shared and local objects are intermingled in the heap, each object
is associated with a global bit (held in a separate bitmap) which is set by the write barrier
just before a thread creates a reference to an object it did not allocate. The barrier must
also set this bit for every object in the transitive closure of the target object. The parallel
mark-sweep collector of Domani et al collects threads independently. It stops all threads
only if it is unable to allocate a large object or a fresh allocation buffer. They also allocate
objects known to be always global (such as thread and class objects or those identified as
global by off-line profiling) into a separate shared region. Co-existence of global and local
collections requires some synchronisation to ensure that a global collection is not initiated
while a local one is in progress; we discuss the handshakes necessary in later chapters.

Collecting thread-locally is simpler if all objects are immutable. Erlang [Armstrong et al,
1996] is a strict, dynamically typed, functional programming language. Erlang programs
typically use very large numbers of extremely light-weight processes which communicate
with each other through asynchronous message passing. The original Erlang/OTP run
time system was process-centric, with each process managing its own private memory
area. Because Erlang does not allow destructive assignment, message passing uses copy
ing semantics and thread-local heaps can be collected independently. The costs of this
design are that message passing is an 0(n) operation (where n is the size of the message)
and message data are replicated between processes .

Sagonas and Wilhelmsson add to this architecture a shared area for messages and one
for binaries, in order to reduce the cost of message passing [Johansson et al, 2002; Sagonas
and Wilhelmsson, 2004; Wilhelmsson, 2005; Sagonas and Wilhelmsson, 2006] . They impose
the usual restrictions on pointer direction between the process-local areas and the shared
messages area. Their shared message area does not contain any cyclic data and the binaries
do not contain references. A static message analysis guides allocation: data that is likely
to be part of a message is allocated speculatively on the shared heap and otherwise in a
process's local heap . All message operands are wrapped in a copy-on-demand operation
that checks that the operand is indeed in the shared heap and otherwise copies it; often this
test can be eliminated by the compiler. Note that the copying semantics of Erlang message
passing allow the analysis to both over-approximate and under-approximate sharing. Lo
cal heaps are managed with a generational, stop-and-copy Cheney-style collector, using
generational stack scanning [Cheng et al, 1998] . As they contain no clcles, the shared bi
naries are reference counted. Each process maintains a remembered list of pointers to bina
ries . When a process dies, the reference counts of binaries in this list are decremented. The
shared message area is collected by an incremental mark-sweep collector, which requires
global synchronisation. We discuss incremental mark-sweep algorithms in Chapter 16.

3Not to be confused with reference lists used by distributed reference counting systems where the target main
tains a list of processes that it believes hold references to it.

1 0.2. TOPOLOGICAL COLLECTORS 147

Doligez and Leroy [1993] were the first to introduce the thread-local/shared region
memory architecture . In their case, the local/shared regions also served as the young/old
generations of their collector. Their target was Concurrent Caml Light, ML with concur
rency primitives . Unlike Erlang, ML does have mutable variables. In order to allow threads
to collect their young generations independently, mutable objects are stored in the shared
old generation. If a mutable object is updated to refer to an object in a thread-local young
generation, then the transitive closure of the young object is copied to the old generation.
As in the Erlang case, making two copies of the data structure is safe since young ob
jects are guaranteed to be immutable. As well as copying the young objects, the collector
updates a forwarding address in each object header to refer to its shared replica. These
addresses are used by subsequent thread-local, young generation collections; the mutator
write barrier has done some of the collector 's work for it. Note that the forwarding pointer
must be stored in a reserved slot in the object's header rather written destructively over
user data since the young copy is still in use. This additional header word is stripped from
the old generation copy as it is not required by the shared heap's concurrent mark-sweep
collector. While this additional word imposes a space overhead in the young generations,
this overhead may be acceptable since young generation data will usually occupy a much
smaller fraction of total heap size than old generation data.

Stack allocation

Several researchers have proposed allocating objects on the stack rather than in the heap,
wherever possible. A wide variety of mechanisms have been suggested, but fewer have
been implemented, especially in production systems. Stack allocation has some attrac
tions. It potentially reduces the frequency of garbage collection, and expensive tracing or
reference counting is unnecessary for stack allocated data. Thus, stack allocation should
in theory be gentler on caches . On the down side, it may prolong the lifetime of objects
allocated in frames that persist on the stack for a long time.

The key issue is to ensure that no stack allocated object is reachable from another object
with a longer lifetime. This can be determined either conservatively through an escape
analysis (for example, [Blanchet, 1999; Gay and Steensgaard, 2000; Corry, 2006]) or by run
time escape detection using a write barrier. Baker [1992b] was the first to suggest (but not
implement) stack allocation in the context of an otherwise garbage collected heap . Laying
out the stack to grow away from the heap could use an efficient address-based write bar
rier to detect references to objects on the stack from locations that might outlive them. In
such a case, the object would be copied ('lazily allocated') into the heap. He also required
a read barrier to handle the forwarding addresses that copying introduced. Others have
suggested allocating objects in a stack of frames separate from the call stack. Cannarozzi
et al [2000] used a write barrier to partition the heap, with each partition associated with
the oldest activation record that might refer to it. Unfortunately the cost (in Sun's handle
based JDK 1 . 1 .8) was large: an extra four 32-bit words per object. Qian and Hendren [2002]
allocated frames lazily to avoid allocating any empty ones. They used a write barrier to
mark such a frame as global if any of its objects escaped. In this case, the write buffer also
marked the site in the method allocating the object as non-local but this requires storing a
site identity in the object's header. They share the lock word for this purpose at the cost of
making the frame global if an object is ever locked; unfortunately, library code often con
tains redundant (that is, local) locking (which is why biased locking is so effective). Corry
[2006] used a cheaper intraprocedural escape analysis that associates object frames with
loops rather than method invocations and hence works well with dynamic class loading,
reflection, factory methods and so on.

Azul Systems' multicore, multiprocessor Java appliances provide hardware-supported
object-by-object escape detection . When an object is allocated on the stack, some pointer

148 CHAPTER 1 0. OTHER PARTITIONED SCHEMES

bits are used to store the frame's depth in the stack. These bits are ignored by pointer
loads but checked by stores: storing a reference to an object in a new frame into an object
in an old frame causes a trap which moves the object and fixes up references to it (which
can only be held by objects in newer frames) . The fixup is expensive so needs to be rare
for stack allocation be be effective. If stack allocating an object would cause the frame to
become too large, Azul place the object in an overflow area to the side. Azul find that they
still need occasional thread-local collections to deal with dead stack allocated objects in
long lived frames .

Overall, most of these schemes have either not been implemented, are reported with in
sufficient detail of comparative systems, or do not offer significant performance improve
ments. While it is likely that for many applications a large fraction of objects might be stack
allocatable, most of these are likely to be short-lived . Azul find that over half of all objects
may be stack allocated in large Java applications. However, this scenario is precisely the
one in which generational garbage collection excels. It is not clear that stack allocation
reduces memory management costs sufficiently to make it worthwhile. Another rationale
for stack allocation is that it can reduce memory bandwidth by keeping these objects en
tirely in the cache, given a sufficiently large cache. One related strategy that is effective is
scalar replacemen t or object inlining whereby an object is replaced by local variables repre
senting its fields [Dolby, 1997; Dolby and Chien, 1998, 2000; Gay and Steensgaard, 2000] .
A common application of scalar replacement is for iterators in object-oriented programs.

Region inferencing

Stack allocation is a restricted form of more general region-based memory management.
The key idea behind region-based memory is that objects are allocated into regions and that
entire regions are reclaimed as soon as none of their contents is required by the program.
Typically, region reclamation is a constant time operation. The decisions as to when to
create a region, into which region to place an object and when to reclaim a region may
fall to the programmer, the compiler, the run-time system or a combination of these. For
example, the programmer may be required to add explicit instructions or annotations to
create and destroy regions or to indicate the region into which an object must be allocated .
Possibly the best known explicit system is the Real-Time Specification for Java (RTSJ). In
addition to the standard heap, the RTSJ provides an immortal region and scoped regions.
The RTSJ enforces strict rules on pointer directionality: an object in an outer scoped region
cannot refer to one in an inner scope .

Other region-based systems may relax the requirements on pointer direction, allowing
regions to be reclaimed even if there are references into that region from other, live regions.
To be safe, such systems require a guarantee that the mutator will never follow a dangling
pointer into a deallocated region. These systems require compiler support, either for in
ferring the region to which an object should be allocated and when it is safe to reclaim the
region, or to check programmer annotations (possibly in the form of non-standard type
systems) . The best known, fully automatic, region inferencing system is that for Standard
ML [Tofte et al, 2004] . Used with care, their system can lead to programs that are efficient
and use less memory. However, this is very dependent on program style, often requiring
the programmer to have a deep understanding of the inferencing algorithm (although not
its implementation) . Region inferencing can also make programs harder to understand
and more difficult to maintain as small changes can have significant effects on the infer
encing decisions . The ML Kit inferencing algorithm was also very expensive for large
programs (for example a 58,000 line program took one and a half hours to compile). Tofte
et al report that it was often best to restrict region inferencing to well understood coding
patterns and manage other parts of the program by garbage collection.

1 0.3. HYBRID MARK-SWEEP, COPYING COLLECTORS

§� Aggressive

"0 0 .s: VI � .s: 0 c: LI'I 0 p �
;;;

"' N

M a rk-Sweep

Semis pace

Passive co pying�
o L-------------------------------

0 25 50 75 100
evacuation th reshold

Figure 10.5: A continuum of tracing collectors. Spoonhower et al contrast
an evacuation threshold - sufficient live data to make a block a candidate for
evacuation - with an allocation threshold - the fraction of a block's free space
reused for allocation.

Spoonhower et a/ [2005], doi: 1 0 . 1 1 4 5 / 1 0 6 4 9 7 9 . 1 0 6 4 9 8 9 .

© 2005 Association for Computing Machinery, Inc. Reprinted by permission.

10.3 Hybrid mark-sweep, copying collectors

149

When considering how the volume of live objects in a block can be used to make evacu
ate or mark decisions, Spoonhower et al [2005] contrast an evacuation threshold - whether
the block contains sufficiently little live data to make it a candidate for evacuation - with
an allocation threshold - how much of the block's free space should be reused for alloca
tion. These thresholds determine when and how fragmentation is reduced. For example,
a mark-sweep collector has an evacuation threshold of zero (it never copies) but an allo
cation threshold of 100% (it reuses all free space in a block), whereas a semispace copying
collector has an evacuation threshold of 100% but an allocation threshold of zero (from
space pages are not used for allocation until after the next collection); these two collectors
are shown in Figure 10.5. Overly passive memory managers with low evacuation and allo
cation thresholds can suffer from fragmentation; overly aggressive managers, where both
thresholds are high, have high overheads either because they replicate data or because
they require more passes to collect the heap.

The performance of a large or long running application may eventually suffer from
fragmentation unless the heap is managed by a compacting collector. Unfortunately, com
paction is likely to be expensive in time or space compared with non-moving collection.
Semispace copying requires a copy reserve but mark-compact algorithms require several
passes over the heap in addition to the cost of moving objects . To address these prob
lems, Lang and Dupont [1987] proposed combining mark-sweep collection with semispace
copying to compact the heap incrementally, one region at a time. The heap is divided into
k + 1 equally sized windows, one of which is empty. At collection time, some window is
chosen to be the fromspace and the empty window is used as the tospace. All other win
dows are managed by a mark-sweep collector. As the collector traces the heap, objects are

150 CHAPTER 1 0. OTHER PARTITIONED SCHEMES

Tospace Frornspace

(a) Before collection

Tospace Fromspace

11 11 11111 11 1 1 1 1 111 1 1 1 1 1 1 11 1 11 1 111 1 1 11 1 1 11 1 1 111 11 1 1 1 1111 1 11 11
(b) After collection

Figure 10.6: Incremental incrementally compacting garbage collection. One
space (fromspace) is chosen for evacuation to an empty space (tospace),
shown as grey; the other spaces are collected in place. By advancing the
two spaces, the whole heap is eventually collected.

Jones (1996]. Reprinted by permission.

evacuated to the tospace window if they are in the fromspace window, otherwise they are
marked (see Figure 10.6). References in any window to fromspace objects must be updated
with their tospace replicas.

By rotating the window chosen to be the fromspace through the heap, Lang and Dupont
can compact the whole heap in k collections at a space overhead of 1 I k of the heap. Unlike
mark-compact algorithms, no extra passes or data structures are required. They observe
that this algorithm can provide flexibility in tracing order, especially if tospace is managed
by a Cheney algorithm. At each tracing step, the collector can choose whether to take the
next item from the mark-sweep or the copying work list: Lang and Dupont advocate pre
ferring the mark-sweep collector in order to limit the size of its stack. There is also a locality
argument here since mark-sweep tends to have better locality than Cheney copying.

The Spoonhower et al [2005] collector for C# takes a more flexible approach. It uses
block residency predictions to decide whether to process a block in place to tospace or to
evacuate its contents. Predictions may be static (for example, large object space pages), use
fixed evacuation thresholds (generational collectors assume few young objects survive) or
dynamic ones (determined by tracing). Spoonhower et al use residency counts from the
previous collection to determine whether to evacuate or mark objects in a block (blocks
containing pinned objects are processed in place) in order not to need an extra pass at each
collection. In a manner similar to Dimpsey et al [2000] (discussed below), they maintain a
free-list of gaps, and bump allocate into these.

Garbage-First

Garbage-First [Detlefs et al, 2004) is a sophisticated and complex incrementally compact
ing algorithm, designed to meet a soft real-time performance goal that collection should
consume no more than x milliseconds of any y millisecond time slice. It was introduced
in Sun Microsystems' HotSpot VM in JDK 7 as a longer term replacement to a concurrent
mark-sweep collector in order provide compaction with more predictable response times.
Here we focus on how it treats partitions.

Like the Lang and Dupont collector, Garbage-First divides the heap into equal sized
windows of contiguous virtual memory. Allocation is made into a current allocation win
dow, taken from a list of empty windows. To minimise synchronisation between muta
tor threads, each thread has its own bump-a-pointer local allocation buffer. Thread-local
buffers are acquired from the current allocation window with an atomic CompareAnd
Swap operation; larger objects may similarly be allocated directly in the allocation win-

1 0.3. HYBRID MARK-SWEEP, COPYING COLLECTORS 151

dow. 'Humongous' objects, larger than three-quarters of a window, are allocated in their
own sequence of windows.

Unlike Lang and Dupont, Garbage-First allows an arbitrary set of windows to be cho
sen for collection. It therefore requires the mutator 's write barrier to record any inter
window pointers that it writes. Almost all such pointers must be remembered unlike, say,
the Train collector which requires only unidirectional remembered sets since cars are col
lected in a predetermined order. Garbage-First uses a filtering write barrier that records
interesting pointers in card tables (we discuss these in Chapter 11) .

A single collector thread marks the heap concurrently with mutator execution (see
Chapter 16), based on Printezis and Detlefs [2000] bitmap marking (which we saw in Chap
ter 2). Once the heap has been marked, Garbage-First uses the bitmap to select windows
for evacuation. Regions are compacted in parallel with all mutator threads stopped (see
Chapter 14). In general, the windows to be evacuated will be those with low fractions of
live data. However, Garbage-First can also operate generationally. In a pure, 'fully young'
generational mode, the windows chosen for evacuation are just those used for allocation
since the last collection. A 'partially young' collector can add further windows to this con
demned set. In either generational mode, the mutator write barrier can filter out pointers
with young sources. As with other schemes, Garbage-First attempts to identify popular
objects and to segregate these in their own windows, which are never candidates for evac
uation and so do not require remembered sets .

Immix and others

We now examine three collectors that trade off the space-time costs of mark-sweep col
lection and fragmentation. Each takes a different approach to the problems of trying to
make best use of available heap space, avoiding the need to defragment (whether through
evacuation or mark-compact), and reducing time overheads in the collector's loops.

Dimpsey et al [2000] describe a sophisticated parallel mark-sweep (with occasional
compaction) collector for IBM's server Java virtual machine, version 1 .1 .7. Like Sun's 1 . 1 .5
collectors, the IBM server used thread-local allocation buffers .4 Small objects were bump
allocated within a buffer without synchronisation; synchronised allocation of buffers and
other large objects (greater than 0.25 times the buffer size) was performed by searching a
free-list. Dimpsey et al found that this architecture on its own led to poor performance. Al
though most large object requests were for local allocation buffers, free chunks that could
not satisfy these requests tended to congregate at the start of the free-list, leading to very
long searches. To address this, they introduced two further free-lists, one for objects of
exactly local allocation buffer size (1 .5 kilobytes plus header) and one for objects between
512 kilobytes and buffer size. Whenever the buffer list became empty, a large chunk was
obtained from the large object list and split into many buffers . This optimisation substan
tially improved Java performance on uniprocessors and even more so on multiprocessors.

The IBM server collector marked objects in a side bitmap. Sweeping traversed the
bitmap, testing bits a byte or a word at a time. Dimpsey et al optimise their sweep by
ignoring short sequences of unused space; a bit in the object header was used to distinguish
a large object from a small one followed by garbage, and two tables were used to translate
arbitrary byte values in the mark bitmap to counts of leading and trailing zeroes. The
consequence of this is that, after a collection, parts of an allocation buffer may be free but
not usable for allocation since the server bump-allocates only from fresh buffers. However,
not only did this approach reduce sweep time but it also reduced the length of the free-lists,
since they no longer contain any small blocks of free space.

4Contrary to our conventions, Dimpsey et al call these 'thread-local heaps' .

152 CHAPTER 1 0. OTHER PARTITIONED SCHEMES

I I I I I fa��� � fa���� I I I � fa��� I I I � I I
lineCursorj J bloc kCursor j J linelimit bloc klimit

� Marked in previous � Impl icitly marked 0 Freshly al located D Free

Figure 10.7: Allocation in immix, showing blocks of lines. Immix uses bump
pointer allocation within a partially empty block of small objects, advanc
ing l i neCu r s o r to l ineLimi t, before moving onto the next group of un
marked lines. It acquires wholly empty blocks in which to bump-allocate
medium-sized objects. Immix marks both objects and lines. Because a small
object may span two lines (but no more), immix treats the line after any se
quence of (explicitly) marked line as implicitly marked: the allocator will not
use it.

Blackburn and McKinley [2008], doi: 1 0 . 1 1 4 5 / 1 3 7 5 5 8 1 . 1 3 7 5 5 8 6 .

© 2008 Association for Computing Machinery, Inc. Reprinted by permission.

The potential cost of this technique is that some free space is not returned to the allo
cator. However, objects tend to live and die together and Dimpsey et al use this property
to avoid compaction as much as possible. They follow the advice of Johnstone [1997] by
using an address-ordered, first-fit allocator in order to increase the chance of creating holes
in the heap large enough to be useful. Furthermore, they allow local allocation blocks to
be of variable length. If the first item on the local allocation buffer free-list is smaller than
a desired size T (they use six kilobytes), it is used as is (note that the item must be larger
than the minimum size accepted for inclusion in the free-list) . If it is between T and 2T, it
is split into two evenly sized buffers. Otherwise, the block is split to yield a buffer of size
T. Dimpsey et al also set aside 5% of the heap beyond the 'wilderness boundary' [Korn
and Vo, 1985], to be used only if insufficient space is available after a collection.

Like the Dimpsey et al IBM server, the immix collector [Blackburn and McKinley, 2008]
attempts to avoid fragmentation. It too is a mostly mark-sweep collector, but it eliminates
fragmentation when necessary by copying rather compacting collection. Immix employs a
block-structured heap, just as the other collectors discussed in this section. Its 32 kilobyte
blocks are the basis for both thread-local allocation and the units for defragmentation.
At collection time, immix chooses whether to mark a block in place or to evacuate its
live objects, using liveness estimates gathered from the previous collection cycle (in the
same way as Spoonhower et al but in contrast to Detlefs who obtain their estimates from
concurrent marking) . Both the IBM server and immix use fast bump-pointer allocation.
Whereas Dimpsey et al reduce fragmentation by allocating from variable sized buffers,
immix can also sequentially allocate into line-sized gaps in partially filled buffers. Immix
lines are 128 bytes, chosen to roughly match cache line lengths. Just as Dimpsey et al
optimise their collector 's sweep by ignoring short sequences of unused space, so Blackburn
and McKinley reclaim space in recyclable blocks at the granularity of lines rather than
individual objects. Let us look at the immix collector in detail.

Immix allocates from either completely free or partially filled ('recyclable') blocks. Fig
ure 10.7 shows the structure of recyclable blocks. For the purpose of allocation, immix
distinguishes large objects (which are allocated in a large object space), medium sized
objects whose size is greater than a line, and small objects; most Java objects are small.
Algorithm 10.1 shows the immix algorithm for small and medium sized objects. Immix
preferentially allocates into empty line-sized gaps in partially filled blocks using a linear,

1 0.3. HYBRID MARK-SWEEP, COPYING COLLECTORS

Algorithm 10.1: Allocation in immix

1 a l l o c (s i ze) :
addr +- sequent i a lAl locate (l in e s)
if a ddr f null

return addr
if s i z e � LINE_S I ZE

return a l l o c S l owHot (s i z e)
else

return ove r f l owAl l oc (s i z e)

w a l l o cS l owHot (s i z e) :
n l in e s +- getNe xt L ine l nB l o c k ()
1 2 if l ines = null
1 3 l i n e s +--- getNextRe cyc l ab l e B l ock ()
w if l i ne s = null
1 s l i nes +--- getFreeB l o c k ()
16 if l ines = null
1 7
18

1 9

return null
return a l loc (s i z e)

20 ove r f l owAl l o c (s i z e) :
21 addr +- sequent i a lAl l o cat e (b l o c k)
22 if addr f null
23 return addr
24 b l o c k +--- get F r e e B l ock ()
2s if b l o c k = null
26 return null
27 return s equent i a lAl l o cat e (b l o c k)

153

/* Out of memory 4

/* Out of memory 4

next-fit strategy. In the fast path, the allocator attempts to bump-allocate into the current
contiguous sequence of free lines (line 2) . If this fails, the search distinguishes between
small and medium sized allocation requests.

We consider small requests first. In this case, the allocator searches for the next se
quence of free lines in the current block (line 11) . If this fails, immix tries to allocate from
free lines in the next partially filled block (line 13) or the next empty block (line 15) . If
neither request succeeds, the collector is invoked. Notice that, unlike first-fit allocation,
the immix allocator never retreats even though this may mean that some lines are only
partially filled.

In most applications, a small number of Java objects are likely to be larger than a line but
not 'large' . Blackburn and McKinley found that treating these like the small objects above
led to many lines being wasted. To avoid fragmenting recyclable blocks, these medium
sized objects are bump-allocated into empty blocks {ove r f l owAl l oc) . They found that
the overwhelming proportion of allocation was into blocks that were either completely free
or less than a quarter full. Note that allocation of both small and medium sized objects is
into thread-local blocks; synchronisation is required only to acquire a fresh block (either
partially filled or completely empty).

The immix collector marks both objects (to ensure correct termination of the scan) and
lines - the authors call this 'mark-region' . A small object is by definition smaller than

154 CHAPTER 1 0. OTHER PARTITIONED SCHEMES

a line, but it may still span two lines. Immix marks the second line implicitly (and con
servatively): the line following any sequence of marked lines is skipped by the allocator
(see Figure 10 . 7) even though, in the worst case, this might waste nearly a line in every
gap . Blackburn and McKinley found that tracing performance was improved if a line was
marked as an object was scanned rather than when it was marked and added to the work list,
since the more expensive scanning operation better hid the latency of line marking. Im
plicit marking improved the performance of the marker considerably. In contrast, medium
sized objects are marked exactly (a bit in their header distinguishes small and medium ob
jects).

Immix compacts opportunistically, depending on fragmentation statistics, and in the
same pass as marking. These statistics are recorded at the end of each collection by the
sweeper, which operates at the granularity of lines. Immix annotates each block with the
number of gaps it contains and constructs histograms mapping the number of marked
lines as a function of the number of gaps blocks contain. The collector selects the most
fragmented blocks as candidates for compaction in the next collection cycle. As these
statistics can provide only a guide, immix can stop compacting early if there is insufficient
room to evacuate objects. In practice, compaction is rare for many benchmarks.

Copying collection in a constrained memory space

As we have seen, these incremental techniques require a copy reserve of just one block
but take many collections to compact the whole heap. Sachindran and Moss [2003] adopt
this approach for generational collection in memory constrained environments, dividing
the old generation into a sequence of contiguous blocks. Rather than evacuate a single
block at each collection, Mark-Copy collects the whole heap one block at a time at each full
heap collection. Like any other generational collector, objects are allocated into the nursery
which is collected frequently, with any survivors being copied to the old generation . If the
space remaining drops to a single block, a full heap collection is initiated.

Independent collection of each block requires a remembered set for each one, but this
would complicate the generational write barrier since it would have to record not only
inter-generational pointers but also inter-block ones. Instead, Mark-Copy's first phase
marks all live objects, and also constructs per-block unidirectional remembered sets and
counts the volume of live data for each block. Two advantages arise from having the
marker rather than the mutator construct the remembered sets: the remembered sets are
precise (they contain only those slots that actually hold pointers from higher numbered
to lower numbered blocks at the time of collection) and they do not contain any dupli
cates. Windows of consecutive blocks are evacuated one at a time, starting with the lowest
numbered (to avoid the need for bidirectional remembered sets), copying live data to the
free block. Because the marker has counted the volume of live data in each block, we can
determine how many blocks can be evacuated in each pass . For example, the second pass
in Figure 10.8 was able to evacuate a window of three blocks. At the end of each pass, the
space consumed by the evacuated blocks is released (unmapped) .

By evacuating blocks one a t time i f necessary, collectors like Mark-Copy effectively
increase the space available compared with a standard semispace collector, which may lead
to fewer collections given the same space budget. Mark-Copy may also be incremental,
interleaving collections of blocks in the old generation with nursery collections. However,
it has disadvantages . Each full collection scans every object twice, once to mark and once to
copy. Marking requires space for a mark-stack and for the remembered sets . Each copying
pass may require thread stacks and global data to be rescanned. Still, under some useful
range of conditions it performs well compared with copying generational collectors that
must reserve more of the available space for copying into.

1 0.3. HYBRID MARK-SWEEP, COPYING COLLECTORS

(a) After marking (live objects are shown grey).

(b) After the first copying pass. B has been evacuated and the first block has been
unmapped.

c) After the second copying pass. Note that there was sufficient room to evacuate
three blocks.

Figure 10.8: Mark-Copy divides the space to be collected into blocks. Af
ter the mark phase has constructed a remembered set of objects containing
pointers that span blocks, the blocks are evacuated and unmapped, one at a
time.

Sachindran and Moss [2003), doi: 1 0 . 1 1 4 5 / 9 4 9 3 0 5 . 94 9 3 3 5 .

© 2003 Association for Computing Machinery, Inc. Reprinted by permission.

155

The MC2 collector [Sachindran et al, 2004] relaxes Mark-Copy's requirement for blocks
to occupy contiguous locations by numbering blocks logically rather than by their (vir
tual) address. This has several advantages. It removes the need for blocks to be remapped
at the end of each pass (and hence the risk of running out of virtual address space in a
32-bit environment). It also allows blocks to be evacuated logically simply by changing
their block number, which is useful if the volume of live data in the block is sufficiently
high to outweigh the benefit of copying and compacting it. Numbering the blocks logi
cally also allows the order of collection of blocks to be modified at collection time. Unlike
Mark-Copy, MC2 spreads the passes required to copy old generation blocks over multiple
nursery collections; it also marks the old generation incrementally using a Steele insertion
barrier (we discuss incremental marking in Chapter 15). Because of its incrementality it
starts collecting the old generation somewhat before space runs out, and adaptively ad-

156 CHAPTER 1 0. OTHER PARTITIONED SCHEMES

justs the amount of work it does in each increment to try to avoid a large pause that might
occur if space runs out. Like other approaches discussed in this chapter, MC2 segregates
popular objects into a special block for which it does not maintain a remembered set (thus
treating them as immortal although this decision can be reverted) . Furthermore, in order
to bound the size of remembered sets, it also coarsens the largest ones by converting them
from sequential store buffers to card tables (we explain these techniques in Chapter 11) .
Large arrays are also managed by card tables, in this case by allocating space for their own
table at the end of each array. Through careful tuning of its combination of techniques, it
achieves high space utilisation, high throughput, and well-balanced pauses.

10.4 Bookmarking garbage collection

These incremental compaction techniques have allowed the heap to be compacted (even
tually) without the time overhead of traditional mark-compact algorithms or the space
overhead of standard semispace collection. Nevertheless, programs will still incur a sig
nificant performance penalty if the number of pages occupied by the heap is sufficiently
large that either mutator activity or garbage collector tracing leads to paging. The cost of
evicting and loading a page is likely to be of the order of millions of cycles, making it worth
expending considerable effort to avoid page faults . The Bookmarking collector [Hertz et al,
2005] mitigates the total cost of mutator page faults and avoids faults during collection.

The collector cooperates with the operating system's virtual memory manager to guide
its page eviction decisions. In the absence of such advice, the manager is likely to make
a poor choice of which page to evict. Consider a simple semispace collector and a virtual
memory manager which always evicts the least recently used page. Outside collection
time, the page chosen will always be an as yet unused but soon to be occupied tospace
page. Indeed, if most objects are short-lived, it is quite likely that the least recently used
page will be the very next one to be used by the allocator - the worst possible paging
scenario from its point of view! A fromspace page would be a much better choice: not
only will it not be accessed (and hence reloaded) until the next collection but its contents
do not need to be written out to the backing store .

The Bookmarking collector can complete a garbage collection trace without faulting in
non-resident pages . The trace conservatively assumes that all objects on a non-resident
page are live but it also needs to locate any objects reachable from that page. To support
this, if a live page has to be scheduled for eviction, the run-time system scans it, looking
for outgoing references, and 'bookmarks' their targets. When this page is reloaded, its
bookmarks are removed. These bookmarks are used at collection time to propagate the
trace.

The virtual memory manager is modified to send a signal whenever a page is scheduled
for eviction. The Bookmarking collector always attempts to choose an empty page. If this
is not possible it calls the collector and then selects a newly emptied page. This choice
can be communicated to the virtual memory manager through a system call, for example
madv i s e with the MADV_DONTNE E D flag. Thus Bookmarking attempts to shrink the heap
to avoid page faults . It never selects pages in the nursery or those containing its metadata .
If Bookmarking cannot find an empty page, it chooses a victim (often the scheduled page)
and scans it for outgoing references, setting a bit in their targets' headers. Hertz et al
extend the Linux kernel with a new system call allowing user processes to surrender a list
of pages.

If the whole heap is not memory resident, full heap collections start by scanning the
heap for bookmarked objects, which are added to the collector 's work list. While this is
expensive, it is cheaper in a small heap than a single page fault. Occasionally it is necessary

1 0.5. ULTERIOR REFERENCE COUNTING 157

to compact the old generation. The marking phase counts the number of live objects of
each size class and selects the minimum set of pages needed to hold them. A Cheney pass
then moves objects to these pages (objects on the target page are not moved). Bookmarked
objects are never moved in order to avoid having to update pointers held in non-resident
pages .

10.5 Ulterior reference counting

So far we have seen a number of different partitioned organisations of the heap . Each
partitioning scheme allows different spaces of the heap to be managed by different policies
or algorithms, collected either at the same or at different times. Segregation has been used
to distinguish objects by their expected lifetimes, by their size or in order to improve heap
utilisation. In the final section of this chapter, we consider segregation of objects according
to the rate at which they are mutated .

There is ample evidence that for a wide range of applications young objects are allo
cated and die at very high rates; they are also mutated frequently (for example to initialise
them) [Stefanovic, 1999] . Evacuation is an effective technique for such objects since it al
lows fast bump pointer allocation and needs to copy only live data, little of which is ex
pected. Modern applications require increasingly large heaps and live sets. Long lived
objects tend to have lower mortality and update rates . All these factors are inimical to
tracing collection: its cost is proportional to the volume of live data and it is undesirable
to trace long lived data repeatedly. On the other hand, reference counting is well suited to
such behaviour as its cost is simply proportional to the rate at which objects are mutated.
Blackburn and McKinley [2003] argue that each space, young and old, should be managed
by a policy appropriate to its size, and to the expected lifetimes and mutation rate of the
objects that it contains .

Their ulterior reference counting collector therefore manages young objects by copying
and older ones by reference counting. It allocates young objects into a bounded-size nurs
ery space, using bump pointer allocation. Any young objects that survive a nursery col
lection are copied to a mature space, managed with segregated fits free-lists. The mutator
write barrier is responsible both for managing reference counts of objects in the mature
space and for remembering pointers from that space to young objects. Reference counting
is deferred for operations involving stacks or registers, and the collector coalesces reference
count updates made to other heap objects. Whenever a pointer field of an unlogged object
is updated, the object is logged. Logging records the address of the object and buffers a
decrement for each of the object's referents in the reference counted mature space.5

At garbage collection time, the collector moves surviving young objects into the ref
erence counted world, and reclaims unreachable data in both spaces. It increments the
count of each reference counted child in the mutation log; any targets in the nursery are
marked as live, and added to the nursery collector 's work list. As surviving young objects
are promoted and scavenged, the collector increments the reference counts of their targets .
As with many other implementations of deferred reference counting, the counts of ob
jects directly reachable from the roots are also incremented temporarily during collection.
All the buffered increments are applied before the buffered decrements . Cyclic garbage is
handled using by the Recycler algorithm [Bacon and Rajan, 2001] . However, rather than
invoking it at each collection on all those decremented objects whose count did not reach
zero, Blackburn and McKinley trigger cycle detection only if the available heap space falls
below a user-defined limit.

5 In contrast, the write barrier of Levanoni and Petrank [2001] records a snapshot of the mutated object (see
Chapter S).

158 CHAPTER 1 0. OTHER PARTITIONED SCHEMES

Figure 10.9: Ulterior reference counting schematic: the heap is divided into
a space that is managed by reference counting and one that is not. The
schematic shows whether reference counting operations on pointer loads or
stores should be performed eagerly, deferred or ignored.

Blackburn and McKinley [2003], doi: 1 0 . 1 1 4 5 / 9 4 9 3 0 5 . 9 4 9 3 3 6 .

© 2003 Association for Computing Machinery, Inc. Reprinted by permission.

An abstract view of Ulterior Reference Counting is shown in Figure 10.9: compare this
with standard deferred reference counting shown in Figure 5.1 in Chapter 5 .

10.6 Issues to consider

As we have seen in this chapter, there are several reasons other than age to segregate ob
jects in the heap. We partition the set of objects in the heap so that we can manage different
partitions or spaces under different policies and with different mechanisms: the policies
and mechanisms adopted will be those most appropriate to the properties of the objects
in the space. Partitioning by physical segregation can have a number of benefits including
fast address-based space membership tests, increased locality, selective defragmentation
and reduced management costs.

One of the most common policies is to manage large objects differently from small
objects. Large objects are placed in their own space, which is typically a non-moving space
in order to avoid the cost of copying or compacting these objects. Typically, large objects
are allocated to their own sequence of pages, which are not shared with other objects. It
can be worthwhile distinguishing objects that do not contain pointers (such as bitmaps
representing images) from large arrays of pointers: it is not necessary to trace the former
and, if they are marked in a separate bitmap, it is never necessary for the collector to access
them, thus avoiding page and cache faults.

Partitioning can also be used to allow the heap to be collected incrementally rather
than as a whole. Here, we mean that the collector can choose to collect only a subset of
the spaces in the heap in the same way that generational collectors preferentially collect
only the nursery generation. The benefit is the same: that the collector has a more tightly
bounded amount of work to do in any single cycle and hence that it is less intrusive.

One approach is to partition the graph by its topology or by the way in which the
mutator accesses objects. One reason for doing this is to ensure that large pointer structures
are eventually placed in a single partition that can be collected on its own. Unless this is
done, garbage cyclic structures that span partitions can never be reclaimed by collecting a
single partition on its own. Collectors like the Train algorithm [Hudson and Moss, 1992]
or connectivity-based garbage collection [Hirzel et al, 2003] used the topology of objects.
The Train algorithm collects a small space at a time and relocates survivors into the same
spaces as other objects that refer to them. Connectivity-based collection uses a pointer
analysis to place objects into a directed acyclic graph of partitions, which can be collected in
topological order. Objects can also be places into regions that can be reclaimed in constant

1 0.6. ISSUES TO CONSIDER 159

time, once it is known that all the objects in a region are dead. Placement can either be
done explicitly, as for example by the Real-Time Specification for Java, or automatically
guided by a region inferencing algorithm [Tofte et al, 2004] .

Pointer analyses have also been used to partition objects into heap lets that are never ac
cessed by more than one thread [Steensgaard, 2000; Jones and King, 2005] . These heaplets
can then be collected independently and without stopping other threads. Blackburn and
McKinley [2003] exploit the observation that mutators are likely to modify young objects
more frequently than old ones. Their Ulterior collector thus manages young objects by
copying and old ones by reference counting. High mutation rates do not impose any over
head on copying collection which is also well suited to spaces with high mortality rates .
Reference counting is well suited to very large, stable spaces which would be expensive to
trace.

Another common approach is to divide the heap into spaces and apply a different col
lection policy to each space, chosen dynamically [Lang and Dupont, 1987; Detlefs et al,
2004; Blackburn and McKinley, 2008]. The usual reason for this is to allow the heap to
be defragmented incrementally, thus spreading the cost of defragmentation over several
collection cycles . At each collection, one or more regions are chosen for defragmentation;
typically their survivors are evacuated to another space whereas objects in other spaces
are marked in place. Copying live data space by space also reduces the amount of space
required to accommodate the survivors compared with standard semispace collection. At
the extreme, the Mark-Copy collector [Sachindran and Moss, 2003], designed for collection
in restricted heaps, copies the whole of its old generation in a single collection cycle, but
does so block by block in order to limit the space overhead to a single block. Its succes
sor, MC2 [Sachindran et al, 2004], offers greater incremental ity working to achieve good
utilisation of available memory and CPU resources while also avoiding large or clustered
pauses.

Chapter 11

Run-time interface

The heart of an automatic memory management system is the collector and allocator, their
algorithms and data structures, but these are of little use without suitable means to access
them from a program or if they themselves cannot appropriately access the underlying
platform. Furthermore, some algorithms impose requirements on the programming lan
guage implementation, for example to provide certain information or to enforce particular
invariants. The interfaces between the collector (and allocator) and the rest of the system,
both the language and compiler above and the operating system and libraries beneath, are
the focus of this chapter.

We consider in turn allocating new objects; finding and adjusting pointers in objects,
global areas and stacks; actions when accessing or updating pointers or objects (barriers) ;
synchronisation between mutators and the collector; managing address space; and using
virtual memory.

11.1 Interface to allocation

From the point of view of a programming language, a request for a new object returns
an object that is not only allocated, but also initialised to whatever extent the language
and its implementation require. Different languages span a large range of requirements .
At one end of the spectrum is C, which requires only a freshly allocated cell of storage of
the requested size - the values in that cell are arbitrary and initialising the cell is entirely
the programmer's responsibility. At the other end of the spectrum lie pure functional lan
guages such as Haskell, where at the language level one must provide values for all the
fields of a new object, and it is not possible to perceive an uninitialised object. Languages
more concerned with type safety require proper initialisation of all fields, either by requir
ing the programmer to provide (or assign) values, or by using safe defaults for each type
or through some combination of these techniques.

For our purposes we break allocation and initialisation down into three steps, not all of
which apply in every language or case.

1 . Allocate a cell of the proper size and alignment. This is the job of the allocation
subsystem of the memory manager.

2. System initialisation. By this we mean the initialisation of fields that must be prop
erly set before the object is usable in any way. For example, in object-oriented lan
guages this might include setting the method dispatch vector in the new object. It
generally also includes setting up any header fields required by either the language,

161

162 CHAPTER 1 1 . RUN-TIME INTERFACE

the memory manager or both. For Java objects this might include space for a hash
code or synchronisation information, and for Java arrays we clearly need to record
their length somewhere.

3. Secondary initialisation. By this we mean to set (or update) fields of the new object
after the new object reference has 'escaped' from the allocation subsystem and has
become potentially visible to the rest of the program, other threads and so on.

Consider the three example languages again.

• C: All the work happens in Step 1 ; the language neither requires nor offers any sys
tem or secondary initialisation - the programmer does all the work (or fails to) . No
tice, though, that allocation may include setting up or modifying a header, outside
of the cell returned, used to assist in freeing the object later.

• Java: Steps 1 and 2 together provide an object whose method dispatch vector, hash
code and synchronisation information are initialised, and all fields set to a default
value (typically all zeroes) . For arrays, the length field is also filled in. At this point
the object is type safe but 'blank'. This is what the new bytecode returns. Step 3 in
Java happens in code provided inside a constructor or static initialiser, or even after
wards, to set fields to non-zero values. Even initialisation of f i n a l fields happens in
Step 3, so it can be tricky to ensure that other threads do not see those fields change
if the object is made public too soon.

• Haskell: The programmer provides the constructor with values for all fields of the re
quested object, and the compiler and memory manager together guarantee complete
initialisation before the new object becomes available to the program. That is, every
thing happens in Steps 1 and 2, and Step 3 is disallowed. ML works the same way
for object creation, even though it offers mutable objects as a special case, and Lisp
is likewise biased towards functional creation of objects even though it also supports
mutation.

If a language requires complete initialisation, like Haskell and ML, then there is a bit of a
problem defining the interface to allocation: there is an essentially infinite variety of signa
tures for allocating, depending on the number of fields and their types . The implementers
of Modula-3, which allows functional-style initialisation of new objects but does not re
quire it, solved the problem by passing an initialising closure to the allocation subroutine.
Allocation then acquires the necessary storage and invokes the initialising closure to fill in
the new object. The closure has access to the values to insert and code to copy those val
ues into the object. Given the static scoping of Modula-3, such closures do not themselves
require heap allocation, but only a static chain pointer (reference to the enclosing envi
ronment's variables) - a good thing, since otherwise there might be an infinite regress.
However, if the compiler generates the initialisation code for these languages, whether the
initialisation happens 'inside' the allocation routine or outside does not matter.

The Glasgow Haskell Compiler solves the problem a different way: it inlines all of
Steps 1 and 2, calling the collector if memory is exhausted. It uses sequential allocation so
obtaining the cell is simple, and initialisation proceeds by setting the header word and the
object's fields, whose values were already calculated. This is an example of tight integra
tion of a compiler and a particular approach to allocation (and collection) .

Note that functional initialisation has two strong advantages: i t helps ensure complete
initialisation of objects and, provided that the initialisation code is effectively atomic with
respect to possible garbage collection, it allows the initialising stores to avoid some write

1 1 . 1 . INTERFACE TO ALLOCATION 163

barriers. In particular one can omit generational write barriers in the functional initialisa
tion case because the object being initialised must be younger than any objects to which it
refers. In contrast, this is not generally true in Java constructors [Zee and Rinard, 2002] .

A language-level request for a new object will eventually translate into a call to an
allocation routine, which may sometimes be inlined by a compiler, to accomplish Step 1
and possibly some or all of Step 2. The key property that allocation needs to satisfy is that
Steps 1 and 2 are effectively atomic with respect to other threads and to collection. This
guarantees that no other component of the system will perceive an object that lacks its
system initialisation. However, if we consider the interface to the allocator (Step 1) , there
remains a range of possibilities depending on the division of labour between Steps 1, 2 and
3. Arguments to an allocation request may include:

The size requested, generally in bytes, but possibly in words or some other granule size.
When requesting an array, the interface may present the element size and the number
of elements separately.

An alignment constraint. Typically there is a default alignment and a way to request an
alignment that is more strict. These constraints may consist of only a power of two
indication (word, double-word, quad-word alignment, and so on) or a power of two
and an offset within that modulus (such as aligned on word two of a quad-word) .

The kind of obj ect to allocate. For example, managed run-time languages such as Java
typically distinguish between array and non-array objects . Some systems distinguish
between objects that contain no pointers and ones that may contain pointers [Boehm
and Weiser, 1988]; objects containing executable code may also be special. In short,
any distinction that requires attention by the allocator needs to appear at the inter
face.

The specific type of object to allocate, in the sense of programming language types. This
is different from 'kind' in that it may not of itself be interesting to the allocator.
Rather, the allocator may use it in initialising the object, and so forth. Passing this
value in may simplify making Step 2 atomic (by moving the burden to Step 1) and
may also reduce code size by avoiding one or more extra instructions at each alloca
tion site.

Which of these arguments we need depends somewhat on the language we are support
ing. Furthermore, we may present information somewhat redundantly at the interface to
avoid forcing additional computation at run time. While it is possible to provide a sin
gle rich allocation function that takes many arguments and handles all cases, for speed
and compactness we might provide a number of allocation functions, tailored to different
kinds of object. Considering Java as an example, we might break it down into: scalar ob
jects (non-arrays), arrays of byte /boolean (one-byte elements) , arrays of short /char
(two-byte elements), arrays of int / float (four-byte elements), arrays of references and
arrays of long/double (eight-byte elements) . Beyond this there may be internal things
such as the objects that represent classes, method dispatch tables, method code and so on,
depending on whether they are held in the collected heap. Even if they are not part of the
collected, one still needs an interface to the explicit-free allocator that creates them.

Here are some of the possibilities for the post-condition that the allocator guarantees at
the end of Step 1 if it succeeds.

• The referenced cell has the requested size and alignment - but is not otherwise
prepared for use.

164 CHAPTER 1 1 . RUN-TIME INTERFACE

• Beyond having correct size and alignment, the cell is zeroed. Zeroing helps to guar
antee that the program cannot treat old pointers - or non-pointer bit patterns for
that matter - as valid references. Zero is a good value because it typically repre
sents the null pointer and is otherwise a bland and legal value for most types. Some
languages, such as Java, require zeroing or something similar for their security and
type-safety guarantees. It can also be helpful in debugging a system if non-allocated
memory has a specific non-zero bit pattern, such as Oxdeadbe e f or O x c a f ebabe,
which are values we have actually seen.

• The allocated cell appears to be an object of the requested type. This is a case where
we present the type to the allocator. The difference between this and the weakest
post-condition (the first one in this list) is that the allocator fills in the object header.

• The allocator guarantees a fully type-safe object of the requested type. This involves
both zeroing and filling in the object header. This is not quite the same as a fully
initialised object in that zeroing provides a safe, but bland, default value, while a
program will generally initialise at least one field to a non-default value.

• The allocator guarantees a fully initialised object. This may be less common, since the
interface must provide for passing the initial value(s) . A good example is the cons
function in Lisp, which we might provide a s a separate allocation function because
calls to it are so common and need to be fast and simple from the program's side.

What is the most desirable post-condition? Some aspects, such as zeroing, may be dictated
by the language semantics. Likewise, some may be dictated by the level of concurrency in
the environment and whether and how objects might 'leak' from an allocating thread and
become visible to other threads or the collector. Generally, the more concurrent or leaky
the setting, the stronger the post-condition we need.

What happens if the allocator cannot immediately satisfy the request? In most systems
we want to trigger collection internally and avoid revealing this case to the caller. There is
generally little that a caller can do, and it is wasteful to insert retry loops everywhere the
program tries to allocate an object. 1 However, especially in the presence of inlining, we
might inline the common (successful) case and call a collect-and-retry function out of line.
Of course if we inline Step 1, then there remains little distinction between Steps 1 and 2
- the overall code sequence must be effectively atomic. Later on we discuss handshaking
between mutators and collectors, so as to achieve such atomicity. We note that for purposes
of atomicity it is generally more appropriate to view allocation as a mutator activity.

Speeding allocation

Since many systems and applications tend to allocate at a high rate relative to the rest
of their computation, it is important to tune allocation to be fast. A key technique is to
inline the common case code (the 'fast path') and call out to 'slow path' code that handles
the rarer, more complex cases . Making good choices here requires careful comparative
measurements under suitable workloads.

An apparent virtue of sequential allocation is its simplicity, which leads to a short code
sequence for the common case . This is especially true if the target processor provides
enough registers to dedicate one to hold the bump pointer, and possibly one more to hold
the heap limit. In that case the typical code sequence might be: move the bump pointer to

1 In principle a Java program can catch the exception and try nulling some pointers and restarting a computa
tion, but we are not aware of that strategy in real programs. Besides, Java's soft references are an arguably better
way to do the same thing.

1 1 . 1 . INTERFACE TO ALLOCATION 165

the result register; add-immediate the needed size to the bump pointer; compare the bump
pointer against the limit; conditionally branch to a slow path call. Notice that putting the
bump pointer into a register assumes per-thread sequential allocation areas. Some ML
and Haskell implementations further combine multiple allocations in a straight line (basic
block) of code into one larger allocation, resulting in just one limit test and branch. The
same technique can work for code sequences that are single-entry but multiple-exit by
allocating the maximum required along any of the paths, or at least using that as the basis
for one limit test on entry to the code sequence.

It might seem that sequential allocation is necessarily faster than free-list techniques,
but segregated fits can also be quite efficient if partially inlined and optimised . If we know
the desired size class statically, and we keep the base pointer to the array of free-list point
ers in a dedicated register, the sequence is: load the desired list pointer; compare it with
zero; branch if zero to a slow path call; load the next pointer; store the next pointer back
to the list head. In a multithreaded system the last step may need to be atomic, say a
C ompa reAndSwap with branch back to retry on failure, or we can provide each thread
with a separate collection of free-list heads.

Zeroing

Some system designs require that free space contain a distinguished value, often zero, for
safety, or perhaps some other value (generally for debugging) . Systems offering a weak
allocation guarantee, such as C, may not do this, or may do it only as an option for debug
ging. Systems with a strong guarantee, such as functional languages with complete initial
isation, do not need zeroing - though optionally setting free space to a special value may
aid in system debugging. Java is the typical example of a language that requires zeroing.

How and when might a system zero memory? We could zero each object as we allocate
it, but experience suggests that bulk zeroing is more efficient. Also, zeroing with explicit
memory writes at that time may cause a number of cache misses, and on some architec
tures, reads may block until the zeroing writes drain from a hardware write buffer I store
queue. Some ML implementations, and also Sun's HotSpot Java virtual machine, prefetch
ahead of the (optimised) bump pointer precisely to try to hide the latency of fetching newly
allocated words into the cache [Appel, 1994; Gonc;alves and Appel, 1995] . Modern proces
sors may also detect this pattern and perform the prefetching in hardware. Diwan et al
[1994] found that write-allocate caches that can allocate on a per-word basis offered the
best performance, but these do not seem to be common in practice.

From the standpoint of writing an allocator, it is often best to zero whole chunks using
a call to a library routine such as b z e ro . These routines are typically well optimised for
the target system, and may even use special instructions that zero directly in the cache
without fetching from memory, such as dcbz (Data Cache Block Zero) on the PowerPC.
Notice that direct use of such instructions may be tricky since the cache line size is a model
specific parameter. In any case, a system is likely to obtain best performance if it zeroes
large chunks that are power-of-two aligned.

Another technique is to use demand-zero pages in virtual memory. While these are
fine for start up, the overhead of the calls to remap freed pages that we are going to reuse,
and of the traps to obtain freshly zeroed real memory from the operating system, may be
higher than zeroing pages ourselves . In any case, we should probably remap pages in bulk
if we are going to use this technique, to amortise some of the cost of the call.

Another question is when to zero . We might zero immediately after collection. This has
the obvious disadvantage of lengthening the collection pause, and the less obvious disad
vantage of dirtying memory long before it will be used. Such freshly zeroed words will
likely be flushed from the cache, causing write-backs, and then will need to be reloaded

166 CHAPTER 1 1 . RUN-TIME INTERFACE

during allocation. Anecdotal experience suggests the best time to zero from the standpoint
of performance is somewhat ahead of the allocator, so that the processor has time to fetch
the words into the cache before the allocator reads or writes them, but not so far ahead
of the allocator that the zeroed words are likely to be flushed. Given modern cache miss
times, it is not clear that the prefetching technique that Appel described will work; at least
it may need tuning to determine the proper distance ahead of the allocator that we should
prefetch. For purposes of debugging, zeroing or writing a special value into memory should
be done as soon as we free cells, to maximise the range of time during which we will catch
errors.

11.2 Finding pointers

Collectors need to find pointers in order to determine reachability. Some algorithmic tactics
require precise knowledge of pointers. In particular, safely moving an object at location x
to a new location x' and reusing its original cell requires us to update all pointers to x
to refer to x' . However, safely reclaiming an object demands certainty that the program
will no longer use it, but the converse is not true: it is safe to retain an object that the
program will never use again, although it is space-inefficient (which admittedly could
cause a program to fail for lack of available heap) . Thus a collector can estimate references
to non-moving objects, as long as its estimates are conservative - it may only over-estimate
the references to an object, not under-estimate them. Reference counting without cycle
collection is conservative, but another way conservatism arises in some schemes is because
they lack precise knowledge of pointers. Thus they may treat a non-pointer value as if
it is a pointer, particularly if it appears to refer to an allocated object. We consider first
techniques for conservative pointer finding, and then ones for accurately finding pointers
in various locations .

Conservative pointer finding

The foundational technique for conservative pointer finding is to treat each contiguous
pointer-sized and aligned sequence of bytes as a possible pointer value, called an ambigu
ous pointer. Since the collector knows what memory regions compose the heap, and even
which parts of those regions are allocated, it can discriminate possible pointers from val
ues that cannot be pointers. For speed the collector 's algorithm for testing a pointer value's
'pointer-ness' needs to be efficient. A typical approach works in two steps. First it filters
out values that do not refer to any heap area in memory. It might do this with a range
test if the heap is one contiguous area, or by taking the value's upper bits, obtaining a
chunk number and looking in a table of heap chunks. The second step is to see if the ref
erenced storage in the heap is actually allocated . It might check that by consulting a bit
table of allocated words. For example, the Boehm-Demers-Weiser conservative collector
[Boehm and Weiser, 1988] works in terms of blocks, with each block dedicated to cells of
a particular size. A block has associated metadata giving the cell size, and also a bitmap
indicating allocated versus free cells. After doing a range check using the heap bounds,
this algorithm next checks to see of the referenced block is allocated at all, and if the block
is allocated it checks whether the particular object is allocated. Only then will it set a mark
bit in its marking phase. The whole process, illustrated in Figure 1 1 . 1 , has a typical path
length of about 30 RISC instructions.

Some languages require that pointers refer to the first word of their referent object, or
some standard offset into the object, such as after some header words (see Figure 7.2) . This
allows a conservative collector to ignore possible interior pointer values as opposed to

FINDING POINTERS

V1

�] �I
1-0 co

GC_top_index

bottom_index

hashlink

struct hblkhdr
hb_size
hb_next
hb_map

hb_ma rks

GC_obj_map

' ' ' '
: : ' ' ' '

: ����--��0�--�--��
-_: ' ' ' '

: : ' ' ' ' ' ' ' ' ' '

To determine whether a value p is a pointer to an allocated object:

1. Does p point between the lowest and highest plausible heap ad
dresses?

2. Use high order bits of p as an index into the first-level table to
obtain the second-level table. In a 64-bit address space, the top
level table is a chained hash table rather than an array.

3. Use middle order bits of p as an index into the second-level table
to get the block header.

4. Is the offset of the supposed object a multiple of hb_s i z e from the
start of the block?

5. Consult the object map for blocks of this size; has the slot corre
sponding to this object in this block been allocated?

Figure 11.1: Conservative pointer finding. The two-level search tree, block
header and map of allocated blocks in the Boehm-Demers-Weiser conserva
tive collector.

Jones [1996] . Reprinted by permission.

167

1 68 CHAPTER 1 1 . RUN-TIME INTERFACE

their canonical reference pointer. It is fairly easy to build conservative pointer finding al
gorithms in both cases; the Boehm-Demers-Weiser collector can be configured either way.2

One caution concerning conservative collection for C is that it is legal for an 'interior ' ref
erence to an array to point one element beyond the end of the array. Therefore, conservative
collectors for C may need to retain two objects in that case, or else over-allocate arrays by
one word to avoid possible ambiguity. An explicit-free system may interpose a header be
tween objects, which also solves the problem. In the presence of compiler optimisations,
pointers may be even further 'mangled'; see page 183 for a discussion of this topic.

Since a non-pointer bit pattern may cause the collector to retain an object that is in fact
not reachable, Boehm [1993] devised a mechanism called black-listing, which tries to avoid
using regions of virtual address space as heap when their addresses correspond to these
kinds of non-pointer values. In particular, if the collector encounters a possible pointer
that refers to memory in a non-allocated block, it black-lists the block, meaning it will
not allocate the block. Were it to allocate the block (and an object at that address), future
traces would mistakenly recognise the false pointer as a true pointer. The collector also
supports blocks used for strictly non-pointer objects, such as bitmaps. Distinguishing this
data not only speeds the collector (since it does not need to scan the contents of these ob
jects), but it also prevents excessive black-listing that can result from the bit patterns of
the non-pointer data. The collector further refines its black-listing by discriminating be
tween invalid pointers that may be interior, and those that cannot be interior, because they
are from the heap in the configuration that disallows heap-stored interior pointers. In the
possibly-interior case, the referenced block is black-listed from any use, while in the other
case the collector allows the block to be used for small non-pointer objects (this cannot
cause much waste) . To initialise the black-list, the collector does a collection immediately
before the first heap allocation. It also avoids using blocks whose address ends in many
zeroes, since non-pointer data in the stack often results in such values .

Accurate pointer finding using tagged values

Some systems, particularly ones based more on dynamic typing, include a tag with each
value that indicates its type. There are two basic approaches to tagging: bit stealing and
big bags of pages . Bit stealing reserves one or more bits, generally at the low or high end of
each word, and lays out objects that can contain pointers in a word-oriented fashion. For
example, on a byte-addressed machine with a word size of four bytes, we might steal two
bits for tags. We force objects to start on a word boundary, so pointers always have their
low two bits zero. We choose some other value(s) to indicate (say) integers . Supposing
that we give integers word values with a low bit of one, we end up with 31-bit integers
- bit-stealing in this way does reduce the range of numbers we can represent easily. We
might use a pattern of 1 0 in the low bits to indicate the start of an object in the heap, for
parsability (Section 7.6) . Table 1 1 . 1 illustrates the sample tag encoding, which is similar to
one used in actual Smalltalk implementations.

Dealing with tagged integers efficiently is a bit of a challenge, though arguably the
common case on modem pipelined processors might not be that bad - one cache miss
might swamp it. Still, in order to support dynamically typed language implementations
that use tagged integers, the SPARC architecture includes instructions for adding and sub
tracting tagged integers. These instructions indicate overflow, and there are versions that
trap as well, on overflow of the operation or if either operand's two lowest bits are not
zero. For this architecture we might use the tag encoding shown in Table 1 1 .2 . This encod
ing does require that we adjust references made from pointers, though in most cases that

2 In either case it allows interior pointers, but in the more restrictive case it requires that any reachable object
have a reachable pointer that is not interior. Thus in that configuration it ignores interior pointers when marking.

1 1 .2. FINDING POINTERS 169

I Tag I Encoded value I
0 0 Pointer
1 0 Object header
x1 Integer

Table 11.1: An example of pointer tag encoding

I Tag I Encoded value

0 0 Integer
0 1 Pointer
1 0 Other Primitive Value
1 1 Object header

Table 11.2: Tag encoding for the SPARC architecture

adjustment can be included in an offset field of a load or store instruction. The exception
is in dealing with accesses to arrays, which then require the pointer to the array, the offset
computed from the index and this additional adjustment. Still, given the hardware sup
port for arithmetic on tagged integers, it seemed a reasonable trade-off. This encoding was
previously used with the Motorola MC68000, which has a load instruction that adds an
immediate constant, a base register and another register, all to form the effective address,
so on the MC68000 there was no big penalty to using the encoding.

The big bag of pages approach to tagging associates the tag/ type information with an
entire block. This association is therefore typically dynamic and involves a table lookup.
The need for memory references is a disadvantage, but the corresponding advantage is that
numeric and other primitive values have their full native length. This tagging approach
dedicates whole blocks to hold integers, other blocks to floating point numbers, and so on.
Since these are pure values and do not change,3 when allocating new ones we might use
hashing to avoid making new copies of the values already in the table. This technique,
also called hash cons'ing (from the Lisp cons function for allocating new pairs) is quite
venerable [Ershov, 1958; Goto, 1974] . In hash consing Lisp pairs, the allocator maintains
a hash table of immutable pairs and can avoid allocating a new pair if the requested pair
is already in the table. This extends in the obvious way to any immutable heap-allocated
objects, such as those of class I n t eger in Java. Notice that this is a case where it might be
good to use weak references (Section 12.2) from the hash table to the objects it contains.

Accurate pointer finding in obj ects

Assuming we are not using tagged values, finding pointers in objects generally requires
knowing each object's type - at least in the sense of which fields of the object are point
ers . In object-oriented languages, that is, those with dynamic method dispatch, where the
actual run-time type of an object is not entirely determined by the type of the referring
pointer variable or slot, we need type information associated with the particular object.
Systems usually accomplish this by adding a header to each object that includes type in
formation. Since object-oriented languages generally have a method dispatch vector for
each type, and they generally store a pointer to that vector in the header of each object of
that type, they typically store information about the type in, or pointed to by, the dispatch

3This is a property of the representational approach, not of the language: in using this form of tagging the
designer made a choice to represent integers (floats, and so on) as tagged pointers to their full (untagged) values.

1 70 CHAPTER 1 1 . RUN-TIME INTERFACE

vector. Thus the collector, or any other part of the run-time that uses type information
(such as the reflection mechanism in Java), can find the type information quite readily.
What the collector needs is a table that indicates where pointer fields lie in objects of the
given type. Two typical organisations are a bit vector, similar to a bit table of mark bits, and
a vector of offsets of pointer fields. Huang et al [2004] used a vector of offsets to particular
advantage by permuting the order of the entries to obtain different tracing orders, and thus
different orders of objects in a copying collector, improving cache performance. With care,
they did this while the system was running (in a stop-the-world collector) .

A way to identify pointers in objects that is simpler in some respects than using a table
is to partition the pointer and non-pointer data. This is straightforward for some languages
and system designs4 but problematic for others. For example, in ML objects can be poly
morphic. If the system generates a single piece of code for all polymorphic versions, and
the objects need to use the same field for a pointer in some cases and a non-pointer in oth
ers, then segregation fails. In object-oriented systems that desire to apply superclass code
to subclass objects, fields added in subclasses need to come after those of superclasses,
again leading to mixing of pointer and non-pointer fields. One way around that is to place
pointer fields in one direction from the reference point in the object (say at negative offsets)
and non-pointer fields in the other direction (positive offsets), which has been called bidi
rectional object layout. On byte-addressed machines with word-aligned objects, the system
can maintain heap parsability by insuring that the first header word has its low bit set -
preceding words contain pointers, whose two low bits will always be zero (see US Patent
5,900,001) . In practice the tabular approach does not seem to be a problem, and as Huang
et al [2004] showed, it can actually be advantageous.

Some systems actually generate object-oriented style methods for tracing, copying and
so on [Thomas, 1993; Thomas and Jones, 1994; Thomas, 1995a,b] . One can view the ta
ble approach as being like an interpreter and the method approach as the corresponding
compiled code strategy. An interesting idea in Thomas's line of work is the system's ability,
when copying a closure, to create a tailored version of the closure's environment that omits
elements of the environment that the particular function does not use. This saves space in
copied environment objects, and perhaps more significantly, avoids copying unused parts
of the environment. Cheadle et al [2004] also developed collection code specialised for
each type of closure . Bartlett [1989a] applied the idea of methods for collection to C++ by
requiring the user to write a pointer-enumerating method for each collected C++ class.

A managed language can use object-oriented indirect function calls in other ways re
lated to collection. In particular, Cheadle et al [2008] dynamically change an object's func
tion pointer so as to offer a self-erasing read barrier in a copying collector, similar to the
approach Cheadle et al [2000] used for the Glasgow Haskell Compiler (GHC). That system
also used a version of stack barriers, implemented in a similar way, and it used the same
trick again to provide a generational write barrier when updating thunks. A fine point of
systems that update closure environments is that since they can shrink an existing object,
in order to maintain heap parsability they may need to insert a 'fake' object in the heap
after the one that shrank. Conversely, they may also need to expand an object: here the
old version is overwritten with an indirection node, holding a reference to the new ver
sion. Later collections can short-circuit the indirection node. Collectors can also perform
other computation on behalf of the mutator such as eager evaluation of applications of
'well-known' functions to arguments already partially evaluated: a common example is
the function that returns the head of a list.

4Bartlett [1989b] takes this approach for a Scheme implementation done by translating to C, and Cheadle et a/
[2000] take this approach in Non-Stop Haskell.

1 1 .2. FINDING POINTERS 171

In principle, statically typed languages can avoid object headers and save space. Appel
[1989b] and Goldberg [1991] explain how to do this for ML, starting from type information
provided only for roots (we have to start some place) . Later, Goldberg and Gloger [1992]
observe that this might require full type inference during collection, depending on how
the program uses polymorphic types; see also [Goldberg, 1992] .

Accurate pointer finding in global roots

Finding pointers in global roots is relatively easy by applying almost any of the techniques
mentioned for finding pointers in objects. Languages differ primarily in whether the set
of global roots is entirely static or whether it can grow dynamically. Such dynamic growth
can result from dynamic code loading. Some systems start with a base collection of ob
jects. For example, Smalltalk, and some Lisp and some Java systems start with a base
system 'image', also called the boot image, that includes a number of classes/functions
and instances, particularly if they start with an interactive programming environment. A
running program might modify parts of the system image - usually tables of one kind
of another - causing image objects to refer to newer objects. A system might therefore
treat pointer fields in the image as roots. Notice, though, that image objects can become
garbage, so it may be a good idea sometimes to trace through the image to find what re
mains actually reachable. This is all tied into whether we are using generational collection,
in which case we may treat the image as a particularly old generation.

Accurate pointer finding in stacks and registers

One way to deal with call stacks is to heap allocate activation records, as advocated by Ap
pel [1987], for example. See also [Appel and Shao, 1994, 1996] and a counter-argument by
Miller and Rozas [1994] . Some language implementations manage to make stack frames
look like heap objects and thus kill two birds with one stone. Examples include the Glas
gow Haskell Compiler [Cheadle et al, 2000] and Non-Stop Haskell [Cheadle et al, 2004] .
It is also possible to give the collector specific guidance about the contents of the stack,
for example as Henderson [2002] does with custom-generated C code for implementing
the Mercury language, and which Baker et al [2009] improved upon for a real-time Java
implementation.

However, most languages give stack frames special treatment because of the need for
a variety of efficiencies in order to obtain best performance. There are three issues we
consider:

1 . Finding frames (activation records) within the stack.

2. Finding pointers within each frame.

3. Dealing with conventions concerning passing as arguments, returning, saving and
restoring values in registers.

In most systems it is not just the collector that needs to find frames in the stack. Mecha
nisms such as exception handling and continuations may need to 'parse' the stack, not to
mention the tremendous value of stack examination in debugging and its requirement in
some systems, such as Small talk. Of course the view given to the programmer may be one
very cleaned up from the typically more optimised and 'raw' layout in the actual frames.
Because stack parsing is generally useful, frame layout conventions generally provide for
it. For example, many designs include a dynam ic chain field in each frame, which points

172 CHAPTER 1 1 . RUN-TIME INTERFACE

to the previous frame. Various other fields generally lie at fixed offsets from the refer
ence point of the frame (the address to which the frame pointer or dynamic chain refers) .
These might include the return address, the static chain and so on. Systems also generally
provide a map to determine from a return address the function within which the address
lies . In non-collected systems this might occur only in debugger symbol tables, but many
managed systems access this table from the program, so it may be part of the loaded or
generated information about code, rather than just in auxiliary debugger tables.

To find pointers within a frame, a system might explicitly add stack map information
to each frame to help the collector. This metadata might consist of a bitmap indicating
which frame fields contain pointers, or the system might partition a frame into pointer
containing and non-pointer portions, with metadata giving the size of each. Notice that
there are likely to be some initial instructions of each function during which the new frame
exists but is not yet entirely initialised. Collecting during this time might be problematic;
see our later discussion of garbage collection safe points and mutator handshaking in Sec
tion 1 1 .6. Alternatively we might get by with careful collector analysis of the initial code
sequence, with careful use of pu s h instructions on a machine that supports them or some
other custom-designed approach. Obviously frame scanning is simpler if the compiler
uses any given frame field always as a pointer or always as a non-pointer. That way the
whole function needs only one map .

However, the single-map approach is not always possible. For example, at least two
language features make it difficult:

• Generic/polymorphic functions.

• The Java Virtual Machine j s r instruction.

We previously observed that a polymorphic function may use the same code for pointer
and non-pointer arguments. Since a straightforward stack map cannot distinguish the
cases, the system needs some additional source of information. Fortunately the caller
'knows' more about the specific call, but it too may be a polymorphic function. So the
caller may need to 'pass the buck' to its caller. However, this is guaranteed to bottom out,
at the main function invocation in the worst case. The situation is analogous to typing
objects from roots [Appel, 1989b; Goldberg, 1991 ; Goldberg and Gloger, 1992] .

In the Java Virtual Machine, the j s r instruction performs a local call, which does not
create a new frame but rather has access to the same local variables as the caller. It was
designed to be used to implement the try-finally feature of the Java language, using a
single piece of code to implement the finally block by calling it using j s r in both the
normal and the exceptional case. The problem is that during the j s r call, some local vari
ables' types are ambiguous, in the sense that, depending on which j s r called the finally
block, a particular variable, not used in the finally block but used later, might contain
a pointer from one call site and a non-pointer from another. There are two solution ap
proaches to this problem. One is to refer these cases to the calling site for disambiguation.
In this approach rather than have each stack map entry be just 'pointer ' or 'non-pointer '
(that is, a single bit), we need an additional case that means 'refer to j s r caller' . In addition
we need to be able to find the j s r return address, which requires some analysis of the Java
bytecode to track where it stored that value. An alternative, more popular in modern sys
tems, is to transform the bytecode, or dynamically compile code, simply to duplicate the
finally block. Whilst in pathological cases that might cause exponential blowup in code
size, it substantially simplifies this part of the system. Anecdotal evidence suggests that
generating Java stack maps for dynamically compiled code has been a significant source
of subtle bugs, so managing system complexity here may be important. We note that some
systems defer generating a stack map until the collector needs it, saving space and time in
the normal case but perhaps increasing collector pause time.

1 1 .2. FINDING POINTERS 173

Another reason that a system might choose not to use a single map per frame is that it
further restricts the register allocator: it must use a given register consistently as a pointer
or non-pointer. This is particularly undesirable on machines that have few registers in the
first place.

Notice that whether we have one map per function, or different ones for different parts
of a function, the compiler must propagate type information far through the back end. This
may not be overly difficult if we understand the requirement before we write the compiler,
but revising existing compilers to do it can be quite difficult.

Finding pointers in registers. To this point we have ignored the issue of pointers in ma
chine registers . There are several reasons why handling registers is more difficult than
dealing with stack contents.

• As we pointed out previously, even if each stack frame field is fixed as a pointer or a
non-pointer for a whole function, it is less convenient to impose that rule on registers
- or to be even further restrictive and require that pointers, and only pointers, reside
in a particular subset of the registers . It is probably practical only on machines that
provide a large number of registers . Thus most systems will have more than one
register map per function.

• Even when guaranteeing that no pointer stored in a global root, heap object or local
variable is an interior (page 182) or derived (page 183) pointer, efficient local code
sequences may result in a register holding such an 'untidy' pointer.

• Calling conventions often provide that some registers follow a caller-save protocol,
in which the caller must save and restore a register if it wants the value to survive
across a call, and that some other registers follow a callee-save protocol, in which the
callee must save and restore a register, on behalf of callers deeper in the stack, before
the callee can use the register. Caller-save registers are not a problem since the caller
knows what kind of value is in them, but callee-save registers have contents known
only to some caller up the stack (if any) . Thus a callee cannot indicate in a register
map whether or not an unsaved callee-save register contains a pointer. Likewise, if a
callee saves a callee-save register to a frame field, the callee cannot say whether that
field contains a pointer.

A number of systems require a callee-save stack unwinding mechanism as a matter of
course, in order to reconstruct the frame structure of the stack and call chain, especially for
systems that do not designate a 'previous frame' register and the like.

We now introduce an approach to the callee-save registers problem. First, we add meta
data that indicates for each function which callee-save registers it saves, and where in its
frame it saves them. We assume the more common design where a function saves in one
go, near the beginning of the function, all callee-save registers that it will use. If the com
piler is more sophisticated and this information varies from place to place within a func
tion, then the compiler will need to emit per-location callee-save information.

Starting with the top frame, we reconstruct the register state for each frame by 'unsav
ing' a callee's saved callee-save registers to obtain the register state of the caller at the point
of call. As we go, we record which registers we 'unsaved' and the value that the callee had
in them, for use as we come back up the stack. When we reach the base of the stack, we
can ignore any saved callee-save register contents since there is no caller. Therefore, for
that frame we can produce any pointers for the collector, and allow it to update them.

As we walk back up the stack, we re-save the callee-save registers. Notice that if the
collector updated a pointer, then this will update the saved value appropriately. We get

174 CHAPTER 1 1 . RUN-TIME INTERFACE

from our side memory the value that the callee had in the register. Once we have done
this for all callee-save registers saved by the callee, we produce pointers for the callee, and
allow the collector to update them as necessary. However, we should skip any registers
whose contents we processed in the caller, to avoid processing them a second time. In
some collectors, processing the same root more than once is not harmful; mark-sweep is
an example since marking twice is not a problem. However, in a copying collector it is
natural to assume that any unforwarded referent is in fromspace. If the collector processes
the same root twice (not two different roots referring to the same object) then it would
make an extra copy of the tospace copy of the object, which would be bad.

We offer details of this process in Algorithm 1 1 . 1 , and now proceed to describe the
example illustrated in Figure 11 .2. In the algorithm, June is the function applied to each
frame slot and register, for example the body of the for each loop in markF romRoot s
of Algorithm 2.2 (Mark-Sweep, Mark-Compact) or the body of the root scanning loop in
c o l lect of Algorithm 4.2 (Copying) .

Considering Figure 1 1 .2a, notice first the call stack, which appears shaded on the right.
The sequence of actions leading to that stack is as follows.

1. Execution begins at ma in with rl containing 155 and r2 containing 784. Whatever
effectively called m a i n is outside the scope of the collected system, so it cannot refer
to heap allocated objects and those register contents therefore cannot be references.
Likewise we are not interested in the return address old i P . As it executed, ma i n saved
rl in slot 1 and set local 2 to refer to object p and local 3 to hold 75 . It then called f
with rl containing p, r2 containing 784 and a return address of m a i n + 52.

2. Function f saved the return address, saved r2 in slot 1 and rl in slot 2, and set local 3
to -13 and local 4 to refer to object q . It then called g with rl containing a reference to
object r, r2 holding 17 and a return address of f + 178.

3. Function g saved the return address, saved r2 in slot 1, and set local 2 to refer to
object r, local 3 to hold -7 and local 4 to refer to object s.

The register contents above each frame's box indicate the values as execution entered the
function in question, and the contents below the frame's box the values when that frame
suspended execution. These are the values that our unwinding procedure should attempt
to recover.

We now assume that a garbage collection occurs in the middle of g .

4. Garbage collection occurs at location g + 36 in g, when register rl contains a reference
to object r and r2 a reference to object t. One can think of the IP and register values as
being stored in a suspended thread data structure or perhaps in an actual frame for
the garbage collection routine.

At some point garbage collection calls proce s s s t a c k on this thread stack, with func
being the copy function of a copying collector. This is the most interesting case, since a
copying collector will generally update object references because the target object moved.
The boxes to the left in Figure 11 .2a show the values of Regs and Re s t o r e as we proceed
to examine the frames in the order g, f, ma in . We show numbered snapshots of Re s t o r e
and Regs on the left in the figure, labelled with the numbers corresponding to these com
ments:

5 . Here proce s s st ack has retrieved registers from the thread state into Reg s and
initialised Re st o re . Execution is at line 15 in Algorithm 11 . 1 for the frame for g.

1 1 .2. FINDING POINTERS 175

Algorithm 11.1: Callee-save stack walking

1 proce s s St ack (thre ad, June) :
Reg s +- getReg i s t e r s (thre ad)
Done +- empt y
Top +- t opFrame (t hread)
p r o c e s s F rame (Top, Regs , Done, June)

I* register contents thread would see *f
I* no regis ters processed yet *I

s e t Regi s t e r s (t h read, Reg s) I* get corrected register contents back to thread *f

8 p r o ce s sF rame (Frame, Regs , Don e, June) :
I P +- get i P (F rame)

w C a l l e r +- get C a l l e rF rame (F r ame)
I I

1 2 if C a l l e r =/=- null

I* current instruction pointer (IP) *I

13 Re store +- empt y I* holds info to restore after doing caller *f
1 4

15

16

17

1 8

1 9
20

21

22

23

24

I* Update Regs to Caller's view at point of call *f
for each (reg,s lot) in c a l leeSavedRegs (I P)

add(Re s t o re, (reg, Reg s [reg]))
Regs [reg] +- get S l o t C on t ent s (F r ame, s l ot)

proce s s F rame (C a l l e r, Regs , Done, June)

I* Write updated saved callee-save register value back to slots *f
for each (reg, s l ot) in c a l leeSavedRegs (I P)

set S lot Content s (F rame, s l ot , Reg s [reg])

25 I* Update Regs to our view, adjusting Done *I
26 for each (reg, value) in Restore
21 Regs [reg] +- value
28 remove (Done, reg)
29

30 I* process our frame's pointer slots *f
D for each s l ot in point e r S lot s (I P)
32 func(get S l otAddre s s (F rame, s l ot))
33
34 I* process our frame's pointers in registers *f
� for each reg in point e rRe g s (I P)
• if reg � Done
37 June(getAddre s s (Regs [reg]))
38 add(Done , reg)

6. Here we have updated Regs , and saved information into Res t o re for later use.
Execution is at line 19 for g's frame. Since g had saved r2 into slot 1 , the proper value
for f to see is 17. We save into Res t o re the fact that g's view of r2 should be t, when
we get back to handling g after the recursive call of processFrame . We show the
pairs returned by c a l leeSavedReg s for g's IP value in a box to the left of g's frame.

7. Execution is at line 19 for f's frame. We 'un-saved' both r1 and r2 in this case, from
slots 2 and 1 respectively.

176

•

•

•

I Restore I Regs
rl = p
r2 = 784

cal leeSaved Regs

@ main+52

Restore Regs
(r1, r) r1 = p
(r2, 17) r2 = 784

cal leeSavedRegs
(r1, 2), (r2, 1)

@ f+178

Restore Regs
(r2, t) rl = r

r2 = 17

cal leeSavedRegs
(r2, 1)

@ g+36

Regs
r1 = r
r2 = t

CHAPTER 1 1 . RUN-TIME INTERFACE

r1 = 1 55

r2 = 784

main()
old IP: . . .
saved :

1: 155
loca ls:

2 : p
3: 75

r1 = p
r2 = 784

f()
old IP : main+52
saved:

1 : 784
2: p

loca ls :
3 : -13
4: q

r1 = r

r2 = 1 7

cO
old IP : f+l78
saved:

1 : 17
loca ls:

2: r
3 : -7
4: s

r1 = r

r2 = t

GC happens

•

I P = g+36 •
rl = r
r2 = t

(a) Stack scanning: walking from the top

Figure 11.2: Stack scanning

8. Execution is at line 19 for ma in 's frame. Here we assume that C a l l e r is null, so we
do not 'un-save' any callee-saved registers - they cannot contain pointers since their
values come from outside the managed universe.

Having reconstructed the register contents that held just as ma in called f, we can proceed
to process the frame and registers for m a i n, and likewise handle f and g. Turning to Fig
ure 11 .2b, we illustrate two states for each frame: first the state at line 35 of Algorithm 1 1 . 1
and then the state after line 38. The frames themselves show the state a t line 35. Those
values that are written, though their value is not necessarily changed, are in boldface; those
not written are grey.

9. Regs holds the register values at the point ma in called f; as yet, Done is empty.

1 1 .2. FINDING POINTERS

ca l leeSavedRegs

@ main+S2

Restore
(r1, r)
(r2, 17)

ca l leeSavedRegs
(r1, 2), (r2, 1)

@ f+178

Restore
(r2, t)

cal leeSavedRegs
(r2, 1)

@ g+36

r1 = 155

r2 = 784

main()
old IP : . . .
saved:

1 : 155
locals :

2 : p'
3 : 75

1 = p

r1 = 1 55

r2 = 784

r1 = p ' r

r 4 2 = 784 � r2 = 78

f()
old IP: main+52
saved:

1 : 784
2: p'

loca ls :
3 : -13
4: q'

1 = r r

r 2 = 1 7

g()
o ld IP : f+178
saved :

1 : 17
locals:

2 : r'
3 : -7
4: s'

1 = r r

r 2 = t

rl = r'

r2 = 1 7

rl = r'

r2 = t'

GC happens
IP = g+36
r1 = r'
r2 = t'

•

Regs LJ r1 = p
r2 = 784

pointerSiots: 2
pointerRegs: r1
@ main+52

Regs L:J r1 = p'
r2 = 784

1

Regs LJ r1 = r
r2 = 17

pointerSiots: 2, 4
pointerRegs: r1
@ f+178

Regs L:J r1 = r'
r2 = 17

1

Regs L:J r1 = r'
r2 = t

pointerSiots : 2, 4
pointerRegs: r1, r2
@ g+36

Regs L[J r1 = r'
r2 = t'

(b) Stack scanning: walking back to the top

Figure 11.2 (continued): Stack scanning

177

•

•

•

•

•

10. Register rl was updated by June (because rl is in point e rRegs for ma in + 52) . Done
indicates that rl refers to a (possibly) new location of its referent object.

1 1 . Regs holds the register values at the point where f called g. Notice that the values of
rl and r2 are saved into slots 2 and 1 of f's frame and their values in Reg s have been
set from Re s t o re .

12 . Register rl was updated by June and added to D one.

13 . Regs holds the register values at the point garbage collection occurred in g. Specifi
cally, the value in r2 is saved into slot 1 of g's frame and its value in Regs has been set
from Re s t o re . Since rl has not been set from Re store, rl remains listed in Done .

178 CHAPTER 1 1 . RUN-TIME INTERFACE

Algorithm 11.2: Stack walking for non-modifying.fimc

p roce s s S t a c k (t hread, June) :
Top +--- t opF rame (thread)
proce s s F r ame (Top, June)
Regs +--- g e t Regi s t e r s (t hread)
for each reg in po i n t e rRegs (I P)

June(g e tAddre s s (Re g s [reg]))

8 p roce s s F r ame (F rame, June) :
Done +--- empty

w loop
1 1 IP +--- g e t i P (Frame)
1 2

1 3 I* process our frame's pointer slots 4

I* register contents thread would see 4
I* trace from registers at GC point 4

I* current instruction pointer (IP) 4

1 4 for each s lot in p o i nterS l o t s (I P)
15 func (get SlotAdd r e s s (Frame, s l ot))
1 6

1 7 I* process our frame's pointers in regis ters *I
1 8 for each reg in p o i nterReg s (I P)
� if reg � Done
20 June(getAddr e s s (Regs [r eg]))
21 a dd(Done, r e g)
22

23

24

25

26

Cal l e r +--- getC a l l e rF rame (F r ame)
if C a l l e r = null

return

2 7 I* Update Regs to Caller's view at point of call *I
2s for each (reg, s l o t) in cal l e e S avedRegs (I P)
2• Re g s [reg] +--- get S l otCont e n t s (Frame, s l o t)
3o r emove (Done, r e g)
3 1

3 2 Frame +--- Cal l e r

14. Register r 1 was skipped (because it was i n Done), but r 2 was updated b y June and
added to Done

Finally, in step 15 p r o ce s s St a c k stores the values in Regs back to the thread state.

Variations on Algorithm 11.1. There are a number of reasonable variations on Algo
rithm 11 . 1 . Here are some of particular interest:

• If June will not update its argument then one can omit the Done data structure, the
statements that update it, and the conditional test on line 36, invoking June uncon
ditionally on line 37. This simplification applies for non-moving collectors and non
moving phases of moving collectors. It also applies if a moving collector 's imple
mentation of June works correctly if invoked on the same slot more than once.

• Rather than calling func late in proce s s F r ame, one can move the two for loops
at the end upwards, inserting them after line 9. If combined with variation one, the

1 1 .2. FINDING POINTERS 179

Algorithm 11.3: No callee-save stack walking

1 proce s s St a ck (thread, June) :
Top +--- t opF rame (t h r e ad)
proce s s F r ame (Top, June)
Regs +--- getRegi s t e r s (thread)
for each reg in p o i n t e rRegs (I P)

/* regis ter contents thread would see */
/* trace from registers at GC point */

June(getAddres s (Regs [reg]))
s etRegi s t e r s (thread, Regs) I* get corrected reg contents back t o thread */

9 proce s s F rame (F rame, June) :
w repeat
u I P +--- get iP (F rame)
u for each s l ot in point e r S l ot s (I P)
n func(get S l otAddres s (F rame, s l ot))
14 Frame +--- get Ca l l e rF rame (F r ame)
1 5 until F rame = null

/* current instruction pointer 4
/* process frame's pointer slots 4

resulting algorithm needs to process the stack only in one direction, which allows an
iterative implementation as opposed to a recursive one, as shown in Algorithm 1 1 .2.

• If the system does not support callee save registers, and a function desires a register 's
contents to be preserved across a call, then the function must save and restore the
register itself (caller-save) . A saved caller-save register value will have a type known
in the caller, so one can treat it just like a local or temporary variable. This results in
the substantially simplified Algorithm 1 1 .3, which is also iterative.

Compressing stack maps. Experience shows that the space needed to store stack maps
can be a considerable fraction of the size of the code in a system. For example, Diwan
et al [1992] found their tables for Modula-3 for the VAX to be 16% of the size of code, and
Stichnoth et al [1999] reported their tables for Java to be 20% of the size of x86 code. Tarditi
[2000] describes techniques for compressing these tables, and applies them in the Marmot
Java compiler, achieving a compression ratio of four to five and final table sizes averaging
3.6% of code size. The approach exploits two empirical observations.

• While there may be many garbage collection points (GC-points) needing maps, many
of those maps are the same. Thus a system can save space if multiple GC-points share
the same map. In the Marmot system this is particularly true of call sites, which tend
to have few pointers live across them. Tarditi [2000] found that this technique cut
table space in half.

• If the compiler works to group pointers close together in stack frames, then even
more maps tend to be the same. Using live variable analysis and colouring to place
pointer variables with disjoint lifetimes into the same slot also increases the number
of identical maps. Tarditi [2000] found this to be important for large programs.

The overall flow of Tarditi's scheme is as follows.

1 . Map the (sparse) set of return addresses to a (smaller, denser) set of GC-point num
bers.5 In this mapping, if table entry t [i] equals return address ra, then r a maps to
GC-point i .

5Tarditi uses the term 'call site' where w e use 'GC-point'.

180 CHAPTER 1 1 . RUN-TIME INTERFACE

2. Map the set of GC-point numbers to a (small dense) set of map numbers. This is
useful because multiple GC-points often have the same map . Given the GC-point i
above, this can be written as map number mn=mapnum [i] .

3. Index into a map array using the map number to get the map information. Given mn
from the previous step, this can be written as i n fo=map [mn] .

In Tarditi's scheme the map information is a 32-bit word. If the information fits in 31 bits,
then that word is adequate and its low bit is set to 0; otherwise, the low bit is set to 1 and the
remaining bits point to a variable-length record giving the full map . The details probably
need to be retuned for different platforms (language, compiler, and target architecture), so
refer to the paper for the exact encoding.

Tarditi also explored several organisations for mapping IP (instruction pointer) values
to GC-point numbers.

• Using the same number for adjacent GC-points whose stack maps are the same, a
technique also used by Diwan et al [1992] . This records only the first GC-point, and
subsequent ones whose address is less than the next address in the table are treated
as being equivalent.

• Using a two-level table to represent what is conceptually a large array of GC-point
addresses . This builds a separate table for each 64 kilobyte chunk of code space.
Since all GC-points in the chunk have the same upper bits, it needs to record only
the low 16 bits in each table entry. In a 32-bit address space this saves essentially half
the table space. We also need to know the GC-point number for the first GC-point in
a chunk; simply adding this to the index of a return address within the chunk's table
will get the GC-point number for the matching IP.

• Using a sparse array of GC-points and interpolating by examining the code near the
IP value. This chooses points roughly k bytes apart in the code, indicating where
these places are, their GC-point number and their map number. It starts from the
highest location preceding the IP value, and disassembles code forward . As it finds
calls (or other garbage collection points) , it updates the GC-point number and map
number. Notice that it must be able to recognise GC-points by inspection. Tarditi
found that even for the x86 the disassembly process for these purposes was not
overly complex or slow, though the scheme includes a 16 element cache to reduce
repeated computation for the same return address values. It was the most compact
of the schemes examined and the disassembly overhead was small .

Stichnoth et al [1999] described a different stack map compression technique, oriented
towards being able to produce a map for every instruction. Similar to the sparse array of
Tarditi [2000] , this uses a scheme that records full information for certain reference points
in the code, and then disassembles forward from the nearest preceding point to the IP
value of interest. In Stichnoth et al, though, it is the actual map they compute, as opposed
to the GC-point number. The reference points at which it starts are (roughly) the beginning
of basic blocks in the code. However, if the map at the end of one block is the same as the
map at the beginning of the next one - that is, there was no flow merge that affected the
map - then they treat the two blocks as one large block. Working forward from each
reference point, they encode the length of the instruction at that point (because the x86
has variable length instructions) and the delta to the map caused by the instruction. For
example, the instruction might push or pop a value on the stack, load a pointer into a
register, and so on. They Huffman code the delta stream to obtain additional compression.
Across a suite of benchmarks they get an average map size of about 22% of code size.

1 1 .2. FINDING POINTERS 181

They argue that, as a fraction of code size, the situation should not be worse for machines
with larger register sets - the instructions increase in size too. Also, the overall space
used might be somewhat better for machines with fixed-length instructions, since there
is still a noticeable overhead for recording instruction lengths, even though (like Tarditi
[2000]) they use a disassembler in most cases to avoid recording instruction lengths. They
still need a fraction of a bit to mark those places where they cannot legally allow garbage
collection, such as in the middle of the sequence for a write barrier. Given that a fixed
length instruction machine probably uses something like four bytes for each instruction,
and the average instruction length for the x86 may be half that or less, the table size for
a fixed-length instruction machine using the techniques of Stichnoth et al may be more in
the range of 5-10% of code size.

Accurate pointer finding in code

Code may contain embedded references to heap allocated objects, particularly in managed
run-time systems that load or generate code dynamically. Even code compiled ahead of
time may refer to static/ global data, that might lie in an initially loaded heap. There are
several difficulties around pointers within code:

• It is not always easy, or even possible, to distinguish code from any data embedded
within it.

• As in the case of uncooperative compilers, it is not generally possible to tell embed
ded pointers from non-pointer data that happen to have a value that looks as if it
refers to a location in the heap.

• When embedded in instructions, a pointer may be broken into smaller pieces. For
example, on the MIPS processor, loading a 32-bit static pointer value into a register
would typically require a load-upper-immediate instruction, which loads a 16-bit
immediate field into the upper half of a 32-bit register and zeroes the low 16-bits,
and then an or-immediate of another 16-bit value into the lower half of the register.
Similar code sequences occur for other instruction sets. This is a particular case of
derived pointers (page 183).

• An embedded pointer value may not refer directly to its target object; see our discus-
sions of interior (page 182) and derived (page 183) pointers.

In some cases one may be able to disassemble code to find embedded pointers, but going
through all the code each time the collector needs to process the roots may have a large
overhead. Of course, the program cannot update such embedded pointers, so caching
their locations would be effective.

The more general solution is to arrange for the compiler to generate a side table that
indicates where embedded pointers lie in the code.

Some systems simply rule out embedded pointers to avoid the issues altogether. The
impact on code performance will vary according to target architecture, compilation strat
egy, and statistics of programs' accesses.

Target objects that move. If the target of an embedded reference moves, then the col
lector must update the embedded reference. One possible difficulty is that for safety or
security reasons code areas may be read-only. Thus the collector must either change the
permissions temporarily (if possible), which might involve expensive system calls, or the
system must disallow embedded references to moving objects . Another difficulty is that

182 CHAPTER 1 1 . RUN-TIME INTERFACE

updating code in main memory generally does not force updates or invalidations of copies
of that code residing in instruction caches . The solution is to require all processors to in
validate the affected instruction cache lines. Some machines may need to follow this by
a special synchronisation instruction that guarantees that future instruction fetches occur
logically after the invalidations. Furthermore, before invalidating instruction cache lines,
one may need to force modified lines in the data cache (holding the bytes of code that were
updated) to main memory, and synchronise to make sure that the writes are complete. The
details are architecture specific.

Code that moves. A particular case of targets that move is code that a collector moves.
Not only must this take into account the concerns that we just considered, but it must also
fix up return addresses that lie in the stack and registers since they might refer to code that
the collector is moving. Further, it must invalidate all instruction cache lines corresponding
to the new location of the code and perform the careful code writing steps we enumerated
above. Clearly it would be more deeply problematic if the code of the collector itself could
move. Finally, moving code is particularly difficult in the case of concurrent collectors.
Either the collector must stop the world, or arrange that threads can use either the old or
the new copy of the code, move them to the new code over a period of time, and reclaim
the space of the old code only after it knows all the threads have moved over.

Handling interior pointers

An interior pointer is a pointer that refers to some location inside an object, but not neces
sarily using the standard reference to the object. More precisely, we consider each object
to occupy a set of memory locations (addresses), disjoint from those of any other object.
An interior pointer to an object refers to one of the object's locations. If we consider Fig
ure 7.2 we see that an object's standard reference may not correspond to any of its interior
pointers ! Also, the set of locations an object occupies may be larger than just the locations
holding its programmer-visible data . For example C allows pointers one location beyond
the end of an array and that reference is still a legal interior pointer to the array.

While it is possible that a system might break a language-level object up into multiple
pieces (as done by, for example, Siebert [1999]), for the purpose of handling interior (and
derived) pointers we use the term 'object' to mean a contiguous range of locations devoted
to representing a particular (language-level) object.

The key problem the collector faces with an interior pointer is determining the object to
which the pointer refers, that is, how to compute the standard reference to the object from
the value of the interior pointer. Several approaches are possible.

• Provide a table that records the start of each object. A system might maintain an
array of object start addresses, perhaps in two-level form as done by Tarditi [2000]
for recording GC-point addresses in code (see Section 11 .2) . Another way is to use a
bit table with one bit per granule (unit of allocation), setting the corresponding bit for
granules that are the first granules of objects. This might be useful for the allocator
and collector in any case.

• If the system supports heap parsability (Section 7.6), then one can scan the heap to
find the object whose locations contain the target of the interior pointer. It would
be prohibitively expensive to search from the beginning of the heap every time, so
typically a system records the first (or last) object-start position within each k-byte
chunk of the heap, where k is usually a power of two for convenient and efficient
calculation. This allows parsing to start in the chunk to which the interior pointer

1 1 .2. FINDING POINTERS 183

refers, or the previous chunk as necessary. There is a trade-off between the space
used for this side table and the overhead of parsing. For a more detailed discussion
see Section 11 .8.

• A big bag of pages organisation can determine object size by looking up the target
block's metadata. It can compute the offset of the target within the block (simply
mask so as to keep the appropriate lower bits of the address), and round that down
using the object size to determine the first location of the object.

We do assume that given knowledge of the set of locations occupied by the target object,
the collector can determine the standard reference and work from there. Notice that if the
object moves, as in a copying collector, then we need to update the interior pointer, moving
it by the same amount, that is, causing it to refer to the same relative position in the moved
object as it did in the old copy. Alternatively, the system might support pinning of objects,
as discussed in Section 1 1 .4.

The primary objection to dealing with interior pointers is the space and time overhead
they can add to processing. If interior pointers are relatively rare and distinguished from
tidy pointers (those that refer to an object's standard reference point), then the time over
head of dealing with the interior pointers themselves may not be great. However, making
provision for them at all may add space cost for tables - though the particular collector
design may include the necessary tables or metadata anyway - and add time cost for
maintaining the tables .

Return addresses are a particular case of interior pointers into code. They present no
special difficulty, though for a variety of reasons the tables for looking up the function
containing a particular return address may be distinct from the tables the collector uses for
other objects.

Handling derived pointers

Diwan et al [1992] identified what they call derived pointers, that is, values that are derived
from one or more pointers via an arithmetic expression. Interior pointers are a special case
where the expression has the simple form p + i or possibly p + c where p is a pointer, i
is a dynamically computed integer offset and c is a statically known constant. However,
for an interior pointer the resulting expression value must be an address within the set
of locations of object p, which leads to the simpler solutions already discussed. Derived
pointers can be much more general, for example:

• upperk (p) or lowerk (p) , the upper or lower k bits of the pointer p.

• p ± c such that the resulting address lies outside of the location of p .

• p - q, the distance between two objects.

In some cases we can reconstruct a tidy pointer - one that points to the referent's standard
reference address - from the derived pointer. An example is p + c where c is a compile
time known constant. In the general case we must have access to the base expression from
which the derived pointer was derived. That expression might itself be a derived pointer,
but eventually gets back to tidy pointers.

In a non-moving collector, just having the tidy pointers available as roots is enough.
Notice, though, that at a GC-point the tidy pointer may no longer be live in the sense of
compiler live variable analysis, even though the derived pointer is live. Thus the compiler
must keep at least one copy of the tidy pointer(s) for each live derived pointer. An excep
tion to this rule is the p ± c case since adjusting with a compile-time known value produces
the tidy pointer without reference to other run-time data.

184 CHAPTER 1 1 . RUN-TIME INTERFACE

For a moving collector we need additional compiler support: the compiler needs to
produce extended stack maps that give, for each derived pointer, the locations of the ex
pressions from which it was derived and the operations needed to reconstruct the de
rived pointer. Diwan et al [1992] give details on handling derived quantities of the form
L; p; - Lj qj + E where the Pi and qj are pointers or derived values and E is an expression
not involving pointers (and thus not affected if any of the p; or qj move) . The advantage
of this form is that it can subtract out the p; and add in qj, forming E before moving any
objects; do any moving; then add back the new p; and subtract off the new qj to produce

the correct adjusted derived pointer.
Diwan et al [1992] point out several issues that arise in optimising compilers when

trying to handle derived pointers, including dead base variables (which we mentioned
above), multiple derivations reaching the same point in code (for which they add more
variables to record the path that actually pertains), and indirect references (where they
record the value in an intermediate location along the chain of references) . Supporting
derived pointers sometimes required producing less optimal code, but the impact was
slight. They achieved table sizes about 15% the size of code for Modula-3 on the VAX.

11.3 Object tables

For reasons of mutator speed and space consumption, many systems have represented ob
ject references as direct pointers to their referent objects . A more general approach is to
give each object a unique identifier and to locate its contents via some mapping mecha
nism. This has been of particular interest when the space of objects is large, and possibly
persistent, but the hardware's underlying address space is small in comparison. The focus
here is on heaps that fit into the address space. Even in that case, however, some systems
have found it helpful to use object tables. An object table is a generally dense array of small
records, which refer to objects. An object table entry may contain only a pointer to the
object's data, or it may also contain additional status information. For speed, an object
reference is typically either a direct index into the object table or else a pointer to an object
table entry. Using an index makes it easier to relocate the table, but requires adding the
object table base in order to access an entry - which may not cost additional instructions
provided that the system dedicates a register to point to the base of the table.

A significant advantage of object tables is that they permit straightforward compaction,
or indeed moving of any object, by simply moving the object(s) and then updating its ob
ject table entry to reflect its new location. To simplify this, each object should have a hidden
self-reference field (or back pointer to its object table entry) , to make it possible to find the
table entry from the object's data. Given that information, a mark-compact collector can
proceed by marking as usual (modulo the level of indirection imposed by the object table)
and then doing a simple sliding compaction of the object data. Free object table entries can
simply be chained into a free-list. Notice that in marking it may be advantageous to keep
mark bits in object table entries, so as to save a memory reference when checking or setting
the mark bit. A side mark-bit table has similar benefits. It can also be advanta·geous to keep
other metadata in the object table entry, such as a reference to class and size information.

It is also possible to compact the object table itself, for example using the Two-Finger
algorithm of Section 3. 1 . This can be done together with compacting the object data, re
quiring only one pass over the data in order to compact both the data and the object table.

Object tables may be problematic, or simply unhelpful, if the language allows interior
or derived pointers. Note also the similarity of object table entries to handles as used
to support references from external code to heap objects, as discussed in Section 11 .4. If

1 1 .4. REFERENCES FROM EXTERNAL CODE 185

a language disallows interior pointers, then whether or not the implementation uses an
object table should not affect semantics of the implementation. However, there is one lan
guage feature that more or less assumes an object table for its efficient implementation: the
Smalltalk be c ome : primitive. This operator causes two objects to swap their roles in the
object universe. This is easy to do with object tables : the system merely swaps the con
tents of two table entries . Without an object table a b e c ome : may require a sweep over
the entire heap. If used sparingly (Smalltalk typically uses become : to install a new ver
sion of something) this may remain acceptable, particularly because direct object reference
implementations are generally faster than object table ones.

11.4 References from external code

Some languages and systems support use of heap allocated objects from outside of the
managed environment. A typical example is the Java Native Interface, which allows code
written in C, C++ or possibly other languages to access objects in the Java heap . More
generally, just about every system needs to support input/ output, which must somehow
move data between the operating system and heap objects . Two difficulties arise in sup
porting references from external code and data to objects in a managed heap. The first
issue is ensuring that the collector continues to treat an object as reachable while external
code possesses a reference to the object. This is necessary to prevent the object from being
reclaimed before the external code is done with it. Often we need the guarantee only for
the duration of a call to external code. We can make that guarantee by ensuring that there
is a live reference to the object in the stack of the calling thread.

However, sometimes the object will be used by external code for a period of time that
extends beyond an initial call. In that case the usual solution is for the collector to maintain
a table of registered objects . The external code is required to register an object if the code will
use the object after the current call. The external code must also explicitly deregister the
object when the code no longer needs the object and will not attempt further use of it. The
collector simply treats entries in the registered-object table as additional roots.

The second issue is ensuring that external code knows where an object is. This is rele
vant only to moving collectors . Some interfaces keep external code at arms length by re
quiring all accesses to heap objects to go through collector-provided access routines . This
makes it easier to support collectors that move objects . Typically the collector provides
to external code a pointer to a handle. The handle contains a reference to the actual heap
object, and possibly some other management data. Handles act as registered-object table
entries, and thus are roots for collection. The Java Native Interface works this way. Notice
that handles are similar to entries in object tables.

While handles offer a clean separation of the managed heap from the unmanaged
world, and they more easily admit collection techniques that move objects, not all external
code is prepared to follow the access protocols, notably operating system calls . Thus it
may be necessary to prevent externally referenced objects from moving. To support this,
a pinning interface may offer pin and unpin operations, with the meaning that an object
cannot be moved while it is pinned, and the further implication that pinned objects are
reachable and will not be reclaimed.

If we know when allocating an object that it may need to be pinned, then we can allo
cate the object directly into a non-moving space. This may work for buffers for file stream
1/0 if the buffered-stream code allocates the buffers itself. However, in general it is diffi
cult to determine in advance which objects will need to be pinned. Thus, some languages
support p i n and unp i n functions that the programmer can invoke on any object.

186 CHAPTER 1 1 . RUN-TIME INTERFACE

Pinning is not a problem for non-moving collectors, but is inconvenient for ones that
normally move an object. There are several solutions, each with its strengths and weak
nesses.

• Defer collection, at least of a pinned object's region, while it is pinned. This is simple,
but there is no guarantee that it will be unpinned before running out of memory.

• If the application requests pinning an obj�ct, and the object is not in a non-moving
region, we can immediately collect the object's containing region (and any others
required to be collected at the same time) and move the object to a non-moving re
gion. This might be acceptable if pinning is not frequent, and the collector is of a
design such as a generational collector with a nursery whose survivors are copied to
a non-moving mature space.

• We can extend our collector to tolerate not moving pinned objects, which complicates
the collector and may introduce new inefficiencies.

As a simple example of extending a moving collector to support pinning, consider a basic
non-generational copying collector. Extending it to support pinned objects requires first
of all that the collector can distinguish pinned from unpinned objects. It can copy and
forward unpinned objects as usual. It will trace through pinned objects, updating pointers
from the pinned object to objects that move, but leaving pinned objects where they are. The
collector should also record in a table the pinned objects it encounters. When all survivors
have been copied, the collector reclaims only the holes between pinned objects rather than
reclaiming all of fromspace. Thus, rather than obtaining a single, large, free region, it may
obtain an arbitrary number of smaller ones. The allocator can use each one as a sequential
allocation space. This can lead to a degree of fragmentation, but that is unavoidable in the
presence of pinning. Notice that a future collection may find that a previously pinned ob
ject is no longer pinned, so the fragmentation need not persist. As we saw in Section 10.3,
some mostly non-moving collectors take a similar approach, also sequentially allocating in
the gaps between surviving objects [Dimpsey et al, 2000; Blackburn and McKinley, 2008] .

Another possible difficulty is that, even though an object is pinned, the collector is
examining and updating it, which may lead to races with external code that accesses the
object at the same time. Thus, we may need to pin not only a given object but also some
of the objects to which it refers . Likewise, if, starting from a given object, external code
traces through to other objects, or even just examines or copies references to them without
examining the objects' contents, those other objects also need to be pinned.

Features of a programming language itself, and its implementation, may require pin
ning. In particular, if the language allows passing object fields by reference, then there may
be stack references to the interior of objects . The implementation can apply the interior
pointer techniques described on page 182 in order to support moving the object contain
ing the referent field. However, such support can be complex and the code for handling
interior pointers correctly may thus be difficult to maintain. Therefore an implementation
might choose simply to pin such objects. This requires being able to determine fairly easily
and efficiently which object contains a given referent. Hence it most readily allows interior
pointers but not more general cases of derived pointers (see page 183) .

11.5 Stack barriers

Earlier we described techniques for finding pointers in stacks, but assumed it was accept
able to scan the whole stack of a thread at once, that is, that the system could pause the
thread long enough to process its entire stack. It is not safe to scan a frame in which a

1 1 .6. GC-SAFE POINTS AND MUTATOR SUSPENSION 187

thread is actively running, so we must either pause the thread for some period of time or
get the thread to scan for us (that is, call a scanning routine, essentially pausing itself) - see
Section 11 .6 for more discussion of when it is appropriate to scan a thread's registers and
stack. It is possible to scan a stack incrementally, however, and also mostly-concurrently,
using a technique called stack barriers . The idea is to arrange for a thread to be diverted if
it tries to return (or throw) beyond a given frame in its stack. Suppose we have placed a
barrier in frame F. Then we can asynchronously process the caller of F, its caller, and so
on, confident that the running thread will not cut the stack back from under our scanning.

The key step to introduce a stack barrier is to hijack the return address of the frame.
In place of the actual return address we write the address of the stack barrier handler we
wish to install. We put the original return address in some standard place that the stack
barrier handler can find, such as a thread-local variable. The handler can then remove the
barrier as appropriate. Naturally it must be careful not to disturb any register contents that
the caller may examine.

For incremental stack scanning by the thread itself, when it encounters the barrier the
handler scans some number of frames up the stack and sets a new barrier at the limit of its
scanning (unless it finished scanning the whole stack). We call this synchronous incremen
tal scanning. For asynchronous scanning by another thread, the barrier serves to stop the
running thread before it overtakes the scanning thread. For its part, the scanning thread
can move the barrier down after it scans some number of frames. That way it is possible
that the running thread will never hit the barrier. If it does hit the barrier, then it merely
has to wait for the scanning thread to advance and unset that barrier; then it can continue.

Cheng and Blelloch [2001] introduced stack barriers in order to bound the collection
work done in one increment and to support asynchronous stack scanning. Their design
breaks each stack into a collection of fixed size stacklets that can be scanned one at a time.
That is, returning from one stacklet to another is the possible location of what we call a
stack barrier. But the idea does not require discontiguous stacklets or predetermination of
which frames can have a barrier placed on them.

Stack barriers can also be used in the opposite way from that described above: they
can mark the portion of the stack that has not changed, and thus that the collector does
not need to reprocess to find new pointers. In collectors that are mostly-concurrent this
approach can shorten the 'flip' time at the end of a collection cycle.

Another use for stack barriers is in handling dynamic changes to code, particularly
optimised code. For example, consider the situation where routine A calls B, which calls
C, and there is a frame on the stack for an optimised version of A that inlined B but did not
further inline C. In this situation there is a frame for A + B and another one for C. If the
user now edits B, future calls of B should go to the new version. Therefore, when returning
from C, the system should deoptimise A + B and create frames for unoptimised versions
of A and B, so that when B also returns, the frame for A supports calling the new version
of B. It might also be possible to re-optimise and build a new A + B. The point here is that
returning to A + B triggers the deoptimisation, and the stack barrier is the mechanism that
supports the triggering.

11.6 GC-safe points and mutator suspension

In Section 1 1 .2 we mentioned that a collector needs information about which stack frame
slots and which registers contain pointers. We also mentioned that this information can
vary according to the specific code location (we will say IP, for instruction pointer) at which
garbage collection happens in a function. There are two issues of concern about where
garbage collection can happen: whether a given IP is safe for garbage collection, and the

188 CHAPTER 1 1 . RUN-TIME INTERFACE

size of the stack map tables (see Section 11 .2 for details on compressing maps), which tend
to be large if more IPs are legal for garbage collection.

What might make a given IP unsafe for garbage collection? Most systems have oc
casional short sequences of code that must be run in their entirety in order to preserve
invariants relied on by garbage collection. For example, a typical write barrier needs to do
both the underlying write and some recording. If a garbage collection happens between
the two steps, some object may be missed by the collector or some pointer not properly
updated by it. Systems usually have a number of such short sequences that need to be
atomic with respect to garbage collection (though not necessarily atomic with respect to
true concurrency) . In addition to write barriers other examples include setting up a new
stack frame and initialising a new object.

A system is simpler in one way if it can allow garbage collection at any IP - there
is no concern about whether a thread is suspended at a point safe for garbage collection,
a GC-safe point or GC-point for short. However, such a system is more complex in that it
must support stack maps for every IP, or else employ techniques that do not require them,
as for uncooperative C and C++ compilers. If a system allows garbage collection at most
IPs, then if it needs to collect and a thread is suspended at an unsafe point, it can either
interpret instructions ahead for the suspended thread until it is at a safe point, or it can
wake the thread up for a short time to get it to advance (probabilistically) to a safe point.
Interpretation risks rarely exercised bugs, while nudging a thread gives only a probabilistic
guarantee. Such systems may also pay the cost of larger maps [Stichnoth et al, 1999] .

Many systems make the opposite choice and allow garbage collection only at certain
restricted safe points, and produce maps only for those points . The minimal set of safe
points needed for correctness includes each allocation (since garbage collection is always
a possibility there)6 and each call of a routine in which there may be allocation or which
may cause the thread to suspend in a wait (since if the thread suspends, some other thread
may cause garbage collection) .

Beyond the minimal points needed for correctness, a system may wish to allow garbage
collection at more locations so as to guarantee that garbage collection can proceed with
out an unbounded wait for the thread to reach its next safe point. To make this stronger
guarantee there needs to be a safe point in each loop; a simple rule is to place a safe point
at each backwards branch in a function. In addition there needs to be a safe point in each
function entry or each return, since otherwise functions, especially recursive ones, could
perform many calls and returns before encountering a safe point. Since these additional
safe points do not do anything that actually can trigger a garbage collection, they need to
have an added check for whether garbage collection is needed/requested, so we call them
GC-check points . This checking adds overhead to normal operation of mutators, though
perhaps not very much, particularly if the compiler takes some simple measures to reduce
the overhead. For example, it might omit the checks in methods that are quite short or have
no loops or calls. Also, by inserting an additional level of looping it can avoid checking
on every iteration of a loop and check only every nth iteration. If the check itself is cheap
then these measures will not be necessary. In any case there is a clear trade-off between the
overhead of frequent checks and the latency of infrequent ones.

Agesen [1998] compared two ways of causing a thread to suspend at a GC-point. One
is polling, alluded to above, where the thread checks a flag that indicates that a collection
has been requested. The other technique is patching, and involves modifying the code at
the next GC-point(s) of the thread so that when the suspended thread is restarted, it will
stop at the next GC-point. This is similar to placing temporary breakpoints in a debugger.

6Excepting the possibility of checking for adequate thread-private free space before a sequence of allocations.

1 1 .6. GC-SAFE POINTS AND MUTATOR SUSPENSION 189

Agesen found that patching has much lower overhead than polling, but of course it is more
difficult to implement, and more problematic in a concurrent system.

In bringing up the idea of GC-check points, notice that we have introduced the notion
of a handshake mechanism between the collector and a mutator thread. Such handshakes
may be necessary even if a system does not include true concurrency but merely multi
plexes several mutator threads on one processor - the collector may need to indicate the
need for garbage collection and then wake up any suspended thread that is not at a safe
point so that the thread can advance to a safe point. Some systems allow threads to sus
pend only at safe points so as to avoid this additional complexity, but for other reasons a
system may not control all aspects of thread scheduling, and so may need this handshake.

For concreteness we mention some particular mechanisms for the handshake. Each
thread can maintain a thread-local variable that indicates whether the rest of the system
needs that thread's attention at a safe point. This mechanism can be used for things other
than signalling for a garbage collection. At a GC -check point, the thread checks that thread
local variable, and if it is non-zero (say) it calls a system routine that uses the exact value
of the variable to determine what action to take. One particular value will indicate 'time to
garbage collect' . When the thread notices the request, it sets another thread-local variable
to indicate it has noticed, or perhaps decrements a global variable on which a collector
thread is waiting. Systems typically arrange for thread-local variables to be cheap to access,
so this may be a good approach.

Another possibility is to set a processor condition code in the saved thread state of the
suspended thread. A GC-check point can then consist of a very cheap conditional branch
over a call to the system routine for responding to the request. This approach works only if
the processor has multiple condition code sets (as for the Power PC) and can be guaranteed
not to be in external code when awakened. If the machine has enough registers that one
can be dedicated to the signalling, a register can be used almost as cheaply as a condition
code flag. If a thread is in external code, the system needs an alternate method of getting
attention when the thread comes out of that code (unless it is suspended as a safe point
already). Hijacking the return address (see also Section 1 1 .5) is a way to get attention as
the external code completes.

As an alternative to flag setting and return address hijacking, in some cases an oper
ating system-level inter-thread signal, such as those offered by some implementations of
POSIX threads, may be a viable alternative. This may be problematic for wide portability,
and it may not be very efficient. It can be slow in part because of the relatively long path
through the operating system kernel to set up and deliver a signal to a user-level handler.
It can also be slow because of the need not only for a low-level processor interrupt but
because of the effect on caches and translation lookaside buffers .

In sum, there are two basic approaches : synchronous notification, also appropriately
called polling, and asynchronous notification via some kind of signal or interrupt. Each ap
proach has its own overheads, which vary across platforms. Polling may also require a de
gree of compiler cooperation, depending on the specific technique. Further, asynchronous
notification will usually need to be turned into synchronous, since scanning the stack, or
whatever action is being requested, may not be possible at every moment. Thus, the signal
handler 's main goal may be to set a flag local to its thread where the thread is guaranteed
to notice the flag soon and act on it.

We further note that in implementing synchronisation between threads to direct scan
ning of stacks, considerations of concurrent hardware and software crop up, for which
we offer general background in Chapter 13. Of particular relevance may be Section 13.7,
which discussed coordinating threads to move from phase to phase of collection, which
mutator threads may need to do as collection begins and ends.

190 CHAPTER 1 1 . RUN-TIME INTERFACE

11.7 Garbage collecting code

While many systems statically compile all code in advance, garbage collection has its roots
in implementations of languages like Lisp, which can build and execute code on the fly
originally interpretively but also compiled to native code since early days. Systems that
load or construct code dynamically, and that optimise it at run time, are if anything more
common now. Loading and generating code dynamically leads logically enough to the
desire to reclaim the memory consumed by that code when the code is no longer needed.
Straightforward tracing or reference counting techniques often will not work, because code
for many functions is accessible through global variables or symbol tables that will never
be cleared. In some languages little can be done if the program does not explicitly remove
such entries - and the language may provide no approved way to do that.

Two specific cases deserve further mention. First, closures consist of a function and an
environment of bindings to use when the function runs. Naive construction of a closure,
say for function g nested within function f, provides g with the full environment of f,
possibly sharing a common environment object. Thomas and Jones [1994] described a
system that, upon collection, can specialise the environment to just those items that g uses.
This may ultimately make some other closure unreachable and thus reclaimable.

The other case is class-based systems, such as Java. One consideration is that in such
systems object instances generally refer to their class. It is common to place classes, and
the code for their methods, in a non-moving, non-collected area. In that way the collector
can ignore the class pointer in every object. But to reclaim classes, the collector will need
to trace the class pointer fields - possibly a significant cost in the normal case. It might
avoid that cost by tracing through class pointers only when invoked in a special mode.

For Java in particular, a run-time class is actually determined by both the class's code
and its class loader. Since loading a Java class has side-effects such as initialising static
variables, unloading a class is not transparent if the class might be reloaded by the same
class loader. The only way to guarantee that a class will not be reloaded by a given class
loader is for the class loader itself to be reclaimable. A class loader has a table of the classes
it has loaded (to avoid reloading them, reinitialising them, and so on) and a run-time
class needs also to mention its class loader (as part of its identity) . So, to reclaim a class,
there must be no references to its class loader, any class loaded by that class loader, or any
instance of one of those classes, from existing threads or global variables (of classes loaded
by other class loaders) . Furthermore, since the bootstrap class loader is never reclaimed,
no class that it loads can be reclaimed. While Java class unloading is something of a special
case, certain kinds of programs rely on it or else servers will run out of space .

In addition to user-visible code elements such as methods, functions and closures, a
system may generate multiple versions of code to be interpreted or run natively, for ex
ample optimised and unoptimised code, or specialised versions of functions. Generating
a new version of a function may make old versions unreachable for future invocations of
the function. However, invocations still in process may need the old versions. Thus return
addresses embedded in the stack or closures may retain old code. In any case, the system
may need tracing or reference counting rather than immediately reclaiming old versions.
A related technique is on-stack replacement, in which a system replaces an in-process invoca
tion's code with new code. While this is commonly done more in order to improve the per
formance of the still-running invocation, it also helps make old versions reclaimable. See
Fink and Qian [2003] and Soman and Krintz [2006] for examples of on-stack replacement
approaches and applications for Java. While on-stack replacement is most often directed at
optimising code, some applications, such as debugging, requires deoptimised code, which
can have the same effect of helping to make old versions of code reclaimable.

1 1 .8. READ AND WRITE BARRIERS

11.8 Read and write barriers

191

Several classes of garbage collection algorithm require ' interesting' pointers to be detected
as mutators run. If a collector collects only part of the heap, then any reference to an
object in that region from outside it is of interest to the collector: in the absence of further
knowledge, the collector must treat that reference as a root. For example, generational
collectors must detect any reference to a younger generation object written into an object
in an older generation. As we shall see in Chapter 15, interleaving mutation and collection
(whether or not the collector runs in its own thread) presents ample opportunities for the
mutator to hide pointers from the collector. If these references are not detected and passed
to the collector, then live objects may be reclaimed prematurely. All these cases require the
mutator to add references on the fly to the collector's work list. This is achieved through
read or write barriers.

Other chapters on specific algorithms address the particular content of read and write
barriers as needed by those algorithms. However, we offer here some general observa
tions about how to implement barriers. To abstract from particular needs of a collection
algorithm, such as generational or concurrent collectors, we concern ourselves with the
detection and recording of 'interesting' pointers. Detection is the determination that a par
ticular pointer is 'interesting' while recording is noting that fact for later use by the collector.
To some extent detection and recording are orthogonal, though some detection methods
may lend themselves more to particular recording methods. For example, detection via
page protection violations lends itself more to recording the location being modified.

Engineering

A typical barrier involves one or more checks that guard an action. Typical checks include
whether a pointer being stored is null and the relationship between the generations of the
referring object and its referent, and a typical action is to record an object in a remembered
set. The full code for all the checks and the action may be too large to inline entirely, de
pending on implementation. Even a fairly modest sequence of instructions would create
very large compiled code and also risk poor instruction cache performance since much of
the code executes only rarely. Therefore designers often separate the code into what is com
monly called 'fast path' and 'slow path' portions. The fast path is inlined for speed, and
it calls the slow path part only if necessary; there is one copy of the slow path in order to
conserve space and improve instruction cache performance. It is critical that the fast path
code include the most common cases and that the slow path part be less common. How
ever, it sometimes helps to apply the same principle to the slow path code. If the barrier
involves multiple tests - and they usually do - then it is important to order those tests
so that the first one filters out the most cases, the second the next larger set of cases, and so
on, modulo the cost of performing the test. In doing this tuning there is no substitute for
trying various arrangements and measuring performance on a range of programs, because
so many factors come into play on modem hardware that simple analytical models fail to
give good enough guidance.

Another significant factor in barrier performance is speed in accessing any required
data structures, such as card tables . It may be a good trade-off to dedicate a machine
register to hold a data structure pointer, such as the base of the card table, but this can vary
considerably by machine and algorithm.

Also of concern is the software engineering and maintenance of those aspects of the
garbage collection algorithm - mostly barriers, GC-checks and allocation sequences -
they are built into the compiler(s) of a system. If possible it seems best to arrange for the

192 CHAPTER 1 1 . RUN-TIME INTERFACE

compiler to inline a routine in which the designer codes the fast path portion of a sequence.
That way the compiler does not need to know the details and the designer can change
them freely. However, as we noted before these code sequences may have constraints,
such as no garbage collection in the middle of them, that require care on the compiler's
part. The compiler may also have to disable some optimisations on these code sequences,
such as leaving apparently dead stores that save something useful for the collector and
not reordering barrier code or interspersing it with surrounding code. To that end the
compiler might support special pragmas or markers for the designer to use to indicate
special properties such as uninterruptible code sequences.

In the remainder of this section we discuss write barriers. We defer the discussion
of read barriers to later chapters where we discuss incremental and concurrent collection
since this is the context in which they are used. Write barriers are more complex than read
barriers since they not only have to detect ' interesting' writes but must also record some
information for the garbage collector 's later use. In contrast, read barriers typically cause
an immediate action, such as copying to tospace the target of the reference just loaded.

Precision of write barriers

Interesting pointers can be remembered using different policies and mechanisms. Poli
cies dictate the precision with which the location of an interesting pointer is recorded in
the remembered set. The choice of policy is a trade-off between adding overheads to the
mutator or to the collector. In general it is better to favour adding overhead to relatively in
frequent collector actions (such as discovering roots) than to very frequent mutator actions
(such as heap stores). Without a barrier, pointer stores are normally very fast (although
null pointer or array bounds checks are often required by managed languages) . Adding
a write barrier can increase the instruction count for a pointer write by a factor of two or
more, though some of this cost may be masked if the cache locality of the barrier is better
than that of the mutator itself (for example, it is probably unnecessary to stall the user code
while the write barrier records an interesting pointer) . Typically, more precise recording of
interesting pointers in the remembered set means less work for the collector to do to find
the pointer but more work for the mutator to filter and log it. At one extreme, in a gener
ational collector, not logging any pointer stores transfers all overheads from the mutator
to the collector which must scan all other spaces in the heap looking for references to the
condemned generation. While this is unlikely to be a generally successful policy, linear
scanning has better locality than tracing, and this may be the only way to collect genera
tionally if there is no support for detecting pointer stores from the compiler or operating
system [Bartlett, 1989a] . Swanson [1986] and Shaw [1988] have suggested that this can
reduce garbage collection costs by two-thirds compared with simple semispace copying.

There are three dimensions to remembered set policy. First, how accurately should
pointer writes be recorded? Not all pointers are interesting to a collector, but uncondi
tional logging may impose less overhead on the mutator than filtering out uninteresting
pointers. The implementation of the remembered set is key to this cost. Remembered sets
with cheap mechanisms for adding an entry, such as simply writing a byte in a fixed-size
table, will favour unconditional logging, especially if addition is idempotent. On the other
hand, if adding an entry is more expensive or the size of the remembered set is a concern,
then it is more likely to be worthwhile to filter out uninteresting pointers . Filtering is es
sential for concurrent or incremental collectors to ensure that their work lists do eventually
empty. For a particular filtering scheme, there is a trade-off between how much filtering to
do inline and when to call an out-of-line routine to complete the filtering and possibly add
the pointer to a remembered set. The more filtering that is done inline, the fewer instruc
tions that may be executed, but the code size will increase and the larger instruction cache

1 1 .8. READ AND WRITE BARRIERS 193

footprint may undermine any performance gains. This requires careful tuning of the order
of filter tests and which are done inline.

Second, at what granularity is the location of the pointer to be recorded? The most
accurate is to record the address of the field into which the pointer was written. However,
this will increase the size of the remembered set if many fields of an object, such as an
array, are updated. An alternative is to record the address of the object containing the
field: this also permits duplicates to be filtered, which field remembering does not (since
there is generally no room in the field to record that it has been remembered) . Object
remembering requires the collector to scan every pointer in the object at scavenge time
in order to discover those that refer to objects that need to be traced. A hybrid solution
might be to object-record arrays and field-record scalars on the assumption that if one slot
of an array is updated then many are likely to be. Conversely, it might be sensible to field
record arrays (to avoid scanning the whole thing) and object-record scalars (since they tend
to be smaller) . For arrays it may make sense to record only a portion of the array. This is
analogous to card marking, but specific to arrays and aligned with the array indices rather
than with the addresses of the array's fields in virtual memory. Whether to store the object
or one of its slots may also depend on what information the mutator has at hand . If the
write action knows the address of the object as well as the field, the barrier can choose to
remember either; if only the address of the field is passed to the barrier, then computing the
address of the object will incur further overhead. Hosking et al [1992] resolve this dilemma
by storing the addresses of both the object and the slot in their sequential store buffer for
an interpreted Small talk system.

Card table techniques (which we discuss below) divide the heap logically into small,
fixed size cards. Pointer modifications are recorded at the granularity of a card, typically
by setting a byte in a card table. Note that the card marked can correspond to either the
updated field or object (these may reside on different cards) . At scavenge time, the collec
tor must first find any dirty cards corresponding to the condemned generation and then
find all the interesting pointers held in that card. The choice of object or field card marking
will affect how this search is performed. Coarser than cards, pointer stores can be logged
at the granularity of a virtual memory page. With help from the hardware and operating
system, this may impose no direct overhead on the mutator but, like cards, increases work
for the collector. Unlike cards, marked pages will always correspond to the updated slot
not to its containing object since the operating system is oblivious to object layout.

Third, should the remembered set be allowed to contain duplicate entries? The case for
duplicates is that not checking eases the burden on the mutator; the case against is that du
plicates increase the size of the remembered set and move the cost of handling duplicates
to the collector. Card and page marking eliminate duplicates since they typically simply
set a bit or a byte in a table. Object recording can also eliminate most duplicates by marking
objects as logged, for example by using a bit in their header, regardless of the implementa
tion of the remembered set itself, whereas duplicate elimination is unlikely to be so simple
if word-sized fields are recorded. The cost to the mutator is that this is an additional check
which may or may not be absorbed by the reduction in remembered set entries added, and
that an additional write is performed. Otherwise, remembered sets must be implemented
as true sets rather than multisets if they are not to contain duplicates.

In summary, if a card or page based scheme is used then the collector 's scanning cost
will depend on the number of dirty cards or pages . Otherwise, the cost will depend on the
number of pointer writes if a scheme without duplicate elimination is used. With dupli
cate elimination, it will depend on the number of different objects modified . In all cases,
uninteresting pointer filtering will reduce the collector's root scanning cost. Mechanisms
for implementing remembered sets include hash sets, sequential store buffers, card tables,
virtual memory mechanisms and hardware support. We consider each of these in turn.

194 CHAPTER 1 1 . R UN-TIME INTERFACE

Hash tables

The remembered set must truly implement a set if it is to remember slots without duplicat
ing entries. Equally, a set is required for object remembering if there is no room in object
headers to mark an object as remembered . A further requirement for a remembered set is
that adding entries must be a fast, and preferably constant time, operation. Hash tables
meet these requirements.

Hosking et al [1992] implement a remembered set with a circular hash table, using
linear hashing in their multiple generation memory management toolkit, for a Smalltalk
interpreter that stores stack frames in generation 0, step 0 in the heap. More specifically,
a separate remembered set is maintained for each generation. Their remembered sets can
store either objects or fields. The tables are implemented as arrays of 2i + k entries (they use
k = 2) . Hence addresses are hashed to obtain i bits (from the middle bits of the address),
and the hash is used to index the array. If that entry is empty, the address of the object
or field is stored at that index, otherwise the next k entries are searched (this is not done
circularly, which is why the array size is 2i + k) . If this also fails to find an empty entry, the
table is searched circularly.

In order not to increase further the work that must be done by the remembering code,
the write barrier filters out all writes to generation 0 objects and all young-young writes.
In addition, it adds all interesting pointers to a single scratch remembered set rather than
to the remembered set for the target generation. Not deciding at mutator time the gen
eration to whose remembered set it should be added might be even more apposite in a
multithreaded environment; there per-processor scratch remembered sets could be used
to avoid contention as thread-safe hash tables would be too expensive. In all, Hosking
et al used 17 inlined MIPS instructions in the fast path of the write barrier, including the
call to update the remembered set, making it comparatively expensive even on the MIPS,
a register-rich architecture. At scavenge time, the roots for a given generation may reside
either in that generation's remembered set or in the scratch remembered set. Duplicates be
tween the remembered sets are removed by hashing the generation's remembered set into
the scratch remembered set, and the scratch remembered set is processed: any interesting
pointers encountered are added to the appropriate remembered sets .

Garthwaite uses hash tables in his implementation of the Train algorithm. The com
mon operations on his hash tables are insertion and iteration, so he uses open addressing.
Because it is common to map adjacent addresses, he eschews linear addressing (address
modulo N where N is the size of the hash table) which would tend to map these addresses
to neighbouring slots in the table. Instead he uses a universal hashing function. He chose
a 58-bit prime p and assigns to each remembered set hash table two parameters, a and b,
generated by repeated use of a pseudo-random function [Park and Miller, 1988] so that
0 < a, b < p. An address r is hashed by the function ((ar + b) mod p) mod N. Open
addressing requires a tactic for probing alternative slots when a collision occurs . Linear
and quadratic probing (in which the current slot's index is incremented by an amount d
and d is incremented by a constant i) suffer from clustering as subsequent insertions fol
low the same probing sequence, so Garthwaite uses double hashing in which the increment
used in quadratic probing is a function of the key. Given a hash table whose size is a power
of 2, quadratic probing with any odd increment i applied to the probing step d ensures that
the entire table will be visited. This scheme doubles the available set of probing sequences
by checking whether d is odd. If so, i is set to zero (linear probing) . Otherwise, both d and
i are set to d + 1 . Finally, a hash table may need to be expanded when its load becomes too
high. An alternative may be to rebalance the table by modifying the insertion process. At
each collision, we must decide whether to continue probing with the item being inserted or

1 1 .8. READ AND WRITE BARRIERS 195

Algorithm 11.4: Recording stored pointers with a sequential store buffer

1 Writ e (s rc , i, r e f) :
add % s r c, % i % f l d
s t % r e f, [% f ld]
s t % f l d, [%next]
add %next , 4 , %next

; s r c [i] f- ref
S S B [next] f- fld

next f- n e xt + 1

whether to place it in the current slot and probe with the contents of that slot. Garthwaite
et al uses robin hood hashing [Celis et al, 1985] . Each entry is stored in its slot along with its
depth in the probing sequence, taking advantage of the fact that the least significant bits
of an item (such as the address of a card) will be zero. If a slot already contains an item, its
depth is compared with the depth of the new item: we leave which either value is deeper
in its probing sequence and continue with the other.

Sequential store buffers

Pointer recording can be made faster by using a simpler sequential store buffer (SSB), such as
a chain of blocks of slots. A buffer per thread might be used for all generations to save the
mutator write barrier from having to select the appropriate one and to eliminate contention
between threads.

In the common case, adding an entry requires very few instructions: it is simply neces
sary to compare a next pointer against a limit, store to the next location in the buffer and
bump the next pointer. The MMTk [Blackburn et al, 2004b] implements a sequential store
buffer as a chain of blocks. Each block is power-of-two sized and aligned, and filled from
high addresses to low. This allows a simple overflow test by comparing the low order bits
of the next pointer with zero (which is often a fast operation) .

A number of tricks can be used to eliminate the explicit overflow check, in which case
the cost of adding an entry to the sequential store buffer can be as low as one or two instruc
tions if a register can be reserved for the next pointer, as in Algorithm 1 1 .4. With a dedi
cated register this might be as low as one instruction on the PowerPC: stwu f l d, 4 (next) .

Appel [1989a] , Hudson and Diwan [1990] and Hosking e t a l [1992] use a write-protected
guard page. When the write barrier attempts to add an entry on this page, the trap han
dler performs the necessary overflow action, which we discuss later. Raising and handling
a page protection exception is very expensive, costing hundreds of thousands of instruc
tions. This technique is therefore effective only if traps are very infrequent: the trap cost
must be less than the cost of the (large number of) software tests that would otherwise be
performed:

cost of page trap :::; cost of limit test x buffer size

Appel ensures that his guard page trap is triggered precisely once per collection by storing
the sequential store buffer as a list in the young generation. The guard page is placed at
the end of the space reserved for the young generation, thus any allocation - for objects
or remembered set entries - may spring the trap and invoke the collector. This technique
relies on the young generation's area being contiguous. It might appear that a system can
simply place the heap at the end of the data area of the address and use the brk system
call to grow (or shrink) the heap. However, protecting the page beyond the end of the heap
interferes with use of brk by ma l l oc, as noted by Reppy [1993], so it may be better to use
a higher region of address space and manage it with mmap.

196 CHAPTER 1 1 . RUN-TIME INTERFACE

Algorithm 11.5: Misaligned access boundary check

atomic i n s e r t (f l d) :
* (next - 4) +--- f l d
tmp +--- next » (n - 1)
tmp +--- tmp & 6
next +--- next + tmp

Example: n = 4 (4 word buffers) :

i n s e rt at 3 2 : next = 4 0 ,
i n s e rt at 3 6 : next = 4 4 ,
i n sert at 4 0 : next = 4 8 ,
i n s e rt at 4 4 : next = 5 4 ,
i n sert at 5 0 : UTRAP !

/* add the entry in the previous slot *I

/* tmp = 4 or 6 4

next» (n- 1) = 4 , tmp = 4
next» (n- 1) =5 , tmp = 4
next» (n- 1) =5 , tmp = 4
next» (n- 1) = 6, tmp = 6

Architecture-specific mechanisms can also b e used to eliminate the overflow check.
One example is the Solaris UTRAP fault, which is designed to handle misaligned accesses
and is about a hundred times faster than the Unix signal handling mechanism. Detlefs
et al [2002a] implement their sequential store buffer as a list of 2n -byte buffers, aligned on
2n +l boundaries but not 2n+2 ones, which sacrifices some space. The insertion algorithm
is shown in Algorithm 11 .5. The next register normally points to four bytes beyond the
next entry, except when the buffer is full (that is, when next points at the slot before a
2n +2-aligned boundary), in which case the increment on line 5 adds six, causing a UTRAP
on the next access.

Sequential store buffers may be used directly as remembered sets or as a fast logging
front-end to hash tables. A simple, two-generation configuration with en masse promotion
can discard the remembered set at each minor collection since the nursery is emptied:
there is no need for more complex remembered set structures (provided the sequential
store buffer does not overflow before a collection) . However, other configurations require
remembered sets to be preserved between collections. If multiple generations are used, the
records of pointers spanning older generations must be preserved regardless of whether
survivors of the condemned generations are promoted en masse. If the generations being
collected have steps or other mechanisms for delaying promotion (Section 9.4), then the
record of older generation pointers to surviving, but not promoted objects, must be kept.

One solution might be simply to remove entries that are no longer needed from the
sequential store buffer. An entry for a field will not be needed if the value of the field is
null, or refers to an object that is only considered at full heap collections (or never) . By
extension, an entry for an object can be deleted if the object similarly does not contain
any interesting pointers. However this solution encourages unrestrained growth of the
remembered set and leads to the collector processing the same long-lived entries from one
collection to the next. A better solution is to move entries that need to be preserved to
the remembered set of the appropriate generation. These remembered sets might also be
sequential store buffers or the information might be more concisely transferred into a hash
table as we saw above.

Overflow action

Hash tables and sequential store buffers may overflow: this can be handled in different
ways. The MMTk acquires and links a fresh block into the sequential store buffer [Black-

1 1 .8. READ AND WRITE BARRIERS 197

burn et al, 2004b] . Hosking et al [1992] fix the size of their sequential store buffer by empty
ing it into hash tables whenever it overflows. In order to keep their hash tables relatively
sparse, they grow a table whenever a pointer cannot be remembered to its natural location
in the table or one of the k following slots, or when the occupancy of the table exceeds a
threshold (for example, 60%). Tables are grown by incrementing the size of the hash key,
effectively doubling the table's size; a corollary is that the key size cannot be a compile
time constant, which may increase the size and cost of the write barrier. As Appel [1989a]
stores his sequential store buffer in the heap, overflow triggers garbage collection. The
MMTk also invokes the collector whenever the size of its metadata (such as the sequential
store buffer) grows too large.

Card tables

Card table (card marking) schemes divide the heap conceptually into fixed size, contiguous
areas called cards [Sobalvarro, 1988; Wilson and Moher, 1989a,b] . Cards are typically small,
between 128 and 512 bytes. The simplest way to implement the card table is as an array
of bytes, indexed by the cards. Whenever a pointer is written, the write barrier dirties an
entry in the card table corresponding to the card containing the source of the pointer (for
example, see Figure 1 1 .3) . The card's index can be obtained by shifting the address of the
updated field . The motivation behind card tables is to permit a small and fast write barrier
that can be inlined into mutator code. In addition, card tables cannot overflow, unlike
hash tables or sequential store buffers. As always, the trade-off is that more overhead is
transferred to the collector. In this case, the collector must search dirtied cards for fields
that have been modified and may contain an interesting pointer: the cost to the collector is
proportional to the number of cards marked (and to card size) rather than the number of
(interesting) stores made.

Because they are designed to minimise impact on mutator performance, card marking
schemes are most often used with an unconditional write barrier. This means that the card
table is sufficiently large that all locations that might be modified by Wr i t e can be mapped
to a slot in the table. The size of the table could be reduced if it were guaranteed that no
interesting pointers would ever be written to some region of the heap and a conditional
test was used to filter out such dull pointers. For example, if the area of the heap above
some fixed virtual address boundary was reserved for the nursery (which is scavenged at
every collection), then it is only necessary to map the area below that boundary.

While the most compact implementation of a card table is an array of bits, this is not
the best choice for several reasons. Modern processor instruction sets are not designed
to write single bits. Therefore bit manipulations require more instructions than primitive
operations: read a byte, apply a logical operator to set or clear the bit, write the byte back.
Worse, this sequence of operations is not atomic: card updates may be lost if threads race
to update the same card table entry even though they may not be modifying the same
field or object in the heap. For this reason, card tables generally use arrays of bytes . Be
cause processors often have fast instructions for clearing memory, 'dirty' is often repre
sented by 0. Using a byte array, the card can be dirtied in just two SPARC instructions
[Detlefs et al, 2002a] (other architectures may require a few more instructions), as shown
in Algorithm 1 1 .6. For clarity, we write ZERO to represent the SPARC register %gO which
always holds 0 . A BAS E register needs to be set up so that it holds the higher order bits of
CT l - (H»LOG_CARD_S I ZE) where C T l and H are the starting addresses of the card table
and the heap respectively, and both are aligned on a card-size boundary, say 512 bytes.
Detlefs et al [2002a] use a SPARC local register for that, which is set up once on entry to a
method that might perform a write, and is preserved across calls by the register window
mechanism.

198 CHAPTER 1 1 . RUN-TIME INTERFACE

Algorithm 11.6: Recording stored pointers with a card table on SPARC

1 Wr it e (s r c, i, re f) :
add % s r c, % i , % f l d
s t % re f, [% f l d]
s r l % f l d, LOG_CARD_S I ZE, % i dx
s tb ZERO, [%BAS E + % i dx]

; s r c [i] +- re f
i dx f- f l d > > LOG_CARD_S I ZE

; CT [i dx] +- D I RTY

Algorithm 11.7: Recording stored pointers with Holzle's card table on SPARC

1 Writ e (s r c, i , re f) :
s t % re f, [% s r c + % i]
s r l % s r c, LOG_CARD_S I ZE, % i dx
c l rb [% BASE + % i dx]

/* calculate approximate byte index *I
f* clear byte in byte map 4

Algorithm 11.8: Two-level card tables on SPARC

1 Writ e (s rc , i , re f) :
add % s r c, % i , % f l d
st % re f, [% f l d]
s r l % f l d, LOG_CARD_S I ZE, % i dx
stb ZERO, [%BASE+ % i dx]
s r l % f l d, LOG_SUP ERCARD_S I ZE , % i dx
stb ZERO, [%BAS E + % i dx]

f* do the write *I
f* get the Ievel l index *f

f* mark the level 1 card dirty *f
/* get the level 2 index 4

f* mark the level 2 card dirty 4

Holzle [1993] further reduced the cost of the write barrier in most cases by reducing
the precision with which the modified field is recorded, as in Algorithm 1 1 .7 . Suppose that
marking byte i in the card table indicated that any card in the range i . . . i + L may be dirty.
Provided that the offset of the updated word is less than L cards from the beginning of the
object, the byte corresponding to the object's address can be marked instead. A leeway of
one (L = 1) is likely to be sufficient to cover most stores except those into array elements:
these must be marked exactly in the usual way. With a 128-byte card, any field of a 32-word
object can be handled.

Ambiguity arises only when the last object on a card extends into the next card, and in
that case the collector also scans that object or the necessary initial portion of it .

The space required for the card table is usually modest, even for small card sizes. For
example, a byte array for 128-byte cards occupies less than 1% of the heap in a 32-bit archi
tecture. Card size is a compromise between space usage and the collector's root scanning
time, since larger cards indicate the location of modified fields less precisely but occupy
smaller tables.

At collection time, the collector must search all dirty cards for interesting pointers.
There are two aspects to the search. First, the collector must scan the card table, looking for
dirty cards. The search can be speeded up by observing that mutator updates tend to have
good locality, thus clean and dirty cards will tend to occur in clumps. If bytes are used in
the card table, four or eight cards can be checked by comparing whole words in the table.

If a generational collector does not promote all survivors en masse, some objects will
be retained in the younger generation, while others are promoted . If a promoted object
refers to an object not promoted, then the older-to-younger reference leads unavoidably to
a dirty card. However, when a promoted object is first copied into the older generation,

1 1 .8. READ AND WRITE BARRIERS

card table -==I=====r:::=====:J=====:::J·····-==-
�

crossing map 102 words - 2 cards

scan

Heap : I I : J I I
408 bytes 200 bytes

Figure 11.3: Crossing map with slot-remembering card table. One card has
been dirtied (shown in black) . The updated field is shown in grey. The cross
ing map shows offsets (in words) to the last object in a card.

199

it may refer to objects in the younger generation, all of which end up being promoted. In
that case it would be better not to dirty the promoted object's card(s), since doing so will
cause needless card scanning during the next collection. Hosking et al [1992] take care to
promote objects to clean cards, which are updated as necessary as the cards are scanned
using a filtering copy barrier.

Even so, a collector may spend significant time in a very large heap skipping clean
cards. Detlefs et a[[2002a] observe that the overwhelming majority of cards are clean whilst
cards with more than 16 cross-generational pointers are quite rare. The cost of searching
the card table for dirty cards can be reduced at the expense of some additional space for
a two-level card table. The second, smaller card table uses more coarsely grained cards,
each of which corresponds to 2n fine-grained cards, thus speeding up scanning of clean
cards by the same factor. The write barrier can be made very similar to that of Algo
rithm 1 1 .6 (just two more instructions are needed) by sacrificing some space in order to
ensure that the start of the second level card table CT2 is aligned with the first such that
CT1 - (H»LOG_CARD_S I ZE) =CT2 - (H»LOG_SUPERCARD_S I ZE) , as in Algorithm 1 1 .8.

Crossing maps

As a card table is searched, each dirty card discovered must be processed, which requires
finding the modified objects and slots somewhere in the card. This is not straightforward
since the start of the card is not necessarily aligned with the start of an object but in order
to scan fields we must start at an object. Worse, the field that caused the card to be dirtied
may belong to a large object whose header is several cards earlier (this is another reason
for storing large objects separately) . In order to be able to find the start of an object, we
need a crossing map that decodes how objects span cards.

The crossing map holds as many entries as cards. Each entry in the crossing map indi
cates the offset from the start of the corresponding card to an object starting in that card.
Entries in the crossing map corresponding to old generation cards are set by the collector
as it promotes objects, or by the allocator in the case of cards for spaces outside the genera
tional world. Notice that the nursery space does not need cards since objects there cannot
point to other object that are still younger - they are the youngest objects in the system.
Promotion also requires that the crossing map be updated. The design of the crossing map
depends on whether the card table records objects or slots.

Used with a slot-recording write barrier, the crossing map must record the offset to the
last object in each card, or a negative value if no object starts in a card. Because objects can
span cards, the start of the modified object may be several cards earlier than the dirty one.

200 CHAPTER 1 1 . RUN-TIME INTERFACE

Algorithm 11.9: Search a crossing map for a slot-recording card table; trace is the collector 's
marking or copying procedure.

s earch(c a rd) :
start +-- H + (card < < LOG_CARD_S I ZE)
end +-- s t a rt + CARD_S I ZE
o f f s et +-- c ro s s i ngMap [card]
while o f f s et < 0

/* start of next card *f

c a r d +-- card + o f fset /* o f f s et is negative: go back *f
o f f s e t +-- cro s s i n gMap [card]

o f f s et +-- CARD_S I Z E - (o f f s e t < < LOG_BYTE S_IN_WORD)
next +-- H + (card < < LOG_CARD_S I ZE) + o ff s e t

w repeat
n trace (n e xt, start , e nd) /* trace the object at next */
1 2 next +-- nextOb j e c t (next)
1 3 until n e x t > end

For example, in Figure 11 .3, objects are shown as white rectangles in the heap. We assume
a 32-bit architecture and 512 byte cards. The last object in the first card starts at an offset of
408 bytes (102 words) from the end of the card, indicated by the entry in the crossing map.
This object spans four cards so the next two crossing map entries are negative. A field
in the fifth object has been updated (shown as grey) so the corresponding card (card 4) is
marked (shown as black). To find the start of this object, the collector consults the crossing
map, moving backwards from the dirtied card (to the left) until it finds a non-negative
offset (Algorithm 1 1 .9) . Note that the negative value indicates a distance to go back - a
process that may need to be repeated a number of times if the preceding object is quite
large. Alternatively, the system can reserve a a single value, such as -1, to mean 'back up,'
making backing up slower over a large object.

Old generations are commonly managed by a non-moving collector which mixes used
and free blocks in the heap. Parallel collectors are especially likely to create islands of pro
moted data separated by large areas of free space, as each collector thread will promote
to its own heap area in order to avoid contention. To aid heap parsability, each free area
can be filled with a self-describing pseudo-object. However, slot-based crossing map al
gorithms are predicated on the assumption that heap usage is dense. If a very large, say
ten megabyte, free chunk protrudes into a dirty card, the first loop of the s e a r c h algo
rithm in Algorithm 1 1 .9 will iterate tens of thousands of times to discover the head of the
pseudo-object describing this free chunk. One way to reduce this search is to store logarith
mic backup values when no object starts in the card. Thus, an entry -k would indicate 'go
back 2

k
- t cards and then do what it says there' (and similarly for a linear backup scheme).

Note also that if future allocation starts from the beginning of this free block, then only
logarithmically many entries (up the 'spine' of this list) have to be changed to restore the
crossing table to the correct state .

However, Garthwaite et al [2006] show that a clever encoding of the crossing map can
usually eliminate the search loop . The simplest way to consider their scheme is to assume
that each crossing map entry v is a 16-bit unsigned integer (two bytes) . Table 1 1 .3 shows
their scheme. If the value v of a crossing map entry is zero, then no objects in the corre
sponding card contain any references. A value for v less than 128 indicates the number of
words between the start of the first object and the end of the card. Notice that this is dif-

1 1 .8. READ AND WRITE BARRIERS 201

I Entry v I Encoded meaning

v = O The corresponding card contains no references.
0 < v ::; 128 The first object starts v words before the end of this card.
256 < v ::; 384 The first v - 256 words of of this card are a sequence of references at

the end of an object.
v > 384 Consult the card v - 384 entries before.

Table 11.3: The crossing map encoding of Garthwaite et al

ferent from the scheme above which gives the offset to the last word in a card. Finding the
first word eliminates the need to search back possibly many cards. Large objects, such as
arrays, may span cards. The second encoding deals with the case that such an object spans
two or more cards, and that the first v - 256 words of the second card are all references
and that this sequence terminates the object. The benefit of this encoding is that the refer
ences can be found directly, without accessing the object's type information. However, this
encoding would not work if the portion of the object overlapping this card contains both
references and non-references. In this case, the crossing map entry should be set to a value
greater that 384 to indicate that collector should consult the entry v - 384 entries earlier.
Garthwaite et al also include a scheme in which, if an object completely spans two crossing
map slots, then the four bytes of these slots should be treated as the address of the object.
In this discussion, we have assumed that a crossing map entry should be two bytes long.
However, a single byte suffices if, for example, we use 512 byte cards and 64-bit alignment.

Summarising cards

Some generational collectors do not promote objects en masse. Whenever the collector scans
a dirty card and finds an interesting pointer but does not promote its referent, the card
must be left dirty so that it is found at the next collection and scanned again. It would be
preferable to discover interesting pointers directly rather than by searching through cards.
Fortunately, it is common for very few dirty cards to contain more than a small number.
Hosking and Hudson [1993] suggest moving interesting pointers to a hash table as a card
is cleaned in the same way as Hosking et al [1992] did with sequential store buffers .

Sun's Java virtual machines optimise card rescanning by having the scavenger sum
marise dirty cards that retain interesting pointers, taking advantage of card map entries
being bytes not bits [Detlefs et al, 2002a] . The state of a card may now be 'clean', 'mod
ified' or 'summarised' . If the scavenger finds up to k interesting pointers in a 'modified'
card, it marks the card as 'summarised' and records the offsets of these pointer locations
in the corresponding entry of a summary table. If the card contains more than k interesting
pointers (for example, k = 2), it is left 'modified' and the summary entry is recorded as
'overflowed'. The k interesting fields can therefore be processed directly at the next collec
tion (unless the card is dirtied again) rather having to search the card using the crossing
map. Alternatively, if cards are reasonably small, each byte-sized entry in the card table
itself can store a small number of offsets directly.

Reppy [1993] encodes additional generational information in the card table to save
scanning effort. As it cleans cards, his multi-generational collector summarises a dirty
card with the lowest generation number of any referent found on it (0 being the nursery) .
In future, when collecting generation n, cards in the table with values larger than n need
not be processed. Used with 256-byte cards, this gave an 80% improvement in garbage
collection times in a five-generation Standard ML heap.

202 CHAPTER 1 1 . RUN-TIME INTERFACE

Hardware and virtual memory techniques

Some of the earliest generational garbage collectors relied on operating system and hard
ware support. Tagged pointer architectures allowed pointers and non-pointers to be dis
criminated, and hardware write barriers could set bits in a page table [Moon, 1984] . How
ever, it is possible to use operating system support to track writes without special purpose
hardware. Shaw [1988] modified the HP-UX operating system to use its paging system for
this purpose. The virtual memory manager must always record which pages are dirty so
that it knows whether to write them back to the swap file when they are evicted. Shaw
modified the virtual memory manager to intercept a page's eviction and remember the
state of its dirty bit, and added system calls to clear a set of page bits and to return a map
of pages modified since the last collection. The benefit of this scheme is that it imposes no
normal-case cost on the mutator. A disadvantage is that it overestimates the remembered
set since the operating system does not distinguish pages dirtied by writing a pointer or a
non-pointer, plus there are the overheads of the traps and operating systems calls.

Boehm et al [1991] avoided the need to modify the operating system by write-protecting
pages after a collection. The first write to a page since it was protected leads to a fault; the
trap handler sets the dirty bit for the page before unprotecting it to prevent further faults
in this collection cycle. Clearly, pages to which objects are promoted should be presumed
dirty during collection to avoid incurring traps. Page protection does impose overhead on
the mutator but, as for card tables, the cost of the barrier is proportional to the number
of pages written rather than the number of writes. However, these schemes incur further
expense. Reading dirty page information from the operating system is expensive. Page
protection mechanisms are known to incur 'trap storms' as many protection faults are
triggered immediately after a collection to unprotect the program's working set [Kermany
and Petrank, 2006] . Page protection faults are expensive, particularly if they are referred
to user-space handlers. Operating system pages are much larger than cards, so efficient
methods of scanning them will be important (perhaps summarising them in the same way
that we summarised cards above) .

Write barrier mechanisms: in summary

Studies by Hosking et al [1992] and Fitzgerald and Tarditi [2000] found no clear win
ner amongst the different remembered set mechanisms for generational garbage collec
tors, although neither study explored Sun-style card summarising. Page-based schemes
performed worst but, if a compiler is uncooperative, they do provide a way to track
where pointers are written. In general, for card table remembered sets, card sizes around
512 bytes performed better than much larger or much smaller cards.

Blackburn and Hosking [2004] examined the overheads of executing different genera
tional barriers alone on a range of platforms. Card marking and four partial barrier mech
anisms were studied: a boundary test, a logging test, a frame comparison and a hybrid
barrier. They excluded the costs of inserting an entry into remembered set for the par
tial barriers. The boundary test checked whether the pointer crossed a space boundary
(a compile-time constant). The logging test checked a 'logged' field in the source of the
pointer 's header. The frame barrier compared whether a pointer spanned two 2n - sized
and aligned areas of the heap by xo ring the addresses of its source and target: such bar
riers can allow more flexibility in the choice of space to be collected [Hudson and Moss,
1992; Blackburn et al, 2002] . Finally, a hybrid test chose statically between the boundary
test for arrays and the logging test for scalars.

They concluded that the costs of the barrier (excluding the remembered set insertion
in the case of the partial techniques) was generally small, less than 2%. Even where a
write barrier 's overhead was much higher, the cost can be more than balanced by improve-

1 1 . 9. MANAGING ADDRESS SPACE

N E XT NEXT n u l l
null PREV PREV

- M - - - - - - · - -

- pt r

Figure 11.4: A stack implemented as a chunked list. Shaded slots contain
data. Each chunk is aligned on a zk byte boundary.

203

ments in overall execution time offered by generational collection [Blackburn et al, 2004a] .
However, there was substantial architectural variation between the platforms used (Intel
Pentium 4, AMD Athlon XP and Power PC 970), especially for the frame and card barriers.
For example, the frame barrier was significantly more expensive than the others on x86 but
among the cheapest on Power PC; Blackburn and Hosking observed that x o r is required to
use the e a x register on x86 which may increase register pressure. On the other hand, card
marking on the Power PC (their compiler generated a longer instruction sequence than the
ones shown above) was very much more expensive than the partial techniques. We con
clude that, as always, design decisions must be informed by careful experimentation with
realistic benchmarks on a range of hardware platforms, and for each platform a different
technique may be best.

Chunked lists

It is common to find list-like data structures in collectors where an array is attractive be
cause it does not require a linked list pointer or object header for each element, and it
achieves good cache locality, but where the unused part of large arrays, and the possible
need to move and reallocate a growing array, are problematic . A remembered set in a gen
erational collector is such an example. A chunked list offers the advantage of high storage
density but without the need to reallocate, and with relatively small waste and overhead.
This data structure consists of a linked-list, possibly linked in both directions for a general
deque, of chunks, where a chunk consists of an array of slots for holding data, plus the one
or two chaining pointers. This is illustrated in Figure 1 1 .4 .

A useful refinement of this data structure is to make the size of the chunks a power of
two, say zk, and align them on zk boundaries in the address space. Then logical pointers
into a chunk used for scanning, inserting, or removing, do not need a separate 'current
chunk' pointer and an index, but can use a single pointer. Algorithm 1 1 .10 shows code
for traversing a bidirectional chunked list in either direction, as a sample of the technique.
The modular arithmetic can be performed with shifting and masking.

An important additional motivation for chunking is related to parallelism. If a chunked
list or deque represents a work queue, then individual threads can grab chunks instead of
individual items. If the chunk size is large enough, this greatly reduces contention on
obtaining work from the queue. Conversely, provided that the chunk size is small enough,
this approach still admits good load balancing. Another application for chunking is for
local allocation buffers (Section 7.7), though in that case the chunks are just free memory,
not a dense representation of a list data structure.

11.9 Managing address space

In other chapters we have described a variety of algorithms and heap layouts, some of
which have implications for how a system uses available address space. Some algorithms

204 CHAPTER 1 1 . RUN-TIME INTERFACE

Algorithm 11.10: Traversing chunked lists

, /* Assume chunk is of size 2k bytes and aligned on a 2k byte boundary *f
2 /* Assume pointer size and slot size is 4 here *f
3 NEXT 0 /* byte offset in a chunk of pointer to data of next chunk *f
4 PREV 4 /* byte offset in a chunk of pointer to end of data of previous chunk *f
5 DATA 8 /* byte offset in a chunk of first data item *f

1 bumpToNext (pt r) :
pt r f- pt r + 4
i f (pt r % 2 k) 0

10 pt r f- * (pt r 2k + NEXT)
n ret urn pt r
1 2

1 3 bumpToP rev (pt r) :
1 4 pt r f- pt r - 4
1 5 if (pt r % 2 k) < DATA
1 6 pt r +- *pt r
1 1 return pt r

/* went off the end . . . *I
/* . . . back up to start of chunk and chain *f

/* went off the beginning of the data . . . *f
/* . . . chain *f

require, or at least are simpler with, large contiguous regions. In a 32-bit address space it
can be difficult to lay out the various spaces statically and have them be large enough for
all applications. If that were not problematic enough, on many systems we face the added
difficulty that the operating system may have the right to place dynamic link libraries
(also called shared object files) anywhere it likes within large swaths of the address space.
Furthermore, these libraries may not end up in the same place on each run - for security
purposes the operating system may randomise their placement. Of course one solution
is the larger address space of a 64-bit machine. However, the wider pointers needed in a
64-bit system end up increasing the real memory requirements of applications.

One of the key reasons for using certain large-space layouts of the address space is to
make address-oriented write barriers efficient, that is, to enable a write barrier to work
by comparing a pointer to a fixed address or to another pointer rather than requiring a
table lookup . For example, if the nursery of a generational system is placed at one end of
the address space used for the heap, a single check against a boundary value suffices to
distinguish writes of pointers referring to objects in the nursery from other writes.

In building new systems, it may be best not to insist on large contiguous regions of
address space for the heap, but to work more on the basis of frames, or at least to allow
'holes' in the middle of otherwise contiguous regions. Unfortunately this may then require
table lookup for write barriers.

Assuming table lookup costs that are acceptable, the system can manage a large logical
address space by mapping it down to the available virtual address space. This does not
allow larger heaps, but it does give flexibility in that it removes some of the contiguity re
quirements. To do this, the system deals with memory in power-of-two sized and aligned
frames, generally somewhat larger than a virtual memory page. The system maintains
a table indexed by frame number (upper bits of virtual address) that gives each frame's
logical address. This table then supports the address comparisons used in a variety of
address-oriented write barriers. It may lead to even better code to associate a generation
number (for a generational write barrier) with each frame. Algorithm 1 1 . 1 1 gives pseu
docode for such a write barrier. Each line can correspond to one instruction on a typical

1 1 . 1 0. APPLICATIONS OF VIRTUAL MEMORY PAGE PROTECTION

Algorithm 11.11: Frame-based generational write barrier

1 Wr i t e (s r c, i, r e f) :
ct f- f rame Tabl eBa s e
s r cFrame f- s r c > > > LOG_FRAME_S I ZE
re fFrame f- r e f > > > LOG_FRAME_S I ZE
s r cGen f- ct [s r cFrame]
re fGen f- ct [re fF rame]
if s r cGen > re fGen

remembe r (s r c, & s r c [i] , re f)
s r c [i] f- r e f

205

processor, particularly if entries in the frame table are a single byte each, simplifying the
array indexing operation. Notice also that the algorithm works even if re f is null - we
simply ensure that the entry for null's frame has the highest generation number so the
code will always skip the call to remember .

I t i s further possible to arrange true multiplexing o f a large address space into a smaller
one - after all, that is what operating systems do in providing virtual memory. One
approach would be to use wide addresses and do a check on every access, mimicking in
software what the virtual memory hardware accomplishes. This could use the software
equivalent of translation lookaside buffers, and so on. The performance penalty might
be high. It is possible to avoid that penalty by leveraging the virtual memory hardware,
which we discuss in more detail in Section 1 1 . 10.

It is good to build into systems from the start the capability to relocate the heap. Many
systems have a starting heap or system image that they load as the system initialises. That
image assumes it will reside at a particular location in the address space - but what if a
dynamic link library lies right in the middle of it? If the image includes a table indicating
which words need adjusting when the image is moved, not unlike many code segments,
then it is relatively straightforward for the image loader to relocate the image to another
place in the address space. Likewise it might be desirable to support relocating the entire
heap, or segments of it, during system operation.

In actually managing virtual memory, we can distinguish between the managed sys
tem's notion of address space dedicated to particular uses, which we call reserving the
space, and actual allocation of pages via a call to the operating system. If the operating sys
tem might map new dynamic link libraries into the address space on the fly, to guarantee a
reservation that the managed system has in mind it must actually allocate the pages - typ
ically as demand-zero pages. This has relatively low cost, but may involve the operating
system in reserving resources such as swap space, and all virtual memory mapping calls
tend to be expensive. Allocating pages in advance can also determine earlier that there
are not adequate resources for a larger heap. However, operating systems do not always
'charge' for demand-zero pages until they are used, so simply allocating may not give an
early failure indication.

11.10 Applications of virtual memory page protection

There are a variety of checks that a system can arrange to happen as part of virtual mem
ory protection checking. Implemented in this way the checks have little or no normal case
overhead and furthermore require no explicit conditional branches. A general considera
tion is that the overhead of fielding the trap, all the way through the operating system to

206 CHAPTER 1 1 . RUN-TIME INTERFACE

the collector software and back again, can be quite high. Also, changing page protections
can be costly, especially in a multiprocessor system where the operating system may need
to stop processes currently executing and update and flush their page mapping informa
tion. So sometimes an explicit check is cheaper even when the system could use protection
traps [Hosking et al, 1992] . Traps are also useful in dealing with uncooperative code, in
which it is not possible to cause barriers or checks in any other way.

A consideration, especially in the future, is that there are hardware performance rea
sons to increase page size. In particular, programs use more memory now than when these
techniques were first developed, and systems tend to have more main memory available
to map. At the same time, translation lookaside buffer size is not likely to grow because of
speed and power concerns. But given that translation lookaside buffer size is more or less
fixed, staying with a small page size while programs' memory use increases implies more
translation lookaside buffer misses. With larger pages some of the virtual memory 'tricks'
may not be as desirable.

We assume a model in which data pages can have their protection set for read-write
access, read-only access, and no-access. We are not concerned about execute privileges
since we are unaware of garbage collection-related exploitation of no-execute protection;
it is also less well supported across platforms.

Double mapping

Before considering specific applications we describe a general technique called double map
ping, by which the system maps the same page at two different addresses with different
protections. Consider for example an incremental copying collector with a tospace invari
ant. To prevent mutators from seeing fromspace pointers in pages not yet processed, the
collector can set those pages to no-access, effectively creating a hardware supported read
barrier. But how is the collector to process the pages? If the system is concurrent and the
collector unprotects the page, some other mutator may see the contents before the collec
tor processes them. However, if the page is mapped a second time in another place, with
read-write access, then the collector can process the contents via that second mapping,
then unprotect the page and wake up any mutator waiting for it.

In a smaller address space (even 32 bits is often small now) it may be difficult to double
map. A solution to that problem is to fork a child process that holds the second version of
the address space with same pages but different protections. The collector can communi
cate with the child, requesting the child to process a page, and so forth.

Note also that double mapping is problematic on some systems. One problem arises
when caches are indexed by virtual address. In the presence of double mapping, the cache
could potentially become incoherent. Typically the hardware avoids that by preventing
aliased entries from residing in the cache at the same time. This can cause extra cache
misses. However, in the case at hand it applies only to accesses by the mutator and collec
tor near in time on the same processor. Another problem arises if the system uses inverted
page tables. In this scheme, each physical page can have only one virtual address at a time.
The operating system can support double mapping by effectively invalidating one of the
virtual addresses and then connecting the other one. This may involve cache flushing.

Applications of no-access pages

In describing double mapping we have already given one example of using no-access
pages: for an unconditional read barrier. There are at least two more applications for
no-access pages in common use. One is to detect dereferences of null pointers, which we
assume to be represented by the value 0. This works by setting page 0, and possibly a few

1 1 . 1 0. APPLICATIONS OF VIRTUAL MEMORY PAGE PROTECTION 207

more pages after it, no-access. If a mutator tries to access a field through a null pointer, it
will attempt to read or write the no-access page. Since fielding a null pointer dereference
exception is generally not required to be fast, this application can be a good trade-off. In
the rare case of an access that has a large offset, the compiler can emit an explicit check. If
the object layout places headers or other fields at negative offsets from the object pointer,
the technique still works provided that one or more pages with very high addresses are set
no-access . Most operating systems reserve the high addresses for their own use anyway.

The other common use for a no-access page is as a guard page. For example, the se
quential store buffer technique for recording new remembered set entries consists of three
steps: ensure there is room in the buffer; write the new element to the buffer; and incre
ment the buffer pointer. The check for room, and the call to the buffer overflow handler
routine, can be removed if the system places a no-access guard page immediately after the
buffer. Since write barriers can be frequent and their code can be emitted in many places,
the guard page technique can speed up mutators and keep their code smaller.

Some systems apply the same idea to detecting stack or heap overflow by placing a
guard page at the end of the stack (heap) . To detect stack overflow, it is best if a procedure's
prologue touches the most remote location of the new stack frame it desires to build. That
way the trap happens at a well defined place in the code. The handler can grow the stack
by reallocating it elsewhere, or add a new stack segment, and then restart the mutator
with an adjusted stack and frame pointer. Likewise when using sequential allocation the
allocator can touch the most remote word of the desired new object and cause a trap if it
falls into the guard page that marks the end of the sequential allocation area.

In either case, if the new stack frame or object is so large that its most remote word
might lie beyond the guard page, the system needs to use an explicit check. But such large
stack frames and objects are rare in many systems, and in any case a large object will take
more time to initialise and use, which amortises the cost of the explicit check.

No-access pages can also help in supporting a large logical address space in a smaller
virtual address space. An example is the Texas persistent object store [Singhal et al, 1992] .
Using the strategy for persistence (maintaining a heap beyond a single program execution)
goes beyond our scope, but the mechanism is suitable for the non-persistent case as well.
In this approach the system works in terms of pages, of the same size as virtual memory
pages or some power-of-two multiple of that. The system maintains a table that indicates
where each logical page is: either or both of an address in (virtual) memory and a location
in an explicitly managed swapping file on disk. A page can be in one of four states:

• Unallocated: Not yet used, empty.

• Resident: In memory and accessible; it may or may not have a disk copy saved yet.

• Non-resident: On disk and not accessible.

• Reserved: On disk and not accessible, but with specific virtual memory reserved.

Initially, a new page starts Resident and has a new logical address, not determined by
its virtual memory address. As virtual memory fills, some pages may be evicted to disk,
saved according to their logical address. Also, the system converts all pointers in the page
to their long logical form, a process called unswizzling in the literature [Moss, 1992] . Thus
the saved form of a page is typically larger than its in-memory form. Also, the system
must be able to find all the pointers in a page accurately. After evicting a page, its state is
Reserved, and the system sets the virtual memory it occupied to no-access. This guarantees
that if the program follows a pointer to an evicted object, there will be a page trap, which
alerts the system to fetch the page back.

208 CHAPTER 1 1 . RUN-TIME INTERFACE

How can the system free up the Reserved virtual space for re-use? It must determine
that there are no longer any Resident pages referring to the Reserved page. It can help
make this happen by evicting pages that refer to the Reserved page. At that point the page
can become Non-resident and the system can reuse the space.

Notice that Resident pages refer to each other and to Reserved pages, but never directly
to data in Non-resident pages .

Now consider what happens if the program accesses a Reserved page (and if there are
evicted data that are reachable in the object graph, then there must be Reserved pages) . The
system looks up the page's logical address and fetches it from disk. It then goes through
the page's pointers and replaces long logical addresses with short virtual addresses (called
pointer swizzling). For referents on pages that are Resident or Reserved, this consists
of just a table lookup. If the referent is itself on a Non-resident page, then the system
must reserve virtual address space for that page, and then replace the long address with
a pointer to the newly Reserved page. Acquiring virtual address space for these newly
Reserved pages may require evicting other pages so that some page(s) can be made Non
resident and their virtual address space recycled.

Just as an operating system virtual memory manager needs good page replacement
policies, so the Texas approach needs a policy, though it can reasonably borrow from the
vast store of virtual memory management algorithms.

How does the scheme work in the presence of garbage collection? It is clear that a full
heap garbage collection of a heap larger than the virtual address space is probably going
to involve significant performance penalties. Collection of persistent stores has its own lit
erature and lies beyond our scope. However, we can say that partitioned schemes can help
and techniques like Mature Object Space [Hudson and Moss, 1992] can offer completeness.

Related techniques include the Bookmarking collector [Hertz et al, 2005; Bond and
McKinley, 2008] . However, the purpose of bookmarking is more to avoid thrashing real
memory - it does not extend the logical address space beyond the physical. Rather it
summarises the outgoing pointers of pages evicted by the operating system so that the
collector can avoid touching evicted pages and thus remain within the working set, at a
possible loss of precision similar to that occasioned by remembered sets and generational
collection: the collector may trace from pointers in dead objects of evicted pages .

11.11 Choosing heap size

Other things being equal, larger heap sizes generally result in higher mutator through
put and lower collection cost. In some cases, a smaller heap size may improve muta
tor throughput by improving mutator locality by reducing cache or translation lookaside
buffer misses. However, too big a heap may lead to a working set larger than can be
accommodated in real memory, resulting in thrashing, particularly when the collector is
active. Therefore, choosing an appropriate heap size often involves aiming to keep a pro
gram's real memory footprint small enough. Knowing how small is small enough typi
cally involves the run-time system and the operating system, We now review a number
of schemes that automatic memory managers have used to adjust heap size. Alternative
approaches to adjusting the size of the heap include choosing which pages to page out, as
in the Bookmarking collector [Hertz et al, 2005; Hertz, 2006] , and having the collector save
rarely accessed objects to disk [Bond and McKinley, 2008] .

Alonso and Appel [1990] devised a scheme where an 'advice server ' tracks virtual
memory usage using information available from ordinary system calls, vms t a t in partic
ular. After each full collection (the Appel collector for SML is generational), the collector
reports its minimal space need, how much space more than that it is currently using for

1 1 . 1 1 . CHOOSING HEAP SIZE 209

the heap, how long it has been since the last full collection and how much mutator and
collector CPU time it has expended since the last collection. The advice server determines
an additional amount of space that appears safe for the process to use, and the process
adjusts its heap size accordingly. The aim is to maximise throughput of the managed pro
cesses without causing other processes to thrash either.

In contrast to Alonso and Appel, Brecht et al [2001, 2006] control the growth in heap size
for Java applications without reference to operating system paging information. Rather, for
a system with a given amount of real memory - they considered 64 and 128 megabytes
- they give a series of increasing thresholds, Tt to Tb stated as fractions of the real memory
of the system. At any given time, a process uses a heap size of Ti for some i . If collecting
at size Ti yields less than Ti+l - Ti fraction of the space reclaimed, the system increases the
threshold from Ti to Ti+l · They considered the Boehm-Demers-Weiser collector [Boehm
and Weiser, 1988] , which cannot shrink its heap, so their approach deals only with heap
growth. The thresholds must be determined empirically, and the approach further as
sumes that the program in question is the only program of interest running on the system.

Cooper et al [1992] present an approach that aims for a specified working set size for
an Appel-style SML collector running under the Mach operating system. They adjust the
nursery size to try to stay within the working set size, and they also do two things spe
cific to Mach. One is that they use a large sparse address space and avoid the need to
copy tospace to lower addresses to avoid hitting the end of the address space. This has
little to do with heap sizing, but does reduce collector time. The second thing specific to
Mach is having the collector inform the Mach pager that evacuated fromspace pages can
be discarded and need not be paged out, and if referenced again, such pages can be offered
back to the application with arbitrary contents - the allocator will zero them as necessary.
Cooper et al obtain a four-fold improvement in elapsed time for a small benchmark suite,
with about half of the improvement coming from the heap size adjustment. However, the
target working set size must still be determined by the user.

Yang et al [2004] modify a stock Unix kernel to add a system call whereby an applica
tion can obtain advice as to how much it may increase its working set size without thrash
ing, or how much to decrease it to avoid thrashing. They modify garbage collectors of
several kinds to adjust their heap size using this information. They demonstrate the im
portance of adaptive heap sizing in obtaining the best performance as memory usage by
other processes changes. They introduce the notion of the footprint of a program, which
is the number of pages it needs in memory to avoid increasing the running time by more
than a specified fraction t, set to five or ten percent. For a garbage collected program, the
footprint depends on the heap size, and for copying collectors, also on the survival rate
from full collections, that is, the live size. However, an observation they make, not unlike
Alonso and Appel, is that the key relationship is between how the footprint changes for a
given change in heap size. In particular, the relationship is linear, with the ratio determined
by the particular collection algorithm. The ratio is 1 for mark-sweep based collectors, while
it is 2 for copying collectors.

Grzegorczyk et al [2007] consider the relative helpfulness of several pieces of informa
tion related to paging that can be obtained from a standard Unix kernel. Specifically they
look at page outs, the number of pages written to the swap area by the kernel swapping
daemon, page faults, the number of pages missing when referenced that had to be fetched
from disk, and allocation stalls, the number of times the process had to wait when trying to
obtain a fresh page. These counts are all related to the particular executing process in that
page outs have to do with the pages of that process, and page faults and allocation stalls
occur because of actions of the process. Of these three possible indicators that a system
is under so much memory load that shrinking the heap might be wise, they find that the
number of allocation stalls is the best indicator to use. When a collection sees no allocation

210 CHAPTER 1 1 . RUN-TIME INTERFACE

stalls, it will grow the heap by an amount originally set to 2% of the user-specified heap
size; values between 2% and 5% gave similar results . If a collection experiences allocation
stalls, the collector shrinks the nursery so that the total heap space, including the reserve
into which the nursery is copied, fits within the space used the last time that there were
no allocation stalls. This leaves the nursery cut by up to 50%. In the absence of memory
pressure, the scheme performs similar to a non-adjusting baseline, while in the presence
of memory pressure, it performs close to the non-pressure case while the baseline system
degrades substantially.

The schemes we have discussed so far concern adjusting individual processes' use of
memory dynamically, perhaps in response to general use of memory within a system at
any given time . If, on the other hand, the set of programs to be run is known in advance
and does not vary, the approach of Hertz et al [2009] aims to indicate the best heap size
to give to each program. In this scheme 'best' means 'gives the least overall execution
time', which can also be stated as 'give the highest overall throughput'. At run time, their
Poor Richard's Memory Manager has each process observe its recent page fault counts and
resident set size. If the number of page faults observed in one time increment is greater
than the number observed in the previous increment by more than a threshold amount,
the collector triggers a full collection, in order to reduce the working set size. Likewise it
triggers a full collection if the resident set size decreases. The resulting system appears to
size competing processes' heaps well to achieve the best throughput.

The dynamic heap sizing mechanism proposed by Zhang et al [2006] is similar in spirit
to that of Hertz et al [2009], but has the program itself check the number of page faults at
each collection and adjust the target heap size itself, rather than building the mechanism
into the collector. Unlike the other mechanisms we have discussed, they assume that the
user has somehow identified the phases of the program and inserted code to consider
forcing collection at phase changes. They showed that dynamic adaptive heap sizing can
substantially improve performance over any single fixed heap size .

11.12 Issues to consider

The allocation interface presents a number of questions that the implementer must answer.
Some answers may be dictated by the language semantics or by the level of concurrency
in the environment (can objects 'leak' from their allocating thread?) . Others may be at
the discretion of the implementer and the decisions may be made in order to improve
performance or the robustness of the run-time system.

We need to consider what requirements are made of allocation and initialisation. Is the
language run-time's job simply to allocate some space of sufficient size, must some header
fields be initialised before the object can be usable or must initialising values for all the
newly allocated object's fields be provided? What are the alignment requirements for this
object? Should the run-time distinguish between different kinds of objects, such as arrays
and other objects? Is it beneficial to treat objects that may contain pointers from those that
do not? Such a distinction may help to improve tracing since pointer-free objects do not
need to be scanned. Avoiding scanning such objects is known to be particularly beneficial
for conservative collectors.

Often we will want to consider carefully how much of the allocation code sequence can
be inlined. Typically, we might inline a fast path in which an object can be allocated with
the least work but not the other slower paths which might involve obtaining space from a
lower-level allocator or invoking the collector. However, too much inlining can explode
the size of the code and negate the benefit hoped for. Similarly, if might be desirable
to dedicate a register to a particular purpose, such as the bump-pointer for sequential

1 1 . 12. ISSUES TO CONSIDER 211

allocation. However, doing so may place too much pressure on the register allocator on a
register-poor platform.

Depending on the language supported, for safety or for debugging, the run-time may
zero memory. Space could be zeroed as objects are allocated but bulk zeroing with a well
optimised library routine is likely to be more efficient. Should memory be zeroed shortly
before it is used (for best cache performance) or immediately when it is freed, which may
help with debugging (though here writing a special value might be more useful)?

Collectors need to find pointers in order to determine reachability. Should the run-time
provide a precise or a conservative estimate to the collector? Or might it provide a conser
vative estimate of the pointers in program threads and a more precise estimate of pointer
locations in the heap? Conservative pointer finding can ease aspects of an implementation,
but risks space leaks and may lead to worse performance than type-accurate collection.
Finding pointers in the stack, especially if it contains a mixture of frame types (optimised
and unoptimised subroutines, native code frames, bridging frames), can be challenging to
implement type-accurately. On the other hand, scanning stacks for pointers constrains the
choice of collection algorithm as objects directly reachable from stacks cannot be moved.

Systems generally provide stack maps to determine from a return address the function
within which the address lies. Polymorphic functions and language constructs such as
Java's j s r bytecode complicate their use. The implementer must also decide when stack
maps should be generated and when they can be used. Should the maps be generated
in advance or should we defer generating until the collector needs one, thereby saving
space? Is a map only valid at certain safe-points? Stack maps can be large: how can they
be compressed, especially if they must be valid at every instruction? Stack scanning also
raises the question of whether the stack should be scanned in its entirety, atomically, or
incrementally. Incremental stack scanning is more complex but offers two benefits. First,
it can bound the amount of work done in an increment (which may be important for real
time collectors) . Second, by noting the portion of the stack that has not changed since the
last time it was scanned, we can reduce the amount of work that the collector has to do.

Language semantics and compiler optimisations raise further questions. How should
interior and derived pointers be handled? Language may allow access to objects from
outside the managed environment, typically from code written in C or C++, and every
language needs to interact with the operating system for input/ output. The run-time must
ensure that objects are not reclaimed while they are being used by external code and that
external code can find these objects. Typically, this may involve pinning such objects or
providing access to them through handles.

Some systems may allow a garbage collection at any point. However it is usually sim
pler to restrict where collection can happen to specific GC-safe points. Typically these
include allocation, backward branches, and function entry and return. There are alterna
tive ways to cause a thread to suspend at a GC-point. One way is to have threads poll
by checking a flag that indicates that a collection has been requested. An alternative is
to patch the code of a running thread to roll it forward to the next GC-point. The hand
shake between collector and mutator thread can be achieved by having threads check a
thread-local variable, by setting a processor condition code in the saved thread state of a
suspended thread, by hijacking return address or through operating system signals.

Several classes of garbage collection algorithm require 'interesting' pointers to be de
tected as mutators run. This opens up a wide range of design policies and implementations
for the detection and recording of these pointers . As barrier actions are very common, it
is essential to minimise any overhead they incur. Barriers may be short sequences of code
inserted by the compiler before pointer loads or stores, or they may be provided through
operating system support, such as page protection traps. As always, there are trade-offs
to be considered. In this case, the trade-offs are between the cost to the mutator and the

212 CHAPTER 1 1 . RUN-TIME INTERFACE

cost to the collector, between precision of recording and speed of a barrier. In general, it is
better to favour adding overhead to relatively infrequent collector actions (such as discov
ering roots) than to very frequent mutator actions (such as heap stores) . Adding a write
barrier can increase the instruction count for a pointer write by a factor of two or more,
though some of this cost may be masked by cache access times.

How accurately should pointer writes be recorded? Unconditional logging may impose
less overhead on the mutator than filtering out uninteresting pointers but the implemen
tation of the remembered set is key to this decision. How much filtering should be inline?
Careful tuning is essential here. At what granularity is the location of the pointer to be
recorded? Should we record the field overwritten, the object or the card or page on which
it resides? Should we allow the remembered set to contain duplicate entries? Should ar
rays and non-arrays be treated in the same way?

What data structures should be used to record the location of interesting pointers: hash
tables, sequential store buffers, cards or a combination of these? How does this choice
vary the overheads between the mutator and the collector? Data structures may overflow:
how can this be handled safely and efficiently? Card tables offer an imprecise recording
mechanism. At collection time they must be scanned to find dirty cards and hence objects
that may contain interesting pointers. This raises three performance questions. What size
should a card be? Card tables are often sparse : how can we speed up the search for dirty
cards? Should a two-level card table be used? Can we summarise the state of a card,
for example if it contains only one modified field or object? Once a dirty card is found,
the collector needs to find the first object on that card, but that object may start on an
earlier card. We need a crossing map that decodes how objects span cards. How does
card marking interact with multiprocessor cache coherency protocols? If two processors
repeatedly write to different objects on the same card, both will want exclusive access to
the card's cache line. Is this likely to be a problem in practice?

In systems run with virtual memory, it is important that garbage collected applications
fit within available real memory. Unlike non-managed programs, garbage collected ones
can adjust their heap size so as to fit better within available memory. What events and
counts does the particular operating system provide that a collector might use to adjust
heap size appropriately? Which of these events or counts are most effective? What is a
good heap growth policy, and an appropriate one for shrinking, if shrinking is possible?
How can multiple collected processes cooperate so as to offer good throughput for all?

In summary, many of the details raised here are subtle but both design choices and
implementation details have substantial effect on performance. In later chapters, we shall
see how the solutions discussed here can be used by garbage collection algorithms.

Chapter 12

Language-specific concerns

Many programming languages assume the availability of garbage collection. This has led
to the development of various means for interacting with the collector in ways that ex
tend the basic semantics of programming language memory management. For example,
a program might want to be informed and take some action when a given object is about
to be, or has been, reclaimed. We describe such finalisation mechanisms in Section 12 .1 .
Conversely, i t is sometimes helpful to support references that do not of themselves force
an object to be retained. We consider such weak pointer mechanisms in Section 12.2 .

12.1 Finalisation

Automatic storage reclamation with a garbage collector provides the appropriate seman
tics for most objects. However, if a managed object refers to some other resource that lies
outside the scope or knowledge of the collector, automatic garbage collection does not
help, and in fact can lead to resource leaks that are hard to fix . A typical case is open files.
The interface to the operating system usually represents each open file with a small inte
ger called a file descriptor, and the interface limits the number of files that a given process
may have open at one time. A language implementation will generally have, for each open
file, an object that the programmer uses to manage that file stream. Most of the time it is
clear when a program has finished with a given file stream, and the program can ask the
run-time system to close the stream, which can close the corresponding file descriptor at
the operating system interface, allowing the descriptor number to be reused.

But if the file stream is shared across a number of components in a program, it can be
difficult to know when they have all finished with the stream. If each component that uses
a given stream sets its reference to the stream to null when the component is finished with
the stream, then when there are no more references the collector can (eventually) detect
that fact. We show such a situation in Figure 12. 1 . Perhaps we can arrange for the collector
somehow to cause the file descriptor to be closed.

To do so, we need the ability to cause some programmer-specified action to happen
when a given object becomes no longer reachable - more specifically, when it is no longer
reachable by any mutator. This is called finalisation. A typical finalisation scheme al
lows the programmer to indicate a piece of code, called a finaliser, that is to be run when
the collector determines that a particular object is no longer mutator reachable. The typi
cal implementation of this has the run-time system maintain a special table of objects for
which the programmer has indicated a finaliser. The mutators cannot access this table, but
the collector can. We call an object finaliser-reachable if it is reachable from this table but

213

214 CHAPTER 12. LANGUAGE-SPECIFIC CONCERNS

�
Garbage collected 83--
opp/ia>"'"

\ :::0

Operating System

D
FileStream
int desc 3

Open Fi le 08--
Ta ble

1
2
3

G�t=j
Figure 12.1: Failure to release a resource: a F i leSt r e am object has become
unreachable, but its file descriptor has not been closed .

not from mutator roots. In Figure 12.2 we show the previous situation but with a finaliser
added. The finaliser 's call to close the descriptor is conditional, since the application may
have already closed the file.

In a reference counting system, before freeing an object the collector checks the finali
sation table to see if the object requires finalisation. If it does, then the collector causes the
finaliser function to run, and removes the object's entry in the finalisation table . Similarly,
in a tracing system, after the tracing phase the collector checks the finalisation table to see
if any untraced object has a finaliser, and if so, the collector causes the finaliser to run, and
so on.

There are a range of subtly different ways in which finalisation can work. We now
consider some of the possibilities and issues.

When do finalisers run?

At what time do finalisers run? In particular, finalisation might occur during collection, as
soon as the collector determines the need for it. However, the situation during collection
might not support execution of general user code. For example, it may not be possible for
user code to allocate new objects at this time. Therefore most finalisation approaches run
finalisers after collection. The collector simply queues the finalisers. To avoid the need
to allocate space for the queue during collection, the collector can partition the finalisation
table into two portions, one for objects queued for finalisation and one for objects that have
a finaliser but are not yet queued . When the collector enqueues an object for finalisation,
it moves that queue entry to the enqueued-objects partition. A simple, but possibly inef
ficient, approach is to associate an enqueued flag with each entry and have the finalisation
activity scan the finalisation table. To avoid scanning, we can group the enqueued ob
jects together in the table, perhaps permuting entries when the collector needs to enqueue
another object.

12. 1 . FINALISATION

Garbage collected c::::3---
oppl-. \ ;CJ

Table of objects
that have fina l isers

Operating System

..

Open F i le 0
Ta b le

D
FileStream
i nt desc 3 . . .

Method table

fi nalize () {
i f i sOpen

close (desc) ;
}

Figure 12.2: Using a finaliser to release a resource: here, an unreachable
F i l e S t ream object has a finaliser to close the descriptor.

215

In general, finalisers affect shared state; there is little reason to operate only on finalis
able objects since they are about to disappear. For example, finalisers may need to access
some global data to release a shared resource, and so often need to acquire locks. This is
another reason not to run finalisers during collection: it could result in a deadlock. Worse,
if the run-time system provides re-entrant locks - locks where the same thread can acquire
a lock that it already holds - we can have the absence of deadlock and silent corruption
of the state of the application. 1

Even assuming that finalisers run after collection, there remain several options as to
exactly when they run. One possibility is immediately after collection, before mutator
thread(s) resume. This improves promptness of finalisation but perhaps to the detriment
of mutator pause time. Also, if finalisers communicate with other threads, which remain
blocked at this time, or if finalisers compete for locks on global data structures, this policy
could lead to communication problems or deadlock.

A last consideration is that it is not desirable for a language's specification of finali
sation to constrain the possible collection techniques. In particular, collection on the fly,
concurrent with mutation, most naturally leads to running finalisers at arbitrary times,
concurrent with mutator execution.

Which thread runs a finaliser?

In a language that permits multiple threads, the most natural approach is to have a back
ground finalisation thread run the enqueued finalisers asynchronously with the mutator
threads. In this case finalisers may run concurrently with mutators and must therefore be
safe for concurrent execution. Of particular concern is the possibility that a finaliser for an

1 Java avoids this by indicating that a finalisation thread will invoke a finaliser with no locks held . Thus the
finalisation thread must be one that does not hold a lock on the object being finalised. In practice this pretty much
requires finalisation threads to be distinct threads used only for that purpose.

216 CHAPTER 12. LANGUAGE-SPECIFIC CONCERNS

object of type T might run at the same time as the allocation and initialisation code for a
new instance of T. Any shared data structures must therefore be synchronised to handle
that case.2

In a single-threaded language, which thread runs a finaliser is not a question - though
it does reraise the question of when finalisers run. Given the difficulties previously men
tioned, it appears that the only feasible and safe way, in general, to run finalisers in a
single-threaded system is to queue them and have the program run them under explicit
control. In a multithreaded system, as previously noted it is best that distinct finalisation
threads invoke finalisers, to avoid issues around locks .

Can finalisers run concurrently with each other?

If a large concurrent application uses finalisers, it may need more than one finalisation
thread in order to be scalable. Thus, from the standpoint of language design it appears
better to allow finalisers to run concurrently with each other, as well as concurrently with
mutators. Since, in general, programmers must code finalisers carefully so that they oper
ate correctly in the face of concurrency - because finalisers are essentially asynchronous
with respect to mutator operations - there should be no additional problem with running
finalisers concurrently with each other.

Can finalisers access the obj ect that became unreachable?

In many cases it is convenient for a finaliser to access the state of the object being reclaimed.
In the file stream example, the operating system file descriptor number, a small integer,
might most conveniently be stored as a field in the file stream object, as we showed in
Figure 12.2. The simplest finaliser can read that field and call on the operating system to
close the file (possibly after flushing a buffer of any pending output data) . Notice that if the
finaliser does not have access to the object, and is provided no additional data but is just
a piece of code to run, then finalisation will not be very useful - the finaliser needs some
context for its work. In a functional language, this context may be a closure; in an object
oriented language it may be an object. Thus the queuing mechanism needs to provide for
the passing of arguments to the finaliser.

On balance it seems more convenient if finalisers can access the object being finalised.
Assuming finalisers run after collection, this implies that objects enqueued for finalisation
survive the collection cycle in which they are enqueued. So that finalisers have access
to everything they might need, the collector must also retain all objects reachable from
objects enqueued for finalisation. This implies that tracing collectors need to operate in
two passes. The first pass discovers the objects to be finalised, and the second pass traces
and preserves objects reachable from the finaliser queue. In a reference counting collector
the system can increment the object's reference count as it enqueues it for finalisation, that
is, the finalisation queue's reference to the object 'counts' . Once the object is dequeued
and its finaliser runs, the reference count will become zero and the object can be reclaimed.
Until then, objects reachable from it will not even be considered for reclamation.

When are finalised obj ects reclaimed?

The fact that finalisers usually hold a reference to the object being finalised means that
they might store that reference in a global data structure. This has been called resurrection .

2Java has a special rule to help prevent this: if an object's finaliser can cause synchronisation on the object, then
the object is considered mutator reachable whenever its lock is held. This can inhibit removal of synchronisation.

12. 1 . FINALISATION

Method tab le

finalize () {
if i sOpen

flush () ;
}

------.
Garbage collected Q3---..
op�kaffoo

\ :E D
�---- BufferedStream

file
buffe r . . .

F ileStream

� int des c 3 . . .

I StnngBuffer l
Figure 12.3: Object finalisation order. Unreachable Bu f f e redSt ream and
F i l e S t ream objects, which must be finalised in that order.

217

In a mechanical sense resurrection is not a problem, though it may be surprising to the
programmer. Since it is probably difficult to detect stores that resurrect objects, and since
setting up an object for future finalisation tends to happen as part of allocation and initial
isation, resurrected objects will generally not be re-finalised . Java, for example, guarantees
that an object will not be finalised more than once. A language design in which setting up
finalisation works more dynamically might allow the programmer to request finalisation
for a resurrected object - because it allows such requests for any object.

If a finalised object is not resurrected, then the next collection cycle can reclaim it. In a
system with partitioned spaces, such as a generational collector, the finalised object might
reside in a space that will not be collected again for a long time, so making it available to
the finaliser can substantially extend the object's physical lifetime.

What happens if there is an error in a finaliser?

If finalisation is run synchronously at times known to the application, then programmers
can easily wrap finalisation actions with recovery handlers for when a finaliser returns an
error or throws an exception. If finalisers run asynchronously then it may be best to catch
and log exceptions for later handling by the application at an appropriate time. This is
more a concern of software engineering than of garbage collection algorithm or mecha
nism.

Is there any guaranteed order to finalisation?

Finalisation order can matter to an application. For example, consider a Bu f f e redSt ream
object connected to a F i l e S t ream that holds an open operating system file descriptor, as
shown in Figure 12.3. Both objects may need finalisers, but it is important to flush (write)
the buffer of the Bu f fe redSt ream before closing the file descriptor.3

Clearly, in a layered design like this, the sensible semantics will finalise from higher
layers to lower. In this case, because the lower level object is reachable from the higher

3 As a more subtle point, note that unless we can guarantee that the F i l e S t r e a m is used only by the
Bu f fe r e dS t r e am, then the Bu f f e r e d S t r e a m should not close the F i l e S t r e am. Unfortunately this implies
that it may require two collection cycles before the file descriptor is closed.

218 CHAPTER 12 . LANGUAGE-SPECIFIC CONCERNS

A I '
I · �I I '

i ' i A I t i I ·
fina l iser fina l iser final iser

final iser

(a) Original order (b) Refactored to handle cycles

Figure 12.4: Restructuring to force finalisation order in cyclic object graphs

level one, it is possible for finalisation to occur in the sensible order automatically. Notice
that if we impose order on finalisations, ultimate finalisation may be slow, since we finalise
only one 'level' in the order at each collection. That is, in a given collection we finalise only
those unreached objects that are not themselves reachable from other unreached objects.

This proposal has a significant flaw: it does not handle cycles of unreachable objects
where more than one needs finalisation. Given that such cases appear to be rare, it seems
simpler and more helpful to guarantee finalisation in order of reachability; that is, if B is
reachable from A, the system should invoke the finaliser for A first.

In the rare case of cycles, the programmer will need to get more involved. Mechanisms
such as weak references (see Section 12.2) may help, though using them correctly may be
tricky. A general technique is to separate out fields needed for finalisation in such a way
as to break the cycle of objects needing finalisation, as suggested by Boehm [2003] . That
is, if A and B have finalisers and cross reference each other as shown in Figure 12.4a, we
can split B into B and B', where B does not have a finaliser but B' does (see Figure 12.4b) .
A and B still cross reference each other, but (importantly) B' does not refer to A. In this
scenario, finalisation in reachability order will finalise A first and then B' .

The finalisation race problem

Lest we think that finalisation can be used straightforwardly without risk of subtle bugs,
even in the case of objects not requiring special finalisation order there is a subtle kind of
race condition that can arise [Boehm, 2003] . Consider the F i l e S t r e am example shown in
Figure 12.2. Suppose that the mutator is making its last call to write data to the file. The
w r i t eData method of F i leStre am may fetch the descriptor, and then as its last action
call write on the descriptor, passing the data . Significantly, at this point the method's
reference to the F i l e S t ream object is dead, and the compiler may optimise it away. If
collection happens during the call to write, the finaliser on F i l e S t re am may run and
close the file, before w r i t e actually invokes the operating system to write the data . This is
a difficult problem and Boehm's experience is that the bug is pervasive, but rarely incurred
because the window of vulnerability is short.

One fix for this is the Java rule that we mentioned previously that an object must be
considered live whenever its lock is held and a finaliser could run that requires synchro
nisation on the object. A more general way to avoid the race is to force the compiler to
retain the reference to the F i l e S t r e am longer. The trick to doing this is to pass the
F i l eS t ream reference in a later call (to a routine that does nothing) that the compiler
cannot optimise away. The .NET framework and C# (for example) provide a function for
this called GC . KeepA l i ve. At present Java does not provide a similar call.

12. 1 . FINALISATION 219

Algorithm 12.1: Process finalisation queue

1 p r o c e s s_f ina l i s at i o n_queue () :
while not i s Empty (Queue)

while not i s Empty(Queue)
ob j +- r emove (Queue)
ob j . f i n a l i z e ()

if de s i re d
co l l e ct ()

Finalisers and locks

I* whatever condition is appropriate 4

As noted, for example by Boehm [2003], the purpose of a finaliser is usually to update some
global data structure in order to release a resource connected with the object that becomes
unreachable. Since such data structures are global, they generally require synchronised
access. In cases such as closing open file handles, some other software component (in this
case, the operating system) handles the synchronisation implicitly, but for data structures
within the program, it must be explicit . The concern is that, from the standpoint of most
code in the program, finalisers are asynchronous.

There are two general approaches a programmer can take to the situation. One is to
apply synchronisation to all operations on the global data structure - even in the single
threaded case (because a finaliser could run in the middle of a data structure operation
otherwise) . This counts on the underlying implementation not to elide synchronisation on
an apparently private object if that object has a finalisation method. The other approach
is to arrange for the collector only to queue the object for finalisation, but not to begin
the actual finalisation work. Some language implementations offer such queueing mech
anisms as built-in features; if a particular implementation does not, then the programmer
can code the finalisation method so that all it does is place the object in a programmer
defined queue. In the queueing approach, the programmer will add code to the program,
at desirable (that is, safe) points. The code will process any enqueued objects needing
finalisation. Since running finalisers can cause other objects to be enqueued for finalisa
tion, such queue-processing code should generally continue processing until the queue is
empty, and may want to force collections if it is important to reclaim resources promptly.
Suitable pseudocode appears in Algorithm 12 . 1 . As previously noted, the thread that runs
this algorithm should not be holding a lock on any object to be finalised, which constrains
the places where this processing can proceed safely.

The pain involved in this approach is the need to identify appropriate places in the code
at which to empty the finalisation queue. In addition to sprinkling enough invocations
throughout the code, the programmer must also take care that invocations do not happen
in the middle of other operations on the shared data structures. Locks alone cannot prevent
this, since the invoking thread may already hold the lock, and thus can be allowed to
proceed . This is the source of the statement in the Java Language Specification that the
system will invoke f ina l i z e methods only while holding no user-visible locks.

Finalisation in particular languages

Java. The Ob j e ct class at the top of the Java class hierarchy provides a method named
f i na l i z e, which does nothing. Any subclass can override the method to request final
isation. Java does not guarantee finalisation order, and with respect to concurrency says
only that finalisation runs in a context starting with no (user-visible) synchronisation locks

220 CHAPTER 12. LANGUAGE-SPECIFIC CONCERNS

held. This pretty much means that finalisation runs in one or more separate threads, even
though the specification is not quite worded that way. If f i na l i z e throws an exception,
the Java system ignores it and moves on. If the finalised object is not resurrected, a future
collection will reclaim it. Java also provides support for programmer-controlled finalisa
tion through appropriate use of the j ava . l ang . ref API, as we describe in Section 12.2.

Lisp. Liquid Common Lisp offers a kind of object called a finalisation queue. The pro
grammer can register an ordinary object with one or more finalisation queues. When the
registered object becomes otherwise unreachable, the collector enters it into the finalisation
queues with which it was registered . The programmer can extract objects from any finali
sation queue and do with them what she will. The system guarantees that if objects A and
B are both registered and become unreachable in the same collection, and B is reachable
from A but not vice versa, then the collector will enter A in the finalisation queue before it
enters B. That is, it guarantees order of finalisation for acyclic object graphs. The finalisa
tion queues of Liquid Common Lisp are similar to the guardians described by Dybvig et al
[1993] .

CLisp offers a simpler mechanism: the programmer can request that the collector call
a given function f when it detects that a given object 0 is no longer reachable. In this
case f must not refer to 0 or else 0 will remain reachable and the system will never call
the finaliser. Since f receives 0 as an argument, this system permits resurrection. Also,
f could register 0 again, so 0 can be finalised more than once. A variant of the basic
mechanism allows the programmer to specify a guardian G in addition to the object 0 and
function f. In this case, when 0 becomes unreachable the system calls f only if G is still
reachable. If at this time G is unreachable, then the system reclaims 0 but does not call f.
This can be used to implement guardians of the kind described by Dybvig et al [1993] - f
can add 0 to the internal queue of G .

C++. The C++ language offers destructors to handle disposal of objects, as a converse to
constructors which initialise new objects . The primary role of most destructors is to cause
explicit freeing of memory and its return to the allocator for reuse. However, since pro
grammers can offer any code they want, C++ destructors can handle the case of closing a
file, and so forth. Destructors also provide a hook through which a programmer can sup
port reference counting to reclaim (acyclic) shared data structures. In fact, C++ templates
allow a general smart pointer mechanism to drive the reference counting. But this shows
again that destructors are mostly about reclaiming memory - a job that a garbage col
lector already handles. Thus, true finalisation remains relatively rare, even for C++ . The
memory reclamation aspect of destructors is relatively safe and straightforward, not least
because it does not involve user-visible locks. However, as soon as the programmer veers
into the realm of 'true' finalisation, all the issues we mention here arise and are dropped
into the programmer 's lap . This includes dealing with locking, order of invocation of fi
nalisers, and so on. Placing the responsibility for all this on the programmer's shoulders
makes it difficult to ensure that it is done correctly .

. NET. The .NET framework adds finalisers to the existing notion of destructors in C,
C++, and the other languages supported by the framework. Destructors are called deter
ministically, starting with compiler-generated code for cleaning up objects as they go out
of scope. A destructor may call other objects' destructors, but all destructors are concerned
with reclaiming managed resources, that is, resources known to the language and .NET run
time system, primarily memory. Finalisers, on the other hand, are for explicitly reclaiming

12.2. WEAK REFERENCES 221

unmanaged resources, such as open file handles and the like. If a kind of object needs fi
nalisation, then the destructor should call the finaliser, to cover the case when the object
is reclaimed explicitly by compiler-generated code. However, the collector will call the
finaliser if the object is being reclaimed implicitly, that is, by the collector. In that case the
destructor will not be called. In any case, the finalisation mechanism itself is very similar
to that of Java . The end result is a mixture of C++ destructors and something close to Java
finalisation, with both synchronous and asynchronous invocation of finalisers possible.

For further study

Various languages have supported finalisation for decades, and have evolved mechanisms
suitable to their contexts. Systematic consideration of the issues and various design ap
proaches across several languages appears more recently in the literature in works such as
Hudson [1991] and Hayes [1992] . More careful inspection of the semantics of finalisation
and some of the thorny problems at its heart was performed by Boehm [2003] , to whom
we are indebted as a primary source.

12.2 Weak references

Garbage collection determines which memory to retain and which to reclaim using reach
ability through chains of pointers. For automatic reclamation this is a sound approach.
Still, there are a number of situations in which it is problematic.

For example, in a compiler it can be useful to ensure that every reference to a given
variable name, say xy z, uses exactly the same string instance. Then, to compare two vari
able names for equality it suffices to compare their pointers . To set this up, the compiler
builds a table of all the variable names it has seen so far. The strings in the table are the
canonical instances of the variable names, and such tables are therefore sometimes called
canonicalisation tables . But consider what happens if some names fall into disuse as the
compiler runs. There are no references to the names from other data structures, but the
canonical copy remains. It would be possible to reclaim a string whose only reference is
from the table, but the situation is difficult for the program to detect reliably.

Weak references (also called weak pointers) address this difficulty. A weak reference con
tinues to refer to its target so long as the target is reachable from the roots via a chain
consisting of ordinary strong references. Such objects are called strongly reachable. However,
if every path from roots to an object includes at least one weak reference, then the collector
may reclaim the object and set any weak reference to the object to null . Such objects are
called weakly-reachable. As we will see, the collector may also take additional action, such
as notifying the mutator that a given weak reference has been set to null.

In the case of the canonicalisation table for variable names, if the reference from the
table to the name is a weak reference, then once there are no ordinary references to the
string, the collector can reclaim the string and set the table's weak reference to null. Notice
that the table design must take this possibility into account, and it may be necessary or
helpful for the program to clean up the table from time to time. For example, if the table
is organised by hashing with each hash bucket being a linked list, defunct weak references
result in linked list entries whose referent is null . We should clean those out of the table
from time to time. This also shows why a notification facility might be helpful: we can use
it to trigger the cleaning up.

Below we offer a more general definition of weak references, which allows several dif
ferent strengths of references, and we indicate how a collector can support them, but first
we consider how to implement just two strengths: strong and weak. First, we take the case

222 CHAPTER 12. LANGUAGE-SPECIFIC CONCERNS

of tracing collectors. To support weak references, the collector does not trace the target of
a weak reference in the first tracing pass . Rather, it records where the weak pointer is, for
processing in a second pass. Thus, in the first tracing pass the collector finds all the objects
reachable via chains of strong references only, that is, all strongly reachable objects. In a
second pass, the collector examines the weak references that it found and noted in the first
pass. If a weak reference's target was reached in the first pass, then the collector retains the
weak reference, and in copying collectors it updates the weak reference to refer to the new
copy. If a weak reference's target was not reached, the collector sets the weak reference
to null, thus making the referent no longer reachable. At the end of the second pass, the
collector can reclaim all unreached objects.

The collector must be able to identify a weak reference. It may be possible to use a bit
in the reference to indicate that it is weak. For example, if objects are word-aligned in a
byte-addressed machine, then pointers normally have their low two bits set to zero. One
of those bits could indicate a weak reference if the bit is set to one. This approach has the
disadvantage that it requires the low bits to be cleared before trying to use a reference that
may be weak. That may be acceptable if weak references arise only in certain restricted
places in a given language design. Some languages and their implementations may use
tagged values anyway, and this simply requires one more possible tag value. Another dis
advantage of this approach is that the collector needs to find and null all weak references
to objects being reclaimed, requiring another pass over the collector roots and heap, or that
the collector remember from its earlier phases of work where all the weak pointers are.

An alternative to using low bits is to use high order bits and double-map the heap . In
this case every heap page appears twice in the virtual address space, once in its natural
place and again at a high memory (different) address. The addresses differ only in the
value of a chosen bit near the high-order end of the address. This technique avoids the
need to mask pointers before using them, and its test for weakness is simple and efficient.
However, it uses half the address space, which may make it undesirable except in large
address spaces.

Perhaps the most common implementation approach is to use indirection, so that spe
cially marked weak objects hold the weak references . The disadvantage of the weak object
approach is that it is less transparent to use - it requires an explicit dereferencing opera
tion on the weak object - and it imposes a level of indirection. It also requires allocating
a weak object in addition to the object whose reclamation we are trying to control. How
ever, an advantage is that weak objects are special only to the allocator and collector - to
all other code they are like ordinary objects. A system can distinguish weak objects from
ordinary ones by setting a particular bit in the object header reserved for that purpose. Al
ternatively, if objects have custom-generated tracing methods, weak objects will just have
a special one.

How does a programmer obtain a weak reference (weak object) in the first place? In
the case of true weak references, the system must supply a primitive that, when given a
strong reference to object 0, returns a weak reference to 0. In the case of weak objects, the
weak object types likewise supply a constructor that, given a strong reference to 0, returns
a new weak object whose target is 0. It is also possible for a system to allow programs to
change the referent field in a weak object.

Additional motivations

Canonicalisation tables are but one example of situations where weak references of some
kind help solve a programming problem, or solve it more easily or efficiently. Another
example is managing a cache whose contents can be retrieved or rebuilt as necessary. Such
caches embody a space-time trade-off, but it can be difficult to determine how to control

12.2. WEAK REFERENCES 223

the size of a cache. If space is plentiful, then a larger size makes sense, but how can a
program know? And what if the space constraints change dynamically? In such situations
it might be useful to let the collector decide, based on its knowledge of available space.
The result is a kind of weak reference that the collector may set to null if the referent is not
strongly reachable, if it so desires. It can make the judgement based on the space consumed
by the weakly reachable objects in question.

It is sometimes useful is to let a program know when an object is weakly reachable but
not strongly reachable, and to allow it to take some action before the collector reclaims the
object. This is a generalisation of finalisation, a topic we took up in Section 12. 1 . Among
other things, suitable arrangements of these sorts of weak references can allow better con
trol of the order in which the program finalises objects .

Supporting multiple pointer strengths

Weak references can be generalised to provide multiple levels of weak pointers in addition
to strong references. These levels can be used to address the issues described above. A
totally ordered collection of strengths allows each strength level to be associated with a
positive integer. For a given integer IX > 0, an object is IX* -reachable if it can be reached by
a path of references where each reference has strength at least IX . An object is �X-reachable
(without the superscript *) if it is IX* -reachable but not (�X + I) -reachable. An object is IX
reachable if every path to it from a root includes at least one reference of strength a, and at
least one path includes no references of strength less than IX. Below we will use the names
of strengths in place of numeric values; the values are somewhat arbitrary anyway, since
what we rely on is the relative order of the strengths . Also, for gracefulness of expression,
we will say Weakly-reachable instead of Weak-reachable, and so on.

Each level of strength will generally have some collector action associated with it. The
best-known language that supports multiple flavours of weak reference is Java; it provides
the following strengths, from stronger to weaker.4

Strong: Ordinary references have the highest strength. The collector never clears these.

Soft: The collector can clear a Soft reference at its discretion, based on current space usage.
If a Java collector clears a Soft reference to object 0 (that is, sets the reference to null),
it must at the same time atomically5 clear all other Soft references from which 0 is
Strongly-reachable. This rule ensures that after the collector clears the reference, 0
will no longer be Softly-reachable.

Weak: The collector must clear a (Soft* -reachable) Weak reference as soon as the collector
determines its referent is Weak-reachable (and thus not Soft* -reachable) . As with
Soft references, if the collector clears a Weak reference to 0, it must at the same time
clear all other Soft* -reachable Weak references from which 0 is Soft* -reachable.

Finaliser: We term a reference from the table of objects with finalisers to an object that has
a finaliser a finaliser reference. We described Java finalisation before, but list it here to
clarify the relative strength of this kind of weak reference, even though it is internal
to the run-time system as opposed to a weak object exposed to the programmer.

4In fact, we are not aware at this time of any language other than Java that supports multiple strengths, but
the idea may propagate in the future.

5By atomically the Java specification seems to mean that no thread can see just some of the references cleared:
either all of them are cleared or none are. This can be accomplished by having the reference objects consult a
shared flag that indicates whether the referent field should be treated as cleared, even if it is not yet set to null.
The reference object can itself contain a flag that indicates whether the single global flag should be consulted, that
is, whether the reference is being considered for clearing. Doing this safely requires synchronisation in concurrent
collectors.

224 CHAPTER 12. LANGUAGE-SPECIFIC CONCERNS

Phantom: These are the weakest kind of weak reference in Java . The program must ex
plicitly clear a Phantom for the collector to reclaim the referent. It makes sense to
use this only in conjunction with notification, since the Phantom Reference object
does not allow the program to obtain a reference to the Phantom's referent - it only
permits clearing of the referent.

The point of the different strengths in Java is not so much the levels of strength, but the
special semantics associated with each kind of weak reference that the language specifica
tion defines. Soft references allow the system to shrink adjustable caches. Weak references
help with canonicalisation tables and other constructs. Phantom references allow the pro
grammer to control the order and time of reclamation.

Implementing multiple strengths requires multiple additional passes in the collector
cycle, but they typically complete quickly. We use Java's four strengths as an example, and
describe the actions for a copying collector - a mark-sweep collector would be similar,
though simpler. We consider reference counting collectors afterwards. The passes the
collector must make are as follows.

1. Working from the roots, trace and copy all Strongly-reachable objects, noting (but
not tracing through) any Soft, Weak, or Phantom objects found.

2. Optionally, clear all Soft references atomically.6 If we chose not to clear Soft refer
ences, then trace and copy from them, finding all Soft* -reachable objects, continuing
to note any Weak or Phantom objects found by tracing through Soft objects.

3. If the target of any Weak object noted previously has been copied, update the Weak
object's pointer to refer to the new copy. If the target has not been copied, clear the
Weak object's pointer.

4. If any object requiring finalisation has not yet been copied, enqueue it for finalisation.
Go back to Step 1, treating the objects newly enqueued for finalisation as new roots.
Notice that in this second round through the algorithm there can be no additional
objects requiring finalisation?

5. If the referent of any Phantom object noted previously has not yet been copied, then
enqueue the Phantom on its Re fe renceQueue . In any case, trace and copy all
Phantom*-reachable objects, starting from the Phantom's target. Notice that the col
lector cannot clear any Phantom object's pointer - the programmer must do that
explicitly.

While we worded the steps as for a copying collector, they work just as well for mark
sweep collection. However, it is more difficult to construct a reference counting version
of the Java semantics . One way to do this is not to count the references from Soft, Weak
and Phantom objects in the ordinary reference count, but rather to have a separate bit to
indicate if an object is a referent of any of these Re fe rence objects. It is also convenient
if an object has a separate bit indicating that it has a finaliser. We assume that there is a
global table that, for each object 0 that is the referent of at least one Re ference object,
indicates those Re fe r e n ce objects that refer to 0. We call this the Reverse Reference Table.

6 It is legal to be more selective, but following the rules makes that difficult. Note that by 'all' we mean all Soft
references currently in existence, not just the ones found by the collector so far.

7Barry Hayes pointed out to us that a Weak object wl might be reachable from an object x requiring finalisa
tion, and the Weak object's referent y might be some object also requiring finalisation, which has another Weak
object w2 referring to it, that is, both w l and w2 are Weak objects that refer to y. If w2 is strongly reachable,
then it will have been cleared, while wl may not be cleared yet if it is reachable only from x. This situation be
comes especially strange if the finaliser for y resurrects y, since then w2 is cleared by y is now Strongly-reachable.
Unfortunately the issue seems inherent in the way Java defines Weak objects and finalisation.

12.2. WEAK REFERENCES 225

Since reference counting does not involve separate invocations of a collector, some
other heuristic must be used to determine when to clear all Soft references, which must
be done atomically. Given that approach, it seems easiest to count Soft references as ordi
nary references which, when they are cleared using the heuristic, may trigger reclamation,
or processing of weaker strengths of pointers.

When an object's ordinary (strong) reference count drops to zero, the object can be
reclaimed (and the reference counts of its referents decrements) unless it is the referent
of a Re ference object and requires finalisation. If the object's bits indicate that it is the
referent of at least one Re fe rence, we check the Reverse Reference Table. Here are the
cases for handling the Re fe rence objects that refer to the object whose ordinary reference
count went to zero; we assume they are processed from strongest to weakest.

Weak: Clear the referent field of the WeakRe ference and enqueue it if requested.

Finaliser: Enqueue the object for finalisation. Let the entry in the finalisation queue count
as an ordinary reference. Thus, the reference count will go back up to one. Clear the
object's 'I have a finaliser' bit.

Phantom: If the referent has a finaliser, then do nothing. Otherwise, enqueue the Phan
tom. In order to trigger reconsideration of the referent for reclamation, increment
its ordinary reference count and mark the Phantom as enqueued. When the Phan
tom's reference is cleared, if the Phantom has been enqueued, decrement the refer
ent's ordinary reference count. Do the same processing when reclaiming a Phantom
reference.

There are some more special cases to note. When we reclaim a Re fe rence object,
we need to remove it from the Reverse Reference Table. We also need to do that when a
Re fe rence object is cleared.

A tricky case is when a detector of garbage cycles finds such a cycle . It appears that,
before doing anything else, we need to see if any of the objects is the referent of a Soft
object, and in that case retain them all, but keep checking periodically somehow. If none
are Soft referents but some are Weak referents, then we need to clear all those Weak objects
atomically, and enqueue any objects requiring finalisation. Finally, if none of the previous
cases apply but there are some Phantom referents to the cycle, we need to retain the whole
cycle and enqueue the Phantoms. If no object in the cycle is the referent of a Re f e r e n ce
object or requires finalisation, we can reclaim the whole cycle.

Using Phantom obj ects to control finalisation order

Suppose we have two objects, A and B, that we wish to finalise in that order. One way
to do this is to create a Phantom object A', a Phantom reference to A. In addition, this
Phantom reference should extend the Java PhantomRe f e rence class so that it holds an
ordinary (strong) reference to B in order to prevent early reclamation of B.8 We illustrate
this situation in Figure 12 .5 .

When the collector enqueues A', the Phantom for A, we know not only that A is un
reachable from the application, but also that the finaliser for A has run. This is because
reachability from the table of objects requiring finalisation is stronger than Phantom reach
ability. Then, we clear the Phantom reference to A and null the reference to B. At the next
collection the finaliser for B will be triggered . We further delete the Phantom object itself
from the global table, so that it too can be reclaimed . It is easy to extend this approach

8Fields added in subclasses of Java's built-in reference classes hold strong pointers, not special weak referents.

226 CHAPTER 12. LANGUAGE-SPECIFIC CONCERNS

s·w
I
I
I

t BD
Figure 12.5: Finalising in order. Application objects A and B are unreachable
from the application and we want to finalise them in that order. Phantom A'

has a phantom reference to A and a strong reference to B .

to ordered finalisation of three or more objects by using a Phantom between each pair of
objects with a finalisation order constraint.

We need Phantoms - Weak objects are not enough. Suppose we used an arrangement
similar to that of Figure 12.5 . When A is no longer reachable, the weak reference in A'

will be cleared and A' will be enqueued. We can then clear the reference from A' to B .
Unfortunately, the clearing of the weak reference to A happens before the finaliser for A
runs, and we cannot easily tell when that finaliser has finished . Therefore we might cause
the finaliser for B to run first. Phantoms a re intentionally designed to be weaker than
finalisation reachability, and thus will not be enqueued until after their referent's finaliser
has run.

Race in weak pointer clearing

We note that, just as certain compiler optimisations can lead to a race that can cause pre
mature finalisation, the same situations can lead to premature clearing of weak pointers.
We described the finalisation case in Section 12 . 1 .

Notification of weak pointer clearing

Given a weak reference mechanism, the program may find it useful to know when certain
weak references are cleared (or, in the case of Phantoms, could be cleared), and then to take
some appropriate action. To this end, weak reference mechanisms often also include sup
port for notification. Generally this works by inserting the weak object into a queue. For
example, Java has a built-in class Re ferenceQueue for this purpose, and a program can
poll a queue or use a blocking operation to wait (with or without a timeout) . Likewise a
program can check whether a given weak object is enqueued Gava allows a weak object
to be enqueued on at most one queue). It is straightforward to add the necessary enqueu
ing actions to the collector 's multi-pass processing of weak pointers described above. A
number of other languages add similar notification support.

Weak pointers in other languages

We discussed Java separately because of its multiple strengths of weak references. Other
languages offer alternative or additional weak reference features.

12.2. WEAK REFERENCES 227

A number of Lisp implementations support weak arrays and vectors .9 These are sim
ply multi-entry weak objects: when a referent 0 is no longer strongly-reachable, the col
lector sets to n i l any weak array or vector slots that refer to 0.

Some Lisp implementations also support weak hash tables. These often come in three
varieties . One offers weak keys, in which the keys, but not the values, are weak. In this
case, once the key of a given key-value pair is no longer strongly-reachable, the collector
removes the entire pair from the hash table. This is useful for things like canonicalisation
tables and certain kinds of caches. A second variety offers weak values, where the collector
removes the key-value pair once the value is no longer strongly reachable. The third vari
ety supports weak keys and values, removing the pair once either the key or the value is
no longer strongly-reachable.

Some Lisp implementations support weak-AND and weak-OR objects. The elements of
these objects are potentially weak, but in the following way. A weak-AND will set all
its elements to n i l if one or more of them becomes not-strongly-reachable. Thus, it is
analogous to a Lisp AND, which returns n i l if any argument to AND is n i l . A weak-OR
is the converse: it retains all its arguments until none of them are strongly-reachable, and
then sets all of its fields to n i l . We refer readers to the documentation on the Platform
Independent Extensions to Common Lisp10 for more details and further generalisations,
including weak associations, weak AND- and OR-mappings, weak association lists, and a
version of weak hash tables similar to what we discussed above.

Ephemerons [Hayes, 1997] 11 are a particular form of weak key-value pairs useful for
maintaining information attached to other objects. Suppose we wish to associate informa
tion I with object 0 through a side table. We can use an ephemeron with key 0 and value
I . The semantics of an ephemeron are as follows. Its reference to the key is weak. Its refer
ence to the value is strong while the key is non-null, but is weak after the key is set to null.
In the example, the reference to the base object 0 is weak, and initially the reference to the
associated information I is strong. Once 0 is reclaimed and the weak reference to it is set
to null, the reference to I is treated as weak. Thus, I is not reclaimable while 0 is alive, but
may become reclaimable once 0 has gone. A weak-key I strong-value pair with notifica
tion (to allow the value reference to be set to null, or to be replaced with a weak reference
to the value) more or less simulates an ephemeron. A subtle difference, though, is that
it does not 'count' toward reachability of the ephemeron's key if it is reachable from the
ephemeron's value. Thus, if I refers to 0, as it well might, an ephemeron can still collect 0
but the weak-pair approach would prevent 0 from being reclaimed. The only way around
this without ephemerons would seem to be to ensure that any path from I to 0 includes a
weak reference.

Here is a sketch of how to implement ephemerons (ignoring any other forms of weak
pointers or other finalisation mechanisms) . First, trace through strong pointers from the
roots, recording ephemerons but not tracing through them. Iterate over the recorded
ephemerons repeatedly. If an ephemeron's key has been traced, then trace through the
ephemeron's value field and remove the ephemeron from the set of recorded ephemerons .
Such tracing may reach other ephemerons' keys, and may also find new ephemerons to
consider. Eventually we obtain a set, possibly empty, of ephemerons that we have recorded
whose keys are not reachable . We clear the key fields of these ephemerons, and the value
fields if the value object is not yet traced. Alternatively, we can use a notification mech
anism and enqueue the ephemerons, at the risk of possible object resurrection. It may be
better to clear the ephemeron's fields and enqueue a new pair that presents the key and
the value to a finalisation function.

9 Arrays may be multi-dimensional while vectors have only one dimension, but the distinction does not affect
weak reference semantics.

1 0 c l i s p . c o n s . o r g.
1 1 Hayes credits George Bosworth with the invention of ephemerons.

228 CHAPTER 12. LANGUAGE-SPECIFIC CONCERNS

Various other languages have weak pointer support, at least in some implementa
tions. These languages include ActionScript, C++ (for example, the Boost library), Haskell,
JavaScript, OCAML, python, and Smalltalk. There has also been at least one attempt to
give a formal semantics for the feature [Donnelly et al, 2006] .

12.3 Issues to consider

While we have termed finalisation and weak pointers 'language-specific' concerns, they
are now largely part of the accepted landscape of automatic memory management. Auto
matic management is a software engineering boon, enabling easier construction of more
complex systems that work correctly, but various specific problems motivate finalisation
and weak pointers as extensions to language semantics - extensions that have been intro
duced precisely because of the assumption that memory will be managed automatically.

If the collector and run-time system implementer receive the language being imple
mented as a given, then many of the design considerations mentioned here have already
been decided: the language is what it is. The design questions mentioned earlier, partic
ularly with respect to choices in the design of support for finalisation, are more relevant
in the context of designing a new programming language. Likewise, the varieties of weak
pointer mechanisms, such as which 'weak' data structures to offer, how many strengths of
references to support, and so on, are also more the province of language design.

Where a collector and run-time system implementer has more scope is in the choice
and design of allocation and collection techniques. Here are some of the considerations of
how those choices relate to the mechanisms discussed in this chapter.

• Weak pointers and finalisation tend to require additional tracing 'passes' . These typ
ically complete quickly - their performance is typically not of unusual concern.
However, they complicate otherwise basic algorithms, and require considerable care
in their design. It is best to design in the necessary support from the beginning rather
than to attempt to add it on later. Needless to say, it is very important to gain a solid
understanding of the semantics of the features and of how proposed implementation
strategies enact those semantics .

• Some mechanisms, notably some of the 'strengths' of Java's weak references, require
that a whole group of related weak references be cleared at the same time. This is rel
atively easy to accomplish in a stop-the-world collector, but in a more concurrent set
ting it requires additional mechanism and care. As mentioned in earlier discussion,
traversing the weak references needs to include a check of a shared flag and possibly
some additional synchronisation, to ensure that collector and mutator threads make
the same determination as to which weakly-referenced objects are live - they need
to resolve the race between any mutator thread trying to obtain a strong reference
and the collector trying to clear a group of weak references atomically. This race is
by no means peculiar to Java's weak reference mechanisms, and is a potentiality in
supporting weak pointers in any concurrent setting .

• Given the concerns about atomic clearing of sets of weak references and the general
complexity of weak pointer and finalisation support, it may be reasonable to handle
those features in a stop-the-world phase of an otherwise concurrent collector, or at
least to use locks rather than lock-free or wait-free techniques. Chapter 13 discusses
these different approaches to controlling concurrent access to data structures .

• Java soft references require a collector mechanism to decide whether it is appropriate
to clear them during a given collection cycle.

Chapter 13

Concurrency preliminaries

Concurrent collection algorithms have been studied for a long time, going back at least to
the 1970s [Steele, 1975] . For a long time, though, they were relevant to a small minority
of users. Now, multiprocessors enjoy widespread commercial availability - even the lap
top on which this text is being written has a dual-core processor. Moreover, programmers
need to deploy multiple cores to cooperate on the same task since that has become the
only way to get a job done faster: clock speed increases can no longer deliver the regular
performance boost they used to. Therefore, language implementations need to support
concurrent programming, and their run-time systems, and their garbage collectors in par
ticular, need to support the concurrent world well. Later chapters explore parallel, con
current and real-time collection in depth. Here we consider concepts, algorithms and data
structures fundamental to collection in presence of logical and physical parallelism, in
cluding an introduction to the relevant aspects of hardware, memory consistency models,
atomic update primitives, progress guarantees, mutual exclusion algorithms, work shar
ing and termination detection, concurrent data structures and the emerging model called
transactional memory.

13.1 Hardware

In order to understand both the correctness and the performance of parallel and concurrent
collection, it is necessary first to understand relevant properties of multiprocessor hard
ware. This section offers definitions and overviews of several key concepts: processors
and threads, including the various 'multis', multiprocessor, multicore, multiprogrammed,
and multithreaded; interconnect; and memory and caches. 1

Processors and threads

A processor is a unit of hardware that executes instructions. A thread is a sequential pro
gram, that is, an execution of a piece of software. A thread can be running (also called
scheduled), ready to run, or blocked awaiting some condition such as arrival of a message,
completion of input/ output, or for a particular time to arrive. A scheduler, which is usually
an operating system component, chooses which threads to schedule onto which processors
at any given time. In general, if a thread is descheduled (moved from running to ready or
blocked), when it is next scheduled it may run on a different processor than the one on

1 We are indebted to Herlihy and Shavit [2008] for the organisation of our discussion, and recommend that
book for additional study.

229

230 CHAPTER 1 3. CONCURRENCY PRELIMINARIES

which it ran previously, though the scheduler may recognise and offer some degree of
affinity of a thread to a particular processor.

A slight complication in these definitions is that some processor hardware supports
more than one logical processor using a single execution pipeline. This is called simulta
neous multithreading (SMT) or hyperthreading, and unfortunately for our terminology, the
logical processors are often called threads. Here thread will always mean the software en
tity and SMTs will be viewed as providing multiple (logical) processors, since the logical
processors are individually schedulable, and so on.

A multiprocessor is a computer that provides more than one processor. A chip multipro
cessor (CMP), also called a multicore or even many-core processor, is a multiprocessor that
has more than one processor on a single integrated circuit chip. Except in the case of SMT,
multithreaded refers to software that uses multiple threads, which may run concurrently
on a multiprocessor. Multiprogrammed refers to software executing multiple processes or
threads on a single processor.

Interconnect

What distinguishes a multiprocessor from the general case of cluster, cloud or distributed
computing is that it involves shared memory, accessible to each of the processors. This ac
cess is mediated by an interconnection network of some kind. The simplest interconnect is
a single shared bus, through which all messages pass between processors and memory. It
is helpful to think of memory accesses as like the sending of messages between a processor
and a memory unit, given how long the accesses take in terms of processor cycles - now
in the hundreds of cycles. A single bus can be reasonably fast in terms of its raw speed,
but it can obviously be a bottleneck if multiple processors request service at the same time.
The highest bandwidth interconnect would provide a private channel between each pro
cessor and each memory, but the hardware resources required grow as the product of the
number of processor and number of memory units . Note that for better overall bandwidth
(number of memory accesses per second across the entire system), splitting the memory
into multiple units is a good idea . Also, transfers between processors and memories are
usually in terms of whole cache lines (see page 231) rather than single bytes or words.

In larger CMPs a memory request may need to traverse multiple nodes in an intercon
nection network, such as a grid, ring or torus connection arrangement. Details lie beyond
our scope, but the point is that access time is long and can vary according to where a pro
cessor is in the network and where the target memory unit is. Concurrent traffic along the
same interconnect paths can introduce more delay.

Note that the bus in single-bus systems generally becomes a bottleneck when the sys
tem has more than about eight to sixteen processors. However, buses are generally simpler
and cheaper to implement than other interconnects, and they allow each unit to listen to all
of the bus traffic (sometimes called snooping), which simplifies supporting cache coherence
(see page 232) .

If the memory units are separate from the processors, the system is called a symmetric
multiprocessor (SMP), because processors have equal access times to each memory. It is also
possible to associate memory with each processor, giving that processor more rapid access
to that portion of the memory, and slower access to other memory. This is called non
uniform memory access (NUMA). A system may have both global SMP-style memory and
NUMA memory, and processors may also have private memory, though it is the shared
access memory that is most relevant to garbage collection.2

2Private memory is suitable for thread-local heaps if the threads can be bound to processors (allowed to run
only on the specific processor where their heap resides). It is also suitable for local copies of immutable data.

13. 1 . HARDWARE 231

The most relevant properties of interconnect are that memory takes a long time to ac
cess, that interconnect can be a bottleneck, and that different portions of memory may take
relatively longer times to access from different processors.

Memory

From the standpoint of garbage collection, shared memory appears as a single address
space of words or bytes, even though it may be physically spread out across multiple
memory units or processors. Because memory consists of multiple units accessed concur
rently, it is not necessarily possible to describe it as having a single definite global state at
any given moment. However, each unit, and thus each word, has a well-defined state at
each moment.

Caches

Because memory accesses take so long, modern processors typically add one or more lay
ers of cache to hold recently accessed data and thus statistically reduce the number of
memory accesses a program requires as it runs. Caches generally operate in terms of cache
lines (also called cache blocks), typically 32 or 64 bytes in size. If an access finds its contain
ing line in the cache, that is a cache hit, otherwise the access is a cache miss, which requires
accessing the next higher level of cache, or memory if this was the highest level . In CMPs
it is typical for some processors to share some higher levels of cache. For example, each
processor might have its own Level One (Ll) cache but share its L2 cache with a neighbour.
The line sizes of different levels need not be the same.

When there is a cache miss and there is not room for the new line in the cache, then
a line currently in the cache, chosen according to the cache's replacement policy, must be
evicted before loading the new line. The evicted line is called the victim. Some caches are
write-through, meaning that updates to lines in the cache are passed on to the next level as
soon as practicable, while some caches are write-back, meaning that a modified line (also
called a dirty line) is not written to the next higher level until it is evicted, explicitly flushed
(which requires using a special instruction) or explicitly written back (which also requires
a special instruction) .

A cache's replacement policy depends substantially on the cache's internal organisa
tion. A fully-associative cache allows any set of lines, up to the cache size, to reside in the
cache together. Its replacement policy can choose to evict any line. At the opposite end
of the spectrum are direct-mapped caches, where each line must reside in a particular place
in the cache, so there is only one possible victim. In between these extremes are k-way set
associative caches, where each line is mapped to a set of k lines of cache memory, and the
replacement policy can choose any of the k lines as its victim. A variety of other organi
sations occur, such as victim caches, whereby a small number of recent victims are held in
a fully-associative table on the side of the primary cache, with the primary usually being
direct mapped. This gives the hit rate of higher associativity with lower hardware cost.

Another aspect of cache design concerns the relationship between different levels of
cache. A design of two adjacent levels of cache is called (strictly) inclusive if every line in
the lower level must be held by the higher level. Conversely, a design is exclusive if a line
can be held in at most one of the two levels. A design need be neither: it may allow a line
to reside in both caches, but not require it.

232 CHAPTER 13. CONCURRENCY PRELIMINARIES

Coherence

Caches hold copies of memory data that is potentially shared . Because not all copies are
updated at the same moment, particularly with write-back caches, the various copies in
general do not contain the same value for each address. Thus, it may be possible for two
processors to disagree on the value at a particular location. This is undesirable, so the un
derlying hardware generally supports some degree of cache coherence. One of the common
coherence protocols is MESI, from the initial letters of the names it gives to the possible states
of a given line of memory in each cache.

Modified: This cache is the only one holding a copy of the line, and its value has been
updated but not yet written back to memory.

Exclusive: This cache is the only one holding a copy of the line, but its value corresponds
with that in memory.

Shared: Other caches may hold a copy of this line, but they all have the same value as in
memory.

Invalid: This cache does not hold a copy of this line.

To satisfy a processor read, the processor 's cache must hold the line in the M, E, or S state .
To satisfy a write, however, the cache must hold it in either the M or the E state, and after
the write its new state will be M. How the system satisfies a read in the I state depends on
how the line is held elsewhere. If it is held in the M state, that processor must write the
line back to memory and drop to the S (or I) state. If it is held in the E state, it just needs to
drop to the S (or I) state . If it is held only in the S or I state, then the requesting processor
can simply load the line, which might be supplied by an 5-state holder or else by memory.
To satisfy a write when in I state, the requirements are similar to satisfying a read except
that other holders must end up in the I state . To satisfy a write from the S state, other S
holders must drop to the I state. Refinements include: supporting read-with-intention-to
write, where other holders end in the I state; write-back, where a line drops from the M to
the E state; and invalidate, where a line is written back if it is in the M state and in any case
drops to the I state.

The point of the protocol is that there can be only one writer at a time for any given
line, and that two caches never hold disagreeing values for the same lines. The difficulty
with this algorithm, and indeed with any hardware supported cache coherence protocol,
is that it does not scale well to large numbers of processors. Therefore larger CMPs are
starting to emerge that do not have coherence built in and for which the software manages
the coherence according to whatever protocol it desires. This may still not scale, but at
least the programmer has a better shot at tuning to the specific algorithm versus relying
on one fixed hardware algorithm.

Cache coherence introduces an issue called false sharing. If two processors access and
update different data that happen to lie in the same cache line, then they will tend to cause
a lot of coherence traffic on the interconnect and possibly extra reads from memory, as the
line 'ping-pongs' between the two processors, since each must acquire it in an exclusive
state before updating it.

Cache coherence performance example: spin locks

A typical mutual exclusion lock can be implemented with an At omi cExchange primitive,
as shown in Algorithm 13 . 1 . We distinguish primitive atomic instructions by starting their
name with an upper case letter. We also denote low-level read and write operations by

13. 1 . HARDWARE

Algorithm 13.1: At omi cExchange spin lock

exchangeLock (x) :
while At omicExchange (x, 1) 1

I* do nothing 4

s exchangeUnl ock (x) :
* X f- 0

8 At omi cExc hange (x, v) :
atomic

10 o l d f- * X
1 1 *X f- V
12 return old

Algorithm 13.2: Test-and-Test-and-Set At omi cExchange spin lock

t e stAndT e s tAndS etExchangeLock (x) :
while t e stAndExchange (x) = 1

I* do nothing *I

s t e stAndT e s tAndSe t ExchangeUn l o c k (x) :
* X f- 0

8 t e stAndExchange (x) :
while * X = 1

10 I* do nothing *I
11 return At omi cExchange (x, 1)

233

load and s t o re respectively in order to avoid any confusion with the interface between
the user program and the mutator. The initial value of the lock should be zero, meaning
'unlocked' . This is called a spin lock because the processor is said to 'spin' in the while
loop. Each invocation of the atomic read-modify-write operation will try to acquire the
lock's cache line exclusively. If multiple processors contend for the lock, then the line will
ping-pong, even while some other processor holds the lock. And even that processor will
need to contend for the line just to unlock! This form of lock is also called a test-and-set lock,
even though it does not use the TestAndSet primitive, discussed a little later.

Because the code of Algorithm 13.1 can cause extreme cache contention, many pro
grams use a more subtle version that has the same semantics, called a test-and-test-and-set
lock, shown in Algorithm 13.2. The important difference is in line 9, which does ordinary
read accesses outside the At omi cExchange . This spins accessing the processor 's (coher
ent) cache, without going to the bus. If the lock is not in cacheable memory, then a thread
might want to delay between tests using an idle loop or a hardware i d l e instruction,
possibly using exponential back-off or some similar algorithm so as to consume fewer re
sources in longer waits. For even longer waits the thread might involve the operating
system scheduler, by giving up the rest of its quantum, or moving to wait on an explicit
signal, in which case things must be arranged so that the lock holder will send the signal
when the lock is released.

234 CHAPTER 13. CONCURRENCY PRELIMINARIES

Algorithm 13.3: Spin locks implemented with the TestAndSet primitive

10

I I

1 2

13

14

1 5

t e stAndSet Lock (x) :
while T e s t AndSet (x) 1

f* do nothing *I

t e stAndSetUn l o c k (x) :
* X f- 0

Te stAndSet (x) :
atomic

o l d +--- * X
i f o l d = 0

* X f- 1
return 0

return 1

16 t e stAndTe stAndS et Lock (x) :
1 1 while t e s t AndTe stAndSet (x) 1
1s /* do nothing 4
19

20 t e stAndTe stAndS et (x) :
21 while * X = 1
22 /* do nothing 4
n return T e s t AndSet (x)
24

� t e stAndTe stAndS etUnlock (x)
� t e stAndS e t U n l o c k (x)

While Section 13.3 covers the range of most frequently available atomic hardware prim
itives, it is edifying to consider test-and-set and test-and-test-and-set locks implemented
with a TestAndS et primitive, as shown in Algorithm 13 .3 . A possible advantage of the
TestAndSet primitive is that the overall intent and use of the values 0 and 1 are implicit
in its semantics. This implies that a processor can avoid a bus access and avoid requesting
the cache line for exclusive access if the value of the lock is 1 in the cache. In principle
hardware could do that same thing for At omi cExchange , but it would require detecting
that the old and new values are the same as opposed to looking for the specific value 1 .

13.2 Hardware memory consistency

We assume that shared memory provides coherence as discussed above: in the absence
of pending incomplete writes, if two processors read the same memory location, they will
obtain the same value. Most hardware further guarantees that if two processors write to
the same location, one of the writes will happen before the other, and the later write's value
is what every processor will see subsequently. Furthermore, no processor will observe the
final value and later see the value change without another write.3 In other words, writes

3The Java memory model is even looser: if two writes are not otherwise synchronised, then a processor can
observe either value on any future read, and thus the value may oscillate.

13.2. HARDWARE MEMORY CONSISTENCY 235

to any particular memory location are totally ordered, and each processor 's view of that
location is consistent with that order.

However, a program's view of the order of writes (and reads) to more than one location
does not necessarily correspond with the order of those actions at caches or memories,
and thus as perceived by other processors. That is, program order is not necessarily con
sistent with memory order. This raises two questions: why, and what are the implications?
To answer the 'why' question, it is a matter of both hardware and software. Broadly, the
reasons are tied up with performance: strict consistency requires either more hardware
resources, or reduces performance, or both. One hardware reason is that many processors
contain a write buffer (also called a store buffer), that receives pending writes to memory.
A write buffer is basically a queue of (address, data) pairs. Normally these writes may
be performed in order, but if a later write is to an address already in the write buffer, the
hardware may combine it with the previous pending write . This means the later write
can effectively pass an earlier write to a different location and appear in memory sooner.
Designers are careful to provide each processor with a consistent view of its own actions.
Thus a read of a location that has a pending write in the write buffer will ultimately pro
duce the value in the write buffer, either with a direct hardware path (faster but more
costly) or by waiting for the write buffer to empty and then reading the value from cache.
Another reason program actions can be reordered at the memory is cache misses. Many
processors will continue executing later instructions past a (data) cache miss, and thus
reads can pass reads and writes (and so can writes) . Further, write-back caches present
writes to memory only when dirty lines are evicted or flushed, so writes to different lines
can be drastically reordered. This summary of hardware reasons is illustrative but not
exhaustive.

Software reasons for reordering mostly come from compilers. For example, if two
memory references are known to go to the same location and there are no intervening
writes that can affect that location, the compiler may just use the value originally fetched.
More generally, if the compiler can show that variables are not aliased (do not refer to the
same memory location), it can freely reorder reads and writes of the locations, since the
same overall result will obtain (on a uniprocessor in the absence of thread switches) . Lan
guages allow such reordering and reuse of the results of previous accesses because it leads
to more efficient code, and much of the time it does not affect the semantics.

Obviously, from a programmer 's standpoint lack of consistency between program and
memory order is potentially problematic - but from an implementation perspective it can
boost performance and reduce cost.

What are the implications of looser consistency? First, it should be obvious that it can
be easy for programmers' intuitions to go completely wrong and for code that works under
total consistency to fail in confusing ways - though perhaps only rarely - under more
relaxed models. Second, for techniques such as locks to work, there needs to be some way
to guarantee particular ordering between accesses to two different locations when ordering
is needed. There are three primary kinds of accesses that an ordering model distinguishes:
reads, writes, and atomic operations.4 Atomic operations apply an atomic read-modify
write primitive, often conditionally, such as T e stAndSet . It can also be useful to consider
dependent loads, where the program issues a load from address x and then later issues a
load from address y where y depends on the value returned by loading x. An example
is following a pointer chain. There are many different kinds of memory access orderings
weaker than total consistency; we consider the more common ones here.

4Some authors use the word 'synchronising' where we use 'atomic', but this conflates the atomicity of these
operations with their usual influence on ordering, which is a strictly different notion.

236 CHAPTER 13. CONCURRENCY PRELIMINARIES

Reordering I Alpha I x86-64 I Itanium I POWER I SPARC TSO I x86 I
R --+ R y y y
R --+ w y y y
w --+ w y y y
w --+ R y y y y y y

Atomic --+ R y y y
Atomic --+ w y y y
dependent loads y

Table 13.1: Memory consistency models and possible reorderings. A Y
means that the indicated happens-before order is not necessarily enforced.

Fences and happens-before

A memory fence is an operation on a processor that prevents certain reorderings of memory
accesses. In particular it can prevent certain accesses issued before the fence, or certain
accesses issued after the fence, or both, from being performed in an order that places them
on the other side of the fence. For example, a total read fence requires all reads before the
fence to happen before all reads issued after the fence.

This notion of happens-before can be formalised, and refers to requirements on the order
in which operations occur on memory. Thus, the total read fence imposes a happens-before
relationship between each previous read and each later read. Typically, atomic operations
imply a total fence on all operations: every earlier read, write, and atomic operation must
happen-before each later read, write, and atomic operation. However, other models are
possible, such as acquire-release. In that model, an acquiring operation (think of it as being
like acquiring a lock) prevents later operations from being performed before the acquire,
but earlier reads and writes can happen after the acquire. A releasing operation is symmet
rical: it prevents earlier operations from happening after the release, but later reads and
writes may happen before the release. In short, operations outside an acquire-release pair
may move inside it, but ones inside it may not move out. This is suitable for implementing
critical sections.

Consistency models

The strongest consistency model is strict consistency, where everr read, write and atomic op
eration occurs in the same order everywhere in the system. Strict consistency implies
that happens-before is a total order, with the order defined by some global clock. This is
the easiest model to understand, and probably the way most programmers think, but it is
prohibitive to implement efficiently.6 A slightly weaker model is sequential consistency, in
which the global happens-before order is any partial order consistent with every proces
sor 's program order. Small scale multiprocessors usually aim for sequential consistency or
something close to it, because it is easier to program to than more relaxed models. Weak
consistency is the model resulting from treating all atomic operations as total fences. The
acquire-release model, mentioned above is usually called release consistency. Intermediate
in strength between sequential and weak consistency is causal consistency. This enforces
happens-before between previous reads by a program and its subsequent writes, since the
reads may causally influence the value written, and it enforces happens-before between a

5By 'occurs' we mean 'appears to occur ' - a program cannot tell the difference.
6Given relativistic effects, a total order may not even be well-defined in modern systems.

13.3. HARDWARE PRIMITIVES

Algorithm 13.4: The Compa reAndSwap and Compar eAndSet primitives

CompareAn dSwap (x, o l d, new) :
atomic

cu r r +--- * X
if c u r r = o l d

* X f- new
return curr

s CompareAndSet (x, o l d, new) :
atomic

10

I I

12

13

1 4

c u r r f- * X
if cu r r = o l d

* X +--- new
return true

return false

237

read and the write that stored the value obtained by the read. The term relaxed consistency
applies to any model weaker than sequential consistency.

While allowed reorderings depend to some extent on the interconnect and memory
system, that is they may lie outside total control by the processor, Table 13 .1 shows the re
orderings allowed by some well-known processor families . All the processors implement
at least weak or release consistency. For more background on memory consistency models
see Adve and Gharachorloo [1995, 1996] .

13.3 Hardware primitives

From some of the earliest computers onwards, processors have supported atomic read
modify-write primitives for locking and synchronisation. Section 13.1 introduced two
primitives. At omi cExchange is perhaps the simplest in that it involves no computation
or conditional action - it simply writes a new value to a memory location and returns
the old value atomically, implying that no other write (atomic or otherwise) can interleave.
TestAndS et is also quite simple in that it sets a single bit to 1 and returns the bit's pre
vious value. However, it can be viewed as a conditional primitive that sets the bit only
if its current value is zero. The other widely known and used atomic primitives include:
compare-and-swap, also called compare-and-exchange; load-linked/store-conditionally,
also called load-and-reserve/store-conditional; and various atomic increment, decrement
and add primitives, notably fetch-and-add, also called exchange-and-add. We consider
these in turn below.

Compare-and-swap

The CompareAndSwap primitive and its close relation, Comp a r eAndSet , are presented in
Algorithm 13.4. CompareAndSet compares a memory location to an expected value o l d,
and if the location's value equals old, it sets the value to new . In either case it indicates
whether or not it updated the memory location. CompareAndSwap differs only in that
it returns the value of the memory location observed by the primitive before any update,

238

1 0

I I

1 2

1 3

CHAPTER 1 3. CONCURRENCY PRELIMINARIES

Algorithm 13.5: Trying to advance state atomically with compare-and-swap

compareThenCompareAndSwap (x) :
if * X = i n t e re s t i ng

z +- value for the desired next state
CompareAndSwap (x, i nt e rest ing, z)

Algorithm 13.6: Semantics of load-linked /store-conditionally

LoadLinked (addre s s) :
atomic

r e s e rvat i o n f- addr e s s
r e s e rved +- true
return * addres s

I* re s e rvat ion is a per-processor variable *I
/* r e s e rved is a per-processor variable *I

S t o reCondit i on a l ly (addre s s , value) :
atomic

if r e s e rved
s t o r e (addres s , v a l u e)
return true

return false

1 4 s t ore (addre s s , value) : I* at all processors, not necessarily simultaneously 4
1 s if addre s s = reservat i o n !* granularity may be same cache line, and so on 4
1• r e s e rved +- false
1 1 * addre s s +- value

rather than returning a boolean truth value. The utility o f the two primitives i s essentially
the same, although their semantics are not strictly equivalent.

CompareAndSwap is often used to advance a location from one state to another, such
as 'locked by thread t l ' to 'unlocked' to 'locked by thread t2'. It is common to examine the
current state and then try to advance it atomically, following the pattern of Algorithm 13 .5,
sometimes called compare-then-compare-and-swap. There is a lurking trap in this ap
proach, namely that it is possible that at the CompareAndSwap the state has changed mul
tiple times, and is now again equal to the value sampled before. In some situations this
may be all right, but in others it could be that the bit pattern, while equal, actually has a
different meaning. This can happen in garbage collection if, for example, two semispace
collections occur, and along the way a pointer was updated to refer to a different object
that by coincidence lies where the original object was two collections ago. This inability of
CompareAndSwap to detect whether a value has changed and then changed back is called
the ABA problem .

Load-linked/store-conditionally

LoadLinked and S t o reCondit iona l ly solve the ABA problem by having the proces
sor remember the location read by the LoadLinke d and use the processor 's coherence
mechanism to detect any update to that location. Assuming that the processor applies the
semantics of the s t o r e function, Algorithm 13.6 describes LoadLi nked/StoreCond-

13.3. HARDWARE PRIMITIVES

Algorithm 13.7: Atomic state transition with load-linked/store-conditionally

observed f- LoadLinked (x)
2 compute desired new value z , using observed
3 if not St oreCondit iona l ly (x, z)

go back and recompute or otherwise handle interference

239

Algorithm 13.8: Implementing compare-and-swap with load-linked/ store-conditionally

compareAndSwapByLLSC (x, o l d, new) :
previ ous f- LoadLi nked (x)
if previous = o l d

S t o reCondi t i o na l ly (� new)
return p r evious

1 compa reAndSet ByLLSC (x, o l d, new) :
previ ou s f- LoadLi nked (x)
if previou s = o l d

w return S t o reCondit iona l l y (x, new)
n return false

i t i ona l l y more precisely. It still falls short, though, because the reservation is cleared
not only by writes by the same processor, but also by writes coming from other processors.
Because any write to the reserved location resets the r e s e rved flag, the compare-then
compare-and-swap code can be rewritten to avoid the possible ABA problem, as shown
in Algorithm 13.7.7 LoadLinked/ StoreCondi t i o n a l l y is thus strictly more powerful
than Compa reAn dSwap. In fact, it should be clear that the LoadLi nked/ S t o r eCond
i t i ona l l y primitives allow a programmer to implement any atomic read-modify-write
operation that acts on a single memory word. Algorithm 13.8 shows how to implement
compare-and-swap with LoadLinked/S t o reCondi t i onal ly , and also an implemen
tation of compare-and-set. One more behaviour of LoadLinked/ S t o reCondi t i on a l l y
is worth mentioning: it is legal for a Sto reCondi t i on a l l y t o fail 'spuriously', that is,
even if no processor wrote the location in question. There might be a variety of low-level
hardware situations that can cause spurious failures, but notable is the occurrence of inter
rupts, including such things as page and overflow traps, and timer or 1/0 interrupts, all
of which induce kernel activity. This is not usually a problem, but if some code between
LoadLinked and S t o reCondit iona l l y causes a trap every time, then the S t o r eCond
i t iona l l y will always fail.

Because LoadLi nked/ S t oreCondit iona l l y solves ABA problems so neatly, code
presented here will most generally prefer LoadLinked/ S t o reCondi t i on a l l y where
CompareAndSwap would exhibit an ABA problem. It would typically be straightforward
to convert such instances to use CompareAndSwap with an associated counter.

Strictly speaking, StoreCondi t iona l l y's effect may be undefined if it writes to an
address other than the one reserved. Some processor designs allow that, however, giving
an occasionally useful atomic primitive that acts across two arbitrary memory locations.

7 A thread also loses its reservation on a context-switch.

240 CHAPTER 13. CONCURRENCY PRELIMINARIES

Atomic arithmetic primitives

For completeness, Algorithm 13.9 defines several atomic arithmetic primitives . It is also
easy to offer versions of At omi c I ncrement and Atomi cDe c rement that return either
the old or the new value using At omi cAdd or F e t chAndAdd. Furthermore, processors
often set condition codes when executing these primitives, which can reveal whether the
value is (or was) zero, and so on. In the realm of garbage collection, FetchAndAdd might
be used to implement sequential allocation (that is, with a 'bump pointer ') in a concurrent
setting - though usually it is preferable to set up local allocation buffers as described in
Section 7.7. F e t chAndAdd could similarly be used to add or remove items from a queue,
though wrap-around in a circular buffer requires care (see Section 13.8) .

It has been shown that these atomic arithmetic primitives are strictly less powerful than
C ompareAndSwap, and thus also less powerful than LoadL i n ked/StoreCondit i on
a l ly (see Herlihy and Shavit [2008]) . In particular, each primitive has what is a called a
consensus number. If the consensus number of a primitive is k, then it can be used to solve
the consensus problem among k threads, but not more than k. The consensus problem is a
multiprocessor algorithm where (a) each thread proposes a value, (b) all threads agree on
the result, (c) the result is one of the values proposed, and (d) all threads always complete
in a finite number of steps, that is, the algorithm is wait-free (see Section 13.4) . Primitives
that either set a value unconditionally, such as At omi cExchange, or that when commuted
result in the same value for the variable being updated, such as At omi c i n c rement and
F e t chAndAdd, have consensus number 2. On the other hand, Compa reAndSwap and
LoadLinked/ S t o reCondi t i o n a l ly have consensus number oo, that is, they can solve
consensus in a wait-free manner for any number of threads, as will be illustrated presently
in Algorithm 13 . 13 .

One potential advantage to unconditional arithmetic primitives is that they will al
ways succeed, whereas an emulation of these primitives with LoadLinked/ S t o reCond
i t i o nally or C ompa reAndSwap can starve in the face of contention.8

Test then test-and-set

The 'test then test-and-set' pattern was illustrated in function t e s tAndTe stAndSet (see
Algorithm 13.3) . Because of the way that algorithm iterates, it is correct. Programmers
should avoid two fallacious attempts at the same semantics, here called test-then-test
and-set and test-then-test-then-set, illustrated in Algorithm 13 .10 . Test-then-test-and-set
is fallacious because it does not iterate, yet the T e stAndSet could fail if x is updated be
tween the if and the TestAn dS e t . Test-then-test-then-set is even worse: it fails to use
any atomic primitive, and thus anything can happen in between the first and second read
of x and the second read and the write. Notice that making x volatile does not solve
the problem. There are similar patterns that might be called compare-then-compare-and
set or compare-then-compare-then-set that are equally fallacious. These traps illustrate the
difficulty programmers have in thinking concurrently.

More powerful primitives

As mentioned above, LoadLinked/ StoreCon d i t i onally is fully general, and hence
the most powerful among single-word atomic update primitives . However, primitives
that allow updating multiple independent words are even more powerful. In addition to

80f course if contention is that high, there may be the possibility of starvation at the hardware level, in trying
to gain exclusive access to the relevant cache line.

13.3. HARDWARE PRIMITIVES

Algorithm 13.9: Atomic arithmetic primitives

1 At omi c i n c rement (x) :
atomic

* X f- * X + 1

s At omi cDe c rement (x) :
atomic

* X f- * X - 1

9 At omi cAdd (x, v) :
w atomic
I I

1 2

1 3

14

new +- * X + v
* X +- new
return new

1 5 Fet chAndAdd(x, v) :
1 6 atomic
1 7 o l d +- * X
1 s * x +- o l d + v
1 9 return o l d

Algorithm 13.10: Fallacious test and set patterns

t e s t ThenT e s tAndSet Lock (x) :
if * X = 0

T e s tAndSet (x)

5 t e s t ThenT e s t ThenSet Lock (x) :
if * X = 0

other work
if * X = 0

* X f- 1

241

/*fallacious! 4

I* fallacious! 4

single-word primitives, some processors include double-word primitives such as double
word compare-and-swap, here called CompareAndSwapWi de /Compa reAndS etWide, in
addition to single-word Comp a r eAndSwap (see Algorithm 13. 1 1) . These are not of greater
theoretical power. However, a wide double-word CompareAndSwap can solve the ABA
problem of single-word Comp a reAndSwap by using the second word for a counter of the
number of times the first word has been updated. It would take so long - 232 updates
for a 32-bit word - for the counter to wrap around that it may be safe to ignore the pos
sibility. The same would hold even more strongly for updating two adjacent 64-bit words.
Thus Compar eAndSwapWide can be more convenient and efficient even if it has the same
theoretical power as a regular CompareAndSwap .

But while double-word atomic primitives are useful, i t is even more useful to be able
to update two arbitrary (not necessarily adjacent) words in memory atomically. The Mo
torola 88000, and Sun's Rock design, offered a compare-and-swap-two instruction (also

242 CHAPTER 13. CONCURRENCY PRELIMINARIES

Algorithm 13.11: CompareAndSwapWide

CompareAndSwapWide (x , o l dO , o l d l , newO , new l) :
atomic

cu r r O , cur r l +- x [O] , x [l]
if cu r r O = o l dO && cur r l

x [O] , x [l] +- newO , newl
return currO , curr l

o l dl

CompareAndS etWide (x, o l dO , o ldl , newO , new l) :
atomic

t o cu r r O , cur r l +- x [O] , x [l]
1 1 if currO = o l dO && cur r l o ldl
1 2 x [O] , x [l] +- newO , newl
1 3 return true
14 return false

Algorithm 13.12: CompareAndSwap2

1 0

I I

1 2

1 3

1 4

CompareAndS wap2 (xO , x l , o l dO , o l d l , newO , newl) :
atomic

cu r r O , curr l +- * X O , * X l
if c u r r O = o l dO && cur r l

* X O , * X l +- newO , newl
return currO , cu r r l

o l dl

CompareAndS e t 2 (xO , x l , o l dO , oldl , newO , new l) :
atomic

cu r r O , cur r l +- * X O , * X l
if c u r r O = o l dO && cur r l

* X O , * X l +- newO , newl
return true

return false

o l dl

called double-compare-and-swap) . Algorithm 13 . 1 2 illustrates this Compa reAndSwap2
primitive. Comp a reAndSwap2 is complex to implement in hardware, so it is not surpris
ing that no commercially produced machines presently support it. Compa reAndS wap2
can be generalised to compare-and-swap-n, also called n-way compare-and-swap. It was
the inspiration for transactional memory, which is to LoadLi nked/ S t oreCondi t i o n
a l l y what n-way compare-and-swap is to CompareAndSwap. See Section 13.9 for further
discussion of transactional memory.

Overheads of atomic primitives

One reason programmers fall into the traps just mentioned is that they know atomic primi
tives are expensive, so they try to avoid them. Another reason may be that they improperly
replicate the pattern of t e s tAndTestAndSet . The primitives tend to be expensive for the
two reasons previously mentioned, but it is helpful to distinguish them. One reason is the
cost of cache coherence: an atomic read-modify-write primitive must acquire exclusive ac
cess to the relevant cache line. Also, it must do that, read the contents, compute the new

13.4. PROGRESS GUARANTEES 243

Algorithm 13.13: Wait-free consensus using compare-and-swap

1 shared propo s a l s [N]
2 shared winner +--- - 1
3 me +--- myThreadi d

s de c ide (v) :
propo s a l s [me] +--- v
CompareAndSwap (& w i n ne r, - 1 , me)
return propo s a l s [winne r]

f* one entry per thread 4
/* indicates which thread got here first 4

f* 0 � thread id < N 4

value and write it, before the instruction is complete. While modern processors may over
lap multiple instructions, often there are few instructions available in the pipeline since the
next thing to do often depends strongly on the result of the atomic operation. Because of
the need for coherence, an atomic update primitive often includes a bus or memory access,
which consumes many cycles.

The other reason atomic primitives tend to be slow is that they either include memory
fence semantics, or else, by the way they are used, the programmer will need to insert
fences manually, typically on both sides of the atomic operation. This undermines the
performance advantage of overlapped and pipelined processing, and makes it difficult for
the processor to hide the cost of any bus or memory access the primitive requires.

13.4 Progress guarantees

It is important to guarantee progress among threads that may be contending on the same
data structure, such as a shared collected heap, or collector data structures. This is espe
cially true in real-time programming. It is also helpful to know the relative power of the
various atomic hardware primitives in supporting progress guarantees. From strongest to
weakest, useful progress guarantees include: wait-freedom, obstruction-freedom and lock
freedom. A concurrent algorithm is wait-free if every thread can always make progress,
regardless of the actions of other threads. A concurrent algorithm is obstruction-free if,
given a long enough period of isolated execution, any thread will finish in a finite num
ber of steps. A concurrent algorithm is lock-free if, infinitely often, some thread finishes
within a finite number of steps. Progress guarantees are almost always conditional in real
systems. For example, an algorithm might be wait-free as long as it does not exhaust free
storage. See Herlihy and Shavit [2008] for a thorough discussion of these concepts, how to
implement them, and so on.

A wait-free algorithm typically involves the notion of threads helping each other along.
That is, if thread t2 is about to undertake an action that would undermine thread tl that is
somehow judged to be ahead of t2, t2 will help advance the work of t l and then do its own
work. Assuming a fixed bound on the number of threads, there is a bound on helping to
accomplish one work unit or operation on the data structure, and thus the total time for
any work unit or operation can be bounded. However, not only is the bound large, but the
typical time for an operation is rather higher than for weaker progress guarantees because
of the additional data structures and work required. For the simple case of consensus,
it is fairly easy to devise a wait-free algorithm with low time overhead, as illustrated in
Algorithm 13 .13 . It is fairly easy to see that this meets all of the criteria to be a solution to
the consensus problem for N threads, but it does have space overhead proportional to N.

Obstruction-freedom is easier to achieve than wait-freedom, but may require scheduler
cooperation. If threads can see that they are contending, they can use random increasing

244 CHAPTER 13. CONCURRENCY PRELIMINARIES

back-off so as to allow some thread to win. That is, each time they detect contention,
they compute a longer possible back-off period T and randomly choose an amount of time
between zero and T to wait before trying again. In a pool of contending threads, each will
eventually succeed, probabilistically speaking.

Lock-freedom is even easier to achieve. It requires only that at least one contender
make progress on any occasion, though any particular individual can 'starve' indefinitely.

Progress guarantees and concurrent collection

Parallel collectors use multiple threads simultaneously in the collector, but stop all mutator
threads during collection. Concurrent collectors perform at least some parts of collection
while mutators threads are still running, and generally using multiple collector threads
too . Both parallel and concurrent collection algorithms typically have a number of phases,
such as marking, scanning, copying, forwarding or sweeping, and concurrent collection
also has mutator work trying to proceed at the same time. Multiple collector threads may
aim to cooperate, yet sometimes interfere with one another and with mutator threads. In
such a complex situation, how can collector correctness be described? Certainly the collec
tor must do nothing blatantly wrong - at the least it must preserve the reachable parts of
the object graph and support the mutations being performed by the mutators. Next, pro
vided that an invocation of the collector eventually terminates, it should generally return
some unreachable memory for reuse. However, the specific expectations vary by collector
algorithm. A conservative (ambiguous roots) collector may over-estimate reachability and
thus fail to reclaim some unreachable objects . Likewise, generational and other partial
heap collectors intentionally forgo reclaiming unreachable objects from some parts of the
heap on any given invocation. A complete collection algorithm gives a stronger guarantee:
eventually, if invoked enough times, it will reclaim any given piece of garbage.

Concurrent collectors bring additional interesting issues. One is what can happen to
objects allocated during collection that then become unreachable, or objects previously
allocated that become unreachable during collection. A given collector might or might not
reclaim those during the current invocation.

But there is a more subtle issue and risk that arises with concurrent and parallel col
lection. Sequential algorithms have more obvious termination properties . For example,
marking a reachable object graph maintains some representation of marked-and-scanned,
marked-but-not-yet-scanned, and unmarked object sets, and obeys rules where the first
set grows, eventually to contain the entire graph of reachable objects. Correctness may
sometimes be tricky to prove, but it is relatively easy to see that the algorithm terminates.
It is less obvious with concurrent collection, because the object graph can grow because
of allocation of new objects, and it can change during a collection cycle. If each mutator
change forces more collector work, how can we know that the collector will ever catch
up? Mutators may need to be throttled back or stopped completely for a time. Even if a
proof deals with the issues of more collector work being created during collection, there
remains a further difficulty: unless the algorithm uses wait-free techniques, interference
can prevent progress indefinitely. For example, in a lock-free algorithm, one thread can
continually fail in its attempts to accomplish a work step. In fact, two competing threads
can even each prevent progress of the other indefinitely, an occurrence called livelock.

Different phases of collection may offer different progress guarantees - one phase
might be lock-free, another wait-free. However, practical implementations, even of theo
retically entirely wait-free algorithms, may have some (it is hoped small) portions that are
stop-the-world . Given the code complexity and increased possibility of bugs when trying
to implement stronger progress guarantees, it may not be worth the engineering effort to
make every last comer wait-free . Further, notice that an overall collection algorithm can

13.5. NOTATION USED FOR CONCURRENT ALGORITHMS 245

be judged wait-free from the standpoint of the mutators only if it can reclaim memory
fast enough to ensure that a mutator will not block in allocation waiting for collection to
complete. Put another way, the heap must not run out before the collector is done. This
requires more than a wait-free guarantee for each phase - it requires overall balance be
tween heap size, maximum live size, allocation rate and collection rate. Enough resources
need to be devoted to collection - memory and processing time - for the collector to keep
up. This may be required for critical real-time systems, and Chapter 19 discusses it in more
detail . Most of the algorithms presented in succeeding chapters make weaker guarantees,
such as lock-freedom, possibly only in certain phases. They are easier to implement and
their guarantees are acceptable in many less stringent settings.

13.5 Notation used for concurrent algorithms

Given the considerations discussed previously, particularly atomicity, coherence and con
sistency, what a programmer writes is not always executed in the exact order presented
hardware and compilers can reorder and even eliminate some operations. Exactly what
can occur depends strongly on the programming language, its compiler and run-time sys
tem, and the hardware. Yet here it is best to present algorithms in pseudocode indepen
dently of any particular hardware-software platform. In an algorithm, the relative order
of some operations is typically important to correctness, but it is not generally necessary
that all operations occur, and be perceived everywhere, in the order presented. Therefore,
the code offered here for algorithms that may execute concurrently follows certain conven
tions. This makes it easier to translate the pseudocode into a working implementation in a
given environment. Here are the conventions used.

Meaning of atomic: The actions within an atomic must be perceived by all processors
as if they happened instantaneously - no other shared memory read or write can
appear to happen in the middle. Moreover, atomic actions must be perceived
as happening in the same order everywhere if they conflict (one writes and the
other reads or writes the same shared variable), and in program execution order
for the thread that executes them. Furthermore, atomic blocks act as fences for all
other shared memory accesses. Since not all hardware includes fence semantics with
atomic primitives, the programmer may need to add them. The code here may work
with acquire-release fence semantics, but is designed assuming total fences.

Ordering effects of load-linked and store-conditionally: Both the load-linked and store
conditionally instructions act as total fences with respect to shared memory accesses.

Marking variables: We explicitly mark shared variables; all other variables are private to
each thread.

Arrays: Where we use arrays, we give the number of elements within brackets, such as
propo s a l s [N] . Declarations of arrays use shared or private explicitly, so as
not to look like uses of the arrays, and may be initialised with a tuple, such as
shared pa i r [2] +- [0 , 1] , including tuples extended to the specified length, such as
shared leve l [N] +- [- 1 , . . .] .

References to shared variables: Each reference to a shared variable is assumed to result
in an actual memory read or write, though not necessarily in the order presented .

Causality obeyed: Code assumes that if, subject to the sequential semantics of the pseu
docode language, an action x causally precedes an action y, then x happens-before y

246 CHAPTER 13. CONCURRENCY PRELIMINARIES

in the actual system. An example is a dependent memory reference. If code accesses
a shared pointer variable p then a field f of the structure that p references, namely
(* P) . f, then reading p causally preceded reading the field f. Similar remarks apply
to accessing a shared index variable i then a shared array element a [i] .

Obeying causality also implies obeying control dependence: the evaluation of an if,
while, or similar expression that determines control flow causally precedes execu
tion of the code it guards. The programmer must be careful not to allow speculative
evaluation of conditional code so as to reorder accesses to shared variables. How
ever, unconditional code following an if is not causally dependent on evaluation of
the if expression. Similar remarks apply to moving code across loops.

Explicit fence points: Even with the conventions listed above, many operations may be
freely reordered - but sometimes an algorithm requires a particular order for its
correctness. Therefore, our conventions include the possibility of marking a line of
code with a $, which indicates operations that must occur in the order presented.
Furthermore, lines so marked also indicate total fences for shared memory accesses.
It is convenient that pseudocode presented thus far in this chapter has not needed
these markings. Notice that a line marked with $ may, for some processor architec
tures, need a fence of some kind before the line, after the line, or both before and
after. Usually it is a particular action of the line that is important not to reorder, that
is, one store or one load. While the markers do not offer complete guidance on how
to translate pseudocode into working code for a given platform, they do serve to
indicate where caution is necessary.

13.6 Mutual exclusion

One of the most basic problems in concurrent computing is mutual exclusion, by which it
is desired to guarantee that at most one thread at a time can be executing certain code,
called a critical section. While atomic primitives can sometimes achieve a necessary state
transition using one instruction, and techniques with stronger progress guarantees might
be applied - though perhaps at greatest cost and almost certainly greater complexity
- mutual exclusion remains convenient and appropriate in many cases. Atomic read
modify-write primitives make it fairly easy to construct lock/unlock functions, as shown
in Algorithms 13 .1 to 13.3. It is less obvious, but nevertheless true, that mutual exclusion
can be achieved using only (suitably ordered) reads and writes of shared memory without
stronger atomic update primitives. One of the classic techniques is Peterson's Algorithm
for mutual exclusion between two threads, shown in Algorithm 13.14. Not only does this
algorithm guarantee mutual exclusion, it also guarantees progress - if two threads are
competing to enter the critical section, one will succeed - and that waits are bounded,
that is, the number of turns taken by other processes before a requester gets its tum is
bounded.9 In this case the bound is one turn by the other thread.

It is not too hard to generalise Peterson's Algorithm to N threads, as shown in Algo
rithm 13.15, which highlights its similarity to the two-thread case. How the while loop
works is a bit subtle. The basic idea is that a requesting thread can advance a level in
the competition to enter the critical section if it sees no other thread at the same or higher
level . However, if another thread enters its current level, that thread will change v i c t im
and the earlier arrival can advance. Put another way, the latest arrival at a given level

9The time before this happens is not bounded unless a requesting thread whose tum it is enters and then
leaves within bounded time.

13.6. MUTUAL EXCLUSION 247

Algorithm 13.14: Peterson's algorithm for mutual exclusion

1 shared i ntere s t ed [2] +- [false, false]
2 me +- myThreadi d

4 pet e r s o nLock () :

1 0

other +- 1 - me
i n t e r e sted [me] +- true
vict im +- me
while vict im = me && i n t e r e sted [o t h e r]

/* do nothing: wait 4

11 pet e r s o nUnlock () :
12 i n t e r e st ed [me] +- false

/* thread id must be 0 or 1 4

$
$

Algorithm 13.15: Peterson's algorithm for N threads

1 shared leve l [N] +- [- 1, . . .]
2 shared vict im[N]
3 me +- myThreadi d

5 pet e r s onLockN() :
for lev +- 0 to N-1

l eve l [me] +- l ev
v i c t im[l ev] +- me
while vict im [lev]

10 /* do nothing: wait *f
11

1 2 pet e r s o nUnlockN () :
13 l eve l [me] +- - 1

f* 0 � thread id < N 4
$

me && (:Ji =/:- me) (l evel [i] � l ev) $

Algorithm 13.16: Consensus via mutual exclusion

1 shared winner +- - 1
2 shared va lue
3 me +- myThreadi d

5 dec i deWithLock (v) :
l ock ()
if wi nner = - 1

wi nner +- me
value +- v

10 unlock ()
n return va lue

f* does not need to be initialised 4

f* simple, but no strong progress guarantee *f

248 CHAPTER 13. CONCURRENCY PRELIMINARIES

waits for threads at all higher levels plus earlier arrivals at its own level. Meanwhile, later
arrivals at the same and lower levels will come strictly later. It does not matter that the
while loop's condition is not evaluated atomically. Peterson's algorithm is illustrative of
what is possible and of techniques for reasoning about concurrent programs, but atomic
locking primitives are more convenient and practical.

The previous discussion of consensus in Section 13.3 described the wait-free version
of the consensus problem. Mutual exclusion can solve consensus quite easily if stronger
progress guarantees are not needed, as shown in Algorithm 13 . 16. Since Peterson's mutual
exclusion algorithm implements mutual exclusion, it can also support this kind of consen
sus. However, if CompareAndSwap is available it is usually a more appropriate solution
(see Algorithm 13 .13) .

13.7 Work sharing and termination detection

It is common in parallel or concurrent collection algorithms to need a way to detect ter
mination of a parallel algorithm. Note that this is quite distinct from demonstrating that a
parallel algorithm will terminate; it concerns having the program detect that termination
has actually been achieved in a specific instance. In particular, consider a generic situation
in which threads consume work, and as they process work units, they may generate more
work. If each thread is concerned only with its own work, detecting termination is sim
ple - just have each thread set a done flag and when all the flags are set, the algorithm
has terminated . However, parallel algorithms generally involve some sort of sharing of
work items so as to try to balance the amount of work done by each thread and gain max
imum speedup from the available processors . This balancing can take two forms: threads
with a relatively large amount of work can push work to more lightly loaded threads, or
lightly loaded threads can pull work from more heavily loaded threads . Work pulling is
also called work stealing.

Work movement must be atomic, or at least must guarantee that no work unit is lost. 10

Here, though, the concern is detecting termination of a work sharing algorithm. It is rel
atively easy to detect termination using a single shared counter of work units updated
atomically by each thread, but such counters may become bottlenecks to performance if
the threads update them frequently. l 1 Therefore a number of termination detection algo
rithms avoid atomic update primitives and rely on single word reads and writes. It is
simplest to consider first algorithms in which detection is the responsibility of a separate
thread whose only job is detection.

Algorithm 13 .17 shows a simplified version of the shared-memory work sharing termi
nation algorithm of Leung and Ting [1997] . 1 2 It is designed for the push model. The basic
idea is that workers indicate whether or not they are busy with their bus y flags, which the
detector scans. Notice that an idle worker will become busy again only if another worker
pushes a job to it. However, the pusher can then finish processing and go idle. Since the
detector 's scan is not atomic, it might first see the job receiver as idle (because the job has

1 0Sometimes work is idempotent, so if it is done two or more times, the algorithm is still correct, though
possibly wasteful of computing resources.

1 1 Flood et a/ [2001) use essentially this technique in their parallel collector, but with a single word that has one
'active' bit per thread. The termination condition is the same: the algorithm terminates when the status word
becomes zero.

12The version shown eliminates the {3 flags of Leung and Ting [1997), which have to do with operating system
sleeping and wakeup, which we elide here for simplicity. Here, we give their tt and 1' flags the more memorable
names bu s y and j obsMove d. Leung and Ting also give a variant that detects termination a little faster by
checking the j ob sMoved flag every VN iterations of the detector 's scanning loop. Given the time needed to
perform work in a collection algorithm, it is doubtful that such a refinement is worthwhile.

13.7. WORK SHARING AND TERMINATION DETECTION 249

Algorithm 13.17: Simplified tx/31' shared-memory termination [Leung and Ting, 1997]

1 shared j obs [N] +- initial work assignments
2 shared busy [N] +- [true, . . .]
3 shared j obsMove d +- false
4 shared a l lDone +- false
5 me +- myThreadi d

7 wo rker () :
loop

while not i sEmpty (j obs [me])
w if the job set of some thread j appears relatively smaller than mine
1 1 s ome +- chooseAndD e queueJob s ()
12 sendJob s (s ome, j) $
13 else
14 j ob +- dequeue (j ob s [me])
1 5

1 6

17

1 8

1 9

20

21

per f o rm j ob
bu s y [me] +- false
while isEmpt y (j ob s [me]) && not a l l D o n e

f* do noth ing: wait for work o r termination *f
i f a l lDone return
bu s y [me] +- t rue

$
$

$
$

22 sendJob s (s ome, j) : f* push jobs to more lightly loaded thread 4
23 enqueue (j ob s [j] , s ome)
24 while (not bus y [j]) && (not i s Empty (j ob s [j]))
25 /* do nothing: wait for j to wake up *f
26 indicate that some work moved
27 j obsMoved +- t rue
28

29 det e ct () :
30 any Act ive +- true
31 while anyAct ive
32 anyAct ive +- (3 i) (busy [i])
33 anyAct ive +- anyAct ive I I
34 j obsMoved +- false
35 a l lDone +- true

j obsMove d

$
$

$

$
$
$

not been sent yet) and then find the pusher idle (after it sends the job) . In this situation the
detector would falsely indicate termination. Hence the algorithm includes the j obsMoved
flag, which indicates whether any jobs have moved recently. The detector restarts detection
in that case. It is also important that sendJob s waits until bus y [j] is true to guarantee
that before, during and immediately after the transfer at least one of the bus y [i] is true:
the only way that all busy [i] can be false is if there is no work in the system.

Algorithm 13 . 18 shows the similar algorithm for a work stealing (pull) model of sharing
work. For example, Endo et al [1997] uses essentially this algorithm to detect termination
in their parallel collector. Also, while the lock-free collector of Herlihy and Moss [1992] is
not based on work sharing, its termination algorithm at its heart uses the same logic as the
busy and j obsMoved flags.

250 CHAPTER 13. CONCURRENCY PRELIMINARIES

Algorithm 13.18: An tt,6'Y-style work stealing termination algorithm

• me +- myTh r e a d i d

3 worker () :
loop

while not i sEmpt y (j obs [me])
j ob +- dequeue (j ob s [me])
p e r form j ob

if another thread j exists whose jobs set appears relatively large
s ome +- s t e a l Jobs (j)

1 0 enqueue (j obs [me] , s ome)
I I

1 2

1 3

14

IS

1 6

1 7

continue
bus y [me] +- false
while no thread has jobs to steal && not a l lDone

f* do nothing: wait for work or termination 4
if a l lDone return
bus y [me] +- true

1 8 s t e a l Jobs (j) :
19 s ome +- at omi c a l lyRemoveS omeJobs (j ob s [j])
2o if not i s Empt y (s ome)

$

$

$
$

$
$

21 j obsMoved +- true /* indicate that some work moved 4
22 return s orne

Algorithm 13.19: Delaying scans until useful

shared any ! dl e +- false
2 me +- myTh r e a d i d

4 worker () :

bus y [me] +- false
any i dl e +- true

10 detect () :
1 1 anyAct i ve +- true
1 2

1 3

14

I S

1 6

1 7

18

19

20

while anyAct ive
anyAct ive +- false
while not any i dl e

/* do nothing: wait until a scan might be useful 4
any i dl e +- false
anyAct ive +- (3 i) (bu s y [i])
anyAct ive +- anyAct ive I I j obsMoved
j ob sMoved +- false

al lDone +- true

$
$

$

$
$
$
$
$

13 .7. WORK SHARING AND TERMINATION DETECTION

Algorithm 13.20: Delaying idle workers

1 shared anyLarge +--- false
2 me +--- myThread i d

4 worke r () :
loop

10

I I

12

13

14

15

16

17

1 8

19

20

2 1

2 2

while not i sEmpty (j ob s [me])
j ob +--- dequeue (j ob s [me])
pe r f o rm(j ob)
if my job set i s large

anyLa rge +--- true
if anyLarge

anyLa rge +--- false /* set false before looking 4
if another thread j has a relatively large jobs set

any La rge +--- true /* could be more stealable work 4
s ome +--- stealJobs (j)
enqueue (j ob s [me] , s ome)
continue

bu s y [me] +--- false
while (not anyLarge) && (not a l l D on e)

/* do nothing: wait for work o r termination 4
if a l lDone return
bu s y [me] +--- true

251

$

$

$
$
$
$

$
$

$
$

It is straightforward to refine these detection algorithms so that they wait on a single
variable any I dle until a scan might be useful, as shown in Algorithm 13 . 19 . Likewise,
in the work stealing case there is a similar refinement so that workers wait on a single
anyLarge flag (in addition to a l lDone), as shown in Algorithm 13.20.

The algorithms presented so far assume a separate detection thread. It is tempting to
use idle threads to check termination, as shown in Algorithm 13.21 . The problem is that
this algorithm does not work. For example, suppose thread A finishes its work, sees no
thread to steal from and starts detection. In its detection scan, it now sees that thread B
has extra work, so A will give up on detection, and may be just about to set its busy flag .
In the meantime, B finishes all of its work, enters detection, sees that all threads are done
and declares termination. A simple approach to fix this is to apply mutual exclusion to
detection as shown in Algorithm 13.22.

For completeness, Algorithm 13.23 shows termination detection using an atomically
updated shared counter. For discussion of a lock-free data structure to support work shar
ing implemented as a concurrent double-ended queue (deque), see Section 13 .8 .

Rendezvous barriers

Another common synchronisation mechanism in parallel and concurrent collectors is the
need for all participants to reach the same point in the algorithm - essentially a point of
termination of a phase of collection - and then to move on. In the general case one of the
previously presented termination algorithms may be most appropriate. Another common
case occurs when the phase does not involve work sharing or balancing, but it is required
only to wait for all threads to reach a given point, called the rendezvous barrier. This can

252 CHAPTER 13. CONCURRENCY PRELIMINARIES

Algorithm 13.21: Symmetric termination detection

1 work () :

while I have no work && not a l lDone
/* this version is broken! *f
det ect Symrne t r i c ()

a det ect S ymmet r i c () :
while not a l l D o n e

10 while (not a n y ! dle) && (not anyLarge)
1 1 /* do nothing: wait until a scan might be useful 4
1 2 if anyLarge return
13 a n y i dle +- false
1 4 a nyAct ive +- (3i) (bus y [i])
1 s a nyAct ive +- anyAct ive I I j obsMoved
1 6 j obsMoved +- false
1 7 a l lDone +- not anyAct ive

Algorithm 13.22: Symmetric termination detection repaired

shared detect o r +- - 1
2 me +--- myThread i d

4 work () :

while I have no work && not a l lDone
if det ect o r 2::: 0

$

$
$

$

$
$
$
$

$

continue /* wait for previous detector to finish before trying 4

1 0

1 1

1 2

if Compa reAn dSet (&det e ct o r, - 1 , me)
detect S ymmet ric () $
detect o r +- - 1 $

Algorithm 13.23: Termination via a counter

1 shared numBusy +- N
2 work e r () :

loop
while work r ema1n1ng

per f o rm (w o rk)
if At omi cAdd (& numBusy , - 1) = 0

return
while nothing to steal && (numBusy > 0)

/* do nothing: wait for work or termination 4
w if numBusy = 0
1 1

1 2

return
At omi cAdd (& numBus� 1)

$

13.8. CONCURRENT DATA STRUCTURES 253

Algorithm 13.24: Rendezvous via a counter

1 shared n umBu s y +- N

3 ba r r i e r () :
At omi cAdd(& numBusy, - 1)
while numBu s y > 0

I* do nothing: wait for others to catch up *f

Algorithm 13.25: Rendezvous with reset

1 shared numBu s y +- N
2 shared numP a s t +- 0

4 bar r i e r () :
At omi cAdd (& numBu sy, - 1)
while numBu s y > 0

I* do nothing: wait for others to catch up *f
if At omi cAdd (& numPast , 1) = N

numP a s t +- 0
10 numBu sy +- N
n else

I* one winner does the reset *f
$
$

12 while numBu sy = 0 I* the others wait (but not for long) *f
1 3 I* do nothing: wait for reset to complete *I

use a simplified version of termination detection with a counter (Algorithm 13 .23), shown
in Algorithm 13.24. Since a collector is usually invoked more than once as a program
runs, these counters must be reset as the algorithm starts, or in any case before the phase
is run again, and the resetting should be done with care to ensure that no thread can be
depending on the value of the rendezvous counter at the time it is reset. Algorithm 13.25
shows such a resetting barrier.

13.8 Concurrent data structures

There are particular data structures commonly used in parallel and concurrent allocators
and collectors, so it is helpful to review some of the relevant implementation techniques.
It should be plain that data structure implementations for sequential programs are not
suitable as is for parallel and concurrent systems - they will generally break. If a data
structure is accessed rarely enough then it may suffice to apply mutual exclusion to an
otherwise sequential implementation by adding a lock variable to each instance of the
data structure and have each operation acquire the lock before the operation and release
it after. If operations can be nested or recursive, then a 'counting lock' is appropriate, as
shown in Algorithm 13 .26.

Some data structures have high enough traffic that applying simple mutual exclusion
leads to bottlenecks. Therefore a number of concurrent data structures have been devised
that allow greater overlap between concurrent operations . If concurrent operations are
overlapped, the result must still be safe and correct. An implementation of a concurrent

254 CHAPTER 13. CONCURRENCY PRELIMINARIES

Algorithm 13.26: Counting lock

1 I* the lock packs into one word a thread id and a count 4
2 shared lock +- (t h read : - 1 , count : o) int
3 me +- myThreadi d

5 count ingLock () :
o l d +- lock
if o l d . thread = me && o l d . count > 0

/* just increment the count; assume no overflow 4
lock +- (o l d . t hread, o l d . count + 1)

w return
n loop
12 if o l d . count = 0
n if CompareAndSet (& l o ck, o l d, (t hread : me, count : 1))
14 return
15 o l d +- l o c k
1 6

1 1 count i ngUnlock () :
1s /* leaves thread id, but no harm even when count becomes 0 *I
1• o l d +- lock
20 l o c k +- (o l d . t h read, o l d . count - 1)

data structure is said to b e linearisable if any pair of overlapping operations produces state
changes on the data structure and responses to the operations consistent with executing
the two operations in a non-overlapped way in one order or the other [Herlihy and Wing,
1990] . Furthermore, if two operations do not overlap in time, they must appear to happen
in the order in which they were invoked. For each operation there is a point in time at
which the operation can be viewed as having taken place. This is called its linearisation
point . Often an operation has many points in time that might be viewed as its linearisation
point, but the relative order of the linearisation points of operations that affect each other
will always be consistent with the logical order of the operations. If operations do not
affect each other then they can linearise in either order. Many memory manager actions,
such as allocation and changes to work lists, must be linearisable.

There is a range of generic strategies a programmer can employ in building a concur
rent data structure. In order from lower to higher concurrency, and typically from simplest
to most complex, they are:

13

Coarse-grained locking: One 'large' lock is applied to the whole data structure (already
mentioned) .

Fine-grained locking: In this approach an operation locks individual elements of a larger
data structures, such as the individual nodes of a linked list or tree. This can increase
concurrency if the locales of access and update are spread around enough. A general
concern to keep in mind is that if an operation locks multiple elements, it must ensure
that no other invocation of the same operation, or of any other operation, will attempt
to lock the same two elements in the opposite order - in that case the operations
can deadlock. A common technique on a data structure accessed only in a single

13See Herlihy and Shavit [2008] Chapter 9 for details of each of these approaches applied to a set implemented
as a linked list.

13.8. CONCURRENT DATA STRUCTURES 255

direction, such as a singly linked list or a tree, is lock coupling. This locks a node
A and then a node B pointed to by A. Then it releases the lock on A and acquires
a lock on a node C pointed to by B, and so on. This 'hand-over-hand' walking of
locks through a data structure guarantees that later-arriving threads cannot pass the
current thread in the data structure, and supports safe execution of operations such
as inserting or removing an item from a list or tree. A potential drawback of fine
grained locking is that the overhead of going to a shared bus or memory multiple
times to lock individual elements may swamp the benefit of avoiding a coarser lock.

Optimistic locking: This refines fine-grained locking by doing any searching of the data
structure without locks, then locking what appear to be the proper elements for the
operation. However, in general, concurrent updates can have changed things, so
after locking, the operation validates that it has locked the correct elements for its
intended action. If the validation fails, it releases the locks and starts over. Avoiding
locking until the latest time necessary reduces overhead and improves concurrency.
Optimism is often a good strategy, but can result in poorer performance in the pres
ence of frequent conflicting updates.

Lazy update: Even with optimistic locking, read-only operations may still need to lock a
data structure. This can result in a concurrency bottleneck, and also has the effect
that a read-only operation performs writes (of locks) . It is often possible to design
a data structure so that read-only operations need no locking - but of course the
updating operations are a bit more complex. Generally speaking, they make some
change that logically accomplishes the operation, but may need further steps to com
plete it and get the data structure into a normalised form. An example may help
in understanding this . For lazy update of a linked list representation of a set, the
remove operation will first mark an element as being (logically) removed, by setting
a boolean flag de l e t e d in the element. After that it will unchain the deleted element
by redirecting the predecessor 's pointer. All this happens while holding locks in the
appropriate elements, so as to prevent problems with concurrent updaters. The two
steps are necessary so that readers can proceed without locking. Adding an element
needs to modify only one next pointer in the data structure and therefore needs only
one update (again, with appropriate locks held) .

Non-blocking: There are strategies that avoid locking altogether and rely on atomic up
date primitives to accomplish changes to the state of data structures. Typically a
state-changing operation has some particular atomic update event that is its lineari
sation point. This is in contrast to lock based methods, where some critical section
marks the linearisation 'point'. l4 As previously mentioned, these can be charac
terised according to their progress guarantees, in order from easiest to implement
to hardest. Lock-free implementations may allow starvation of individual threads;
obstruction-free implementations may require long enough periods in which a single
thread can make progress without interference; and wait-free implementations guar
antee progress of all threads. Some lock-free implementations are sketched below;
for wait-free implementation, see Herlihy and Shavit [2008] .

For data structures most relevant to implementing parallel and concurrent collection,
implementation descriptions and code sketches are offered below. The implementation
strategies generally follow those suggested by Herlihy and Shavit.

14Because of mutual exclusion, it is a point as far as any other operations are concerned. However, lazy update
methods also tend to have a single l inearisation point.

256 CHAPTER 13. CONCURRENCY PRELIMINARIES

Concurrent stacks

First, we sketch ways to implement a concurrent stack using a singly linked list. Since there
is only one locus of mutation for a stack, the performance of the various approaches to lock
ing will be about the same. The code is obvious, so not illustrated. Algorithm 1 3.27 shows a
lock-free implementation of a stack . It is easy to make pu sh lock-free; pop is a little harder.
The popABA routine is a simple C ompareAndS e t implementation of pop that is lock-free
- but that also has an ABA problem. Algorithm 13.27 also shows LoadL i n k e d/Store
C o n dit iona l l y and CompareAndSetWide solutions that avoid the ABA problem, as
concrete examples of how to do that. The problem occurs when some other thread(s) pop
the node referred to by currTop, and that node is pushed later with its n e x t different
from the cur r T op . next read by this popping thread.

A concurrent stack based on an array is best implemented using a lock. However,
concurrent stacks tend to be a bottleneck not just because of cache and memory issues,
but because all the operations must serialise. However it is possible to do better. Blelloch
and Cheng [1999] provide a lock-free solution by requiring all threads accessing a shared
stack either to be popping from it or all to be pushing onto it, thus allowing the stack
pointer to be controlled by a Fet c hAndAdd instruction rather than a lock. We discuss this
in detail in Chapter 14. Chapter 1 1 of Herlihy and Shavit discusses a concurrent lock-free
stack implementation where threads that encounter high contention try to find matching
operations in a side buffer. When a pop finds a waiting push, or a push finds a waiting
pop, that push instantly satisfies that pop: the pair of operations eliminate each other. They
linearise at that moment (push before pop, of course), regardless of what is happening at
the 'main' stack.

Concurrent queue implemented with singly linked list

A concurrent queue is a more interesting example of concurrency than a concurrent stack,
since it has two loci of modification, the head, where items are removed, and the tail, where
they are added. It is convenient to include a 'dummy' node, before the next element to be
removed from the queue. The h e a d pointer refers to the dummy node, while the t a i l
pointer refers t o the node most recently added to the queue, o r the dummy node if the
queue is empty.

Algorithm 13.28 shows an implementation that does fine-grained locking . It has one
lock for each locus. Notice that r emove changes head to refer to the next node; thus,
after the first successful remove , the original dummy node will be free, and the node
with the value just removed becomes the new head. This version of Queue is unbounded.
Algorithm 13.29 shows a similar implementation for BoundedQueue . To avoid update
contention on a single s i z e field, it maintains counts of the number of items added and
the number rem oved. It is fine if these counts wrap around - the fields storing them just
need to be able to store all max + 1 values from zero through max. Of course if these counts
lie on the same cache line, this 'optimisation' may perform no better than using a single
s i z e field.

There is an important special case of this implementation: if either adding or removing
or both is limited to one thread, then that end does not need a lock. In particular, if there is
one adder and one remover, then this data structure needs no locks at all . A common case
in collection is multiple adders and one remover, which is still an improvement over the
general case.

Other locking approaches (such as optimistic or lazy update) offer no real advantage
over fine-grained locking for this data structure.

13.8. CONCURRENT DATA STRUCTURES 257

Algorithm 13.27: Lock-free implementation of a single-linked-list stack

shared t opent [2] +-- [null, any value]
2 shared t opAddr +-- & t opent [O]
3 shared cntAddr +-- & t opent [l]

I* t o p *f
I* count , only for popeount below *f

s pus h (va l) :

1 0

I I

1 2

node +-- new Node(value : val , next : null)
loop

currTop +-- * t opAddr
node . next +-- currTop
if eompa reAndSet (t opAddr, cur rTop, node)

return

n popABA() :
t4 loop
IS

16

17

1 8

19

20

21

22

23 pop () :

currTop +-- * t opAddr
if currTop = null

return null
I* code below can have an ABA problem if node is reused *f
next +-- cur rTop . next
if eompareAndSet (t opAddr, cur rTop, next)

return currTop . value

24 loop
� currTop +-- LoadLi nked(t opAddr)
26 if currTop = null
27 return null
28 next +-- currTop . next
29 if Storeeondit iona l l y (t opAddr, next)
� return currTop . va lue
31

32 popeount () :
33 loop
34
35

36

37

38

39

40
41

currTop +-- * t opAddr
if currTop = null

return null
current +-- * CntAddr
next Top +-- currTop . next
if eompa reAndSetWide (& t ope nt, curr Top, cur rent,

next Top, current + l)
return currTop . va lue

$

258 CHAPTER 13. CONCURRENCY PRELIMINARIES

Algorithm 13.28: Fine-grained locking for a single-linked-list queue

shared head +- new Node (value : dont Ca re, next : null)
2 shared t a i l +- head
3 shared addLock +- UNLOCKED
4 shared removeLock +- UNLOCKED

6 add (val) :
n ode +- new Node (value : val , next : null)
l o c k (& addLo c k)
t a i l . next +- n ode

1 0 t a i l +- node
I I unlock (& addL o c k)
1 2

1 3 remove () :
1 4 l ock (& removeLock)
15 n ode +- head . n ext
16 if node = null
1 7 unlock (& remove Lock)
18 return EMP TY f* o r otherwise indicate emptiness 4
19 val +- node . va lue
20 head +- node
21 unlock (& removeLock)
22 return val

13.8. CONCURRENT DATA STRUCTURES 259

Algorithm 13.29: Fine-grained locking for a single-linked-list bounded queue

shared head +- new Node (va lue : dont Ca re, next : null)
shared t a i l +- head

3 shared addLo ck +- UNLOCKED
4 shared removeLock +- UNLOCKED
5 shared numAdded +- 0
6 shared numRemoved +- 0

add(va l) :
n o de +- new Node (va lue : val , next : null)

w l o ck (& addLock)
u if numAdded - numRemove d MAX
u unlock (& addLock)
13 return false
14 t a i l . next +- node
1 5

16

17

18

19

t a i l +- node
numAdded +- numAdded + 1
unlock (& a ddLock)
return true

2 0 remove () :
n l o ck (& removeLock)
22 n o de +- head . next
� if numAdded - numRemoved 0
� unlock (& removeLock)
� return EMPTY
26 val +- node . va lue
21 head +- n o de
28

29

numRemoved +- numRemoved + 1
unlock (& removeLock)

� return va l

/* or otherwise indicate full 4

f* numeric wrap around is ok 4

/* or otherwise indicate success 4

/* or otherwise indicate emptiness *I

f* numeric wrap around is ok *f

260 CHAPTER 13. CONCURRENCY PRELIMINARIES

Algorithm 13.30: Lock-free implementation of a single-linked-list queue

shared head +-- new Node (value : dontCare , next : null)
2 shared t a i l +-- head

4 add (va l) :

1 0

I I

1 2

1 3

1 4

15

1 6

1 7

1 8

node +-- new Node (value : val , next : null)
loop

currTa i l +-- LoadLinked (& t a i l)
cur rNext +-- c u r rTai l . next
if currNext f= null

I* tail appears to be out of sync: try to help 4
StoreCondi t i ona l l y (& t a i l , currNext)
continue I* start over after attempt to sync 4

if Compa reAndSet (& currTa i l . next , null, node)
I* added to end of chain; try to update tail 4
StoreCondi t i ona l ly (& t a i l , node)
I* ok if failed: someone else brought tail into sync, or will in the future 4
return

1 9 remove () :
2o loop
2 1

22

23

24

25

26

27

28

29

30

31

32

33

34
35

36

37

38

39

40

4 1

42

cur rHead +-- LoadLinked (& head)
next +-- cur rH e a d . next
if next = null

if S t o r eConditiona l l y (& hea� currHead)
I* head has not changed, so truly empty 4
return EMP TY I* or otherwise indicate emptiness 4

continue I* head may have changed so try again 4

currTa i l +-- t a i l
i f currHe ad = currTa i l

I* not empty; appears to be out of sync; try to help *I
currTa i l +- LoadLinked (& t a i l)
next +-- currTai l . next
if next f= null

StoreCondit iona l l y (& t a i l , next)
continue

I* appears non - empty and in sync enough; try to remove first node 4
val +-- next . va lue
if StoreCondi t i ona l ly (& h e a � next)

return v a l
I* o n failure, start over 4

13.8. CONCURRENT DATA STRUCTURES 261

Algorithm 13.31: Fine-grained locking of a circular buffer

shared bu f fe r [MAX]
2 shared head f- 0
3 shared t a i l f- 0
4 shared numAdded f- 0
5 shared numRemoved f- 0
6 shared addLo ck f- UNLOCKED
7 shared removeLock

9 add(va l) :
w lock (& addLo ck)

f- UNLOCKED

u if numAdded - numRemoved
u u n l o ck (& addLo ck)
n return false
1 4 bu f f e r [t a i l] f- val
1 5 t a i l f- (t a i l + l) % MAX
1 6 numAdded f- numAdded + l
1 7 un l o c k (& addLo ck)
1 8

1 9 remove () :
w lock (& remove Lock)

MAX

21 if numAdded - numRemoved 0
n un l o c k (& removeLo ck)
23 return EMP TY
24 val f- bu f fe r [he ad]
25 head f- (head + l) % MAX
26 numRemoved f- numRemoved + l
v un l o c k (& removeLo ck)
28 return v a l

I* indicate failure *f

I* indicate failure *I

Algorithm 13.30 shows a lock-free implementation. A tricky thing here is that adding
a node happens in two steps. First, the current tail node is updated to point to the new
node, and then t a i l is updated to refer to the new node. A lock-free implementation
must provide for the possibility that other adders - and also removers - may see the
intermediate state. This implementation addresses the issue by having any thread update
t a i l if it notices that t a i l is 'out of sync' . This ensures that t a i l comes into sync without
any thread waiting for another one to do it. This is a case of the helping typical of wait-free
algorithms, even though this algorithm is not wait-free.

Concurrent queue implemented with array

A queue implemented with an array has higher storage density than one implemented
with a linked list, and it does not require on-the-fly allocation of nodes from a pool. A
bounded queue can be implemented with a circular buffer. Algorithm 13.31 shows a fine
grained locking version of that, which can be improved by folding together head and
numRemoved, and also t a i l and numAdded, using modular arithmetic, shown in Algo
rithm 13.32. This is particularly attractive if MAX is a power of two, since then the modulus

262 CHAPTER 13. CONCURRENCY PRELIMINARIES

Algorithm 13.32: Circular buffer with fewer variables

shared bu f fe r [MAX]
2 MODULUS = MAX * 2

3 shared h e a d +-- 0
4 shared t a i l +-- 0
5 shared a ddLock +-- UNLOCKED

6 shared r emoveLock +-- UNLOCKED

8 add(va l) :

l o c k (& a ddLock)

/* see text for explanation 4
/* 0 :::; head < MODULUS 4
f* 0 :::; t a i l < MODULUS 4

w if (t a i l - head + MODULU S) % MODULUS MAX

1 1 u n l o c k (& a ddL o c k)
1 2

1 3

1 4

15

1 6

1 7

return false
bu f f e r [t a i l % MAX] +-- va l

t a i l +-- (t a i l + 1) % MODULU S

u n l o c k (& addLock)
return true

18 remove () :

� l o c k (& r emoveL o c k)
2o if (t a i l - head + MODULUS) % MODULUS

21 u n l ock (& remove Lock)
22 return EMP TY

23 local v a l +-- bu f f e r [head % MAX]
24 h e a d +-- (head + 1) % MODULUS

� u n l o c k (& remove L o c k)
26 return val

f* indicate failure 4

/* indicate success 4

0

f* indicate failure 4

function can be performed with bit masking. The reason for MODULUS is that we need to
distinguish the MAX + 1 possible values for the difference between t a i l and h e a d, that is,
the number of elements in the buffer. Thus our modulus for the modular arithmetic needs
to be greater than MAX. At the same time, it must be a multiple of MAX so that we can re
duce head and t a i l modulo MAX when indexing into the buffer. The value MAX * 2 is the
smallest modulus that will work, and has the added virtue of being a power of two when
MAX is. In the code we add MODULUS to t a i 1 - head to ensure we are taking the modulus
of a positive number, which is not necessary if using masking or if the implementation
language does a proper modulus (toward -oo as opposed to toward zero) .

If there is a distinguished value that can mark empty slots in the buffer, then the code
can be further simplified as shown in Algorithm 13.33.

It is often the case that the buffer has just a single reader and a single writer (for exam
ple, the channels used by Oancea et al [2009]) . In this case, the code for a circular buffer is
much simpler; it appears in Algorithm 13 .34 . This algorithm is a good example for men
tioning the adjustments a programmer needs to make to realise the algorithm on different
platforms. The algorithm works as is on Intel x86 processors because they are strict about
the order of stores to memory as perceived by other processors.

However, on the Power PC the lines we mark with $ for ordering require attention. One
approach is to insert fences, as indicated by Oancea et al. In add we insert an lwsync in
struction between the stores to bu ffe r [t a i 1] and t a i 1, to serve as a store-store memory

13.8. CONCURRENT DATA STRUCTURES 263

Algorithm 13.33: Circular buffer with distinguishable empty slots

1 shared bu f fe r [MAx] +- [EMP TY, . . .]
2 shared head +- 0
3 shared t a i l +- 0
4 shared addLock +- UNLOCKED
s shared removeLock +- UNLOCKED

1 add(va l) :
l o c k (& addLock)
if bu f f e r [t a i l] =/:- EMP TY

w un l o c k (& addLock)
I I return false
1 2 bu f fe r [t a i l] +- val
1 3 t a i l +- (t a i l + 1)
1 4 u n l o c k (& addLock)
15 return true
16

1 1 remove () :
� l o c k (& remove Lock)

% MAX

1 9 if bu f f e r [head] = EMP TY
w un l o c k (& remove Lock)
21 ret urn EMPTY
22 val +- bu f fe r [head]
23 head +- (head + 1) % MAX
� unlock (& r emoveLo c k)
25 return v a l

/* indicate failure *f

/* indicate success *f

/* indicate failure *f

Algorithm 13.34: Single reader/single writer lock-free buffer [Oancea et al, 2009]

1 shared bu f f e r [MAx]
2 shared head +- 0
3 shared t a i l +- 0

5 add(val) :
newTa i l +- (t a i l + 1) % MAX
if newT a i l = head

return false
bu f f e r [t a i l] +- v a l

w t a i l +- newTai l
1 1 return t rue
1 2

1 3 remove () :
14 if head = t a i l
15

16

17

return EMPTY
value +- bu f f e r [head]
head +- (head + 1) % MAX

1s return value

I* next slot from which to try removing *f
/* next slot into which to add *f

$

/* or otherwise indicate emptiness 4
$
$

264 CHAPTER 13. CONCURRENCY PRELIMINARIES

Algorithm 13.35: Unbounded lock-free buffer implemented with an array

shared bu f f e r [] +--- [EMP TY, . . .]
shared h e a d +--- 0

add(va l) :
pos +--- F e t chAndAdd(& head, 1)
bu f f e r [pos] +--- va l

remove () :
l imit +--- head

f* unrealisable unbounded buffer 4
f* next slot to fill *f

1 0 pos +--- - 1
n loop
12

1 3

14

I S

16

1 7

1 8

pos +--- pos + 1
if pos = l imit

return null /*found nothing 4
val +--- LoadLi nked (&bu f fe r [po s])
if v a l =/:- EMP TY

if S t o reCondi t i ona l l y (& bu f fe r [pos] , EMP TY)
return val

fence. 15 This will guarantee that i f the remover orders its load instructions properly, i t will
not perceive the change to t a i l until after it can perceive the change to bu f f e r . Likewise
we add an i s yn c instruction, which serves as a load-store memory fence, before the store
to bu f fer, to ensure that the processor does not speculatively begin the store before the
load of head and thus possibly overwrite a value being read by the remover. 16

Similarly we insert an lws ync in remove between loading bu f f e r [head] and updat
ing head, and an i s ync before loading from bu f fe r, to serve as a load-load memory
barrier between loading tai l and loading from bu f fer .

Oancea et al proposed a solution that includes writing null i n remove a s an explicit
EMP TY value, and having both add (remove) watch its intended buffer slot until the slot
appears suitably empty (non-empty), before writing its new value (EMP TY) . Because there
is only one reader and only one writer, one only thread writes EMP TY values, and only
one writes non-EMP TY values, and each delays its write until it sees the other thread's
previous write, accesses to the buffer cannot incorrectly pass each other. Likewise, only one
thread writes each of head and t a i l , so at worst the other thread may have a stale view.
This solution avoids fences, but the buffer writes by the remover may cause more cache

1 5The l w s y n c instruction ensures that memory accesses by the issuing processor for instructions before the
l w s y n c complete before any memory accesses for instructions after the l w s y n c, as viewed by all processors. It
stands for 'light-weight sync' and is a version of the s y n c , where the 'heavy-weight' version, written just s y n c ,

deals with input/output device memory in addition to ordinary cached memory. Both l w s y n c and s y n c are
somewhat expensive since their implementation typically involves waiting for the write buffer to drain before
allowing future memory accessing instructions to issue. This implies waiting for inter-processor cache synchro
nisation to complete .

1 6The i s y n c instruction ensures that all instructions previously issued by this processor complete before any
future instruction of this processor. It is suitable for separating previous loads from future memory accesses. It
does not guarantee that previous and future stores will be perceived by other processors in the locally issued
order - that requires one of the s y n c instructions. One reason i s y n c may be more efficient is that it involves
only processor-local waiting, for the instruction pipeline to empty sufficiently; it does not itself require cache
coherence activity.

13.8. CONCURRENT DATA STRUCTURES 265

Algorithm 13.36: Unbounded lock-free array buffer with increasing scan start

, shared bu f f e r [] +-- [EMP TY , . . .]
2 shared head +-- 0
3 shared l ower +-- 0

I* unrealisable unbounded buffer 4
I* next slot to fill *f

I* position to look at first *f

5 add(va l) :
pos +-- F et chAndAdd (& head, 1)
bu f f e r [p o s] +-- va l

9 remove () :
w l imit +-- head
n currLowe r +-- l ower
1 2 pos +-- currLower - 1
13 loop
1 4 po s +-- pos + 1
1 5

1 6

1 7

1 8

if p o s = l imit
return null

va l +-- LoadLinked (& bu f fer [po s])
i f v a l = EMPTY

1 9 continue
2o if val = USED
� if pos = currLower
22 I* try to advance lower 4
23 currLowe r +-- LoadLinked (& l ower)
M if pos = currLower
25 StoreCondi t i onal l y (& l owe r, po s + 1)
26 continue
21 I* try to grab 4
28 if S t o reCondit i o n a l l y (&bu f f e r [pos] , USED)
29 return val

I* found nothing 4

ping-ponging than fences would. Oancea et al actually combine both solutions, but as we
just argued, each seems adequate on its own. This all shows the care needed to obtain a
correctly working implementation of concurrent algorithms under relaxed memory orders.

If the queue is being used as a buffer, that is, if the order in which things are removed
need not match exactly the order in which they were added, then it is not too hard to
devise a lock-free buffer. First assume an array large enough that wrap around will never
occur. Algorithm 13.35 implements a lock-free buffer. It assumes that initially all entries
are EMPTY.

This algorithm does a lot of repeated scanning. Algorithm 13 .36 adds an index l ower
from which to start scans. I t requires distinguishing not just empty slots, but also ones that
have been filled and then emptied, indicated by USED in the code.

Further refinement is needed to produce a lock-free circular buffer implementation
along these lines. In particular there needs to be code in the add routine that carefully
converts USED slots to EMPTY ones before advancing the head index. It also helps to use
index values that cycle through twice MAX as in Algorithm 13.32. The resulting code ap
pears in Algorithm 13 .37.

266 CHAPTER 13. CONCURRENCY PRELIMINARIES

Algorithm 13.37: Bounded lock-free buffer implemented with an array

shared bu f f e r [MAX] +--- [EMPTY, . . .]
2 MODULUS = 2 * MAX
3 shared head +--- 0
4 shared l owe r +--- 0

f* refers to next slot to fill *f
f* slots from lowe r to he ad- 1 rruzy have data *f

6 add(val) :
loop

currHead f- head
/* could peek before using atomic operator *I

w o l dVa l f- LoadL i nked(&bu f f e r [currHead % MAX])
1 1 if o l dVal = U S E D
1 2

1 3

1 4

currLowe r f- l owe r
i f (currHe ad % MAX) = (c u rrLower % MAX)

&& (c u rrHead =/:. currLowe r)
1 5 advance Lowe r () /* lower is a buffer behind *f
1 6 continue
17 /* try to clean en try; ensure head has not changed 4
1 s if currHead = head
1 9 StoreCond i t i onal l y (&bu f fe r [currHead % MAX] , EMP TY)
w continue
n if o l dVal =/:. EMP TY
22 i f currHe ad "I head
23 continue /* things changed: try again *f
24 return false /* indicate failure: buffer is full *f
25 cur rHead f- LoadLinked (&head) f* try t o claim slot *f
26 /* recheck inside LL/SC *f
27 if bu f fe r [currHe ad % MAX] = EMPTY
zs i f StoreCondi t i onal l y (& he ad, (cu rrHead + 1) % MODULUS)
29 bu f fe r [c u r r Head] f- val
3o return t rue /* indicate success *f
3 1

3 2 remove () :
33 advan ceLower ()
34 limit f- head
35 scan f- lowe r - 1
36 loop
37

38

39

4 0

4 1

42

s can +--- (s can + 1) % MODULUS
if s can = l imit

return null
/* could peek at value first before using atomic operator 4
val f- LoadLi n k e d (&bu f fe r [s c an % MAX])
if val = EMPTY I I val = USED

43 continue
44 /* try to grab *f

f* found nothing *f

4s if S t o reCondit i onally (&bu f f e r [s can % MAX] , USED)
46 /* Note: always safe to grab entry that is not USED and not EMPTY 4
47 return val

13.9. TRANSACTIONAL MEMORY 267

Algorithm 13.37 (continued): Bounded lock-free buffer implemented with an array

1 advanceLowe r () :
if bu f fer [l owe r % MAX] f:. USED

return /* quick return without using atomic operation 4
1oop

cur rLowe r *- LoadLi nked(& lowe r)
i f bu f f e r [currLowe r % MAX] = USED

if S t o reCondi t i on a l l y (& l owe r, (l ower + 1) % MODULUS)
continue

return

A concurrent deque for work stealing

To support work stealing, Arora et al [1998] designed a lock-free implementation of a
double-ended queue. The local worker thread can push and pop work items, while other
threads can remove (steal) items. The design has the local worker push and pop at one
end of the deque, while other threads remove from the opposite end (the deque is input
restricted). Algorithm 13.38 shows an implementation that uses LL/SC to avoid an ABA
problem.17 It is straightforward to pack a counter with the tail index to derive a safe im
plementation in terms of CompareAndS wap.

Pushing a value is simple and involves no synchronisation. Popping checks to see if it
trying to get the last value remaining. If it is, it may be in a race with a non-local remover.
Both threads will try to update t a i 1 ; the winner 'gets' the value. In any case, the popper
sets t a i 1 to zero. This will not confuse a contending remover. Either the remover lost the
race, in which case it does not return a value, or it won and it already has the value and will
leave t a i l alone. It is also important that pop sets t op to zero first, before setting t a i l
to zero - this keeps the t op ::; t a i l test working in remove. Notice that the conventions
for t op and t a i l ensure that top- t a i l is the number of items in the queue (except in
the middle of resetting them both to zero, where the difference may be negative) .

13.9 Transactional memory

First it may be helpful to describe transactional memory further, and after that to proceed
to consider its relationship to garbage collection.

What is transactional memory?

A transaction consists of a collection of reads and writes that should appear to execute
atomically. That is, the effect should be as if no other reads or writes interleave with those
of a transaction. LoadLi nked/ S t o reCondit i o na l l y achieves this semantics for trans
actions involving a single word, but the point is to allow transactions over multiple inde
pendent words. A suitable mechanism will generally include means to indicate:

• The start of a transaction.

• Each read that is part of the current transaction.

17The names of variables are different from Arora et a/ [1998], and the algorithm here calls the local end's index
top and the opposite end's index tail, so as to correspond better with the view that the local end of the deque is a
stack and the other end is the tail (removal point) of a queue.

268 CHAPTER 13. CONCURRENCY PRELIMINARIES

Algorithm 13.38: Lock-free work stealing deque [Arora et al, 1998]

1 shared deque [MAX]
2 shared t op +- 0
3 shared t a i l +- 0

I* index one beyond the last used entry 4
I* index of the first used entry 4

5 pus h (va l) : I* local worker function to push (enqueue) a value *I

10

1 1

1 2

cu r r Top +- t op
if c u r rTop 2:: MAX

return false
deque [currTop] +- val
t op +- currTop + 1
return true

I* indicate overflow *I

I* indicate success *I

n pop () : I* local worker function to pop a value from the local end *I
14

15

16

cur rTop +- t op - 1
if c u r rTop < 0

return null
1 7 t op +- currTop
1s va l +- deque [cu rrTop]
1 9 c u r r T a i l +- LoadLi nked(& t a i l)
20 if c u r rTop > cu r rTa i l
2 1 return va l I* cannot be contending with other removers 4
22 I* might be contending, and deque will be empty 4
23 t op +- 0
2� if S t o reCondi t i o n a l l y (& t a i l , 0)
25 return va l I* I won on changing tail, so I get the value 4
26 t a i l +- 0
27 return null
28

29 remove () :
3o loop

I* steal a value from another thread's deque 4

31 c u r rTa i l +- Lo adLinked(& t a i l)
32 c u r rTop +- t op
33 i f cur rTop ::; currTa i l
34 return null I* deque is empty 4
35 v a l +- deque [currTa i l]
36 i f StoreCondi t i onal l y (& t a i l , currTa i l + 1)
37 return va l I* won on setting tail, so can return the value 4
38 I* contended with another remover, or pop that emptied the deque 4
39 I* if stealing is optional, could indicate failure instead of looping 4

13.9. TRANSACTIONAL MEMORY 269

• Each write that is part of the current transaction.

• The end of a transaction.

The end is usually called the (attempted) commit of the transaction. If it succeeds, then
the transaction's effects appear; if it fails then the writes are discarded and the software
may respond by trying again, trying some other action, and so on. Thus, transactions
may be executed speculatively. It is necessary to mark their end so that speculation can be
resolved and the transaction accepted, with its writes installed, and so on, or rejected and
the software notified so that it can retry or take some other action.

Similar to the ACID properties of database transactions, transactional memory trans
actions ensure:

• Atomicity: All effects (writes) of a transaction appear or none do.

• Consistency: A transaction appears to execute at a single instant.

• Isolation: No other thread can perceive an intermediate state of a transaction, only a
state before or a state after the transaction.

The durability property of database transactions, which ensures to very high probability
that the results of a successful transaction will not be lost, is omitted from the requirements
on transactional memory.

The actual reads and writes of a transaction will be spread out over time. Thus, as trans
actions run, they may interfere with each other if they access the same locations. Specif
ically, transactions A and B conflict if one of them writes an item that the other reads or
writes. Conflicting transactions must be ordered. In some cases, given the reads and writes
a transaction has already performed, this is not possible. For example, if A and B have both
read x, and then they both try to write to x, there is no way to complete both transactions
so as to satisfy transactional semantics. In that case one or both of A and B must be aborted
(discarded), and the situation made to appear as if the aborted transaction had not run.
Generally the software will try it again, which will likely force a suitable ordering.

Transactional memory can be implemented in hardware, software or a hybrid com
bination. Any implementation strategy must provide for: atomicity of writes, detection
of conflicts and visibility control (for isolation) . Visibility control may be part of conflict
detection.

Atomicity of writes can be achieved either by buffering or by undoing. The buffering
approach accumulates writes in some kind of scratch memory separate from the memory
locations written, and updates those memory location only if the transaction commits .
Hardware buffering may be achieved by augmenting caches or using some other side
buffer; software buffering might work at the level of words, object fields or whole objects.
With buffering, a transaction commit installs the buffered writes, while an abort discards
the buffer. This typically requires more work for commits, usually the more common case,
and less work for aborts. Undoing works in a converse way: it updates modified data as
a transaction runs, but saves in a side data structure called the undo log the previous value
of each item it writes. If the transaction commits, it simply discards the undo log, but if
the transaction aborts, it uses the undo log to restore the previous values. Undo logs can
be implemented in hardware, software, or a combination, just as buffering can.

Conflict detection may be implemented eagerly or lazily. Eager conflict checking checks
each new access against the currently running transactions to see if it conflicts. If necessary
it will cause one of the conflicting transactions to abort. Lazy conflict checking does the
checks when a transaction attempts to commit. Some mechanisms also allow a transaction

270 CHAPTER 13. CONCURRENCY PRELIMINARIES

to request as it runs validation that there are no conflicts so far in the transaction. Soft
ware schemes may set flags in object headers or maintain a side table recording accesses .
These are checked by transactional accesses to accomplish conflict detection. Hardware
will typically associate flags with cache lines or words to the same end.

For purposes of presentation let us discuss a simple hardware transactional memory
interface consisting of these primitives, as introduced by Herlihy and Moss [1993] :

TStartO indicates the beginning of a transaction.

TCommitO indicates that the transaction wants to commit. It returns a boolean that is true
if and only if the commit succeeded.

TAbortO indicates that the transaction wants to abort, which is sometimes useful to re
quest programmatically.

TLoad(addr) marks a transactional load from the indicated address. This adds that ad
dress to the transaction's read set and returns the current value in that memory loca
tion.

TStore(addr, value) marks a transactional store of the indicated value to the indicated
address. This adds the address to the transaction's write set and performs the write
transactionally, that is, in a way in which the effect of the write disappears if the
transaction aborts, and so on.

These primitives can simplify the implementation of a variety of concurrent data struc
tures . For example, Algorithm 13 .30 simplifies to Algorithm 13.39. The add function is
simpler because it can write two locations atomically, and remove is simpler because it
can read two and even three values atomically. More importantly, it is easier to see that the
transactional implementation is correct; verifying the other version requires more subtle
arguments about orders of reads and writes .

Using transactional memory to help implement collection

There are two main relationships that transactional memory can have with garbage collec
tion. Transactional memory can help implement the collector [McGachey et al, 2008], or
transactions may be part of the managed language semantics that the collector must play
with nicely. This section considers transactional memory in support of garbage collection;
the next section looks at garbage collection for a language that support transactions.

It should be clear that transactional memory, because of the way it can simplify the
programming of concurrent data structures, can make it easier to implement parallel and
concurrent allocation and collection. In particular it can simplify concurrent allocators,
mutator and collector read and write barriers, and concurrent collector data structures.
Given that there are no current hardware standards and an increasing variety of software
packages available, it is not possible to be specific, but using transactional memory to
support automatic memory management involves these caveats:

• Software transactional memory tends to involve significant overheads, even after op
timisation. Given the desire for low overheads in most parts of automatic storage
management, the scope for applying software transactional memory may be small .
Still, coding of low traffic data structures might be simplified while continuing to
avoid the difficulties with locks.

• Hardware transactional memory will likely have idiosyncrasies. For example, it may
handle conflict detection, access and updating all in terms of physical units such as

13.9. TRANSACTIONAL MEMORY 271

Algorithm 13.39: Transactional memory version of a single-linked-list queue

shared head f- new Node (va lue : dont C a re, next : null)
2 shared t a i l f- head

4 add(va l) :

10

1 1

1 2

node f- new Node (value : val, next : null)
loop

cu rrTa i l f- TLoad(& t a i l)
T S t o re (& currTa i l . next, node)
T S t o re (& t a i l , node)
i f TCommit ()

return

13 remove () :
14 loop
IS

1 6

1 7

1 8

1 9

20

2 1

22
23

24

25

26

27

currHead f- TLoad(& head)
next f- TLoad(& cu rrHead . next)
i f next = null

i f TCommit ()
return EMP TY

continue

I* the commit ensures we got a consisten t view *f
I* or otherwise indicate emptiness *f

I* appears non-empty; try to remove first node *f
val f- TLoad(& next . value)
T S t o re (& head, next)
if TC ommit ()

return val
I* on failure, start over *f

cache lines. It will also likely have an upper limit on the number of data items in
volved in a transaction, because of hardware capacity limitations such as the number
of lines per cache set in a set-associative cache, for some approaches to implement
ing hardware transactional memory. Because the mapping from what a programmer
writes to the cache lines actually used may not be obvious, implementers must still
be careful with low level details.

• Transactional memory can, at most, guarantee lock-freedom, though it does that
fairly easily. Even if the underlying commit mechanism of transactional memory
is wait-free, transactions can conflict, leading to aborts and retries. Programming
wait-free data structures will remain complex and subtle.

• Transactional memory can require careful performance tuning. One concern is inher
ent conflicts between transactions because they access the same data . An example is
a concurrent stack: transactional memory will not solve the bottleneck caused by the
need for every push and pop to update the stack pointer. Furthermore, exactly where
in a transaction various reads and writes occur - nearer to the beginning or nearer to
the end - can significantly affect conflicts and the overhead of retrying transactions.

All that said, a hardware transactional memory facility such as that designed at Advanced
Micro Devices, the Advanced Synchronisation Facility [Christie et al, 2010], and similar to

272 CHAPTER 1 3. CONCURRENCY PRELIMINARIES

that described in the previous section, could be quite useful. That hardware transactional
memory design supports reading and writing at least four completely independent cache
lines in a transaction, which is enough to simplify the implementation of most of the con
current data structures presented here. Whether the performance would be comparable,
or even better, with hardware transactional memory remains an open question. The sim
pler model of the world that transactional memory presents may result in fewer bugs and
reduce development effort.

Supporting transactional memory in the presence of garbage collection

Consider now the quite different problem of implementing a language that offers both
automatic memory management and transactions built using some form of transactional
memory [Harris and Fraser, 2003; Welc et al, 2004, 2005] . The key issue is the ways in which
these two complex mechanisms - transactions and automatic memory management -
may interfere, particularly in a highly concurrent implementation.

One kind of interference is that actions of the storage manager may cause transaction
conflicts that result in higher overhead because of more retries, as well as making progress
problematic for either a mutator, the collector or both. For example, if the mutator is at
tempting a long transaction, and collector actions conflict, the mutator transaction may
be continually aborted by actions of the collector, or the collector may effectively block
for a long time. The issue is particularly severe if the implementation exploits hardware
transactional memory. For example, attempts by a concurrent collector to mark, forward
or copy an object may cause mutator transactions to abort just because they touched the
same memory word - even though the operations are carefully coded not to disturb each
other 's semantics. This would be harder to avoid with hardware transactional memory,
since it is oblivious to the semantics of the data being managed, whereas a software trans
actional memory built for a particular language might give special treatment to object
headers, as opposed to data fields .

Transactions can become involved in the semantics of memory reclamation. For ex
ample, if a transactional memory systems uses a log of old values to support aborting
transactions in an update-in-place implementation, then it is possible for the log to contain
the only reference to an object. While the transaction remains in doubt, the referent object
must be considered still to be reachable. Thus, transaction logs need to be included in the
root set for collection. Furthermore, in the case of copying collection, pointers in the logs
must not only be provided to the collector for tracing, they must also be updated to reflect
the new locations of objects that have moved.

An interesting issue is how to handle allocation in a transactional language. In par
ticular, it would seem logical that if a transaction allocates some objects and then aborts,
it should somehow unallocate those objects. However, if the allocation data structures
are shared, maintaining ability to rollback values exactly as they were would mean that
transactions accessing free-lists or bump pointers effectively lock them until the transac
tion completes. This is probably undesirable. Therefore allocation should be more a logical
action than a physical one, when we consider how to undo it. A free-list system might go
back through an aborting transaction's log and free the objects it allocated. This may put
them in a different position on a free-list, and if a block had been split, it might not be
recombined, and so forth. It is also possible that the semantics of the language may admit
some non-transactional activity within a transaction. In that case an object allocated by the
transaction might be revealed, so it can be unsafe to free the object. The implementation
must further take care that if an object might be revealed in this way, the initialisation of
its crucial contents, such as setting up the object header, is not undone. Concepts such as
open nesting [Ni et al, 2007] may help here. A generic strategy is to consider all automatic
memory management actions of a transactional mutator to be open nested actions.

13. 1 0. ISSUES TO CONSIDER 273

Finally, some transactional memory systems do significant allocation as part of how
they function, and that has impact on allocators and collectors. In particular many software
transactional memory systems work by allocating a new version of an object for a writing
transaction, which is installed only if the transaction commits. There may not be anything
new here semantically for a collector to deal with, but the load may be a bit different. There
is also a bit of a sibling relationship between transactional memory and collection in the
sense that they may both need efficient concurrent data structures with adequate progress
guarantees. For example, transaction commit is in part a consensus algorithm that ideally
is wait-free.

13.10 Issues to consider

A first consideration cannot be overstated: getting concurrent algorithms correct is hard!
Therefore, unless concurrency is absolutely necessary, it should be avoided. That said,
concurrency has become more necessary than it was and so we offer these additional con
siderations.

What is the range of platforms on which the system will run? What are the memory
consistency properties and the fence and synchronisation primitives they offer? It is neces
sary to code to the weakest ordering to be supported, but it may be possible to elide some
fences or other primitives on some platforms, as we discussed relative to Algorithm 13.34
in Section 13.8. What orderings will need fences?

What atomic update primitives are available? Although LoadL inked/St o r e C ond
i t i on a l l y is convenient and more powerful, many popular systems offer only Compa re
AndSwap or equivalent. Without LoadLinked/ S t o reCondi t i on a l ly, ABA problems
can crop up, which can be addressed as we showed in Algorithm 13.27. Perhaps in the
future transactional memory will be of use.

What progress guarantees are needed? Weaker guarantees are much easier to imple
ment and to reason about. For low-traffic data structures, straightforward locking may
be appropriate - it is much easier to code and to code correctly than lock-free or stronger
guarantees. Further, even deployed systems that are wait-free for most cases may use sim
pler techniques for corner cases or for some short steps where the implementation effort
to make them wait-free is not worth the benefit.

Does the system exhibit true concurrency (more than one thread running at once in
hardware) or is it only multiprogrammed? Multiprogrammed concurrent algorithms are
easier to deal with.

In the following chapters, we build on the ideas introduced here to construct parallel,
incremental, concurrent and real-time collectors.

Chapter 14

Parallel garbage collection

Today's trend is for modern hardware architectures to offer increasing numbers of pro
cessors and cores . Sutter [2005] wrote, 'The free lunch is over ' as many of the traditional
approaches to improving performance ran out of steam. Energy costs, and the difficulty
of dissipating that energy, have led hardware manufacturers away from increasing clock
speeds (power consumption is a cubic function of clock frequency) towards placing mul
tiple processor cores on a single chip (where the increase in energy consumption is linear
in the number of cores) . As there is no reason to expect this trend to change, design
ing and implementing applications to exploit the parallelism offered by hardware will be
come more and more important. On the contrary, heterogeneous and other non-uniform
memory architectures will only increase the need for programmers to take the particular
characteristics of the underlying platform into account.

Up to now we have assumed that, although there may be many mutator threads there
is only a single collector thread. This is clearly a poor use of resources on modern multi
core or multiprocessor hardware. In this chapter we consider how to parallelise garbage
collection, although we continue to assume that no mutators run while garbage collection
proceeds and that each collection cycle terminates before the mutators can continue. Ter
minology is important. Early papers used terms like 'concurrent', 'parallel', 'on-the-fly'
and 'real-time' interchangeably or inconsistently. We shall be more consistent, in keeping
with most usage today.

Figure 14.1a represents execution on a single processor as a horizontal bar, with time
proceeding from left to right, and shows mutator execution in white while different col
lection cycles are represented as by distinct non-white shades. Thus grey boxes represent
actions of one garbage collection cycle and black boxes those of the next. On a multipro
cessor, suspension of the mutator means stopping all the mutator threads. Figure 14 . 1b
shows the general scenario we have considered so far: multiple mutator threads are sus
pended while a single processor performs garbage collection work. This is clearly a poor
use of resources. An obvious way to reduce pause times is to have all processors cooperate
to collect garbage (while still stopping all mutator threads), as illustrated in Figure 14 .lc .
This parallel collection is the topic of this chapter.

These scenarios, where collection cycles are completed while the mutators are halted,
are called stop-the-world collection. We note in passing that pause times can be further di
minished either by interleaving mutator and collector actions (incremental collection) or by
allowing mutator and collector threads to execute in parallel (concurrent collection), but we
defer discussion of these styles of collection to later chapters. In this chapter, we focus on
parallelising tracing garbage collection algorithms. Reference counting is also a naturally
parallel and concurrent technique which we discussed in Chapter 5; again, we defer con-

275

276 CHAPTER 14. PARALLEL GARBAGE COLLECTION

time
(a) Stop-the-world collection, single thread

(b) Stop-the-world collection on multiprocessor, single collector thread

(c) Stop-the-world parallel collection

Figure 14.1: Stop-the-world garbage collection: each bar represents an execu
tion on a single processor. The coloured regions represent different garbage
collection cycles.

sideration of how this can be improved for a multiprocessor setting until Chapter 18 . Here
we consider how parallel techniques can be applied to each of the four major components
of tracing garbage collection: marking, sweeping, copying and compaction techniques.

14.1 Is there sufficient work to parallelise?

The goal of parallelising collection is to reduce the time overhead of garbage collection
by making better use of available hardware resources. In the case of stop-the-world col
lection, parallel garbage collection will reduce pause times; in the case of incremental or
concurrent collection, it will shorten garbage collection cycle times. As with parallelising
any problem, the first requirement is to ensure that there is sufficient work to make a par
allel solution worthwhile. Inevitably, parallel collection will require some synchronisation
between cooperating garbage collection threads, and this will incur overhead. Different
solutions may require the use of locks, or atomic primitive operations such as Compare
AndSwap, and careful design of auxiliary data structures. No matter how careful we are
to optimise these mechanisms, they cannot be as efficient as uniprocessor solutions. The
question therefore arises, is there sufficient garbage collection work available for the gains
offered by a parallel solution to more than offset these costs?

Some garbage collection problems appear inimical to parallelising. For example, a
mark-sweep collector may need to trace a list, but this is an inherently sequential activ
ity: at each tracing step, the marking stack will contain only a single item, the next item in
the list to be traced. In this case, only one collector thread will do work and all others will
stall, waiting for work. Siebert [2008] shows that the number of times n that a processor
stalls for lack of work during a parallel mark phase on a p-processor system is limited by
the maximum depth of any reachable object o:

n ::; (p - 1) · max depth(a) oEreachable

14.2. LOAD BALANCING 277

This formulation depends on the unrealistic assumption that all marking steps take the
same amount of time. Of course, these steps are not uniform but depend on the kind of
object being scanned. Although most objects in most programming languages are typically
small - in particular they contain only a few pointers - arrays may be larger and often
very much larger than the common case (unless they are implemented as a contiguous
'spine' which contains pointers to fixed-size 'arraylets' that hold the array elements) .

Fortunately, typical applications comprise a richer set of data structures than a single
list. For example, tracing a branching data structure such as a tree will generate more work
at each step than it consumes until the trace reaches the leaves . Furthermore, there are typ
ically multiple sources from which tracing can be initiated. These include global variables,
the stacks of mutator threads and, in the case of generational or concurrent collectors, re
membered sets. In a study of small Java benchmarks, Siebert finds that not only do many
programs have a fairly shallow maximum depth but, more significantly, that the ratio be
tween the maximum depth and the number of reachable objects is very small : stalls would
occur on less than 4% of the objects marked, indicating a high degree of potential paral
lelism, with all the benchmarks scaling well up to 32 processors (or even more in some
cases) .

Tracing is the garbage collection component that is most problematic for identifying po
tential parallelism. The opportunities for parallelising other components, such as sweep
ing or fixing up references to compacted objects, are more straightforward, at least in prin
ciple . An obvious way to proceed is to split those parts of the heap that need to be pro
cessed into a number of non-overlapping regions, each of which is managed in parallel by
a separate processor. Of course, the devil is in the details.

14.2 Load balancing

The second requirement of a parallel solution is that work is distributed across available
hardware resources in a way that minimises the coordination necessary yet keeps all pro
cessors as busy as possible . Without load balancing, na'ive parallelisation may lead to little
speedup on multiprocessors [Endo et al, 1997] . Unfortunately, the goals of load balancing
and minimal coordination typically conflict. A static balance of work might be determined
in advance of execution, at the startup of the memory manager or, at the latest, before
a collection cycle. It may require no coordination of work between garbage collection
threads other than to reach a consensus on when their tasks are complete. However, static
partitioning may not always lead to an even distribution of work amongst threads. For
example, a contiguous mark-compact space on an N-processor system might be divided
into N regions, with each processor responsible for fixing up references in its own region.
This is a comparatively simple task yet its cost is dependent on the number of objects in
the region and the number of references they contain, and so on. Unless these character
istics are broadly similar across regions, some processors are likely to have more work to
do than others. Notice also that as well as balancing the amount of work across processors,
it is also important to balance other resources given to those processors. In a parallel imple
mentation of Baker 's copying collector [1978], Halstead [1984, 1985] gave each processor
its own fixed fromspace and tospace. Unfortunately, this static organisation frequently led
to one processor exhausting its tospace while there was room in other processors' spaces .

Many collection tasks require dynamic load balancing to distribute work approximately
evenly. For jobs where it is possible to obtain a good estimate of the amount of work
to be done in advance of performing it, even if this estimate will vary from collection to
collection, the division of labour may be done quite simply, and in such a way that no
further cooperation is required between parallel garbage collector threads. For example,
in the compaction phase of a parallel mark-compact collector, after the marking phase has

278 CHAPTER 14. PARALLEL GARBAGE COLLECTION

identified live objects, Flood et al [2001] divide the heap into N regions, each containing
approximately equal volumes of live data, and assign a processor to compact each region
separately and in parallel .

More often it is not possible to estimate, and hence divide, the work to be done in ad
vance of carrying out that work. In this case, the usual solution is to over-partition the work
into more sub-tasks than there are threads or processors, and then have each compete to
claim one task at a time to execute. Over-partitioning has several advantages . It is more
resilient to changes in the number of processors available to the collector due to load from
other processes on the machine, since smaller sub-tasks can more easily be redistributed
across the remaining processors. If one task takes longer than expected to complete, any
further work can be carried out by threads that have completed their smaller tasks. For
example, Flood et al also over-partition the heap into M object-aligned areas of approxi
mately equal size before installing forwarding pointers; M was typical chosen to be four
times the number of collection threads. Each thread then competes to claim an area, count
ing the volume of live data in it and coalescing adjacent unmarked objects into a single
garbage block. Notice how different load balancing strategies are used in different phases
of this collector (which we discuss in more detail later).

We simplify the algorithms we present later in this chapter by concentrating on the
three key sub-tasks of acquiring, performing and generating collection work. We abstract
this by assuming in most cases that each collector thread t executes the following loop:

while not termi n a t e d ()
acqui reWo rk ()
pe rforrnWo rk ()
gen e r at eWo rk ()

Here, acqu i reWo rk attempts to obtain one, or possibly more than one, unit of work;
pe r forrnWo rk does the work; and gene rat eWo rk may take one or more new work units
discovered by pe rforrnWo r k and place them in the general pool for collector threads to
acquire.

14.3 Synchronisation

It might seem that the best possible load balancing would be to divide the work to be done
into the smallest possible independent tasks, such as marking a single object. However,
while such fine granularity might lead to a perfect balancing of tasks between proces
sors since whenever a task was available any processor wanting work could claim it, the
cost of coordinating processors makes this impractical . Synchronisation is needed both
for correctness and to avoid, or at least minimise, repeating work. There are two aspects
to correctness. It is essential to prevent parallel execution of garbage collector threads
from corrupting either the heap or a collector 's own data structures. Consider two exam
ples . Any moving collector must ensure that only a single thread copies an object. If two
threads were to copy it simultaneously, in the best case (where the object is immutable)
space would be wasted but the worst case risks the two replicas being updated later with
conflicting values. Safeguarding the collector 's own data structures is also essential . If
all threads share a single marking stack, then all push and pop operations must be syn
chronised in order to avoid losing work when more than one thread manipulates the stack
pointer or adds/removes entries.

Synchronisation between collector threads has time and space overheads. Mechanisms
to ensure exclusive access may use locks or wait-free data structures . Well-designed al
gorithms minimise the occasions on which synchronisation operations are needed, for ex-

14.4. TAXONOMY 279

ample by using thread-local data structures. Where synchronisation is required, the fast
case should be the common case: locks should be rarely contended and atomic operations
like CompareAndSwap should be expected to succeed. If they don't succeed, it is often
preferable that they are allowed to compete for other work in a wait-free manner rather
than having to retry. However, sometimes exclusive access is not essential for correctness
and so some synchronisation actions can be omitted. For example, setting a mark-bit in
an object's header word is an idempotent operation. The only consequence of two threads
setting the same bit is the risk of some unnecessary work, but this may be cheaper than the
cost of making the action synchronised.

Implementations trade load balancing against coordination costs. Modern parallel col
lectors typically have worker threads compete to acquire larger tasks, that they expect to
complete without further synchronisation. These tasks may be organised in a variety of
ways: as thread-local marking stacks, as heap regions to scan or as other pools of (usually
fixed-size) buffers of work. Of course, employing such data structures also incurs a space
cost on account of their metadata and fragmentation, but these costs tend to be small.

14.4 Taxonomy

In the rest of this chapter we will consider particular solutions to the problems of par
allelising marking, sweeping, copying and compaction. Throughout we assume that all
mutator threads are halted at safe-points while the collector threads run to completion. As
far as possible, we situate these case studies within a consistent framework. In all cases,
we shall be interested in how the algorithms acquire, perform and generate collection work.
The design and implementation of these three activities determines what synchronisation
is necessary, the granularity of the workloads for individual collector threads and how
these loads are balanced between processors .

Parallel garbage collection algorithms can be broadly categorised as either processor
centric or memory-centric . Processor-centric algorithms tend to have threads acquire work
quanta that vary in size, typically by stealing work from other threads. Little regard is
given to the location of the objects that are to be processed. However, as we have seen
in earlier chapters, locality has significant effects on performance, even in the context of
a uniprocessor. Its importance is even greater for non-uniform memory or heterogeneous
architectures. Memory-centric algorithms, on the other hand, take location into greater
account. They typically operate on contiguous blocks of heap memory and acquire I release
work from/to shared pools of buffers of work; these buffers are likely to be of a fixed size.
These are most likely to be used by parallel copying collectors.

Finally, we are concerned with the termination of parallel collection. Threads not only
acquire work to do but also generate further work dynamically. Thus it is usually insuffi
cient to detect termination of a collection cycle by, say, simply checking that a shared pool
of work is empty, since an active thread may be about to add further tasks to that pool.

14.5 Parallel marking

Marking comprises three activities: acquisition of an object to process from a work list,
testing and setting one or more marks, generating further marking work by adding the
object's children to a work list. All known parallel marking algorithms are processor
centric. No synchronisation is necessary to acquire an object to trace if the work list is
thread-local and non-empty. Otherwise the thread must acquire work (one or more objects)
atomically, either from some other thread's work list or from some global list. Atomicity

280 CHAPTER 14. PARALLEL GARBAGE COLLECTION

is chiefly necessary to maintain the integrity of the list from which the work is acquired.
Marking an object more than once or adding its children to more than one work list affects
only performance rather than correctness in a non-moving collector. Although the worst
case is that another thread might redundantly process an entire data structure in lock-step
with the first collector thread, such scheduling is unlikely to occur in practice. Thus, if
an object's mark is represented by a bit in its header or by a byte in a byte-map, it can
be tested and set with a non-atomic load and store . However, if marks are stored in a
bitmap that is shared between marking threads, then the bit must be set with an atomic
operation. The object's children can be added to the marking list without synchronisation
if the list is private and unbounded. Synchronisation is necessary if the list is shared or if
it is bounded. In the latter case, some marking work must be transferred to a global list
whenever the local list is filled. If the object is a very large array of pointers, pushing all its
children onto a work list as a single task may induce some load imbalance. Some collectors,
especially those for real-time systems, process the slots of large objects incrementally, often
by representing a large object as a linked data structure rather than a single contiguous
array of elements.

Processor-centric techniques

Work stealing. Endo et al [1997], Flood et al [2001) and Siebert [2010] use work stealing
to balance loads. Whenever a thread runs out of marking work, it steals work belonging
to another thread. In a parallel implementation of the Boehm and Weiser [1988] conserva
tive mark-sweep collector, Endo et al provide each marker thread with its own local mark
stack and a stealable work queue (Algorithm 14. 1) . Periodically, each thread checks its own
stealable mark queue and, if it is empty, transfers all its private mark stack (apart from
local roots) to the queue. An idle thread acquires marking work by first examining its own
stealable queue and then other threads' queues. When a thread finds a non-empty queue,
it steals half of the queue's entries into its own mark stack. Multiple threads may seek
work to steal at the same time, so the stealable queues are protected by locks. Endo et al
found that a claim-lock-then-steal approach led to processors spending considerable time
trying to acquire locks so they replaced it by a try-lock-then-steal-else-skip strategy. If a
thread observes that a queue is locked or if it fails to lock the queue, it gives up on that
queue and skips to the next one. This sequence is 'lock-free' .

Any parallel collector needs to take care with how mark bitmaps are treated and how
large arrays are processed. Bits in a mark bitmap word must be set atomically. Rather than
locking the word then testing the bit, Endo et al use a simple load to test the bit and, only
if it is not set, attempt to set it atomically, retrying if the set fails (because bits are only set
in this phase, only a limited number of retries are needed), illustrated in Algorithm 14.2 .
Collectors like that of Flood et al [2001] , which store the mark bit in the object header, can
of course mark without atomic operations, though.

Processing large arrays of pointers has been observed to be a source of problems. For
example, Boehm and Weiser [1988] tried to avoid mark stack overflow by pushing large
objects in smaller (128 word) portions. Similarly, Endo et al split a large object into 512 byte
sections before adding them to a stack or queue in order to improve load balancing; here,
the stack or queue holds (address, size) pairs.

The Flood et al [2001] parallel generational collector manages its young generation by
copying and its old generation by mark-compact collection. In this section, we consider
only parallel marking. Whereas Endo et al used a stack and a stealable queue per proces
sor, Flood et al use just a single deque per collector thread. Their lock-free, work stealing
algorithm is based on Arora et al [1998]; its low overhead allows work to be balanced at
the level of individual objects. The algorithm works as follows; see also the detailed pre-

14.5. PARALLEL MARKING 281

Algorithm 14.1: The Endo et al [1997] parallel mark-sweep algorithm.

1 shared s t e a l ableWorkQueue [N]
2 me +-- myThreadid

I* one per thread 4

4 acqui reWo rk () :
if not i sEmpt y (myMa rkS t a c k)

return
l o c k (s teal ableWorkQueue [me])
I* grab half of my stealable work queue *I
n +-- s i z e (s t e a l abl eWo rkQueue [me]) I 2

I* my mark stack has work to do 4

10 t r a n s fe r (s t e a l abl eWorkQueue [me] , n, myMa rkStack)
n u n l o c k (s tea l ab l eWo rkQueue [me])
1 2

13 if i sEmpt y (myMa rkStack)
14 for each j in Threads
1 s if not l o cked(s teal abl eWorkQueue [j])
1 6 if l o c k (s tealableWorkQueue [j])
1 7 I* grab half of his stealable work queue 4
1 s n +-- s i z e (s t e a l ableWorkQueue [me]) I 2

19 t ra n s fe r (s t e a l ableWorkQueue [j] , n, myMa rkStack)
20 u n l o c k (st ea l ab l eWorkQueue [j])
2 1 return
2 2

n pe r fo rmWo r k () :
24 while pop(myMar k S tack, r e f)
� for each fld in P o i nt e r s (ref)
� chi ld +-- * f ld
27 if chi ld =/:. null && not i sMa rked (chi ld)
28 set Ma rked(chi ld)
29 pus h (myMarkSt a c k, child)
30
31

32 gene rat eWo r k () : I* transfer all my stack to my stealable work queue 4
33 if i sEmpt y (s t e a l abl eWorkQueue [me])
� n +-- s i z e (markStack)
JS l oc k (s t e a l ableWo rkQueue [me])
36 t rans fe r (myMarkStack, n, s tealabl eWo rkQueue [me])
37 unlock (s t e a l ableWorkQueue [me])

Algorithm 14.2: Parallel marking with a bitmap

1 s etMarked(re f) :
o ldByte +-- markByte (ref)
b i t P o s i t i o n +-- markBit (r e f)
loop

if i sMarked(o l dByte, b i t P o s i t i on)
return

newByte +-- mark (oldByt e, bitPo s i t i o n)
i f CompareAndSet (&markBy t e (ref) , o l dByte, newByt e)

return

282

global
overflow -----+

set

CHAPTER 14. PARALLEL GARBAGE COLLECTION

structure
for class A

structure
for class B

I

structure
for c lass C

I

Figure 14.2: Global overflow set implemented as a list of lists [Flood et al,
2001] . The class structure for each Java class holds the head of a list of over
flow objects of that type, linked through the class pointer field in their header.

sentation in Section 13.8 . A thread treats the bottom of its deque as its mark stack; its pu s h
does not require synchronisation and its p o p operation requires synchronisation only to
claim the last element of the deque. Threads without work steal an object from the top of
other threads' deques using the synchronised remove operation. One advantage of this
work stealing design is that the synchronisation mechanism, with its concomitant over
heads, is activated only when it is needed to balance loads. In contrast, other approaches
(such as grey packets, which we discuss below) may have their load balancing mechanism
permanently 'turned on' .

The Flood et al thread deques are fixed size in order to avoid having to allocate during
a collection. However, this risks overflow, so they provide a global overflow set with just a
small, per class, overhead . The class structure for each Java class C is made to hold a list of
all the overflow objects of this class, linked together through their type fields (illustrated in
Figure 14.2) . Although the overflow link overwrites the object's type - making this design
inappropriate for a concurrent collector where mutators need quick access to the object's
type - it can be recovered as the object is removed from the overflow list. Overflow is
handled as follows. Whenever pushing an item onto the bottom of a thread's deque would
cause it to overflow, items in the bottom half of the deque are moved into the overflow sets
of their classes. Conversely, threads looking for work try to fill half of their deque from the
overflow set before trying to steal from other threads' deques.

Siebert [2010] also uses work stealing for a parallel and concurrent implementation
of the Jamaica real-time Java virtual machine. Jamaica breaks objects into linked blocks
in order to bound the time of any mark step; thus, the collector works with blocks rather
than objects . One consequence is that colours are associated with blocks . As we shall see in
Chapter 15, concurrent mutators and collectors may both need to access lists of grey blocks .
In order to avoid having to synchronise such accesses, the Jamaica VM uses processor-local
grey lists . The cost of this design is that a block's colour is represented by a word rather
than a few bits . A thread marks a block grey by using a CompareAndSwap operation to
link it through this colour word into a local grey list of the processor on which the thread

14.5. PARALLEL MARKING 283

Algorithm 14.3: The Flood et al [2001] parallel mark-sweep algorithm

1 shared ove r f l owSet
2 shared de que [N]
3 me +- myThreadi d

5 acqui reWork () :

10

1 1

1 2

1 3

14

1 5

1 6

if not isEmpt y (deque [me])
return

n +- s i ze (ove r f l owSet) I 2

if t ra n s fe r (ove r f l owSet, n , deque [me])
return

for each j in Threads
r e f +- remove (deque [j])
if re f f:. nu11

push (deque [me] , re f)
return

1 7 pe r f o rmWork () :
1s 1oop
19 re f +- pop (de que [me])
20 if r e f = nu11
21

22

23
24

2S

26

27

28

29

return
for each f l d in Point e r s (r e f)

child +- * f l d
i f chi l d f:. nu11 && not i sMar ke d (c h i ld)

setMa r ked(ch i l d)
if not push(deque [me] , chi ld)

n +- s i ze (deque [me]) I 2

t r a n s fe r (deque [me] , n, ove r f l owSet)

30 gene rat eWork () :
31 I* nop 4

I* one per thread *I

I* try to steal from j 4

is running. To balance loads, Siebert steals other threads' work lists wholesale: a thread
without work attempts to steal all of another thread's grey list. To prevent two threads from
working on the same grey block, a new colour anthracite is introduced for blocks while
they are being scanned in a mark step. Thief threads also steal by attempting to change
the colour of the head of the grey list of another processor to anthracite. This mechanism
is very coarse, and best suited to the case that the victim thread is not performing any
collection work but maybe only adding blocks to its grey list as it executes write barriers.
This is a plausible scenario for a real-time, concurrent collector. However, if all threads are
collecting garbage, it may degrade to a situation where all threads compete for a single
remaining list of grey blocks . Siebert writes that this does not occur often in practice.

Termination with work stealing. Finally, the collector must be able to determine when
a phase is complete, that is, when all the cooperating threads have completed their activi
ties . Endo et al [1997) originally tried to detect termination with a single global count of the
number of mark stacks and stealable mark queues that were empty. However, contention
to update this counter atomically serialised termination, with large systems (32 proces-

284 CHAPTER 14. PARALLEL GARBAGE COLLECTION

Figure 14.3: Grey packets. Each thread exchanges an empty packet for a
packet of references to trace. Marking fills an empty packet with new refer
ences to trace; when it is full, the thread exchanges it with the global pool for
another empty packet.

sors or more) spending a significant amount of time acquiring the lock. Their solution,
presented in detail in Algorithm 13 .18, was to provide each processor with two flags indi
cating whether their mark stack or queue was empty: no locks are necessary to set or clear
these flags. To detect termination, a processor clears a global detection-in terrupted flag and
checks through all the other processors' flags. Finally, it checks the detection-interrupted
flag again in case any other processor has reset it and started work. If not, termination is
complete. This method required a strict protocol to be followed when a processor A steals
all the tasks of processor B. First, A must clear its stack-empty flag, then set the detection
interrupted flag and finally B's queue-empty flag. Unfortunately, as Petrank and Kolodner
[2004] point out, this protocol is flawed if more than one thread is allowed to detect ter
mination since a second detector thread may clear the detection-interrupted flag after the
first detector thread has set it, thus fooling the first detector thread into believing that the
flag remained clear throughout.

Kolodner and Petrank [1999] employ a solution common to many concurrency prob
lems. They ensure that only one thread at a time can try to detect termination by intro
ducing a lock: a synchronised, global, detector-identity word. Before attempting to detect
termination, a thread must check that the detector-identity's is -1 (meaning that no thread
is currently trying to detect termination) and, if so, try to set its own identity into the word
atomically, or else wait.

Flood et al detect termination through a status word, with one bit for each participating
thread, which must be updated atomically. Initially, all threads' statuses are active. When
a thread has no work to do (and has not been able to steal any), it sets its status bit to be
inactive and loops, checking whether all the status word's bits are off. If so, all threads have
offered to terminate and the collection phase is complete. Otherwise, the thread peeks at
other threads' queues, looking for work to steal. If it finds stealable work, it sets its status
bit to active and tries to steal. If it fails to steal, it reverts the bit to inactive and loops again.
This technique clearly does not scale to a number of threads beyond the number of bits in
a word. The authors suggest using a count of active threads instead.

Grey packets. Ossia et al observe that mark stacks with work stealing is a technique best
employed when the number of threads participating in a collection is known in advance
[Ossia et al, 2002; Barabash et al, 2005] . This will not be the case if each mutator thread also
helps by performing a small increment of work, say at each allocation. They also note that
it may be difficult both for a thread to choose the best queue from which to steal, and to
detect termination. Instead, they balance work loads by having each thread compete for
packets of marking work to perform. Their system had a fixed number (1000) of packets
available and each packet was a fixed size (512 entries) .

14.5. PARALLEL MARKING 285

Each thread uses two packets; it processes entries in its input packet and adds work to
be done to its output packet. Under the tricolour abstraction, the entries in both packets
are grey, hence, we adopt the name grey packets originally coined by Thomas et al [1998] for
Insignia's Jeode Java virtual machine. 1 A thread competes to acquire a new packet of work
from the global pool . After processing all the entries in the packet, it returns that packet to
the pool. When its output packet is full, it returns it to the pool and obtains a fresh packet.
Ossia et al maintain three linked lists of packets: a pool of empty packets, a pool of less than
half full packets, and a pool of nearly full packets, as illustrated in Figure 14.3. Threads
prefer to obtain their input packet from the highest occupancy, non-empty list (procedure
get i nP a c ket in Algorithm 14.4), and their output packet from the lowest occupancy,
non-empty list (procedure g e t OutPacket) .

Grey packets offer a number of advantages. By separating input from output - Ossia
et al avoid swapping the roles of a thread's packets - work is distributed evenly between
processors as a processor will tend not to consume its own output. Since a grey packet con
tains a queue of objects that will be processed in sequence, grey packets naturally support
prefetching the next objects to be marked .

Grey packets require synchronisation only when packets are acquired from or returned
to the global lists. These operations are non-blocking if we use a CompareAndSwap op
eration (with the thread's identifier added to the head of the list to avoid an ABA prob
lem). They also reduce the number of fences that have to be inserted on architectures with
weakly-ordered memory consistency. Rather than having to fence after marking and push
ing each object, a fence is required only when a thread acquires or returns packets. Ossia
et al use a vector of allocation bits when they conservatively scan thread stacks in order
to determine whether a putative reference really does point to an allocated object. Their
allocation bits are also used for synchronisation between mutators and collectors. Their
allocators use local allocation buffers. On local allocation buffer-overflow, the allocator
performs a fence and then sets the allocation bits for all the objects in that local allocation
buffer, thus ensuring that the stores to allocate and initialise new objects cannot precede
the stores to set their allocation bits (Algorithm 14.5). Two further fences are needed. First,
when a tracing thread acquires a new input packet, it tests the allocation bits of every ob
ject in the new packet, recording in a private data structure whether an object is safe to
trace - its allocation bit has been set - or not. The thread then fences before continuing
to trace all the safe objects in the input packet. Tracing unsafe objects is deferred; instead,
they are added to a third, deferred, packet. At some point, this packet may be returned
to a global pool of deferred packets. This protocol ensures that an object cannot be traced
before its allocation bit has been loaded and found to be set. A tracing thread also fences
when it returns its output packet to the global pool (in order to prevent the stores to the
packet being reordered with respect to adding the packet back to the global pool) . A fence
is not needed for this purpose when getting an input packet since there is a data depen
dency between loading the pointer to the packet and accessing its contents, an ordering
that most hardware hardware respects.

Grey packets make it comparatively easy to track state. Each global pool has an asso
ciated count of the number of packets it contains, updated by an atomic operation after
a packet is acquired or returned. Counting the number of packets is only approximate
since the count may be read after a packet has been returned but before the counter has
been incremented. However, the termination condition is simply that the size of the empty
packet pool is same as the total number of packets available. It is not necessary to make
acquisition/ return of a packet and the update of the counter a single, indivisible operation
provided that threads observe the following discipline. In order to ensure that the empty

1 However, the first publication of this idea, other than through a patent application, was by Ossia et a/ [2002] .

286 CHAPTER 14. PARALLEL GARBAGE COLLECTION

Algorithm 14.4: Grey packet management

1 shared ful l P o o l
2 shared ha l fFu l l P o o l
3 shared emptyPool

5 get i nPacket () :
atomic

inPacket f- remove (f u l l P o o l)
if i s Empt y (i n P acket)

atomic
1 0 inPacket f- remove (h a l fFul l P o o l)
n if i s Empt y (i n P acket)

/* global pool of full packets 4
f* global pool of half full packets 4

/* global pool of empty packets 4

1 2 i nPacket , out Packet f- outP a cket , i n P a cket
1 3 return not i sEmpty (inPacket)
1 4

1 5 t e stAndMa rk S a f e (packet) :
1 6 for each re f in packet
1 1 s a fe (re f) f- a l l ocBit (re f)
IK

20 get Out P acket () :
n if i sFul l (outP a c ke t)
22 gene rateWork ()
23 if outPacket = null
24 atomic

true

� outPacket f- remove (emptyPool)
26 if outPacke t = null
21 atomic
� remove (h a l fFul l P o o l)
29 if outPacket = null
� if not i s F u l l (inPacket)

f* private data structure *f

31 inPacket , outPacket f- out P a cket , inPacket
32 return
33

34 addOutPacket (re f) :
35 getOutPacket ()
J6 if outPacket = null I I i s F u l l (outP a c k e t)
37 di rtyCa rd (re f)
38 else
39 add (out Packet , re f)

14.5. PARALLEL MARKING

Algorithm 14.5: Parallel allocation with grey packets

1 sequent i a lAl locate (n) :
re s u l t f- free

1 0

1 1

1 2

1 3

newF ree f- re s u l t + n
if newFree � l abL imit

free f- newF ree
return re s u l t

/* LAB overflow 4
fence
for each ob j in l ab

a l l ocBit (ob j) f- true
l ab, l abL imit f- newLab ()
if l ab = null

287

$

return null f* signal 'Memory exh a u s t ed ' 4
1 5 sequent i alAl l o c a t e (n)

Algorithm 14.6: Parallel tracing with grey packets

1 shared ful lPool /* global pool of full packets 4

3 acqu i reWork () :
if i sEmpty (i nP a c ke t)

if get i nP a c k e t ()
t e stAndMa r k S a fe (inP a c k e t)
fence

9 performWork () :
10 for each ref in i n Packet
1 1 if s a fe (ref)
1 2 for each f l d in P o i n t e r s (ref)
13 chi ld f- * fld
14 if chi l d -::/:- null && not i sMa rked (child)
1 s s e t Marked (ch i l d)
a addOut P acket (chi ld)
1 7

$

1 8

else
addDe fe rredPacket (re f) /* defer tracing unsafe objects 4

19

zo gene rat eWork () :
21

22

23

fence
add (ful lPool, out P a cket)
outP a cket f- null

$

288 CHAPTER 14. PARALLEL GARBAGE COLLECTION

Algorithm 14.7: Parallel tracing with channels

, shared channe l [N,N]
2 me f- myThreadi d

f* N X N single reader, single writer channels *f

4 a cqu i reWo r k () :
for each k in Threads

f* k has work for me 4 if not i s Empt y (channe l [k,me])
re f f- remove (channel [k,me])
pu sh (myMarkSt a c k, re f)
return

/* on to my mark stack 4

1 0

u pe r f o rmWork () :
1 2 loop
o if i sEmpt y (myMark S t a c k)
14

15

1 6

1 7

1 8

19

20

2 1

return
re f f- pop (myMa r k S t a c k)
for each fld in P o i n t e r s (r e f)

chi ld f- * f ld
if ch i l d f:. null && not i sMa rked(chi ld)

if not gene r a t eWo rk (chi ld) /* drip a task to another processor 4
push (myMa r k S t ack, chi ld)

n generateWo r k (r e f) :
23 for each j in Threads
24 if needsWo rk (k) && not i s Fu l l (channe l [me, j])
2s add (channe l [me, j]
26 return true
21 return false

count cannot drop to zero temporarily, each thread must obtain a new packet before it re
places the old one. Requiring a thread to obtain its input packet before its output packet at
the start of a collection will ensure that attempts to acquire work packets when no tracing
work remains will not prevent termination detection.

Grey packets limit the depth of the total mark queue, making it possible that marking
may overflow. If a thread cannot obtain an output packet with vacant entries, it may swap
the roles of its input and output packets . If both are full, some overflow mechanism is
required. Ossia et al continue to mark objects without adding them to an output packet
but when this happens they dirty the card table slots corresponding to these objects. Later,
they scan the card table and continue marking from any marked objects with unmarked
children. An alternative would be to link overflow objects to the class structures corre
sponding to their type, as Flood et al [2001] did.

Channels. Wu and Li [2007] suggest an architecture for load balancing on large-scale
servers that does not require expensive atomic operations. Instead, threads exchange
marking tasks through single writer, single reader channels (recall Algorithm 13.34), as
shown in Algorithm 14.7. In a system with P marking threads, each thread has an array
of P - 1 queues, implemented as circular buffers; null indicates that a slot in the buffer

14.6. PARALLEL COPYING 289

is empty. It is the restriction to one reader and one writer that allows this architecture to
avoid the expense of atomic operations. It performed better than the Flood et al [2001]
work stealing algorithm on servers with a large number of processors.

Similar to the strategy used by Endo et al [1997], threads proactively give up tasks to
other threads. When a thread i generates a new task, it first checks whether any other
thread j needs work and, if so, adds the task to the output channel (i --+ j)] . Otherwise, it
pushes the task onto its own marking stack. If its stack is empty, it takes a task from some
input channel (j --+ i) . Unfortunately, a thread that is not generating any new marking
tasks will not be able to keep other threads busy. In this case, the thread drips a task from
the bottom (oldest end) of its local stack into the channel. Wu and Li report that this load
balancing strategy can keep all threads busy. The choice of queue length will depend on
how busily threads use their local mark stacks or whether they have to seek tasks . If tasks
do not often have to seek work, then shorter queues will be preferred. On a machine with
16 Intel Xeon processors, queues of length one or two were found to scale best. They use a
termination detection solution similar to that of Kolodner and Petrank [1999], but select a
fixed detector thread in order to avoid the conflicting detector problem.

14.6 Parallel copying

Parallelisation of copying algorithms faces many of the same issues faced by parallelisation
of marking algorithms. However, as we noted earlier, it is essential that an object is copied
only once whereas marking an object two or more times is often benign. We consider
processor-centric and then memory-centric techniques.

Processor-centric techniques

Dividing work among processors. Blelloch and Cheng parallelise copying in the con
text of replicating collection [Blelloch and Cheng, 1999; Cheng and Blelloch, 2001 ; Cheng,
2001] . We discuss replicating collection in detail in Chapter 1 7 but, in brief, replicating
collectors are incremental or concurrent collectors that copy live objects while the muta
tors are running, taking special care to fix up the values of any fields that a mutator might
have changed during the course of a collection cycle . In this chapter, we discuss only the
parallelism aspects of their design.

Each copying thread is given its own stack of work to do. Blelloch and Cheng claim that
stacks offer easier synchronisation between copying threads and less fragmentation than
Cheney queues (but we examine Cheney-style parallel copying collectors below) . Load
is balanced by having threads periodically transfer work between their local stacks and
a shared stack (see Algorithm 14.8) . As we noted earlier, a simple shared stack requires
synchronisation between threads pushing and popping entries . Unfortunately, there is
no way to increment or decrement a stack pointer and insert or remove a stack element
atomically using primitive operations like F e t chAndAdd. A lock or use of LoadLink
ed/ S t o reCondi t i ona l l y operations would sequentialise access to the shared stack, as
shown in Section 13.8. However, we can use these instructions either to allow multiple
threads to push elements or to allow multiple threads to pop elements, since these oper
ations either all advance or all retreat the stack pointer. Once a thread has succeeded in
moving the stack pointer (possibly by several slots), it can read from or write to those stack
slots without risk of any races.

Blelloch and Cheng [1999] enforce such a discipline on access to the shared stack using
what they later called 'rooms' : at any time, at least one of the pushing room and the pop-

290 CHAPTER 1 4. PARALLEL GARBAGE COLLECTION

Algorithm 14.8: Parallel copying in Cheng and Blelloch [2001]

shared sha redStack
2 myCopySt a c k [k]

sp +-- 0

5 while not t e rminated ()
ent e r Room ()
for i +-- 1 t o k

if i s Lo c a l S tackEmp t y ()
a cqui reWo rk ()

1 0 i f i s Local S t a c kEmpty ()
n break
12 pe r fo rmWo rk ()
1 3 t ran s i t i o nRooms ()
1 4 generateWork ()
1 5 if exi t Room ()
1 6 t e rmi n a t e ()
1 7

1 8 a cqui reWo r k () :
19 sharedP op ()
20

21 performWo r k () :
22 ref +-- l o c a lPop ()
23 scan (r e f)
24

25 generateWo r k () :
26 sharedP u s h ()
27

28 i sLocal S t a c kEmpty ()
29 return s p = 0
30

31 l ocalPu sh (r e f) :
32 myCopyS t a c k [sp++] +-- r e f
33

34 l ocalPop () :
35 return myCopyStack [- - sp]
36
37

38
39

40
4 1

4 2

43

sharedPop () :
cu r sor +-- F e t chAndAdd (& sharedS t a c k ,
i f cur s o r � s tackLimi t

Fet chAndAdd (& sharedStack, - 1)
else

myCopySt ack [sp++] +-- cursor [O]

44 sharedPush () :
45 cu rsor +-- F e t chAndAdd (& sharedS t a ck ,
46 for i +-- 0 to sp- 1
47 cu r s o r [i] +-- myCopySt ack [i]
48 sp +-- 0

f* the shared stack of work *f
f* local stack has k slots max. *I

/* local stack pointer *f

f* enter pop room *f

f* leave push room *f

f* move work from shared stack *f

/* see Algorithm 4.2 *f

f* move work to shared stack *f

/* move work from shared stack *f
1) /* try to grab from shared stack *f

/* shared stack empty *f
/* readjust stack *f

f* move work to local stack *f

/* move work to shared stack *f
- sp) - s p

14 .6. PARALLEL COPYING 291

Algorithm 14.9: Push/pop synchronisation with rooms

shared gate +- OPEN
2 shared popCl ient s
3 shared pu s hCl ient s

/* number of clien ts currently in the pop room */
I* number of clients currently in the push room *f

5 ente rRo om () :
whi1e gate � OPEN

/* do nothing: wait */
Fet chAndAdd (&popC l i e nt s , 1)
whi1e gate � OPEN

1 0 Fet chAndAdd (& popC l ient s, - 1)
n whi1e gate � OPEN
1 2 /* do nothing: wait *I
n Fet chAndAdd (&popC l i ents , 1)
14

1 5

1 6 t ra n s i t i o nRooms () :
1 1 gat e +- CLOSED

I* try to start popping */

/* back out since did not succeed */

I* try again *f

1s Fet chAndAdd (&pu s hC l i e nt s, 1) /* move from popping to pushing *f
1• Fet chAndAdd (&popC l i e nt s, - 1)
20 whi1e popCl ient s > 0
2 1 /* do nothing: cannot start pushing until none other popping *f
22

23 exi tRoom () :
24 pu she r s +- Fet chAndAdd (&pushC l i e nt s , - 1) - 1 /* stop pushing *f
25 if pu s he r s = 0 I* I was last in push room: check termination *f
26 if i sEmpty (sharedStack) /* no grey objects left *f
21 gate +- OPEN
2s return true
29 e1se
3o gate +- OPEN
31 return fa1se

ping room must be empty. The algorithm is shown in Algorithm 14.9. At each iteration
of the collection loop, a thread first enters the pop room and performs a fixed amount of
work. It obtains slots to scan either from its own local stack or from the shared stack with
a FetchAndAdd. Any new work generated is added to its stack. The thread then leaves
the pop room and waits until all other threads have also left the room before it tries to
enter the push room. The first thread to enter the push room closes the gate to prevent
any other thread entering the pop room. Once in the push room, the thread empties its
local stack entirely onto the shared stack, again using Fet chAndAdd to reserve space on
the stack. The last thread to leave the push room opens the gat e .

The problem with this mechanism i s that any processor waiting to enter the push room
must wait until all processors in the pop room have finished greying their objects. The
time to grey objects is considerable compared to fetching or depositing new work, and a
processor trying to transition to the push phase must wait for all other processors already
in the pop phase to finish greying their objects . Large variations in the time for different

292 CHAPTER 14. PARALLEL GARBAGE COLLECTION

processors to grey their objects makes this idle time significant. A more relaxed abstraction
would allow processors to leave the pop room without going into the push room. Since
greying objects is not related to the shared stack, that work can be done outside the rooms.
This greatly increases the likelihood that the pop room is empty and so a thread can move
to the push room.

The original Blelloch and Cheng room abstraction allows straightforward termination
detection. Each thread's local tracing stack will be empty when it leaves the push room so
the last thread to leave should detect whether the shared stack is also empty. However, the
relaxed definition means that collection threads may be working outside the rooms. With
this abstraction, the shared stack must maintain a global counter of how many threads
have borrowed objects from it. The last thread to leave the push room must check whether
this counter is zero as well as whether the shared stack is empty.

Copying objects in parallel . To ensure that only one thread copies an object, threads
must race to copy an object and install a forwarding address in the old version's header.
How threads copy an object depends on whether or not they share a single allocation
region. By sharing a single region, threads avoid some wastage but at the cost of having to
use an atomic operation to allocate. In this case, Blelloch and Cheng [1999] have threads
race to write a 'busy' value in the object's forwarding pointer slot. The winning thread
copies the object before overwriting the slot with the address of the replica; losing threads
must spin until they observe a valid pointer value in the slot. An alternative, if each thread
knows where it will copy an object (for example, because it will copy into its own local
allocation buffer), is for threads to attempt to write the forwarding address atomically into
the slot before they copy the object.

Marlow et al [2008] compared two approaches in the context of the GHC Haskell sys
tem. In the first approach, a thread trying to copy an object first tests whether it has been
forwarded. If it has it simply returns the forwarding address. Otherwise, it attempts to
C ompa reAndSwap a busy value into the forwarding address word; this value should be
distinguishable from either a 'normal' value to be expected in that slot (such as a lock or
a hash code) or a valid forwarding address. If the operation succeeds, the thread copies
the object, writes the address of its tospace replica into the slot and then returns this ad
dress. If the bu s y CompareAndSwap fails, the thread spins until the winning thread has
completed copying the object. In their second approach, they avoid spinning by having
threads optimistically copy the object and then Comp a reAndSwap the forwarding address.
If the CompareAn dSwap fails, the copy must be retracted (for example, by returning the
thread's free pointer to its original value) . They found that this latter approach offered
little benefit since collisions were rare. However, they suggest that in this case, it may be
worthwhile, in the case of immutable objects, to replace the atomic write with an unsyn
chronised write and accept occasional duplication.

The collector built by Flood et al [2001] that we discussed earlier in this chapter is gen
erational. Its old generation was managed by mark-compact and its young generation by
copying; both algorithms are parallel. Above, we discussed how they parallelised mark
ing; here, we consider how they parallelise copying collection. The same work stealing
queues are used once again to hold the list of objects to be scanned. However, parallel
copying collection faces two challenges that parallel marking does not. First, it is desirable
to minimise contention to allocate space for the copy and, second, it is essential that a live
object is copied only once. Contention for space is minimised through the use of thread
local allocation buffers (see Section 7.7), both for copying to survivor spaces in the young
generation and for promoting to the old generation. To copy an object, a thread makes a
speculative allocation in its local allocation buffer and then attempts to CompareAndSwap

14.6. PARALLEL COPYING

Thread
stack 0

Thread
stack 1

Thread
stack 2

Figure 14.4: Dominant-thread tracing. Threads 1 to 3, coloured black, grey
and white respectively, have traced a graph of objects. Each object is coloured
to indicate the processor to which it will be copied. The first field of each
object is its header. Thread TO was the last to lock object X.

293

the forwarding pointer. If it succeeds, the thread copies the object. If the CompareAnd
Swap fails, it will return the forwarding pointer that the winning thread installed.

As we have seen throughout this book, locality has a significant impact on perfor
mance. This is likely to become increasingly important for multiprocessors with non
uniform memory architectures. Here, the ideal is to place objects close to the processor that
will use them most. Modern operating systems support standard memory affinity policies,
used to determine the processor from which memory will be reserved. Typically, a policy
may be first-touch or local, in which case memory is allocated from the processor running
the thread that requested it, or round-robin, where memory allocation is striped across all
processors. A processor-affinity thread scheduler will help preserve locality properties by
attempting to schedule a thread to the last processor on which it ran. Ogasawara [2009]
observes that, even with a local-processor policy, a memory manager that is unaware of a
non-uniform memory architecture may not place objects appropriately. If local allocation
buffers are smaller than a page and are handed out to threads linearly, then some threads
will have to allocate in remote memory, particularly if the system is configured to use the
operating system's large page (16 megabytes) feature to reduce the cost of local to physical
address translation. Further, collectors that move objects will not respect their affinity.

In contrast, Ogasawara's memory manager is aware of non-uniform memory access
and so splits the heap into segments of one or more pages. Each segment is mapped to a
single processor. The allocator, used by both mutator and collector threads, preferentially
obtains blocks of memory from the preferred processor. For the mutator, this will be the
processor on which the thread is running. The collector threads always try to evacuate
live objects to memory associated with their preferred processor. Since the thread that
allocated an object may not be the one that accesses it most frequently, the collector also
uses dominant-thread information to determine each object's preferred processor. First, for
objects directly referred to from the stack of a mutator thread, this will be the processor
on which that mutator thread was running; it may be necessary for mutator threads to
update the identity of their preferred processor periodically. Second, the collector can use
object locking information to identify the dominant thread. Locking schemes often leave
the locking thread's identity in a word in the object's header. Although this only identifies
the thread, and hence the preferred processor, that last locked the object, this is likely to be
a sufficient approximation, especially as many objects never escape their allocating thread
(although they may still be locked) . Finally, the collector can propagate the preferred pro
cessor from parent objects to their children. In the example in Figure 14.4, three threads
are marking. For simplicity, we assume they are all running on their preferred processor,

294

block
rl

11 1 1 1 1 1 1
scan J Lfree

llam \ 1 1
scan J Lfree

(a) Scan pointer and
free pointer in the
same chunk

CHAPTER 14. PARALLEL GARBAGE COLLECTION

chunk

Before 11 1 1 1 1 1 1
scan J

After lma?m
1 1 11 1 1 1 1 1

L free

� I I I I
scan J L free

(b) Scan pointer and free pointer in different chunks

Figure 14.5: Chunk management in the Imai and Tick [1993] parallel copying
collector, showing selection of a scan block before (above) and after (below)
overflow. Hatching denotes blocks that have been added to the global pool.

identified in the figure by different colours. Thread TO has at some time locked object X,
indicated by writing its thread number in X's header. Each object has been coloured to
indicate the processor to which a collector thread will copy it.

Memory-centric techniques

Per-thread fromspace and tospace. Copying collection lends itself naturally to a division
of labour based on objects' locations. A simple solution to parallelising copying collection
is to give each Cheney-style collector its own fromspace and tospace [Halstead, 1984] . In
this way, each thread has its own contiguous chunk of memory to scan, but s till competes
with other threads to copy objects and install forwarding pointers. However, this very
simple design not only risks poor load balancing as one processor may run out of work
while others are still busy, but also requires some mechanism to handle the case that one
thread's tospace overflows although there is unused space in other tospaces .

Block-structured heaps. An obvious solution is to over-partition tospace and then allow
threads to compete to claim both blocks to scan and blocks for copying allocation. Imai
and Tick [1993] divided the heap into small, fixed-size chunks, giving each copying thread
its own chunks to scan and into which to copy survivors. Copying used Cheney pointers
rather than explicit work lists. When a thread's copy chunk was full, it was transferred
to a global pool where idle threads competed to scan it, and a fresh, empty chunk was
obtained from a free-chunk manager. Two mechanisms were used to ensure good load
balancing. First, the chunks acquired for copying (which they called 'heap extension units')
were comparatively small (only 256 words). The problem with using small chunks for
linear allocation is that it may lead to excessive fragmentation since, on average, we can
expect to waste half an object's worth of space at the end of each chunk. To solve this, Imai
and Tick used big bag of pages allocation (see Chapter 7) for small objects; consequently
each thread owned N chunks for copying. Larger objects and chunks were both allocated
from the shared heap using a lock.

Second, they balanced load at a granularity finer than a chunk. Each chunk was di
vided into smaller blocks (which they called 'load distribution units'). These were maybe
as small as 32 words - smaller blocks led to better speed ups. In this algorithm, each
thread offered to give up some of its unscanned blocks whenever it needed a new scan
block. After scanning a slot and incrementing its scan pointer, the thread checked whether

14.6. PARALLEL COPYING

Figure 14.6: Block states and transitions in the Imai and Tick [1993) collector.
Blocks in states with thick borders are part of the global pool, those with thin
borders are owned by a thread.

scan
copy aliased I I or ll I •

[] (continue scanning) (continue scanning) scan -+ done
copy -+ aliased

0 aliased -+ copy (continue scanning) scan -+ done
scanlist -+ scan scanlist -+ scan

IJ aliased -+ copy (cannot happen) (cannot happen)
scanlist -+ scan

[aliased -+ scan copy -+ scanlist scan --t done
freelist --t copy freelist --t copy copy -+ scan

freelist -+ copy
1 1 aliased --t scan (cannot happen) (cannot happen)

freelist --t copy
• aliased --t done (cannot happen) (cannot happen)

freelist --t copy
scanlist --t scan

Table 14.1: State transition logic for the Imai and Tick collector

295

it had reached the block boundary. If so, and the next object was smaller than a block, the
thread advanced its scan pointer to the start of its current copy block. This helps reduce
contention on the global pool since the thread does not have to compete to acquire a scan
block. It also avoids a situation whereby the only blocks containing grey objects to scan
are copy blocks. If there were any unscanned blocks between the old scan block and the
copy block, these were given up to the global pool for other threads to claim. Figure 14.5
shows two example scenarios. In Figure 14.5a, a thread's scan and copy blocks are in the
same chunk; in Figure 14.5b, they are in different chunks. Either way, all but one of the
unscanned blocks in the thread's copy and scan blocks are given up to the global pool.

If the object was larger than a block but smaller than a chunk, the scan pointer was
advanced to the start of the thread's current copy chunk. If the object was large, the thread
continued to scan it. Any large objects copied were immediately added to the global pool.

Figure 14.6 shows the states of blocks and their transitions.2 Blocks in the states freelist,
scanlist and done are in the global pool; blocks in the other states are local to a thread.
The transitions are labelled with the possible colourings of a block when it changes state.

2This particularly clear notation is due to Siegwart and Hirzel [2006].

296 CHAPTER 14. PARALLEL GARBAGE COLLECTION

Under the Imai and Tick scheme, a block's state can change only when the scan pointer
reaches the end of a scan block, the copy pointer reaches the end of a copy block, or
s c a n reaches free (the scan block is the same as the copy block - they are aliased) . For
example, a block must contain at least some empty space in order to be a copy block so
all transitions into the state copy are at least partially empty. Table 14.1 shows the actions
taken, depending on the state of the copy and scan blocks. For example, if the copy block
contains both grey slots and empty space ((]) and the unaliased scan block is completely
black (•), then we are finished with the scan block and continue scanning in the copy block
- the copy and scan blocks are now aliases of one another.

Marlow et al [2008] found this block-at-a-time load-balancing over-sequentialised the
collector when work was scarce in GHC Haskell. For example, if a thread evacuates its
roots into a single block, it will export work to other threads only when its scan and free
pointers are separated by more than a block. Their solution is to export partially full blocks
to the global pool whenever (i) the size of the pool is below some threshold, (ii) the thread's
copy block has a sufficient work to be worth exporting, and (iii) its scan block has enough
unscanned slots to process before it has to claim a new block to scan. The optimum min
imum quantum of work to export was 128 words (for most of their benchmarks, though
some benefited from much smaller quanta) . This design could be expected to suffer badly
from fragmentation if threads were to acquire only empty blocks for copying while export
ing partially filled ones. To avoid this, they have threads prefer to acquire blocks that are
partly filled rather than fully filled . Despite the potential for exacerbating fragmentation
through objects being too large to fit in the current block and also by dividing each gener
ation of their collector into separate steps (see Chapter 9), Marlow et al found the level of
fragmentation was never more than 1% of total memory.

The algorithms above provide breadth-first copying. Breadth-first copying leads to
poor mutator locality as it tends to separate parents from their children, tending to co
locate distant cousins instead (see Section 4.2) . Depth-first copying, on the other hand,
offers better locality but at the cost of an auxiliary stack to control tracing. Moon [1984]
and Wilson et al [1991] introduced hierarchical copying algorithms that led to mostly depth
first traversal but without the cost of a stack. However, their algorithms were sequential.
Siegwart and Hirzel [2006] add hierarchical decomposition to the Imai and Tick parallel
copying collector to manage the young generation of IBM's J9 Java virtual machine.3

In the sequential hierarchical decomposition collector [Wilson et al, 1991] incompletely
scanned blocks were associated with two pointers, a partial scan pointer and a free space
pointer. Similarly, Imai and Tick used pairs of scan and free pointers for their blocks. The
trick to obtaining a hierarchical traversal of the object graph with the parallel algorithm is
therefore for threads to select the 'right' blocks to use next. Like both of these collectors,
Siegwart and Hirzel prefer to alias copy and scan blocks,4 in contrast to the approach that
Ossia et al [2002] used where they strove to have threads hold distinct input and output
packets . Unlike Imai and Tick, who defer checking whether the copy and scan blocks can
be aliased until the end of a block, Siegwart and Hirzel make the check immediately after
scanning a grey slot. It is this immediacy that leads to the hierarchical decomposition order
of traversal of the object graph.

Figure 14.7 shows the states of blocks and their transitions under this scheme. As be
fore, blocks in the states freelist, scanlist and done are in the global pool; blocks in the other
states are local to a thread. The transitions are labelled with the possible colourings of a
block when it changes state. Table 14.2 shows the actions taken, depending on the state

3The old generation is managed by concurrent mark-sweep with occasional stop-the-world compaction.
4Each thread in their generational collector holds two copy blocks, one for young and one for old objects; only

one at a time can be aliased with the scan block.

14.6. PARALLEL COPYING

D

•

[]

Figure 14.7: Block states and transitions in the Siegwart and Hirzel collector.
Blocks in states with thick borders are part of the global pool, those with thin
borders are local to a thread. A thread may retain one block of the scanlist in
its local cache.

Siegwart and Hirzel (2006], doi: 1 0 . 1 1 4 5 / 1 1 3 3 9 5 6 . 1 1 3 3 9 6 4 .

© 2006 Association for Computing Machinery, Inc. Reprinted by permission.

I scan
copy

�------a�lia_s_e�d.-----.--------
0
-
r
=l--

----,-----�
.
=-----_,

:J or ID

O or iJ

... or II

•

(continue scanning)

aliased --+ copy
scanlist --+ scan
aliased --+ scan
freelist --+ copy

aliased --+ done
freelist --+ copy
scanlist --+ scan

scan --+ scanlist scan --+ done
copy --+ aliased copy --+ aliased

(continue scanning) scan --+ done
scanlist --+ scan

copy --+ scanlist scan --+ done
freelist --+ copy copy --+ scan

freelist --+ copy
(cannot happen) (cannot happen)

Table 14.2: State transition logic for the Siegwart and Hirzel collector.
Siegwart and Hirzel (2006], doi: 1 0 . 1 1 4 5 / 1 1 3 3 9 5 6 . 1 1 3 3 9 6 4 .

© 2006 Association for Computing Machinery, Inc. Reprinted by permission.

297

of the copy and scan blocks. For example, if the copy block contains both grey slots and
empty space (ITI or !U) and the unaliased scan block also has grey slots, then we return
the scan block to the scan list and continue scanning the copy block - the copy and scan
blocks are now aliases of one another. Thus, the state transition system for Siegwart and
Hirzel is a superset of that for Imai and Tick [1993) .

Parallelising the algorithm places pressure on the global pool to acquire blocks to scan.
For this reason, Siegwart and Hirzel have threads cache an extra scan block locally. Their
blocks are also larger (128 kilobytes) than those of Imai and Tick. Thus, the transition
scanlis t --+ scan really obtains the cached block (if any), and scan --+ scanlist caches the
block, possibly returning in its stead the previously cached block to the shared pool of
blocks to be scanned. Parallel hierarchical copying is very effective in improving the spatial
locality of connected objects. Most parents and children were within a page (four kilobytes)
of each other. In particular, it offers a promise of reduced translation lookaside buffer and
cache miss rates. Thus, it can trade mutator speedup for collector slowdown. Whether or
not this is effective depends on application, implementation and platform.

298 CHAPTER 1 4. PARALLEL GARBAGE COLLECTION

Channels. Like Wu and Li [2007], Oancea et al [2009] use channels to eliminate the need
for atomic synchronisation operations. However, their architecture is memory-centric
rather than processor-centric. It was designed to improve performance on non-uniform
memory architectures although it also performs well on typical multicore platforms. The
heap is divided into many more partitions than the number of processors. Each partition
has its own work list, containing only references to tospace objects in that partition that
need to be scanned. At any given time, at most one processor can own a given work list.
The authors argue that binding work lists to memory-space semantics is likely to become
increasingly hardware-friendly as the cost of inter-processor communication grows.

As usual, a processor traces slots in its work lists. If it finds a reference to an object in
its partition, it adds the reference to its work list. If the reference is to an object in another
partition, the reference is sent to that partition . Processors exchange work through single
reader, single-writer channels. These are again implemented as fixed-size, circular buffers
(see Algorithm 13 .34) . On Intel or AMD x86 architectures, no locks or expensive memory
barriers are required to insert or remove a slot from a channel. However, architectures like
the PowerPC that do not enforce strong access ordering require fences or a protocol where
each slot alternates between null and non-null values. Atomic operations are required
only to acquire a partition/work list. The partitions used here are larger at 32 kilobytes
than those we have seen before . While a larger granularity reduces communication costs,
it is less effective at load balancing than finer grained approaches.

While there is work left, each thread processes work in its incoming channels and its
work list. The termination condition for a collector thread is that (i) it does not own any
work list, (ii) all its input and output channels are empty, and (iii) all work lists (of all
threads) are empty. On exit, each thread sets a globally visible flag. Oancea et al take a
pragmatic approach to the management of this collector. They use an initialisation phase
that processes in parallel a number (30,000) of objects under a classical tracing algorithm
and then places the resulting grey objects in their corresponding work lists, locking the
partitions to do so, before distributing the work lists among the processors, and switching
to the channel-based algorithm.

Card tables. Often a generational collector will use parallel copying to manage its young
generation. This raises the additional question of how to deal with roots of that generation
held in the remembered set. The set may be implemented with a linked list of buffers,
with a hash table or with a card table. The first two cases can be handled by one of the
techniques we discussed above. For example, if the set is a linked list of buffers then loads
can be balanced by having threads compete to claim the next buffer in the same way as
a block structured algorithms. It is more difficult to balance load effectively with card
tables. When a younger generation is collected, the parts of the heap corresponding to
cards marked in the table must be scanned for possible inter-generational references. The
obvious approach to parallelising card scanning would be to divide the heap into con
secutive, equally sized blocks, either statically assigned to processors or which collector
threads would compete to claim. However, the distribution of live objects among blocks
tends to be uneven, with some blocks very densely populated and others very sparsely.
Flood et al [2001] found that this straightforward division of work led to uneven load bal
ancing, as scanning the dense blocks dominated collection time. To address this, they
over-partitioned the card table into N strides, each a set of cards separated by intervals of
N cards. Thus, cards {0, N, 2N, . . . } comprise one stride, cards { 1 , N + 1, 2N + 1, . . . } com
prise the next, and so on. This causes dense areas to be spread across strides. Instead of
competing for blocks, threads compete to claim strides.

14.7. PARALLEL SWEEPING 299

14.7 Parallel sweeping

We conclude this chapter by considering how to parallelise sweeping and compaction
phases. Both share the property that the tracing work has been done, the live objects in
the heap have been identified, and that this last phase is 'embarrassingly' parallel .

In principle, parallelising the sweep phase is straightforward: either statically partition
the heap into contiguous blocks or over-partition it and have threads compete for a block
to sweep to a free-list. However, the effect of such a simple strategy is likely to be that
the free-list becomes a bottleneck, sequentialising the collection. Fortunately, in any such
parallel system, processors will have their own free-lists and most likely use segregated
fits allocation (see Chapter 7), so the issue of contention reduces to that of handling the
return of completely free blocks to a global block allocator. Furthermore, lazy sweeping
(see Chapter 2) is a naturally parallel solution to the problem of sweeping partially full
blocks that balances loads according to the allocation rates of mutator threads.

The first and only step in the sweep phase of lazy sweeping is to identify completely
empty blocks and return them to the block allocator. In order to reduce contention, Endo
et al [1997] gave each sweep thread several (for example, 64) consecutive blocks to process
locally. His collector used bitmap marking, with the bitmaps held in block headers, stored
separately from the blocks themselves. This makes it easy to determine whether a block is
complete empty or not. Empty ones are sorted and coalesced, and added to a local free
block list. Partially full blocks are add to local reclaim lists (for example, one for each size
class if segregated fits allocation is being used) for subsequent lazy sweeping by mutator
threads. Once a processor has finished with its sweep set, it merges its free-block list into
the global free-block list. One remaining question is, what should a mutator thread do if it
has run out of blocks on its local reclaim list and the global pool of blocks is empty? One
solution is that it should steal a block from another thread. This requires synchronising the
acquisition of the next block to sweep, but this is a reasonable cost to pay since acquiring
a new block to sweep is less frequent than allocating a slot in a block, and we can expect
contention for a block to sweep to be uncommon.

14.8 Parallel compaction

Parallelising mark-compact algorithms shares much of the issues discussed above. Live
objects must be marked in parallel and then moved in parallel. However, parallel sliding
compaction is simpler than parallel copying in some respects, at least in contiguous heaps.
For example, once all the live objects have been marked, the destination of objects to be
moved is fixed: races affect only performance rather than correctness. After marking is
complete, all compacting collectors require two or more further phases to determine the
forwarding address of each object, to update references and to move objects . As we saw
in Chapter 3, different algorithms may perform these tasks in different orders or even
combine two tasks in a single pass over the heap.

Crammond [1988] implemented a location-aware parallel collector for Parlog, a concur
rent logic programming language. Logic programming languages benefit from preserving
the order of objects in the heap . In particular, backtracking to 'choice points' is made more
efficient by preserving the allocation order of objects in memory, since all memory allo
cated after the choice point can simply be discarded. Sliding compaction preserves the
order. Crammond's collector parallelised the Morris [1978] threaded collector, which we
discussed in Section 3.3; in this section, we consider only the parallelism aspects of the
algorithm. Crammond reduced the cost by dividing the heap into regions associated with

300 CHAPTER 14. PARALLEL GARBAGE COLLECTION

Heap (before)

I I I I I I II I I I I I I II I 0 regions 1 2 3

I I II I I II
regions 1 2 3 Heap (after)

Figure 14.8: Flood et al [2001] divide the heap into one region per thread and
alternate the direction in which compacting threads slide live objects (shown
in grey).

processors. A processor encountering an object in its own region marked and counted
it without synchronisation. However, if the object was a 'remote' one, a reference to it
was added to that processor 's stack of indirect references and a global counter was incre
mented. The remote processor was responsible for processing the object and decrementing
the global counter (which was used to detect termination). Thus, synchronisation (using
locks) was only required for remote objects since the indirect stacks were single reader,
multiple writer structures. Crammond found that indirect references typically comprised
less than 1% of the objects marked.

Flood et al [2001] use parallel mark-compact to manage the old generation of their Java
virtual machine. The collector uses three further phases after parallel marking (which we
discussed above) to (i) calculate forwarding addresses, (ii) update references and (iii) move
objects. An interesting aspect of their design is that they use different load balancing strate
gies for different phases of compaction. Uniprocessor compaction algorithms typically
slide all live data to one end of the heap space. If multiple threads move data in parallel,
then it is essential to prevent one thread from overwriting live data before another thread
has moved it. For this reason, Flood et al do not compact all objects into a single, dense
end of the heap but instead divide the space into several regions, one for each compacting
thread. Each thread slides objects in its region only. To reduce the (limited) fragmentation
that this partitioning might incur, they also have threads alternate the direction in which
they move objects in even and odd numbered regions (see Figure 14.8) .

The first step is to install a forwarding pointer into the header of each live object. This
will hold the address to which the object is to be moved. In this phase, they over-partition
the space in order to improve load balancing. The space is split into M object-aligned
units, each of roughly the same size; they found that a good choice on their eight-way
UltraSPARC server was to use four times as many units as garbage collection threads,
M = 4N. Threads compete to claim units and then count the volume of live data in each
unit; to improve subsequent passes, they also coalesce adjacent garbage objects into single
quasi-objects. Once they know the volume of live objects in each unit, they can partition
the space into N unevenly sized regions that contain approximately the same amount of live
data. These regions are aligned with the units of the previous pass. They also calculate the
destination address of the first live object in each unit, being careful to take into account
the direction in which objects in a region will slide. Collection threads then compete once
again to claim units in order to install forwarding pointers in each live object of their units.

The next pass updates references to point to objects' new locations. As usual, this re
quires scanning mutator threads' stacks, references to objects in this heap space that are
held in objects stored outside that space, as well as live objects in this space (for example,

14.8. PARALLEL COMPACTION

Heap (before)

I 0) I I I I I I I I I I I [I I _I I I blocks 1 2 - - - - - - -
3 - -

- - - -
'

- - .,. -=. �-::�.· • • • • Heap (after)

I I I I I I I I I I I II 0 blocks 1 2 3

Figure 14.9: Inter-block compaction. Rather than sliding object by object,
Abuaiadh et al [2004] slide only complete blocks: free space within each block
is not squeezed out.

301

the old generation) . Any suitable load balancing scheme can be used. Flood et al reuse the
unit partitions for scanning the space to be compacted (their old generation) although they
scan the young generation as a single task. Their last phase moves the objects. Here they
give each thread a region of objects to move. This balances effort between threads since
these regions were chosen to contain roughly equal volumes of live data.

There are two disadvantages to the way this algorithm compacts objects. First, it makes
3 passes over the heap. As we saw in Chapter 3, other algorithms make fewer passes. Sec
ond, rather than compacting all live objects to one end of the heap, Flood et al compact into
N dense piles, leaving f (N + 1) /21 gaps for allocation. Each pile is compacted densely, in
the sense that space need only be wasted in a pile due to object alignment requirements.
However, it is possible that if a very large number of threads/regions were to be used, it
may be difficult for mutators to allocate very large objects.

Abuaiadh et al [2004] address the first problem by calculating rather than storing for
warding addresses, using the mark bitmap and an offset vector that holds the new address
of the first live object in each small block of the heap, as we described in Section 3.4. Their
solution to the second problem is to over-partition the heap into a number of fairly large
areas. For example, they suggest that a typical choice may be to have 16 times as many ar
eas as processors, while ensuring that each area is at least four megabytes. The heap areas
are compacted in order. Threads race to claim an area, using an atomic operation to incre
ment a global area index (or pointer). If the operation is successful, the thread has obtained
this area to compact. If it was not successful, then another thread must have claimed it and
the first thread tries again for the next area; thus, acquisition of areas is wait-free. A table
holds pointers to the beginning of the free space for each area. After winning an area to
compact, the thread competes to acquire an area into which it can move objects. A thread
claims an area by trying to write null atomically into its corresponding table slot. Threads
never try to compact from a source area nor into a target area whose table entry is null, and
objects are never moved from a lower to a higher numbered area. Progress is guaranteed
since a thread can always compact an area into itself. Once a thread has finished with an
area, it updates the area's free space pointer in the table. If an area is full, its free space
pointer will remain null .

Abuaiadh et a[explored two ways in which objects could be moved. The best com
paction, with the least fragmentation, is obtained by moving individual live objects to their
destination, as we described above. Note that because every object in a block is moved to
a location partly determined by the offset vector for that block, a block's objects are never
split between two destination areas . They also tried trading quality of compaction for
reduced compaction time by moving whole blocks at a time (256 bytes in their implemen
tation}, illustrated in Figure 14.9. Because objects in a linearly allocated space tend to live

302 CHAPTER 14. PARALLEL GARBAGE COLLECTION

and die in clumps, they found that this technique could reduce compaction time by a fifth
at the cost of increasing the size of the compaction area by only a few percent. On the other
hand, it is not hard to invent a worst case that would lead to no compaction at all .

The calculate-rather-than-store the forwarding address mechanism was later adopted
by Compressor [Kermany and Petrank, 2006] . However, Compressor introduced some
changes. First, as the second phase of the collector passes over the mark bitmap, it cal
culates a first-object vector as well as the offset vector.5 The first-object table is a vector
indexed by the pages that will hold the relocated objects. Each slot in the table holds the
address in fromspace of the first object that will be moved into that page. Compaction itself
starts by updating the roots (using the information held in the mark and offset vectors).

The second difference is that each thread then competes to claim a tospace page from
the first-object table . A successful thread maps a new physical page for its virtual page,
and copies objects starting from the location specified in this slot of the first-object table,
using the offset and mark vectors. Acquisition of a fresh page to which to evacuate objects
allows Compressor to use parallel collector threads whereas the description we gave in
Chapter 3 sequentialised sliding of objects. At first sight, this may look as if it is a copying
algorithm rather than a mark-compact one. However, Compressor truly is a sliding mark
compact collector. It manages fromspace and tospace pages at a cost in physical memory
of typically only one page per collector thread, in stark contrast to a traditional semispace
collector which requires twice as much heap space. The trick is that, although Compressor
needs to map fresh tospace pages, it can also unmap each fromspace page as soon as it has
evacuated all the live objects from it.

This design minimises overheads for synchronisation between compacting threads. A
thread needs to synchronise only to claim a slot in the first-object table corresponding to
a tospace page into which it can evacuate objects . This process is wait-free since a thread
never needs to retry a page: if it fails to claim it, then another thread is evacuating to it
so this thread can try the next slot in the table. Termination is equally simple: a thread
exits when it reaches the end of the table. One subtlety is how to handle objects that span
pages. In a stop-the-world implementation, one can arbitrarily decide that such an object
is associated with the first tospace page on which it will be placed. However, this solution
will not work for a concurrent implementation (which we discuss in Section 1 7.7), so we
copy precisely the data that belongs to a single tospace page, including the end of the object
that starts on the previous page and the beginning of one that ends on the next page.

14.9 Issues to consider

Terminology

Earlier work was often inconsistent in the terminology it used to describe parallel garbage
collection. Papers in the twentieth century often used 'parallel', 'concurrent' and even
'real-time' interchangeably. Fortunately, since around 2000, authors have adopted a con
sistent usage. Thus, a parallel collector is now one that uses multiple garbage collector
threads, running in parallel . The world may or may not be stopped while parallel collec
tion threads run. It seems clear that it is sensible to allow parallel collection if the underly
ing platform has the capability to support this, in the same way that it is desirable to allow
mutator threads to use all available parallel resources.

5 At 512 bytes, their blocks are also larger than those of Abuaiadh et a/ [2004] .

14 .9. ISSUES TO CONSIDER 303

Is parallel collection worthwhile?

The first question to ask is, recalling Amdahl's law,6 is there sufficient work available to
parallelise? It is easy to imagine scenarios that offer no opportunity for parallel execution:
a common example might be tracing a list. Fortunately, there is evidence that real appli
cations use a richer set of data structures and that these do indeed offer a high degree of
potential parallelism [Siebert, 2008] . Garbage collection activities other than tracing offer
much more obvious opportunities to exploit parallel hardware. For example, sweeping
and compaction are eminently parallelisable (even if a little care needs to be taken with the
latter) . Even in the tracing phase, thread stacks and remembered sets can be scanned in
parallel and with little synchronisation overhead; completing the trace in parallel requires
more careful handling of work lists in order to limit the synchronisation costs while at the
same time using parallel hardware resources as efficiently as possible .

Strategies for balancing loads

It should be clear that parallelising collection effectively requires carefully trading off the
need to balance loads between processors and limiting the amount of synchronisation nec
essary to do so safely. We want to balance loads to ensure that no processors are inactive
while others do all the work. It is also important to balance other resources, such as mem
ory. Synchronisation is essential to protect the integrity of the collector's work lists and the
application's heap allocated structures. For example, allowing two threads to manipulate a
mark stack pointer simultaneously risks losing entries . Furthermore, allowing two threads
to copy an object simultaneously risks changing the topology of the heap. However, the
finest grain balancing is likely to involve very high synchronisation costs.

The general solution is to assign to each collector thread a quantum of work that it
can perform without further synchronisation with other threads. This begs the question
of how the work can be divided between threads. The cheapest division, in the sense of
the least synchronisation overhead, is to partition the work statically, at either build time,
on program startup or before each collection cycle. In this case, the coordination between
threads will be limited to consensus on termination. However, static partitioning may not
lead to good load balancing. On the other hand, loads can be balanced by over-partitioning
the work available and having threads compete to acquire tasks and having them return
new tasks to a global pool. This offers the finest grain load balancing but at the cost of
the most synchronisation. In between these two extremes, it is often possible to apply
different load balancing strategies in different phases of the execution of a collection cycle.
For example, information gathered by one phase (typically, the mark phase) can be used
to estimate a fair division between threads of the work to done by subsequent phases. The
Flood et al [2001] collector is a good example of this approach.

Managing tracing

Tracing the heap involves consuming work (objects to mark or copy) and generating fur
ther work (their untraced children). Some structure, such as a stack or a queue, is needed
to keep track of work to do. A single, shared structure would lead to high synchronisa
tion costs so collection threads should be given their own private data structures. How-

6 Amdahl's law states that the speedup obtained from parallelising a program depends on the proportion of
the program that can be parallelised . Thus, if s is the amount of time spent (by a serial processor) on serial parts
of a program, and p is the amount of time spent (by a serial processor) on parts that can be done in parallel by n
processors, then the speedup is 1 / (s + p i n) .

304 CHAPTER 14. PARALLEL GARBAGE COLLECTION

ever, in order to balance load, some mechanism is required that can transfer work between
threads. The first decision is what mechanism to use. We have discussed several in this
chapter. Work stealing data structures can be used to allow work to be transferred safely
from one thread's to another. The idea is to make the common operation (pushing and
popping entries while tracing) as cheap (that is, unsynchronised) as possible while still al
lowing infrequent operations (transferring work safely between threads) . Endo et al [1997]
give each thread its own stack and a stealable work queue, whereas Flood et al [2001] have
each thread use just one double-ended queue both for tracing and stealing. Grey packets
provide a global pool of buffers of work to do (hence their name) [Thomas et al, 1998; Os
sia et al, 2002] . Here, each thread competes for a packet of work to do and returns new
work to the pool in a fresh packet. Cheng and Blelloch [2001] resolve the problem of syn
chronising stack pushes and pops by splitting tracing into steps, which they call 'rooms'.
At its simplest, all threads are in the push room or all are in the pop room. In each case,
every thread wants to move the stack pointer in the same direction so an atomic operation
like Fet chAndAdd can be used. Other authors eliminate the need for atomic operations
by having tracing threads communicate through single writer, single reader channels [Wu
and Li, 2007; Oancea et al, 2009] .

The second decision is how much work t o transfer and when to transfer it. Different
researchers have proposed different solutions. The smallest unit of transfer is a single entry
from the stack. However, if data structures are small, this may lead to a higher volume of
traffic between threads. In the context of a parallel, concurrent and real-time collector,
Siebert [2010] has a processor with no work steal all of another 's work list. This is only
a sensible decision if it is unlikely that processors will run out of work to do at around
the same time (in this case, because they are executing mutator code concurrently) . A
common solution is to transfer an intermediate amount of work between threads. Fixed
size grey packets do this naturally; other choices include transferring half of a thread's
mark stack. If mark stacks are a fixed size, then some mechanism must be employed to
handle overflow. Again, grey packets handle this naturally: when an output packet is
filled, it is returned to the global pool and an empty one is acquired from the pool. Flood
et al [2001] thread overflow sets through Java class objects, at the cost of a small, fixed
space overhead per class. Large arrays are problematic for load balancing. One solution,
commonly adopted in real-time systems, is to divide large, logically contiguous objects
into linked data structures. Another is to record in the mark stack a sequence of sections of
the array to scan for pointers to trace, rather than requiring all of the array to be scanned
in a single step .

The techniques above are processor-centric: the algorithms concern the management of
thread (processor) local work lists. The alternative is to use memory-centric strategies that
take into account the location of objects. This may be increasingly important in the context
of non-uniform memory architectures where access to a remote memory location is more
expensive than access to a local one. Memory-centric approaches are common in parallel
copying collectors, particularly where work lists are Cheney queues [Imai and Tick, 1993;
Siegwart and Hirzel, 2006] . Here the issues are (i) the size of the blocks (the quanta of
work), (ii) which block to process next and which to return to the global pool of work,
and (iii) which thread 'owns' an object. There are two aspects to choosing sizes of blocks.
First, any moving collector should be given its own, private region of the heap into which
it can bump allocate. These chunks should probably be large in order to reduce contention
on the chunk manager. However, large chunks do not offer an appropriate granularity
for balancing the load of copying threads. Instead, chunks should be broken into smaller
blocks which can act as the work quanta in a Cheney-style collector. Second, the choice
of which object to process next affects the locality of both the collector and the mutator
(as we saw in Section 4.2) . In both cases, it seems preferable to select the next unscanned

14 .9. ISSUES TO CONSIDER 305

object in the block that is being used for allocation, returning intermediate, unscanned
or incompletely scanned blocks to the global pool. Making this decision at the end of
scanning a block may improve the collector 's locality; making this decision after scanning
each object may improve the mutator 's locality as well because it causes the live object
graph to be traversed in a more depth-first-like (hierarchical) order. Finally, the decision
might be made on which processor is most likely to use an object next. Oancea et al [2009]
uses the notion of a 'dominant thread' to guide the choice of which processor should copy
an object (and hence the location to which it should be copied) .

Low-level synchronisation

As well as synchronising operations on collector data structures, it may also be necessary
to synchronise operations on individual objects . In principle, marking is an idempotent
operation: it does not matter if an object is marked more than once. However, if a collector
uses a vector of mark-bits, it is essential that the marker sets these bits atomically. Since
modern processors' instruction sets do not provide the ability to set an individual bit in a
word or byte, setting a mark may necessitate looping trying to set the value of the whole
byte atomically. On the other hand, if the mark bit is held in the object's header, or the
mark vector is a vector of bytes (one per object), then no synchronisation is necessary since
double writing the mark is safe .

A copying collector must not 'mark' (that is, copy) an object more than once, as this
would change the topology of the graph, with possibly disastrous consequences for muta
ble objects . It is essential that copying an object and setting the forwarding address is seen
by other collector threads to be a single, indivisible operation. The details come down to
how the forwarding address is handled. A number of solutions have been adopted. A col
lector may attempt to write a 'busy' value into the forwarding address slot atomically, then
copy the object and write the forwarding address with a simple store operation. If another
thread sees a 'busy' value, it must spin until it sees the forwarding address. The synchro
nisation cost can be reduced by testing the forwarding address slot before attempting the
atomic 'busy' write. Another tactic might be to copy the object if there is no forwarding
address and then attempt to store the forwarding address atomically, retracting the copy
if the store is unsuccessful . The effectiveness of such a tactic will depend on the frequency
of collisions when installing forwarding addresses.

It is important that certain actions be made visible in the proper order to other proces
sors on platforms with weakly consistent memory models. This requires the compiler to
emit memory fences in the appropriate places. Atomic operations such as CompareAnd
Swap often act as fences but in many cases weaker instructions suffice. One factor in the
choice of algorithm will be the complexity of deciding where to place fences, the number
that need to be executed and the cost of doing so. It may well be worth trading simplic
ity of programming (and hence confidence that the code is correct) for some reduction in
performance.

Sweeping and compaction

Sweeping and compaction phases essentially sweep linearly through the heap (in more
than one pass in the case of compaction) . Thus, these operations are well suited to paral
lelisation. The simplest load balancing strategy might be to divide the heap into as many
partitions as there are processors . However, this can lead to uneven load balancing if the
amount of work is uneven between partitions. To first approximation, the amount of work
to be done is proportional to the number of objects in a partition. This information is avail-

306 CHAPTER 14. PARALLEL GARBAGE COLLECTION

able from the mark phase, and can be used to divide the heap into unequally sized (but
object aligned) partitions, each of which contains roughly the same amount of work.

However, this strategy assumes that each partition can be processed independently
of the others. This will not be true if processing one partition may destroy information
on which another partition depends. For example, a sliding compaction collector cannot
move objects in an arbitrary order to their destination as this would risk overwriting live
but not yet moved data . In this case, it maybe necessary to process partitions in address
order. Here, the solution is to over-partition the heap and have threads compete for the
next partitions to use (one for the objects to be moved and one into which to move them).

Termination

Finally, termination of any collection phase must be determined correctly. The use of paral
lel threads clearly makes termination detection more complex. The problem is fundamen
tally that one thread may be attempting to detect whether the phase has terminated while
another is generating more work. Unfortunately, flawed termination detection algorithms
are quite easy to write! One (correct) solution to the problem is to nominate a single thread
to detect termination and have threads indicate atomically whether they are busy or not;
care is needed with the protocol for raising and lowering flags and processing work, and
in placement of fences in the presence of relaxed memory orders. Systems with a global
pool of work can offer simpler protocols that allow any number of threads to detect termi
nation. For example, grey packet systems may allow the number of packets in the global
pool to be counted: if they are all present (and empty), then the phase is complete .

Chapter 15

Concurrent garbage collection

The basic principles o f concurrent collection were initially devised a s a means to reduce
pause times for garbage collection on uniprocessors . Early papers used terms such as
'concurrent', 'parallel', 'on-the-fly' and 'real-time' interchangeably or inconsistently. In
Chapter 14 we defined the modem usage of 'parallel ' . Here, we define the remaining
terms. So far, we have assumed that the mutator is suspended while garbage collection
proceeds, and that each collection cycle terminates before the mutator can continue. As
before, Figure 14.1a illustrates different collection styles by one or more horizontal bars,
with time proceeding from left to right, and shows mutator execution in white while each
collection cycle is represented as a distinct non-white shade. Thus, grey boxes represent
actions of one garbage collection cycle, and black boxes those of the next.

We have already seen one way to reduce pause times on a multiprocessor in Chap
ter 14: run a full garbage collection cycle in parallel while all the mutators are stopped, as
illustrated in Figure 14.1c .

Another way to reduce pause times on a uniprocessor is to interleave mutator execution
with collector execution, as illustrated in Figure 15.1a. Interleaving mutator and collector
execution in this way is called incremental collection, since the collection cycle is broken
down into multiple finer-grained increments. However, incremental collection is not as
straightforward as it might first seem, since the collection cycle is no longer atomic with
respect to mutation of the object graph, so the reachability of objects can change from one
increment to the next. Thus, incremental collectors must have some way of keeping track
of changes to the graph of reachable objects, perhaps re-scanning objects or fields in the
face of those changes. There are many different ways to cope with this problem.

Although interleaving provides the illusion of concurrency between mutator and col
lector, incremental collection assumes that the mutator and collector do not execute in
parallel - that is, that the mutator is stopped for each increment of the collector cycle. It
is possible to maintain this property on a multiprocessor by making sure that all parallel
mutators are stopped for each increment, as illustrated in Figure 15.1b. The increments can
also be parallelised, as in Figure 15.1c.

It is a conceptually simple step to go from interleaving of the mutator with the collec
tor on a uniprocessor to concurrent execution of (multiple) mutators in parallel with the
collector on a multiprocessor. The main added difficulty is ensuring that the collector and
mutators synchronise properly to maintain a consistent view of the heap, and not just for
reachability. For example, inconsistency can occur when a mutator attempts to manipulate
partially scanned or copied objects, or to access metadata, concurrently with the collector.

The degree and granularity of this synchronisation necessarily impacts application
throughput (that is, end-to-end execution time including both mutator and collector work),

307

308 CHAPTER 15. CONCURRENT GARBAGE COLLECTION

I I I I I I 1 1 1 1 I I � I 1 1 1 1 1 1
(a) Incremental uniprocessor collection

(b) Incremental multiprocessor collection

I I II I
(c) Parallel incremental collection

�--------------l�-----1 -----11 11---------1;]
(d) Mostly-concurrent collection

� I I I I � I I I I I I I I L I I I I I
(e) Mostly-concurrent incremental collection

(f) On-the-fly collection

I I
I I I

(g) On-the-fly incremental collection

I I I I I I I I

I

time

I

I

Figure 15.1: Incremental and concurrent garbage collection. Each bar rep
resents an execution on a single processor. The coloured regions represent
different garbage collection cycles.

15. 1 . CORRECTNESS OF CONCURRENT COLLECTION 309

and synchronisation is more easily maintained in some phases of collection than others .
Thus, mostly-concurrent collection avoids some synchronisation overhead by assuming that
the mutators are all stopped together for a brief period during each collector cycle, often
at the beginning of the cycle, which may include obtaining stack roots from the stopped
mutators. This is true whether the collection cycle is monolithic (Figure lS . ld) or incre
mental (Figure lS .le) . The (hopefully brief) global stop-the-world phase ensures that all
the mutators are simultaneously aware that a collection cycle has begun.

Relaxing the need for a global stop-the-world phase yields purely concurrent on-the-fly
collection, which executes in parallel with the mutators (Figure lS .lf) , possibly incremen
tally (Figure lS .lg) . The vertical lines indicate that each mutator may need to synchronise
with the collector prior to each collection cycle, even though there is no global stop-the
world phase. l

15.1 Correctness of concurrent collection

A correct concurrent collector must satisfy two properties:

• safety requires the collector to retain at least all reachable objects;

• liveness requires the collector eventually to complete its collection cycle .

Concurrent collectors are correct only insofar as they are able to control mutator and col
lector interleavings. As we shall soon see, concurrent mutator and collector operations
will be specified as operating atomically, allowing us to interpret a sequence of interleaved
operations as being generated by a single mutator (and single collector), without loss of
generality. Any concurrent schedule for executing these atomic operations that preserves
their appearance of atomicity will be permitted, leaving the actual implementation of the
concurrency control for these operations to the discretion of the implementer. Perhaps the
easiest way to preserve atomicity of these operations is to alternate collector and mutator
work by running the collector incrementally, stopping all the mutator threads while each
collector increment runs. Other approaches permit finer-grained synchronisation. Tech
niques for doing so have been reviewed in Chapter 13 .

The tricolour abstraction, revisited

Correctness of concurrent collectors is often most easily reasoned about by considering
invariants based on the tricolour abstraction that the collector and mutator must preserve .
All concurrent collectors preserve some realisation of these invariants, but they must retain
at least all the reachable objects (safety) even as the mutator modifies objects . Recall that:

White objects have not yet been reached by the collector; this includes all objects at the
beginning of the collection cycle. Those left white at the end of the cycle will be
treated as unreachable garbage.

Grey objects have been reached by the collector, but one or more of their fields still need
to be scanned (they may still point to white objects) .

Black objects have been reached by the collector, and al l their fields have been scanned;
thus, immediately after scanning none of the outgoing pointers were to white objects .
Black objects will not be rescanned unless their colour changes.

1 Historically, concurrent collection in general was referred to as 'on-the-fly' [Dijkstra et al, 1976, 1978; Ben
Ari, 1984] . However, on-the-fly has since come to mean more specifically never stopping all the mutator threads
simultaneously.

310 CHAPTER 15. CONCURRENT GARBAGE COLLECTION

The garbage collector can be thought of as advancing a grey wavefront, the boundary be
tween black (was reachable at some time and scanned) and white (not yet visited) objects.
When the collector cycle can complete without mutators concurrently modifying the heap
there is no problem. The key problem with concurrent mutation is that the collector 's and
the mutator 's views of the world may become inconsistent, and that the grey wavefront
no longer represents a proper boundary between black and white.

Let us reconsider the earlier definition of the mutator W r i t e operation, which we can
recast as follows by introducing a redundant load from the field right before the store:

atomic Write (s rc, i, new) :
o l d f- s rc [i]
s rc [i] f- new

The Wri t e operation inserts the pointer s rc ---+new into the field s rc [i] of object s rc . As
a side-effect i t deletes the pointer s rc---+ o l d from s rc [i] . We characterise the operation as
atomic to emphasise that the old and new pointers are exchanged instantaneously with
out any other interleaving of mutator/collector operations. Of course, on most hardware
the store is naturally atomic so no explicit synchronisation is required.

When the mutator runs concurrently with the collector and modifies objects ahead of
the wavefront - grey objects (whose fields still need to be scanned) or white objects (as
yet unreached) - correctness ensues since the collector will still visit those objects at some
point (if they are still reachable) . There is also no problem if the mutator modifies objects
behind the wavefront - black objects (whose fields have already been scanned) - so long
as it inserts or deletes a pointer to only a black or grey object (which the collector has
already decided is reachable) . However, other pointer updates may lead to the mutator 's
and the collector 's view of the set of live objects becoming incoherent [Wilson, 1994] , and
thus live objects being freed incorrectly. Let us consider an example.

The lost obj ect problem

We illustrate the two scenarios under which a white pointer can be inserted behind the
wavefront in Figure 15 .2 . The first scenario in Figure 15 .2a illustrates how the mutator can
hide a white object initially directly reachable from a grey object by inserting its pointer
behind the wavefront and then deleting its link from the grey object. The initial state of
the heap shows a black object X and grey object Y, having been marked reachable from the
roots. White object z is directly reachable from Y. In step 01 the mutator inserts pointer
b from X to z by copying pointer a from grey object Y. In step 02 the mutator deletes
unscanned pointer a from the only unscanned object Y that refers to z . In step 03 the
collector scans the object Y to make it black, and terminates its marking phase. In the
sweep phase, white object z will be erroneously reclaimed, even though it is reachable via
pointer b.

The second scenario in Figure 15.2b shows how the mutator can hide a white object
transitively reachable via a chain of pointers from a grey object by inserting its pointer
behind the wavefront and then deleting some other link in the chain. In this scenario no
pointer to the lost object itself is deleted, unlike the direct case which does delete a pointer
to the lost object. The initial state of the heap shows a black object P and grey object Q,
having been marked reachable from the roots. White object R is directly reachable from Q,
while white object s is transitively reachable from Q via R. In step T1 the mutator inserts
pointer e from P to s by copying pointer d from white object R. In step T2 the mutator
deletes pointer c to R, destroying the path from the only unscanned object Q that leads to
s. In step T3 the collector scans the object Q to make it black, and terminates its marking

15. 1 . CORRECTNESS OF CONCURRENT COLLECTION 311

Dl : Wr i t e (X, b, Read(Y, a)) Tl: Writ e (P, e, Read(R, d))

X

D2: Wr i t e (Y, a, nul.l.) T2: Wri t e (Q, c, null)

D3: s can (Y) T3: s ca n (Q)

(a) Direct: hiding a reachable white object by
dropping a direct link from grey.

(b) Transitive: hiding a transitively reachable
white object by breaking an indirect chain
from grey.

Figure 15.2: The lost object problem: a reachable white object is hidden from
the collector by making it unreachable from any grey object.

With kind permission from Springer Science+ Business Media: Vechev et al [2005],
figures 3--4, pages 584-5.

312 CHAPTER 15. CONCURRENT GARBAGE COLLECTION

phase. In the sweep phase, white object s will be erroneously reclaimed, even though it is
reachable via pointer e .

Wilson [1994] observes that objects can become lost only i f two conditions hold a t some
point during tracing:

Condition 1: the mutator stores a pointer to a white object into a black object, and

Condition 2: all paths from any grey objects to that white object are destroyed.

Inserting a white pointer (that is, a pointer to a white object) into a black object will cause
problems if the collector never encounters another pointer to the white object. It would
mean that the white object is reachable (from the black object, Condition 1), but the col
lector will never notice since it does not revisit black objects . The collector could only
discover the white object by following a path of unvisited (that is, white) objects starting
from an object that the collector has noticed but not finished with (that is, a grey object) .
But Condition 2 states that there is no such path.

The strong and weak tricolour invariants

To prevent live objects from being reclaimed incorrectly, we must ensure that both condi
tions cannot hold simultaneously. To guarantee that the collector will not miss any reach
able objects it must be sure to find every white object that is pointed to by black objects. So
long as any white object pointed to by black objects is also protected from deletion it will
not be missed. It is sufficient for such an object to be directly reachable from some grey
object, or transitively reachable from some grey object through a chain of white objects. In
this case Condition 2 never holds. We say that such an object is grey protected. Thus, we
must preserve:

The weak tricolour invariant: All white objects pointed to by a black object are grey pro
tected (that is, reachable from some grey object, either directly or through a chain of
white objects) .

Non-copying collectors have the advantage that all white pointers automatically turn
into grey /black pointers when their target object is shaded grey or black. Thus, white
pointers in black objects are not a problem because their grey protected white targets are
eventually shaded by the collector - all white pointers in black objects eventually become
black before the collection cycle can terminate .

In contrast, concurrent copying collectors are more restricted because they explicitly
have two copies of every live object at the end of the collection cycle (the fromspace white
copy, and the tospace black copy), at which point the white copies are discarded along
with the garbage. By definition, black objects are never revisited by the collector. Thus,
a correct concurrent copying collector must never allow a white fromspace pointer (to a
white fromspace object) to be stored in a black tospace object. Otherwise, the collector
will complete its cycle while leaving dangling white pointers from black tospace into the
discarded white fromspace. That is, they must preserve:

The strong tricolour invariant: There are no pointers from black objects to white objects.

Clearly, the strong invariant implies the weak invariant, but not the other way round.
Because problems can occur only when the mutator inserts a white pointer into a black
object it is sufficient simply to prohibit that. Preserving the strong tricolour invariant is a
strategy equally suited to both copying and non-copying collectors .

In both the scenarios in the example, the mutator first wrote a pointer to a white object
into a black object (01 /Tl), breaking the strong invariant. It then destroyed all paths to

15. 1 . CORRECTNESS OF CONCURRENT COLLECTION 313

that white object from grey objects (D2/T2), breaking the weak invariant. The result was
that a (reachable) black object ended up pointing to a (presumed garbage) white object,
violating correctness . Solutions to the lost object problem operate at either the step that
writes the pointer to the white object (Dl /Tl) or the step that deletes a remaining path to
that object (D2/T2) .

Precision

Different collector algorithms, which achieve safety and liveness in different ways, will
have varying degrees of precision (as determined by the set of objects they retain at the
end of the collection cycle), efficiency (throughput), and atomicity (degree of concurrency) .
Varying precision means that they may retain some varying superset o f the reachable ob
jects, and hence affects the promptness of reclamation of dead objects. A stop-the-world
collector obtains maximal precision (all unreachable objects are collected) at the expense
of any concurrency with the mutator. Finer grained atomicity permits increased concur
rency with the mutator at the expense of possibly retaining more unreachable objects and
the overhead to ensure atomicity of key operations. It is difficult to identify the minimal
yet sufficient set of critical sections to place in tracing. Vechev et al [2007] shows how this
search can be semi-automated . Unreachable objects that are nevertheless retained at the
end of the collection cycle are called floating garbage. It is usually desirable, though not
strictly necessary for correctness, that a concurrent collector also ensure completeness in
collecting floating garbage at some later collection cycle.

Mutator colour

In classifying algorithms it is also useful to talk about the colour of the mutator roots as
if the mutator itself were an object. A grey mutator either has not yet been scanned by
the collector so its roots are still to be traced, or its roots have been scanned but need
to be rescanned. This means that the grey mutator roots may refer to objects that are
white, grey or black. A black mutator has been scanned by the collector so its roots have
been traced, and will not be scanned again. Under the strong invariant this means that a
black mutator 's roots can refer only to objects that are grey or black but not white. Under
the weak invariant, a black mutator can hold white references so long as their targets are
protected from deletion.

The colour of the mutator has implications for termination of a collection cycle. By
definition, concurrent collection algorithms that permit a grey mutator need to rescan its
roots. This will lead to more tracing work if a reference to a non-black object is found .
When this trace is complete, the roots must be scanned again, in case the mutator has
added to the roots yet another non-black reference, and so on. In the worst case, it may be
necessary for grey mutator algorithms to halt all mutator threads for a final scan of their
roots.

As mentioned earlier, our simplifying assumption for now is that there is only a sin
gle mutator. However, on-the-fly collectors distinguish among multiple mutator threads
because they do not suspend them all at once to sample their roots. These collectors
must operate with mutator threads of different colours, both grey (unscanned) and black
(scanned). Moreover, some collectors may separate a single mutator thread's roots into
scanned (black) and unscanned (grey) portions. For example, the top frame of a thread's
stack may be scanned to make it black, while the remaining stack frames are left unscanned
(grey) . Returning or unwinding into the grey portion of the stack forces the new top stack
frame to be scanned.

314 CHAPTER 15. CONCURRENT GARBAGE COLLECTION

Allocation colour

Mutator colour also influences the colour objects receive when they are allocated, since
allocation results in the mutator holding the pointer to the newly allocated object, which
must satisfy whichever invariant applies given the colour of the mutator. But the allocation
colour also affects how quickly a new object can be freed once it becomes unreachable. If
an object is allocated black or grey then it will not be freed during the current collection
cycle (since black and grey objects are considered to be live), even if the mutator drops
its reference without storing it into the heap. A grey mutator can allocate objects white
and so avoid unnecessarily retaining new objects. A black mutator cannot allocate white
(whether the strong or weak invariant applies), unless (under the weak invariant) there is
a guarantee that the white reference will be stored to a live object ahead of the wavefront
so the collector will retain it. Otherwise, there is nothing to prevent the collector from
reclaiming the object even though the black mutator retains a pointer to it. Note also that,
initially, a new object contains no outgoing references so allocating black is always safe .

Incremental update solutions

Wilson [1994] calls solutions that address 01 /Tl mutations incremental update techniques
because they inform the collector of incremental changes made by the mutator to the set of
objects known to be live, and hence of additional objects that need to be (re)scanned. In
cremental update solutions conservatively treat an object as live (non-white) if a pointer to
it is ever inserted behind the wavefront (into a black object), speculating that the mutator
may yet delete all other paths to the object ahead of the wavefront. Thus, incremental up
date techniques preserve the strong invariant. They use a mutator write barrier to protect
against insertion of white pointers in black objects. In the example above, the write barrier
would re-colour the source or destination of pointer b so that the pointer is no longer black
to white .

When a black mutator loads a reference from the heap it is effectively inserting a pointer
in a black object (itself) . Incremental update techniques can use a mutator read barrier to
protect from insertion of white pointers in a black mutator.

Snapshot-at-the-beginning solutions

Wilson calls solutions that address D2/T2 mutations snapshot-at-the-beginning techniques
since they preserve the set of objects that were live at the start of the collection. They inform
the collector when the mutator deletes a white pointer from a grey or white object (ahead
of the wavefront) . Snapshot-at-the-beginning solutions conservatively treat an object as
live (non-white) if a pointer to it ever existed ahead of the wavefront, speculating that the
mutator may have also inserted that pointer behind the wavefront. This maintains the
weak invariant, because there is no way to delete every path from some grey object to
any object that was live at the beginning of the collection cycle. Snapshot-at-the-beginning
techniques use a mutator write barrier to protect against deletion of grey or white pointers
from grey or white objects.

Snapshotting the mutator means scanning its roots, making it black. We must snapshot
the mutator at the beginning of the collection cycle to ensure it holds no white pointers.
Otherwise, if the mutator held a white pointer that was the only pointer to its referent, it
could write that pointer into a black object and then drop the pointer, breaking the weak
invariant. A write barrier on black could catch such insertions, but degenerates to main
taining the strong invariant. Thus, snapshot collectors operate only with a black mutator.

15.2. BARRIER TECHNIQUES FOR CONCURRENT COLLECTION 315

15.2 Barrier techniques for concurrent collection

Following Pirinen [1998], barrier techniques that maintain one of the two tricolour invari
ants rely on a number of actions to cope with insertion or deletion of pointers. They can:

• Add to the wavefront by shading an object grey, if it was white. Shading an already
grey or black object has no effect.

• Advance the wavefront by scanning an object to make it black.

• Retreat the wavefront by reverting an object from black back to grey.

The only other actions - reverting an object to white or shading an object black without
scanning - would break the invariants. Algorithms 15 . 1 to 15.2 enumerate the range of
classical barrier techniques for concurrent collection.

Grey mutator techniques

We first consider approaches that operate with a grey mutator. All these techniques pre
serve the strong invariant by using an insertion barrieil- when writing references into the
heap to protect from storing white pointers into black objects. Because the mutator is grey
they do not need a read barrier. They are incremental update techniques.

• Steele [1975, 1976) devised the barrier illustrated in Algorithm 15 . 1a . It yields the
most precision of all the techniques because it simply notes the source object being
modified. It does not change any decision about reachability of any object, but re
treats the wavefront by changing the modified source object from black back to grey.
It defers deciding reachability of the target white object until the source object can be
rescanned (the inserted pointer might be deleted before rescanning) . This precision
comes at the cost of progress, since the wavefront is retreated.

• Boehm et al [1991) implemented a variant of the Steele [1975, 1976] barrier which ig
nores the colour of the inserted pointer, as shown in Algorithm 15 .1b . They originally
implemented this barrier using virtual memory dirty bits to record pages modified
by the mutator without having to mediate the heap writes in software, which meant
a less precise barrier that did not originally have the conditional test that the reverted
source object is actually black. Boehm et al use a stop-the-world phase to terminate
collection at which time the dirty pages are rescanned.

• Dijkstra et al [1976, 1978] designed a barrier (Algorithm 15.1c) that yields less preci
sion than Steele's since it commits to shading the target of the inserted pointer reach
able (non-white), even if the inserted pointer is subsequently deleted. This loss of
precision aids progress by advancing the wavefront. The original formulation of this
barrier shaded the target without regard for the colour of the source, with a further
loss of precision. Omitting this extra check allows atomicity to be relaxed, so long
as the store and the shade operations are separately atomic. The store must still be
performed ahead of the shade operation so as to avoid a subtle race when the col
lector transitions from one collector cycle to the next in the middle. If the operations
are inverted then a collector cycle transition right after shading the stored re f grey
can revert it to white and scan the s rc to black before the store, which then creates a
black to white pointer violating the strong invariant [Stenning, 1976] .

2We believe that 'insertion barrier ' is a clearer term for the mechanism than 'incremental update barrier ' .
Likewise, we prefer the term 'deletion barrier' to 'snapshot-at-the-beginning' barrier. '

316 CHAPTER 15. CONCURRENT GARBAGE COLLECTION

Algorithm 15.1: Grey mutator barriers. Algorithm 15.2: Black mutator barriers .

(a) Steele [1975, 1976] barrier

atomic Wri t e (s rc , i , re f) :
s r c [i] f- re f
if i sBlack (s r c)

i f i sWhi t e (re f)
reve rt (s r c)

(b) Boehm et al [199 1] barrier

1 atomic Write (s rc , i , ref) :
s rc [i] f- re f
if i sBlack (s r c)

revert (s r c)

(c) Dijkstra et al [1976, 1 978] barrier

atomic Writ e (s rc , i , re f) :
s r c [i] f- re f
if i sBlack (s r c)

shade (re f)

(a) Baker [1978] barrier

1 atomic Re ad(src, i) :
re f f- src [i]
if i s Grey (s rc)

ref f- shade (re f)
return re f

(b) Appel et al [1988] barrier

1 atomic Re ad(src, i) :
if i s Grey (src)

s c a n (s rc)
return s r c [i]

(c) Abraham and Patel [1987] I Yuasa [1990] barrier

1 atomic W r i t e (s rc, i , re f) :
if i sGrey (s rc) I I i sWhite (s r c)

s h a de (s rc [i])
s r c [i] f- re f

Hellyer et al [2010], doi: 1 0 . 1 1 4 5 / 1 8 0 6 6 5 1 . 1 8 0 6 6 6 6 .

© 2010 Association for Computing Machinery, Inc. Reprinted by permission.

Algorithm 15.3: Pirinen [1998] black mutator hybrid barrier

atomic Rea d (s rc, i) :
re f f- s r c [i]
if i sWh i t e (src)

shade (re f)
return r e f

atomic W r i t e (s rc, i , r e f) :
if i sGre y (s rc)

shade (s rc [i])
w s r c [i] f- ref

15.2. BARRIER TECHNIQUES FOR CONCURRENT COLLECTION 317

Black mutator techniques

The first two black mutator approaches apply incremental update to maintain the strong
invariant using a read barrier to prevent the mutator from acquiring white pointers (that
is, to protect from inserting a white pointer in a black mutator) . The third, a snapshot tech
nique, uses a deletion barrier on pointer writes into the heap to preserve the weak invariant
(that is, to protect from deleting the last pointer keeping an object live that was reachable
at the time of the snapshot) . Under the weak invariant a black mutator can still hold white
references; it is black because its roots do not need to be rescanned, even if it has since
loaded pointers to white objects, because those white objects are protected from deletion
by the write barrier.

• Baker [1978] used the read (mutator insertion) barrier shown in Algorithm 15 .2a .
This approach has less precision than Dijkstra et al, since i t retains otherwise white
objects whose references are loaded by the mutator at some time during the collection
cycle, as opposed to those actually inserted behind the wavefront. Note that Baker's
read barrier was designed originally for a copying collector, where the act of shading
copies the object from fromspace to tospace, so the s hade routine returns the tospace
pointer.

• Appel et al [1988] implemented a coarse-grained (less precise) variant of Baker's read
barrier (Algorithm 15.2b), using virtual memory page protection primitives of the
operating system to trap accesses by the mutator to grey pages of the heap without
having to mediate those reads in software. Having scanned (and unprotected) the
page the trapped access is allowed to proceed . This barrier can also be used with
a copying collector since scanning will forward any fromspace pointers held in the
source object, including that in the field being loaded.

• Abraham and Patel [1987] and Yuasa [1990] independently devised the deletion bar
rier of Algorithm 15.2c. At 02 it directly shades z grey. At T2 it shades R grey so
that s can eventually be shaded. This deletion barrier offers the least precision of
all the techniques, since it retains any unreachable object to which the last pointer
was deleted during the collection cycle. With an insertion barrier at least we know
that the mutator has had some interest in objects retained by the barrier (whether to
acquire or store its reference), whereas the deletion barrier retains objects regardless
of whether the mutator manipulated them. This is evident in that shading R retains
it as floating garbage - it is not otherwise reachable - solely to preserve s . In its
original form, this snapshot barrier was unconditional: it simply shaded the target
of the overwritten pointer, regardless of the colour of the source. Abraham and Patel
exploited this to drive their snapshot barrier using virtual memory copy-on-write
mechanisms.

Completeness of barrier techniques

Pirinen [1998] argues that these barrier techniques cover the complete range of all possible
approaches, with the addition of the read and write barrier combination illustrated in Al
gorithm 15.3. This combines an insertion read barrier on a black mutator with a deletion
barrier on the heap. The combination preserves a weak invariant: all black-to-white point
ers have a copy in some grey object (this is slightly stronger than the basic weak invariant
that requires only a chain of white references from grey to white) . The black mutator can
safely acquire a white pointer from some grey source object since the target object will
eventually be shaded grey when the grey source is scanned, or the write barrier will shade

318 CHAPTER 15. CONCURRENT GARBAGE COLLECTION

the target grey if the source field is modified. The read barrier makes sure that the mutator
never acquires a white pointer from a white object. Thus, every reachable white object has
a grey object directly keeping it alive throughout the collection cycle.

Variations on the listed techniques can be obtained in various ways by short-circuiting
or coarsening some steps, including:

• Shading an object grey can be short-circuited by immediately scanning the object to
make it black.

• A deletion barrier that shades the target of the deleted pointer grey can instead (and
more coarsely) scan the source object containing the deleted pointer to black before
the store .

• A read barrier that shades the target of the loaded pointer grey can instead (and
more coarsely) scan the source object to black before the read. Thus, the read barrier
of Appel et al coarsens that of Baker.

• An insertion barrier that shades the target of the inserted pointer grey can instead
revert the source to grey. This is how the barriers of Steele and Boehm et al gain
precision over that of Dijkstra et al.

Clearly, all strong invariant (incremental update) techniques must at least protect from
a grey mutator inserting white pointers into black, or protect a black mutator from acquir
ing or using white pointers. The strong techniques all do one of these two things and need
not do any more .

We have already argued that weak invariant (snapshot) techniques must operate with
a black mutator. Under the weak invariant, a grey object does not merely capture a single
path to reachable white objects. It may also be a placeholder for a pointer from a black
object to some white object on that path. Thus, the snapshot barrier must preserve any
white object directly pointed to from grey. The least it can do is to shade the white object
when its pointer is deleted from grey.

To deal with white objects transitively reachable via a white path from a grey object
(which may also be pointed to from black) we can either prevent the mutator from obtain
ing pointers to white objects on such paths so it can never modify the path [Pirinen, 1998] ,
or make sure that deleting a pointer from a white object (which may be on such a path) at
least makes the target of the pointer grey [Abraham and Patel, 1987; Yuasa, 1990] .

Thus, all of the barrier techniques enumerated here cover the minimal requirements
to maintain their invariants, but variations on these techniques can be obtained by short
circuiting or coarsening.

Concurrent write barrier mechanisms

In order to preserve either the strong or the weak invariant, write barriers must detect all
writes to object fields of interesting pointers and record either their source, their target or
the target originally stored in the field. References to these grey objects must be recorded in
some data structure. However, concurrently with mutators adding references to the struc
ture, the collector will remove and trace them. It is essential that insertions and removals
be efficient and correct in the face of mutator-mutator and mutator-collector races.

One way to record grey objects is to add them to a log. We considered a variety of
concurrent data structures and efficient ways to manage them in Chapter 13. In this sec
tion, we consider a popular and alternative mechanism: card tables. The basic operation
of card tables for stop-the-world collectors was described in Chapter 1 1 . Here we extend

15.2. BARRIER TECHNIQUES FOR CONCURRENT COLLECTION 319

that discussion to examine how mutator-collector concurrency complicates their operation
and how this can be resolved .

Recall that remembered sets can be implemented by associating a byte in a card table
with each small (say, 512 bytes) contiguous area of the heap . Card tables can be used by
both generational and concurrent collectors. A write barrier records the location of a grey
object by dirtying the byte in the card table that corresponds to the card containing the
object. Concurrently, the collector scans the card table for dirty cards . The collector must
then search any dirty cards, trace grey objects, and clean the card . Clearly, this presents a
race between mutators and collector that raises questions of correctness.

What constitutes an grey entity depends on the style of collector and its write barrier.
In a generational collector, object fields are grey if the object is in an older generation and
the field holds a reference to an object in a younger generation. In a concurrent collector
that uses a Steele-style retreating barrier, an object is grey if it has already been marked
(that is, was once black) but now holds a reference to an unmarked child. With a Dijkstra
style advancing barrier or a Yuasa-style deletion barrier, all objects in a dirty card must be
considered grey. While this barrier may seem very imprecise since it will preserve garbage
neighbours of live objects, note that Abuaiadh et al [2004) found that compacting small
blocks rather than individual objects led to an increase in memory footprint of only a few
percent.

The card table is the concurrent collector 's work list. The collector must scan it looking
for dirty cards and cleaning them until all cards are clean . Since mutators may dirty cards
after the collector has cleaned them, the collector must repeatedly scan the card table. An
alternative might might be to delay processing the card table until a final stop-the-world
phase, but this is likely to cause the concurrent part of the tracing phase to terminate too
soon [Barabash et al, 2003, 2005] .

One-level card tables

The simplest organisation is a one-level card table, as described above. Here, a card may
be in one of three states: di r t y, refining or c l e an . Mutator write barriers will set
the state to be di rty using a simple store instruction rather than an atomic primitive
such as Compa reAndSwap [Detlefs et al, 2002a] . The collector thread sets the status to
re fining before searching the card for interesting pointers and determining a new status
for the card. The simplest would be dirty but Detlefs et al can also 'summarise' cards (see
Chapter 1 1) . The collector now attempts to write the new status back to the card. First,
it checks that the card's status is still re f i n i n g and that no mutator has dirtied the card
while the collector was searching it. If the status is still re f i n i ng, the collector must try
to change the value atomically to the new status, for example with a CompareAndSwap.
If this fails, then a mutator must have dirtied the card concurrently, meaning that it may
contain an unprocessed grey object. Detlefs et al simply leave this card dirty and proceed
to the next dirty card, but one might also try to clean the card again .

Two-level card tables

Because the overwhelming majority of cards are likely to be clean, two-level card tables
reduce the cost of searching the card table for dirty cards. Each entry in a second, coarse
grain card table records the state of 2" fine grained cards. Cleaning a two-level card table
proceeds similarly to cleaning a one-level table. When a dirty coarse-grain card is found,
its status is set to re fining and the corresponding fine-grained cards are searched. Once
all the fine-grain cards are clean, the collector attempts atomically to set the state of the
coarse-grain card to clean . However, there is a subtle concurrency issue here . Because

320 CHAPTER 15. CONCURRENT GARBAGE COLLECTION

write barrier actions are not atomic with respect to the card-cleaning thread, the write
barrier must dirty the fine-grained card before dirtying the corresponding coarse-grained
card, while the collector reads them in the opposite order. We note that obtaining the
proper order may have extra cost on machines that require a memory fence to force it.

Reducing work

One solution that reduces the amount of redundant work done by the collector is to try to
avoid scanning any object more than once [Barabash et al, 2003, 2005] . Here, the authors
defer cleaning cards for as long as there is other tracing work for the collector to do. Their
mostly-concurrent collector uses a Steele-style retreating insertion barrier. Such collectors
must scan marked objects on dirty cards and trace all their unmarked children. The first
technique for reducing the amount of redundant scanning is not to trace through an object
on a dirty card: it suffices to mark the object as it will be traced through when the card is
cleaned. Although objects that are traced through before their card is dirtied will still be
scanned twice, this eliminates rescanning objects that are marked after their card is dirtied.
Barabash et al observe that this can improve the collector 's performance and reduce the
number of cache misses it incurs . Note that although changes in the order of memory
accesses on a weakly consistent platform may cause this optimisation to be missed, the
technique is still safe.

Their second approach is to reduce the number of dirty cards. Recall that it is necessary
for a Steele-style barrier to dirty a card only if the modified object has already been traced
by the collector. If it has not, then the collector will notice it eventually so there is no need
to dirty the card . In other words, there is no need to shade a white object grey. Card
marking is used by collectors because it is a fast, unconditional operation. The question,
therefore, is how this check can be made efficient.

One solution is to mark the card dirty unconditionally but maintain a second table
indicating whether a card contains an object that has been traced. Periodically the dirty
card table can be undirtied as follows, without need for atomic operations assuming the
tables hold bytes rather than bits:

for each di rty card C
if not i s Traced (c)

s e t C l e an (c)
if i s Traced(C)

s e t D i rty (C)

$

Their second solution rests on the observation that for many programs most pointer writes
are made to young objects and that these typically reside in local allocation buffers . Instead
of keeping a second card table, a bit is used for each object to indicate whether it is part of
an active local allocation buffer. If this bit is set, the collector defers tracing the object to a
later time, instead adding the object to a deferred list. When the buffer overflows - the
allocation slow path - the mutator sets all the cards in the buffer to be clean and clears all
the de fer bits for all objects in the buffer. One reason that this is effective is that Barabash
et al found that the collector rarely reaches objects in an active local allocation buffer.

Some care is needed with this solution on weakly consistent platforms. The simplest
approach is to have the collector run a fence after marking a card traced and before trac
ing an object and have the undirtying procedure run a fence between checking whether
each card is dirty and checking whether it is traced (as above) . Note that in both cases
only the collector threads execute the fence. An alternative method is to have the undirty
ing procedure start by scanning the card table, and cleaning and recording (in a list or
an additional card table) all cards that are dirty but have not yet been traced. Next, the

15.3. ISSUES TO CONSIDER 321

undirtying procedure handshakes with the collector, requesting the concurrent collector to
run a synchronisation barrier. When both have run the handshake, the undirtying proce
dure rescans all the cards whose dirty bit was cleared and marks them dirty again if the
card has been traced.

15.3 Issues to consider

Garbage collectors that are incremental (mutator interleaved with collector) or concurrent
(mutator and collector in parallel) have one primary purpose: minimising the collector
pauses observed by the mutator. Whether the pause is due to an increment of collection
work needing to be performed by the mutator, or caused by the mutator having to syn
chronise with (and possibly wait for) the collector to finish some work, incremental / con
current techniques usually trade increased elapsed time (mutator throughput) for reduced
disruption by the collector. In an ideal world, concurrent collectors may be able to reduce
elapsed time by running collector work completely in parallel with the mutator. Unfortu
nately, there is no free lunch. As we have already seen, concurrent collectors require some
level of communication and synchronisation between the mutator and the collector, in the
form of mutator barriers. Moreover, contention between the mutator and collector for pro
cessor time or for memory (including disturbance of the caches by the collector) can also
slow the mutator down.

Conversely, incremental or concurrent collection can improve throughput for some ap
plications . The collectors impose overhead on individual mutator actions (loads or stores)
in order to reduce the pauses observed by the application's users. However, an applica
tion's user may be another program, and this client may be very sensitive to delays. Ossia
et al [2004] offer three-tier transaction processing systems as an example. They point out
that delays for stop-the-world collections may cause transactions to time out and to be
retried. By doing a little extra work (executing write barriers), much more extra work
(reprocessing transactions that timed out) can be avoided.

The concurrent collection techniques that we consider in subsequent chapters each
have their own particular impact on these costs. Concurrent reference counting collectors
impose a particularly high overhead on pointer loads and stores. Concurrent mark-sweep
collectors, which don't move objects, have relatively low overhead for pointer access (vary
ing with the barrier), but they may suffer from fragmentation. Concurrent collectors that
relocate objects require additional synchronisation to protect the mutator from, or inform
the mutator about, objects that the collector moves. Copying collectors also impose addi
tional space overhead that adds to memory pressure. In all concurrent collectors, whether
a read barrier or write barrier is used will affect throughput differently, based on the rela
tive frequency of reads and writes, and the amount of work the barrier performs.

Concurrent mark-sweep collectors typically use a write barrier to notify the marker of
an object to mark from. Concurrent copying and compacting collectors typically use a read
barrier, to protect the mutator from accessing stale objects that have been copied elsewhere.
There is a trade-off between the frequency of barrier execution and the amount of work it
must do. A barrier that triggers copying and scanning will be more expensive than one
that simply copies, which will be more expensive than one that simply redirects the source
pointer. Similarly, performing more work early may result in fewer later barriers needing
to do much work. All of these factors depend on the granularity of work performed, across
a scale from references through objects to pages.

The amount of floating garbage is another factor in the costs of concurrent collection.
Not having to collect floating garbage will allow faster termination of the current collection
cycle, at the expense of additional memory pressure.

322 CHAPTER 15. CONCURRENT GARBAGE COLLECTION

Whether the mutator (threads) must be stopped at the beginning of the collection cycle
(to make sure the collector has seen all the roots) or at the end (to check for termination)
also has an impact on throughput. Termination criteria also affect the amount of floating
garbage.

A further consideration is that most concurrent collectors offer only loose assurances on
pauses and space overhead. Providing the hard bounds on space and time needed for real
time applications means making well-defined progress guarantees for mutator operations
that interact with the heap, and space guarantees that derive solely from knowledge of the
memory allocation footprint of the application.

Incremental or concurrent collection can be particularly desirable when the volume of
live data is expected to be very large. In this case, even stop-the-world parallel collection
using every processor available would lead to unacceptable pause times. However, one
drawback of incremental and concurrent collectors is that they cannot recycle any memory
until the collection cycle is complete; we must provide sufficient headroom in the heap or
give the collector a sufficiently generous share of processor resources (at the expense of
the mutator) to ensure that the mutator does not run out of memory before the collection
cycle completes. We consider garbage collector scheduling when we address the problem
of real-time collection in Chapter 19; there, the problem is particularly acute.

An alternative approach is to use a hybrid generational/ concurrent collection. The
young generation is managed in the usual generational way, stopping the world for each
minor collection. The old generation is managed by a concurrent collector. This has several
advantages. Nursery collections are usually short enough (a few milliseconds) not to be
disruptive. Since most objects tend to die young - the weak generational hypothesis -
we can expect memory to be recycled promptly for further allocation, thus reducing the
space overhead required to avoid running out of memory. There is no need to apply the
concurrent write barrier to objects in the young generation as it is collected stop-the-world:
the generational write barrier in the slow path suffices. Concurrent collectors typically
allocate new objects black, guaranteeing that they will survive a collection even though
most objects will not live that long. However, by allocating new objects generationally,
this problem disappears. Finally, old objects have much lower mutation rates than young
ones [Blackburn and McKinley, 2003] . This is the ideal scenario for an incremental or
concurrent collector since their write barrier is less frequently invoked.

Chapter 16

Concurrent mark-sweep

In the previous chapter we looked at the need for incremental or concurrent garbage collec
tion, and identified the problems faced by all such collectors. In this chapter, we consider
one family of these collectors: concurrent mark-sweep collectors . As we noted before, the
most important issue facing concurrent collection is correctness. The mutator and collector
must communicate with each other in order to ensure that they share a coherent view of
the heap. This is necessary on the mutator 's part to prevent live objects from being hidden
the collector. It is necessary for collectors that move objects to ensure that the mutator uses
the correct addresses of moved objects .

The mark-sweep family are the simplest of the concurrent collectors. Because they
do not change pointer fields, the mutator can freely read pointers from the heap without
needing to be protected from the collector. Thus, there is no inherent need for a read barrier
for non-moving collectors. Read barriers are otherwise generally considered too expensive
for use in maintaining the strong invariant for a non-moving collector, since heap reads by
the mutator are typically much more frequent than writes. For example, Zorn [1990] found
that the static frequencies of pointer loads and stores in SPUR Lisp were 13% to 15% and
4%, respectively. He measured the run-time overhead of inlined write barriers as ranging
from 2% to 6%, and up to 20% for read barriers . The exception to this general rule is
when compiler optimisation techniques can be brought to bear on eliminating redundant
barriers [Hosking et al, 1999; Zee and Rinard, 2002], and to folding some of the barrier
work into existing overheads for null pointer checks [Bacon et al, 2003a] . For this reason,
mark-sweep collectors usually adopt the Dijkstra et al [1976, 1978) incremental update or
Steele [1976) insertion write barriers, or their coarser Boehm et al [1991] variant, or the
snapshot-at-the-beginning Yuasa [1990] deletion write barrier.

16.1 Initialisation

Instead of allowing the mutator to run until memory is exhausted, concurrent collectors
can run even as the mutator is still allocating. However, when to trigger the beginning of a
new marking phase is a critical decision. If a collection is triggered too late, it can happen
that there will insufficient memory to satisfy some allocation request, at which point the
mutator will stall until the collection cycle can complete. Once the collection cycle begins,
the collector 's steady-state work-rate must be sufficient to complete the cycle before the
mutator exhausts memory, while minimising its impact on mutator throughput. How and
when to trigger a garbage collection cycle, ensuring that sufficient memory is available
for allocation to keep the mutator satisfied even as concurrent collection proceeds, and

323

324 CHAPTER 16. CONCURRENT MARK-SWEEP

Algorithm 16.1: Mostly-concurrent mark-sweep allocation

1 New() :
co l l e ctEnough ()
ref f- a l l o cate ()
i f re f = null

e rror " Out o f memo ry"
return re f

s atomic c o l l e ctEnough () :
while beh i nd()

1 o if not rnarkS ome ()
I I return

f* must initialise black if mutator is black *I

reaching termination of the collection cycle so that garbage can be reclaimed and recycled,
all depend on scheduling collection work alongside the mutator.

Algorithm 16 . 1 illustrates the mutator allocation sequence for a concurrent mark-sweep
garbage collector that schedules some amount of collector work incrementally at each al
location (piggy-backed on the mutator thread) in the co l le ct Enough procedure. This
work is synchronised with other concurrent mutator threads executing mutator barriers,
or other collector threads, as indicated by the atomic modifier. The decision as to when
and how much collector work to perform is captured by the utility routine behind, which
makes sure that the mutator does not get so far ahead of the collector that the a l l o cate
routine cannot satisfy the request for new memory.

Algorithm 1 6.2 shows what happens when collection work is triggered . An empty
work list forces initialisation of the collector by scanning the roots to prime the work
list. Assuming that scanning the roots also means stopping and scanning all the mutator
threads, then at this point no mutator thread holds a white reference. Thus, this exam
ple operates in mostly-concurrent mode, with a stop-the-world phase to initiate collection.
The now-grey root objects represent the initial scanning wavefront from which tracing pro
ceeds. Having scanned the roots, mutator threads can now continue either as black (since
they hold no white references) or grey, depending on the mutator barriers being used .

Stopping the world may result in unacceptable pauses. With grey mutator barriers in
place it is possible simply to enable the barriers and defer scanning all the roots until later,
concurrently with the mutator. Section 16.5 describes techniques that relax the need to stop
the mutator threads in order to sample their roots . Still, at least one root must be scanned
to prime the work list and initiate tracing.

16.2 Termination

Termination of the collector cycle for a black mutator is a relatively straightforward pro
cedure. When there are no grey objects in the work list remaining to be scanned then the
collector terminates. At this point, even with the weak tricolour invariant the mutator can
contain only black references, since there are no white objects reachable from grey objects
still held by the mutator (since there are no grey objects). Because the mutator is black
there is no need to rescan its roots .

Termination for a grey mutator is a little more complicated, since the mutator may
acquire white pointers after its roots were scanned to initiate the collection. Thus, the grey
mutator roots must be rescanned before the collector cycle can terminate. Provided that

1 6.3. ALLOCATION 325

Algorithm 16.2: Mostly-concurrent marking

1 shared work l i s t f- empty

3 ma rkS orne () :
if i s Empty (workl i s t)

s can (Root s)
if i s Empt y (workl i s t)

f* marking terminates 4
sweep ()
return false

1 0 /* collection con tinues 4
n re f f- remove (wo rkl i s t)
12 s can (re f)
13 return true
14

I 5 s hade (re f) :
1 6 if not i sMarked (re f)
1 7 setMa rked (re f)
1 s add (work l i st , ref)
1 9

2 0 s c an (r e f) :

/* initiate collection 4
/* Invariant: mutator holds no white references 4

/* Invariant: no more grey references 4

/* eager or lazy sweep 4
f* terminate marking 4

f* continue marking, if still behind 4

2 1 for each f l d in P o i nt e r s (re f)
22 child f- * f ld
23 if ch i l d =/:. null
� shade (child)
25

26 reve rt (re f) :
27 add (work l i st , re f)
28

29 i sWhi t e (re f) :
� return not i sMarked (r e f)
3 1

32 i s Grey (re f) :
n return re f in work l i s t
34

35 i sB l ack (re f) :
� return i sMarked (re f) && not isGrey (re f)

rescanning the mutator roots does not expose any fresh grey objects then the collection
cycle is done. Thus, the example performs rescanning to ensure there are no more grey
references before entering the sweep phase.

16.3 Allocation

Notice that the allocator must initialise the mark state (colour) of the new object according
to the colour of the mutator. If the mutator is black then new objects must be allocated black
(marked) under the strong invariant, unless (under the weak invariant) the new object is
also made reachable from some grey object. This last guarantee is generally difficult to

326 CHAPTER 16. CONCURRENT MARK-SWEEP

make, so black mutators usually allocate black even under the weak invariant [Abraham
and Patel, 1987; Yuasa, 1990] . However, a grey mutator admits a number of alternatives
that several implementations exploit.

Kung and Song [1977) simply allocate black during the marking phase and white oth
erwise. Their choice is guided by the observation that new objects are usually immedi
ately linked to existing reachable objects, at which point their write barrier (unconditional
Dijkstra-style incremental update) would simply shade the object anyway. Moreover, be
cause the new object contains no references it is safe to allocate straight to black and avoid
unnecessary work scanning it for non-existent children.

Steele [1976] chooses to vary the colour of allocation during marking, depending on the
pointer values that are used to initialise the new object. Assuming that the initial values
of a new object's reference fields are known a priori at the time of allocation permits a bulk
test of the colour of the targets of those references. If none of them are white then the
new object can safely be allocated black. Furthermore, if none of them are white then it
is a possible sign that the marker is dose to terminating and that the new object will not
be discarded. Conversely, if any of the initialising pointers is white then the new object
is allocated white . The Steele collector marks mutator stacks last, and scans them from
bottom (least volatile) to top (most volatile), so most cells will be allocated white to reduce
floating garbage.

During sweeping Steele allocates white or black according to where the sweeper is in its
pass through the heap. Allocation is white if the free cell being allocated is from space that
has already been swept, and black otherwise (to prevent the sweeper from misinterpreting
the newly allocated object as free) .

One problem with allocating new objects white instead of black is that the new object
may over time accumulate a long chain of white objects, which if it remains reachable
will eventually need to be traversed before the collection cycle can terminate (consider
what happens when a grey mutator allocates a large new data structure white) . Allocating
black avoids dragging out termination in this way, but at the cost of wasted space since it
defers freeing any newly allocated but now unreachable data until the next collection cycle
[Boehm et al, 1991; Printezis and Detlefs, 2000] . Vechev et al [2006] propose a compromise
solution in which they colour newly allocated objects with a fourth colour: yellow objects
are treated as if they are white for purposes of retention (they may yet die before the cycle
completes), but black with respect to the tricolour invariant. That is, a yellow object will
be shaded straight to black (reachable) without being scanned. Thus, terminating tracing
with a grey mutator that holds yellow references means not needing to trace beyond the
yellow object.

16.4 Concurrent marking and sweeping

So far we have considered running marking concurrently only with the mutator, with
marking and sweeping proceeding in series. Lazy sweeping means that allocation requests
by the mutator may also trigger concurrent sweeping from the previous marking phase,
even as a new collection cycle is running the next marking phase. This can potentially lead
to a confusion about the colours of objects. The trick is to distinguish true garbage white
objects from the previous marking phase (needing to be swept) from (as-yet unmarked)
white objects in the next marking phase (which may yet be marked). Lamport [1976)
pipelines the execution of marking and sweeping phases by introducing a new colour,
purple, to distinguish the former from the latter. At the completion of the marking phase,
all (garbage) white objects are recoloured purple. Sweeping will collect purple objects,
adding them to the free-list (recoloured black or white, depending on allocation colour).

1 6.4. CONCURRENT MARKING AND SWEEPING

tag GC 1: b a s e = O O GC 2: b a s e = 0 1 GC 3: b a s e = 1 0
hue s h a ded value colour value colour value colour

0 0
0 0
0 1
0 1
1 0
1 0

0 ba s e white b a s e + 2 purple ba s e + 1 black
1 b a s e grey b a s e + 2 impossible b a s e + 1 black
0 b a s e + 1 black b a s e white b a s e + 2 purple
1 b a s e + 1 black b a s e grey b a s e + 2 impossible
0 b a s e + 2 purple b a s e + 1 black b a s e white
1 b a s e + 2 impossible b a s e + 1 black b a s e grey

Table 16.1: Lamport [1976] mark colours: 'hue and shaded' encoding of
colours for concurrent marking and sweeping. The colour encoding is:
white as hue=ba s e / shaded=O , grey as hue=ba s e / shade d = l , black as
hue=ba s e + l and purple as hue=ba s e + 2 . Note that a garbage (purple)
object can never be shaded. When all markers and sweepers have finished
there are no grey or purple nodes, so flipping from black to white/ grey and
white to purple is achieved simply by incrementing base modulo 3.

327

Lamport envisions several concurrent marking and sweeping threads, with a collection
cycle proceeding as follows.

1. Wait until all markers and sweepers have finished.

2 . Change all white nodes to purple and all black nodes to white (preferably white to
avoid floating garbage) or grey (in the case the node has been shaded concurrently
by the mutator write barrier).

3 . Shade all roots .

4. Start the markers and sweepers.

Marking ignores all purple objects: the mutator can never acquire a reference to a pur
ple object, so grey objects never point to purple and purple objects are never shaded. Of
course, the difficulty with this approach is that the conversion of white to purple might
require touching colour state associated with all of the garbage objects, which must be
completed before sweeping can begin. Similarly, when starting the marking phase, all
black objects (from the previous cycle) must be recoloured white.

Lamport describes an elegant solution to this problem in which the colours are reinter
preted at step 2 by rotating through a range of colour values. Each object is tagged with
a two-bit basic hue (white, black, purple) plus a one-bit shaded flag. If the hue is white
then setting the shade d flag shades the object grey (that is, a shade d white hue is grey). If
the hue is black then setting the shaded flag has no effect (that is, black hue means black
whether the shade d flag is set or not) . If the hue is purple then the s haded flag will never
be set since garbage objects will not be traced. The sense of the hue bits is determined by a
global variable ba se encoding the value of white (=b a s e}, black (=ba se+l) and purple
(=base+2 } . At step 2 there are no grey or purple nodes because marking and sweeping
have finished, so flipping from black to white and white to purple is achieved simply by
incrementing base modulo 3. Table 16 . 1 shows the three possible values of base encoded
in binary (0 0, 0 1 , 1 0 } and the two possible values of the shaded flag (0 , 1 }, which together
make up the possible colours, along with examples for the three possible values of b a s e .
The entries in the 'value' columns are determined using arithmetic modulo 3 . Note that
the combination hue=base+2 I shaded=! is impossible because purple (garbage) objects
are never shaded grey. Subsequent increments cycle the hue interpretation accordingly.

328 CHAPTER 16. CONCURRENT MARK-SWEEP

To make sure that step 2 does not leave a node grey from one cycle to the next unless
it was recently shaded by a mutator, whenever a marker thread makes a grey node black
it must also clear the shade d flag. Otherwise, the grey node will be retained as floating
garbage. Also, to speed up the identification of garbage, markers and sweepers can take
the opportunity to clear the grey flag whenever they encounter a black object.

Queinnec et al [1989] propose an alternative solution to this problem, using separate
colour information for odd and even collection cycles. Thus, marking in one cycle can
proceed independently of sweeping from the previous cycle because they operate on in
dependent colour state.

16.5 On-the-fly marking

So far, we have assumed that the mutator threads are all stopped at once so that their roots
can be scanned, whether to initiate or terminate marking. Thus, after the initial root scan,
the mutator holds no white references. At this point, the mutator threads can be left to
run as black (so long as a black mutator barrier is employed), or grey (with a grey mutator
barrier) with the proviso that to terminate marking the collector must eventually stop and
rescan grey mutators until no more work can be found. These stop-the-world actions re
duce concurrency. An alternative is to sample the roots of each mutator thread separately,
and concurrently with other mutator threads. This approach introduces complexity be
cause of the need to cope with some threads operating grey and some operating black, all
at the same time, and how it affects termination.

On-the-fly collection never stops the mutator threads all at once. Rather, the collector
engages each of the mutators in a series of soft handshakes: these do not require a single
global hard synchronisation at the command of the collector. Instead, the collector merely
prompts each mutator thread asynchronously, one-by-one, to halt gracefully at some con
venient point. The collector can then sample (and perhaps modify) each thread's state
(stacks and registers) before releasing it on its way. While one mutator thread is stopped
others can continue to run. Furthermore, if stack barriers are used, as described in Sec
tion 11 .5, the collector can restrict its examination of the stopped thread to just the top
active stack frame (all other frames can be captured synchronously with a stack barrier) so
the handshake can be very quick, minimising mutator interruption.

Write barriers for on-the-fly collection

Synchronisation operations for on-the-fly collectors need some care. A common approach
for mostly-concurrent collectors, which stop all threads together to scan their stacks, is
to use a deletion barrier with a black mutator. Furthermore, new objects are allocated
black. This approach simplifies the termination of marking: black stacks do not need to
be rescanned and allocation does not lead to more work for the collector. However, this
approach is not sufficient for an on-the-fly collector, as Figure 16 .1 illustrates . Because
stacks are scanned on the fly, some may be white. The heap is allowed to contain black
objects before all threads have been scanned and before tracing has started because we
allocate new objects black. The deletion barrier is not triggered on stack operations and
there is no insertion barrier, so neither X nor Y is shaded grey. In summary, correct mutator
collector synchronisation for on-the-fly marking is a subtle issue that requires substantial
care on the part of the algorithm designer.

1 6.5. ON-THE-FLY MARKING

Thread 1
stack X / II

Thread 2
stack

(a) The deletion barrier is 'on' . Thread 1
has been scanned, but thread 2 has not. X
has been newly allocated black.

Thread 1
sta c k

/ Thread 2

:T �,. D
(b) X is updated to point to Y; thread 2's
reference to Y is removed . Neither action
triggers a deletion barrier.

Figure 16.1: On-the-fly collectors that allocate black need more than a dele
tion barrier to prevent the scenario of a white object reachable only from a
black object

Doligez-Leroy-Gonthier

329

Using soft handshakes to initiate marking was first used in a mark-sweep garbage collector
tailored for the ML programming language. Dubbed Doligez-Leroy-Gonthier, after the
names of its authors [Doligez and Leroy, 1993; Doligez and Gonthier, 1994], this collector
uses private thread-local heaps to allow separate garbage collection of data allocated solely
on behalf of a single thread, and not shared with other threads. A global heap allows
sharing of objects among threads, with the proviso that the global shared objects never
contain pointers into private heaps. A dynamic escape detection mechanism copies private
objects into the shared heap whenever their reference is stored outside the private heap .
Only immutable objects (the vast majority in ML) can be allocated privately, so making
a copy of one in the shared heap does not require updating all the sources of its pointers
(though it does require copying the transitive closure of reachable objects) . But mutation is
rare in ML so this happens infrequently. These rules permit a private heap to be collected
independently, stopping only the mutator that owns the heap .

Doligez-Leroy-Gonthier uses concurrent mark-sweep collection in the shared heap, to
avoid having to update references from each of the threads. The steady-state concurrent
mark-sweep collector operates in the usual black mutator snapshot mode, employing a
Yuasa-style snapshot deletion barrier. Initiating steady-state collection proceeds using a
series of soft handshakes to transition mutator threads from grey to black, as follows .

The collector and mutator threads each track their own view of the state of the col
lection with a private status variable. To initiate the collection cycle, the collector sets its
status to Sync1 . The mutator threads are then made to acknowledge, and update their
own status, via soft handshakes. Once all have acknowledged the Sync1 handshake, the
collector is said to be in phase Sync1 . Mutator threads ignore handshakes while storing to
a pointer field or allocating, to ensure that these operations first complete, making them
atomic with respect to phase changes . Having acknowledged this handshake, each muta
tor thread now runs with the write barrier in Algorithm 16.3a, which shades both the old
and new values of modified pointer fields, combining both the black mutator Yuasa-style
snapshot deletion barrier and the grey mutator Dijkstra-style incremental update insertion
barrier. Shading by the mutator does not directly place the shaded object into the collec
tor 's work list for scanning (like Kung and Song [1977]) , but rather simply colours a white

330 CHAPTER 16. CONCURRENT MARK-SWEEP

Algorithm 16.3: Doligez-Leroy-Gonthier write barriers. Both ignore the handshake.

(a) The Sync barrier

1 Wr i t esync (s rc, i, new) :
o l d f- s r c [i]
s hade (o ld)
s hade (new)
s r c [i] f- new

(b) The Async barrier

1 WriteAsync (s rc , i, new) :
o l d f- s r c [i]
if not i sBlack (o l d)

s h a de (o l d)
if o l d ::; s c an n e d

d i rt y f- t rue
s r c [i] f- new

object explicitly grey and resets a global di r t y variable to force the collector to scan for the
newly grey object (in the style of Dijkstra et al [1978]) . This avoids the need to synchronise
explicitly between the mutator and the collector (other than for soft handshakes, where
atomicity is accomplished simply by delaying acknowledging the handshake), but does
mean that worst-case termination requires rescanning the heap for grey objects . Because
mutation is rare in ML, this is not a significant impediment. At this point, the grey mutator
threads are still allocating white, as they were before the collection cycle was initiated .

Once all of the mutators have acknowledged the Sync1 handshake the collector moves
to phase Sync2 with another round of handshakes. Because the write barrier is atomic only
with respect to handshakes, it does not impose mutator-mutator synchronisation. This
leaves the possibility that a mutator from before the Sync1 handshake, which is not run
ning the write barrier, could insert some other pointer X into the s rc [i] field right after
the load o l df- s r c [i] . Thus, shade (o l d) pointer will not shade the pointer X that actu
ally gets overwritten by the store s r c [i] f-new . The transition to phase Sync2 avoids such
problems by ensuring that all mutator threads have completed any unmonitored atomic
allocation or write in Async before transitioning to Sync1 . At that point, all mutators will
be running the write barrier (with insertion protection), so even if the mutators interleave
their write barrier operations there will not be a problem. The collector can then safely
move into the steady-state snapshot marking phase, Async. Each mutator thread acknowl
edges the Async handshake by scanning (shading from) its roots for the collector (making
itself black), starting to allocate black, and reverting to the standard snapshot barrier aug
mented with resetting the global d i rty flag (similarly to Dijkstra et al [1978]) to force the
collector to rescan if the shaded object is behind the scanning wavefront, shown in Algo
rithm 16.3b.

Once marking finishes, sweeping commences in series . Like Steele [1975] , the loca
tion of the collector 's sweep pointer determines the mutator allocation colour to minimise
floating garbage: white if allocating from memory already swept (so already noted free in
this cycle), black if not yet swept (to avoid sweeping it to the free-list), and grey if at the
point where the collector is currently sweeping (to avoid the race with the sweeper at the
boundary).

Doligez-Leroy-Gonthier for Java

Domani et al [2000] consider Doligez-Leroy-Gonthier-style collection in the context of Java,
where they offer several improvements to cope with much higher mutation rates, and
language features such as weak references and finalisation. Because Java lacks general
support for immutable objects they do not consider independently-collected thread-local

1 6.6. ABSTRACT CONCURRENT COLLECTION 331

I Phase Collector Mutators Meaning

A sync A sync Async No mutators are executing barriers
Sync1 Async, Sync1 Some mutators may be running the Sync barrier

Sync1 Sync2 Sync1 , Sync2 Some mutators may be black and running the
Async barrier; others are running the Sync barrier

Sync2 Sync2 Sync2 All mutators are running the Async barrier
Async Sync2, Async Some mutators are black, all are running the

Async barrier
A sync Async Async All mutators are black; the collector can complete

marking, scanning and sweeping

Table 16.2: Phases in the Doligez and Gonthier collector

heaps, but simply a global shared heap collected on-the-fly. They also support correct
execution on multiprocessors that have a more relaxed memory model than sequential
consistency, which was assumed for the original Doligez-Leroy-Gonthier implementation.
To avoid rescanning for fresh mutator-shaded grey objects (which are more common in a
mutation-oriented language like Java), Domani et al dedicate an output-restricted double
ended queue to each mutator thread, to which it can enqueue grey objects at one end, while
the collector is able to poll for work from the other end. This minimises synchronisation
between the mutator and collector in the write barriers .

Sliding views

Azatchi et al [2003] offer further improvements to on-the-fly marking by exploiting the
sliding views approach to sampling mutator roots without stopping the world [Levanoni
and Petrank, 1999] . In place of the deque used by Domani et al [2000], the sliding views
approach implements the snapshot deletion barrier by logging to a thread-local buffer the
state of all the fields of an object before it is modified (dirtied) for the first time while the
collector is marking. The buffers are drained via soft handshakes, with marking termi
nated once all the buffers are empty. Like Doligez-Leroy-Gonthier, after the initial hand
shake, and before the deletion barrier can be enabled for each mutator, the mutators also
execute a Dijkstra-style incremental update insertion barrier to avoid propagating pointers
unnoticed before the mutator snapshot can be gathered. These snooped stores also become
mutator roots. The snooped stores are disabled once all threads are known to be logging
the snapshot. Further details of this approach are discussed in Section 18.5.

16.6 Abstract concurrent collection

Concurrent collectors have many common design features and mechanisms, while differ
ing in small but important details. To highlight these similarities and differences we can
adopt a common abstract framework for concurrent garbage collection [Vechev et al, 2005,
2006; Vechev, 2007] . As discussed previously, the correctness of a concurrent collector
depends on cooperation between the collector and the mutator in the presence of concur
rency. Thus, the abstract concurrent collector logs events of mutual interest to the collector
and mutator by appending to the shared list l og. These events are tagged as follows :

• T (s r c, f l d, o l d, new) records that the collector has Traced pointer field f l d of
source object s r c, and that the field initially contained reference o l d which the col-

332 CHAPTER 1 6. CONCURRENT MARK-SWEEP

lector has replaced by reference new. That is, the collector has traced an edge in the
object graph s r c-+old and replaced it with an edge s r c -+ new.

• N (re f) records that the mutator has allocated a New object r e f .

• R (s rc, f l d, o l d) records that the mutator has performed a Read from the heap
by loading the value o l d from field f ld of source object s r c .

• W (s rc, f l d, o l d, new) records that the mutator has performed a Write to the
heap by storing the value new into field f l d of source object s rc which previously
contained value o l d. If f l d is a pointer field then the mutator has replaced an edge
s r c --+ o l d with an edge s r c -+ new.

Each of s rc, f l d, o l d, new are the addresses of the source object and source field, and
old and new target object addresses, respectively. Collector event T captures the fields that
have already been scanned by the mutator. For a non-moving collector tracing does not
modify the references in the heap so o ld=new for T events. Mutator event N captures
allocations by the mutator. Mutator events R, and W capture the fields that the mutator
has accessed or modified.

An abstract concurrent mark-sweep collector is illustrated by Algorithm 16.4, which
takes the abstract tracing collector of Algorithm 6 . 1 and augments it to handle the fact
that the collector executes concurrently with the mutator. The algorithm proceeds in the
usual way, scanning reachable objects by tracing from the roots, before sweeping to reclaim
unreachable objects. Units of scanning work performed by s c a n T r a c i ng i n c occur atom
ically; except to note that sweeping must also be properly synchronised, we omit details
of sweepTrac i ng .

Initialisation of the collector atomically samples the mutator roots using the routine
root s Trac i n g and clears the log. This is performed atomically (stop-the-world) to avoid
the complication of concurrent mutation of the roots by the mutator threads. On-the-fly
collectors can sample the roots without stopping the world.

The collector then proceeds concurrently with the mutator, repeatedly both scanning
objects and adding origins to be considered by the collector due to concurrent writes per
formed by the mutator.

At some point, the loop terminates as a result of some non-deterministic choice (de
noted by (D), when the collector moves to a termination phase in which the remaining
origins and objects to be scanned are processed atomically (that is, preventing the mutator
from writing) . This is performed atomically to prevent concurrent writes during termina
tion, which may be needed to guarantee that the collector will complete its cycle. For some
practical algorithms this atomic termination phase can be eliminated.

The scanT r a c i ngi nc procedure implements the usual collector traversal of the heap,
but incrementally, interleaved with the mutator. It differs from the original procedure
s c anTracing of Algorithm 6 . 1 only in that it atomically records to the log each traced
field and the reference it contains .

The addOr i g i n s procedure reveals that the abstract concurrent collector is parametr
ised by an as-yet-undefined function expose which takes a log prefix and returns a set of
objects that should be considered as additional origins for live references. Different imple
mentations for this function yield different abstract concurrent collector algorithms cor
responding to concrete algorithms in the literature, as discussed further below when we
describe how to instantiate specific collectors. It is the log that permits dealing with con
current mutations that cause reachable objects to be hidden from the scan routine, which
otherwise would remain unmarked.

1 6.6. ABSTRACT CONCURRENT COLLECTION 333

Algorithm 16.4: Mostly-concurrent incremental tracing garbage collection

1 shared l og +-- ()

3 c o l l e c t T r a c i ng i nc () :
atomic

r o o t sTracing (VV)
l og +-- ()

repeat
s canTracing i n c (VV)
addOr igins ()

1 0 until 0
n atomic
1 2 addOr igins ()
1 3 s canTracing i n c (VV)
1 4 sweepTracing ()
15

1 6 s canTr a c i ng i n c (VV) :
11 while not i sEmpty (VV)
1 s s r c +-- remove (VV)
19 if p (s rc) = 0
20 for each f l d in P o i nt e r s (s rc)
2 1 atomic
22 re f +-- * f ld

I* reference count is zero 4

23 log +-- log · T(s r c, f ld, r e f, r e f)
24 if
25
26 p (s rc) +--
27

28 addOri g i n s () :
29 atomic

r e f =f:. null
VV +-- VV + [re f]
p (s r c) + l

30 o r i g i n s +-- expose (l og)
3 1 for each s rc in o r igins
32 VV +-- VV + [s r c]
33

34 New() :
35 re f +-- a l locat e ()
36 atomic
37 p (r e f) +-- 0
38 l o g +-- log · N (re f)
39 return r e f
40

41 atomic W r i t e (s rc, i , new) :
42 if s r c =/:. root s
43 o l d +-- s r c [i]
44 l o g +-- log · W (s r c, & s r c [i] , o ld, new)
45 s r c [i] +-- new

/* increment reference count 4

334 CHAPTER 1 6. CONCURRENT MARK-SWEEP

The collector wavefront

Cooperation between the collector and the mutator guarantees correctness in the presence
of concurrency. The log records the tracing progress of the collector through the heap
the wavefront - in the form of T events . Key to cooperation is how interleaved mutator
events (N, R, and W) are treated, depending on whether they occur to the portion of the
heap already scanned by the collector (behind the wavefront) or not yet scanned (ahead of
the wavefront) . The wavefront itself comprises the set of pending fields still to be scanned
(specifically not the values of the pointers in those fields) . Practical collectors may approx
imate the wavefront more or less precisely, from field granularity up through granularity
at the level of objects to pages or other physical or logical units.

Adding origins

The a ddOr ig i n s procedure uses the log to select a set of additional objects to be consid
ered live, even if the collector has not yet encountered those objects in its trace, since it is
possible that some number of reachable pointers were hidden by the mutator behind the
wavefront. The precise choice of the set of origins is returned by the expose function.

Mutator barriers

The procedures New and W r i t e represent the usual barriers performed by the mutator
(here they are suitably atomic), which in the abstract algorithm coordinate with the collec
tor by appending their actions to the log. Logging New objects allows subsequent mutator
events to distinguish loading/ storing fields of new objects, and loading/ storing references
to new objects. A freshly allocated object always has a unique reference until that refer
ence has been stored to more than one field in the heap . Moreover, it does not contain any
outgoing references (so long as its fields have not been modified, since they are initialised
to null) . This event allows concrete collectors to vary in how they decide liveness of ob
jects that are allocated during the collection cycle (some collectors treat all such objects as
live regardless of their reachability, leaving those that are unreachable to be reclaimed at
the next collection cycle) . Others will retain only those new objects whose references are
stored to live objects.

As usual, the mutator W r i t e operation assigns s r c [i] +-new (with new�null) so the
pointer to destination object new is inserted in field s r c [i] of source object src . Simi
larly, the old pointer o l d previously in field s r c [i] of source object s r c is deleted. When
the source field is behind the collector wavefront then the pointers new I old are insert
ed/ deleted behind the wavefront. Otherwise, the pointers are inserted/ deleted ahead of
the wavefront. Logging Write events captures both the inserted and deleted pointers.

Recall also that the wavefront can be expressed using the tricolour abstraction, where
those objects/ fields ahead of the wavefront are white, those at the wavefront are grey, and
those behind the wavefront are black.

Precision

The abstract concurrent collector of Algorithm 16.4 preserves a fixed level of atomicity (as
specified by the atomic blocks) while instantiating the function expose in different ways
to vary precision. Varying this parameter of the abstract concurrent collector is sufficient
to capture a representative subset of concrete concurrent collectors that occur in the lit
erature, but there are other real collectors that cannot be instantiated directly from Algo
rithm 16.4 since they vary also in what they treat atomically. For example, Algorithm 16.4

1 6.7. ISSUES TO CONSIDER 335

assumes that roots can be obtained atomically from the mutator threads, which implies
that they must be sampled simultaneously perhaps by stopping them all briefly (that is,
Algorithm 16 .4 is mostly-concurrent) .

Instantiating collectors

Instantiating specific concurrent collectors within this framework requires defining a cor
responding expose function. For example, consider a Steele-style concurrent collector that
rescans all objects modified up to and including the wavefront. The wavefront at an object
and field granularity is captured by (last) Trace operations in the log for each object/field.
The objects modified are captured by the s r c component of all the Write records in the
log, and the modified fields by the f ld component. The Steele-style expose function atom
ically rescans modified fields that have already been traced . The traditional implementa
tion tracks the wavefront at the object granularity (s r c component of Trace records) using
per-object mark bits, but the abstract framework highlights that the wavefront might also
operate at the field (f l d) granularity given a mechanism for marking distinct fields . Thus,
one need only rescan modified fields that have already been traced as opposed to whole
modified objects that have already been traced. Moreover, Steele assumes that mutator
thread stacks are highly volatile so expose must rescan them right to the end. Termination
requires that every Trace record have no matching (at the field or object level) Write record
occurring after it in the log.

A classical Dijkstra-style collector that unconditionally shades the target of any refer
ence stored to the heap will expose the new component of all the Write records up to and
including matching Trace records at the wavefront. Note that these new references are
extracted directly from the log without rescanning. Termination is similar to Steele [1976] .

Conversely, a Yuasa-style snapshot collector exposes the o l d component of all the
Write records that have no matching Trace record after them in log. Tracing that stays
ahead of the mutator will successfully append Trace records to the log before the muta
tor can modify the fields they record, offering speedier termination than for incremental
update.

16.7 Issues to consider

Many of the issues facing concurrent mark-sweep garbage collection are common to all
concurrent collectors . Concurrent collectors are without doubt more complex to design,
implement and debug than stop-the-world collectors. Do the demands made of the collec
tor warrant this additional complexity? Or would a simpler solution such as a generational
collector suffice?

Generational collectors can offer expected pause times for most applications of only
a few milliseconds. However, their worst case - a full heap collection - may pause an
application for very much longer, depending on the size of the heap, the volume of live
objects and so on. Such delays may not be acceptable. Concurrent collectors, on the other
hand, offer shorter and more predictable pause times. As we shall see in Chapter 19,
properly specified real-time collectors can guarantee sub-millisecond pause times, but this
typically comes at the cost of significant overhead on both the mutator and the collector. To
bound pause times, the collector must not only be concurrent but also on-the-fly: it must
stop mutators only one at a time in order to process their roots .

Other questions for concurrent mark-sweep collection are the same as those for its stop
the-world counterpart. Non-moving memory managers are vulnerable to fragmentation.

336 CHAPTER 1 6. CONCURRENT MARK-SWEEP

As well as defragmenting the heap, copying and compacting collectors permit bump
pointer allocation which may be faster than free-list allocation and may also provide better
locality for the mutator(s) . On the other hand, mark-sweep collectors make better utilisa
tion of space than copying collectors since they do not require a copy reserve. However,
non-moving concurrent collectors have a further advantage over other concurrent collec
tors: a simpler heap coherency model . All concurrent collectors require mutators to inform
the collector of changes to the topology of the heap in order to prevent a mutator from hid
ing objects from a collector. In addition, collectors that move objects must ensure both that
only one collector thread moves an evacuated object and that it appears to mutators that
all references to a moved object are updated atomically.

Concurrent mark-sweep collection also presents a number of tactical choices to the im
plementer. As with other concurrent collectors, objects may be allocated black, grey or
white. Black mutators require that all objects be allocated black. Grey mutators allow fur
ther possibilities . New objects may be allocated black, grey or white, or the decision may
be varied depending on the phase of the collector, the initial values of the new object's
fields, or the progress of the sweeper.

In the remaining chapters, we examine concurrent copying and compacting collectors
and conclude with collectors that can provide pause time guarantees sufficient for hard
real-time systems, that is, those that must meet every deadline.

Chapter 17

Concurrent copying & compaction

In this chapter we discuss approaches to defragmenting the heap concurrently with the
mutator, relocating live objects either by concurrent copying or by concurrent compaction.
Here we consider how the mark-compact approaches of Chapter 3 and the copying ap
proaches of Chapter 4 extend to operate concurrently with the mutator.

We focus initially on collection techniques based on copying (evacuating or scaveng
ing) reachable objects out of a fromspace into a tospace, after which the fromspace can be
reclaimed. Recall that when scanning object fields the collector must convert all fromspace
pointers to tospace pointers, replacing each fromspace pointer with the forwarding ad
dress of its fromspace target, copying the fromspace target the first time it is encountered.

Concurrent copying collectors must not only protect the collector against mutation but
also protect the mutator against concurrent copying. Moreover, concurrent updates by the
mutator must be propagated to the copies being constructed in tospace by the collector.

For copying collectors, a black mutator must by definition hold only tospace pointers.
If it held fromspace pointers then the collector would never revisit and forward them, vi
olating correctness. This is called the black mutator tospace invariant: the mutator operates
at all times ahead of the wavefront in tospace. Similarly, a grey mutator must by definition
hold only fromspace pointers at the beginning of the collector cycle. In the absence of a
read barrier to forward a fromspace pointer to the tospace copy, the grey mutator cannot
directly acquire tospace pointers from fromspace objects (since the copying collector does
not forward pointers stored in fromspace objects) . This is called the grey mutator fromspace
invariant . Of course, for termination of a copying algorithm, all mutator threads must end
the collection cycle holding only tospace pointers, so any copying collector that allows
grey mutator threads to continue operating in fromspace must eventually switch them all
over to tospace by forwarding their roots . Moreover, updates by the mutator in fromspace
must also be reflected in tospace or else they will be lost.

17.1 Mostly-concurrent copying: Baker's algorithm

Maintaining a tospace invariant for all mutator threads is perhaps the simplest approach
to concurrent copying because it guarantees that the mutator threads never see objects that
the collector is yet to copy, or is in the middle of copying. Establishing the tospace invariant
in a mostly-concurrent world requires stopping all the mutator threads (atomically) to
sample and forward their roots (copying their targets) at the beginning of the collection
cycle. At this point, the now-black mutators contain only (grey) tospace pointers, but the
(unscanned) grey targets will still contain fromspace pointers. Baker's [1978] black mutator

337

338 CHAPTER 1 7. CONCURRENT COPYING & COMPACTION

read barrier was first formulated for incremental collection to protect against a mutator
acquiring one of these fromspace pointers, and subsequently extended by Halstead [1985]
for concurrent copying. The read barrier has the effect of presenting the illusion to the
mutator threads that the collection cycle has completed, by preventing them from crossing
the collector wavefront boundary between tospace and fromspace.

Baker-style concurrent collection is illustrated in Algorithm 17.1, as a revision of the
non-concurrent copying algorithm of Algorithm 4.2. Notice that the read barrier needs to
trigger only when loading from a grey tospace object (ahead of the collector wave-front) .
Only then is the f o rward operation needed to ensure that the loaded reference is to a
tospace object, copying any uncopied fromspace object as necessary. As specified here,
synchronisation between mutator and collector is relatively coarse-grained (at the level of
objects) : the collector atomic block scans the next grey object, while the mutator atomic
read barrier forwards any reference loaded from a grey object. The atomic blocks ensure
that a mutator thread can never load a reference from an object that is in the middle of
being scanned (to turn it from grey to black).

As presented in Algorithm 17 .1 , atomicity of the Rea d operation ensures that the mu
tator sees the correct state of the s r c object (grey or not) and the target object (forwarded
or not), as well as allowing the mutator to copy the target object if it is in fromspace, with
out interfering with ongoing copying by the collector in proce s s . Thus, the mutator 's
atomic Read operation may incur overhead proportional to the size of the object being
copied. It is possible to obtain finer-grained atomicity by carefully synchronising each of
these operations more carefully with the collector.

One approach is to allow finer-grained synchronisation using a work list holding field
addresses rather than object references. A difficulty then is how to distinguish grey fields
from black fields. The problem is ensuring that the wavefront is easily determined by the
mutator. At the granularity of objects it is simple enough to set a grey bit in the header of
each grey object, but for fields there is not usually a cheap place to store this information.
However, with Cheney scanning the s c a n pointer can be advanced (atomically) as each
field is scanned, so black fields lie behind the scan pointer and grey fields in front. In this
case, the read barrier might look something like:

atomic Rea d (s rc , i) :
r e f +- s r c [i]
if ref :1 null && s c an < & s rc [i]

ref +- f o rwa rd (re f)
return r e f

I* s r c [i l is grey *I

Of course, this description leaves out all the machinery needed to advance the wave
front atomically through each of the fields. We will see techniques for achieving this
finer-grained processing in Chapter 19, where minimising interruptions by the collector
becomes important for real-time systems.

Mostly-concurrent, mostly-copying collection

Mostly-concurrent collection also naturally applies to mostly-copying collections. Recall
that a mostly-copying collector must treat ambiguous roots conservatively, pinning all ob
jects referenced by ambiguous roots . The collector is free to move the remaining objects
not directly referenced by ambiguous roots . It is straightforward to use the brief stop-the
world phase of a mostly-concurrent collector to mark (and pin) all the objects referenced
by the ambiguous roots in the mutator thread stacks and registers. At this point all the mu
tator threads are black, and a Baker-style read barrier will ensure that the mutator threads
never subsequently acquire references to uncopied objects .

17. 1 . MOSTLY-CONCURRENT COPYING: BAKER'S ALGORITHM

Algorithm 17.1: Mostly-concurrent copying

1 shared work l i st f- empty

3 c o l l e ct () :
atomic

f l i p ()

10

II

12

13

14

for each f l d in Root s
proce s s (f l d)

loop
atomic

if i sEmpt y (work l i s t)
break

re f f- remove (wo rk l i st)
s can (re f)

I S f l i p () :
16 f romspace, t o space f- t o space , f romspace
17 f ree , t op f- t o space, t o spa ce + extent
18

19 s c a n (t oRe f) :
20 for each f l d in P o i nt e r s (t oRe f)
21 proce s s (f l d)
22
23 proce s s (f l d) :
24 fromRe f f- * f l d
� if fromRe f � null

339

/* exit loop 4

26 * f l d f- forward (fromRe f) /* update with tospace reference 4
27

28 forwa rd (f romRe f) :
29 t oRe f f- forwardingAddre s s (f romRe f)
30 if t oRe f = null
31 t oRe f f- copy (f romRe f)
32 return t oRe f
33

34 copy (fromRe f) :
� t oRe f f- f ree
36 free f- free + s i z e (fromRe f)
� if free > t op
38
39

40

41

42

43

e r ror " Out o f memory "
move (fromRe f, t oRe f)
fo rwa rdingAddre s s (f romRe f) f- t oRe f
add(wo r k l i st , t oRe f)
return t oRe f

44 atomic Rea d (s rc, i) :
4s ref f- s rc [i]
46 if i s Grey (s rc)
47 re f f- forward (re f)
48 return re f

I* not copied (not marked) 4

340 CHAPTER 17. CONCURRENT COPYING & COMPACTION

DeTreville [1990] used this approach for concurrently collecting Modula-2+ and subse
quently for Modula-3 [Cardelli et al, 1992], both systems-oriented programming languages
whose compilers were not sophisticated enough to generate accurate stack maps . Also,
because their compilers did not emit an explicit barrier for heap accesses, DeTreville ap
plied an Appel et al [1988] read barrier to synchronise the mutator with the collector using
virtual memory page protection. Detlefs [1990] used the same technique for C++, modi
fying the AT&T C++ compiler to derive automatically the accurate pointer maps for heap
objects needed to allow copying of objects not referenced directly from ambiguous roots.

Subsequently, Hosking [2006] replaced use of coarse-grained virtual memory page pro
tection as the read barrier mechanism with compiler-generated object-grained read barrier
support. The motivation for this was the difficulty of managing page protections atomi
cally in the presence of mutator threads that are preemptively scheduled by the operating
system. Because the read barrier is needed only during the copying phase of collection,
after all the mutator threads have been stopped to scan their ambiguous roots and make
them black, it is possible to avoid expensive atomic instructions in the fast path of the
barrier that checks if the source object is grey. Atomic operations are thus needed only to
ensure atomicity of the forwarding operation.

17.2 Brooks's indirection barrier

An alternative approach to requiring a tospace invariant i s to allow the mutator to make
progress without concern for the wavefront. Brooks [1984] observes that if every object
(whether in fromspace or tospace) has a non-null forwarding pointer (either to its from
space original or to its copy in tospace) then the test on the s r c object in the read barrier
can be eliminated. A fromspace object that has not yet been copied will have an indirec
tion field that points to itself. When copying an object, the fromspace indirection field is
atomically updated to refer to the tospace copy. The tospace copy has an indirection field
that points to itself. All heap accesses, both reads and writes, of pointers, non-pointers and
mutable values in header words, now always require an unconditional dereference oper
ation to follow any indirection pointer to the tospace copy if one exists. Thus, the Read
barrier for the mutator i s rewritten by Brooks as in Algorithm 17.2.

Now the only problem is that the read barrier can still read a field ahead of the wave
front that might refer to an uncopied fromspace object. Fortunately, the ubiquitous indi
rection field relaxes the need for the tospace invariant imposed by Baker so the mutator is
allowed to operate grey and hold fromspace references. To ensure termination Brooks im
poses a Dijkstra-style Write barrier to prevent the insertion of fromspace pointers behind
the wavefront as in Algorithm 1 7.2 .

Because mutator threads now operate grey, once copying is finished they need a final
scan of their stacks to replace any remaining unforwarded references. The alternative, as
performed in the original incremental Brooks collector, is simply to scan the thread stacks
and registers of each mutator thread after each collector increment, in order to redirect any
references they may hold to copied objects before they can resume.

17.3 Self-erasing read barriers

Baker-style collectors require a read barrier to preserve their black mutator invariant. Read
barriers are often considered to be more expensive than write barriers since reads are more
prevalent than writes. Furthermore, read barriers are conditional : given a Read (s r c,i) ,
they must test whether s rc [i] is in tospace and evacuate it if not. Cheadle et al [2004]

17.4. REPLICATION COPYING 341

Algorithm 17.2: Brooks's indirection barriers

1 atomic Read (s r c, i) :

s r c f- forwa rdi ngAddre s s (s r c)
return s r c [i]

atomic W r i t e (s r c, i , re f) :

s r c f- forwa rdi ngAddre s s (s r c)
if i s B l ack (s r c)

r e f f- f o rward (re f)
s r c [i] f- re f

/* s r c is behind wavefront in tospace 4

eliminate this test and eliminate all overheads in accessing a black tospace object for a
Baker-style incremental copying collector in the Glasgow Haskell Compiler (GHC). The
first word of every object (closure) in GHC points to its entry code: the code to execute (en
ter) when the closure is evaluated. They provide two versions of this code. In addition to
the standard version, a second version will scavenge the closure before entering the stan
dard code. Let us see how this scheme operates. When the collector is off, the entry-code
word points to the standard, non-scavenging code. However, when an object is copied to
tospace, this word is hijacked and set to point to the self-scavenging code. If the object,
now in tospace, is entered, the self-scavenging code is executed first to copy the object's
children to tospace. Then the original value of the entry-code word is reinstated. Finally,
the standard version of the code is entered . The beauty of this scheme is that if the closure
is evaluated in the future then its standard code will be entered unconditionally: the read
barrier has been erased. The cost of this scheme is some duplication of code: Cheadle et al
found the overhead to be 25% over that of a stop-the-world copying collector. In [Cheadle
et al, 2008] they applied this technique to flip method-table pointers in the Jikes RVM Java
virtual machine. To do so they have to virtualise most accesses to an object (all method
calls and accesses to fields unless they are static or private). However, they were able
to recoup some of this cost by using the run-time compiler to inline aggressively.

17.4 Replication copying

The Brooks indirection barrier imposes a time and space penalty. Following an indirection
pointer adds (bounded) overhead to every mutator heap access (both reads and writes,
pointers and non-pointers), and the indirection pointer adds an additional pointer word
to the header of every object. It has the advantage of avoiding the need for Baker's tospace
invariant which forces the mutator to perform copying work when loading a fromspace
reference from the heap, while preserving the essential property that accesses (both reads
and writes) go to the tospace copy whenever one is present. This has the important result
that heap updates are never lost because they occur either to the fromspace original before
it is copied or to the tospace copy afterwards. l

Replication copying collectors [Nettles et al, 1992; Nettles and O'Toole, 1993] relax this
requirement by allowing the mutator to continue operating against fromspace originals
even while the collector is copying them to tospace. That is, the mutator threads obey a
fromspace invariant, updating the fromspace objects directly, while a write barrier logs all

1 Atomic copying of an object and installation of the forwarding address from the old copy to the new one is
not always simple.

342 CHAPTER 17. CONCURRENT COPYING & COMPACTION

updates to fromspace objects to record the differences that must still be applied to their
tospace copies. In other words, replication copying collectors allow the state of the tospace
copy to lag behind that of its fromspace original, so long as by the time the collector is fin
ished copying, but before it can discard fromspace, all mutator updates have been applied
from the log to the tospace copy and all mutator roots have been forwarded. Thus, the
termination condition for collection is that the mutation log is empty, the mutator 's roots
have all been scanned, and all of the objects in tospace have been scanned.

Concurrent replication copying requires synchronisation between the mutator and col
lector via the mutation log, and when updating the roots from the mutators. Thread-local
buffers and work stealing techniques can minimise the synchronisation overhead when
manipulating the mutation log [Azagury et al, 1999] . The collector must use the muta
tion log to ensure that all replicas reach a consistent state before the collection terminates.
When the collector modifies a replica that has already been scanned it must rescan the
replica to make sure that any object referenced as a result of the mutation is also replicated
in tospace. Termination of the collector requires that each mutator thread be stopped to
scan its roots. When there are no more objects to scan, the mutator log is empty, and no
mutator has any remaining references to uncopied objects, then the collection cycle is fin
ished . At this point all the mutator threads are stopped together briefly to switch them
over to tospace by redirecting their roots.

The resulting algorithm imposes only short pauses to sample (and at the end redirect)
the mutator roots: each mutator thread is stopped separately to scan its roots, with a brief
stop-the-world phase at the end of the cycle to switch all the threads over to tospace.

The downside to replication copying is that every mutation of the heap, not just point
ers, needs to be logged by the mutator threads. This imposes a much higher write barrier
overhead than for traditional pointer-only write barriers, and the mutation log can become
a bottleneck. For languages that discourage mutation, such as the functional language ML
used by Nettles and O'Toole, this is less of an issue so performance does not suffer.

17.5 Multi-version copying

Nettles and O'Toole [1993] still require global stop-the-world synchronisation of the mu
tator threads to transition them to tospace. Their algorithm is not lock-free because no
mutator can make progress while this transition occurs. Herlihy and Moss [1992] dispense
with the need for a global transition. They adapt Halstead's multiprocessor refinement
of Baker's [1978] algorithm, which divides the heap into multiple per-processor regions.
Each processor has its own fromspace and tospace, and is responsible for evacuating into
its own tospace any fromspace object it discovers while scanning. Halstead uses locking to
handle races between processors that compete to copy the same object, and for updates to
avoid writing to an object while it is being evacuated. He also retains global synchronisa
tion to have all the processors perform the f 1 ip into their tospace before discarding their
fromspace. To eliminate this global synchronisation, Herlihy and Moss decouple from
space reclamation from the f l ip . They divide each processor region into a single tospace
plus multiple (zero or more) fromspaces. As copying proceeds, multiple fromspace ver
sions of an object can accumulate in different spaces. Only one of these versions is current
while the rest are obsolete .

Each processor2 alternates between its mutator task and a scanning task that checks
local variables and its tospace for pointers to fromspace versions. When such a pointer

2Herlihy and Moss use the term process for what might now be called a thread, but we continue to use processor
here to match Halstead [1985) and to emphasise that the heap regions should be thought of as per-processor.

17.5. MULTI-VERSION COPYING 343

is found, the scanner locates the object's current version. If that version is in a fromspace
then it copies it to a new current version in its tospace (the old version is now obsolete) .

In this way, the processors cooperate to move objects from fromspaces to tospaces, and
to redirect reachable pointers to the tospaces. Each processor is responsible for scanning its
own tospace for fromspace pointers, and for copying any fromspace object it finds (includ
ing objects in fromspaces of other processors) that does not have a current tospace copy
in some processor. A processor can f l i p at any time during its mutator task (when its
tospace is full and so long as it has sufficient free space to allocate a new tospace), but not
in the middle of a scan. It cannot free its fromspaces until it can be sure no other processor
holds references to any of its fromspace objects.

To manage versions, Herlihy and Moss maintain a forwarding pointer field next at
all times in each object, so that each obsolete fromspace version refers to its next version,
terminating at the current version which has a null forwarding pointer. When copying a
fromspace object into its own tospace, a scanning processor atomically installs the tospace
copy at the end of the version chain using C ompa reAn dSwap, making it current. Thus,
every mutator heap access must traverse to the end of the chain of versions before per
forming the access. Moreover, to preserve lock-freedom while ensuring that heap updates
are not lost, every store into an object creates a new version of the object in the mutat
ing processor 's tospace, using Compa r eAndSwap to make it current. Thus, scanning and
copying require no global synchronisation, while preserving all mutator updates.

A processor owning fromspaces (the owner) can discard them only if no other scanning
processor (scanners) holds any of its fromspace pointers . A scan is clean with respect to
a given owner if the scan completes without finding any pointers to versions in any of
its fromspaces, otherwise it is dirty. A round is an interval during which every processor
starts and completes a scan. A clean round is one in which every scan is clean and no
processor executes a f l i p . After a processor executes a f l i p the resulting fromspace can
be reclaimed after completion of a subsequent clean round .

An owner detects that another scanner has started and completed a scan using two
atomic handshake bits, each written by one processor and read by the other. Initially, both
bits agree. To start a f l i p, the owner creates a new tospace, marks the old tospace as
a fromspace, and inverts its handshake bit. At the start of a scan, the scanner reads the
owner 's handshake bit, performs the scan, and sets its handshake bit to the value read
from the owner 's. Thus, the handshake bits will agree once the scanner has started and
completed a scan in the interval since the owner 's bit was inverted.

However, an owner must detect that all processes have started and completed a scan,
and every processor is symmetrically both an owner and a scanner, so the handshake bits
are arranged into two arrays. An owner array contains the owner handshake bits, indexed
by owner processor. A 2-dimensional scanner array contains the scanner handshake bits,
with an element for each owner-scanner pair. Because a scan can complete with respect to
multiple owners, the scanner must copy the entire owner array into a local array on each
scan. At the end of the scan, the scanner must set its corresponding scanner bits to these
previously saved values. An owner detects that the round is complete as soon as its owner
bit agrees with the bits from all scanners. An owner cannot begin a new round until the
current round is complete.

To detect whether a completed round was clean the processors share an array of dirty
bits, indexed by processor. When an owner executes a f l ip, it sets the dirty bit for all
other processors. Also, when a scanner finds a pointer into another processor 's fromspace
it sets that processor 's dirty bit. If an owner 's dirty bit is clear at the end of a round then
the round was clean, and it can reclaim its fromspaces. If not, then it simply clears its dirty
bit and starts a new scan. By associating dirty bits with fromspaces rather than processor

344 CHAPTER 17. CONCURRENT COPYING & COMPACTION

Algorithm 17.3: Herlihy and Moss [1992] owner update in place

1 Wr i t e Local (a, next, i , v) :

s e q +- (next + 1) % 2

s e q (a) +- s e q

1 0

i ndex (a) +- i

v a l u e (a) +- v

if CornpareAndS e t (& ne xt (a) , n e xt, s e q)
s can (a [i])
a [i] +- v

else
W r i t e (a, i, v)

$

regions, and having scanners set the dirty bit for the target fromspace when they find a
pointer, it is also possible to reclaim fromspaces individually rather than all at once.

Herlihy and Moss prove safety and liveness for their algorithm, but they do not explore
performance of an actual implementation. The liveness argument relies on the observation
that if each processor always eventually scans then some processor always eventually re
claims its fromspaces . At worst, because each processor will eventually exhaust its free
spaces, further flips will cease, and all processors will eventually focus on scanning until a
clean round ensues. Of course, this resource exhaustion has the effect of causing blocking
in the system as a whole .

Extensions to avoid copy-on-write

The novelty of this multi-versioning algorithm is that it is entirely lock-free. Its downside
is the need to create a new version on every heap update, though this may be useful on a
non-uniform memory architecture multiprocessor to improve locality. Herlihy and Moss
consider several alternatives to avoiding versioning on every update:

Update in place with CompareAndSwap2. The first extension assumes the availability
of the CornpareAndSwap2 operator which allows both performing the update and ensur
ing that the forwarding pointer next remains null as a single atomic operation. Un
fortunately, CornpareAndS w ap2 is not widely implemented on modern multiprocessors.
Transactional memory might be a viable alternative; in fact, this algorithm inspired the
work leading to Herlihy and Moss.

Owner update in place. Another approach simply uses Cornpa reAn d S wap but it re
quires additional fields in the header of object a : s e q (a) is a modulo two sequence num
ber, i ndex (a) is the index of the slot being updated and v a l ue (a) is the new value for
that slot. Also, the forwarding pointer field next (a) is permitted to hold a sequence
number, in addition to a pointer or null (this is easy enough to achieve by tagging the
forwarding pointer field with a low bit to distinguish pointers to suitably aligned ob
jects from a sequence number) . There need only be two values for sequence numbers:
if s e q (a) =next (a) then the current update is installed, and otherwise it is ignored.

To perform a store using the full write barrier, a processor chains down the list of ver
sions until it finds the current version (one with null or a sequence number stored in its
next field) . If the current version is local, then the processor performs the W r i teLoca l op
eration illustrated in Algorithm 17.3. This takes the current version a, the observed n e x t

1 7.6. SAPPHIRE 345

field (either null or a sequence number), the index i of the slot to be modified, and the
new value of the slot v. It then uses CornpareAndSwap to install the new sequence number
in the next field. If successful, then the processor performs a deletion barrier to scan any
pointer overwritten by the store (this preserves the invariant that scanning has inspected
every pointer written into tospace), before performing the store . Otherwise, the processor
locates the newer version and retries the update by invoking the full write barrier. Having
the owning process update in place is well-suited to a non-uniform memory architecture
where it is more efficient to update local objects .

If the object is remote then the new owner makes a local tospace copy as before, ex
cept that after making the copy, but before performing the store, it must check whether
next (a) = s eq(a) . If they are equal, then it must first complete the pending update, per
forming the deletion barrier to scan the slot indicated by the index field and storing the
value from the value field into that slot. The same action must be performed when the
scanner evacuates an object into tospace. This ensures that any writes performed on the
original object while it is being copied are linearised before writes performed to the copy.

Locking update in place. Finally, there is the alternative of giving up on lock-freedom
and using CornpareAndSwap to lock the object while it is updated. As before, only the
owner of the current version may update in place. The owner locks an object by :

1 . using CornpareAndSwap to lock the object by installing a distinguished locked value
in its next field;

2. scanning the pointer (if any) being overwritten by the store;

3. performing the update;

4. scanning the pointer (if any) being stored; and

5. unlocking the object by setting next back to null.

Since the owner is the only processor that updates the object in place, there is no need to
synchronise with the scanner. The deletion barrier in step 2 ensures that pointers possibly
seen by other processors will be scanned. The insertion barrier in step 4 ensures that if the
object has already been scanned then the new pointer will not be mistakenly omitted.

17.6 Sapphire

A problem with symmetric division of the heap into independently collected regions per
processor as done by Halstead [1985] and Herlihy and Moss [1992] is that it ties the heap
structure to the topology of the multiprocessor. Unfortunately, application heap structures
and thread-level parallelism may not map so easily to this configuration. Moreover, one
processor can become a bottleneck because it happens to own a particularly large or knotty
portion of the heap, causing other processors to wait for it to complete its scan before
they can discard their fromspaces, so they may end up stalling if they have no free space
in which to allocate. It may be possible to steal free space from another processor, but
this requires the ability to reconfigure the per-processor heap regions dynamically. These
issues were discussed earlier in Chapter 14. Instead, non-parallel concurrent collectors
place collector work asymmetrically on one or more dedicated collector threads, whose
priority can easily be adjusted to achieve a balance of throughput between mutator and
collector threads.

346

1 MarkCopy:
Mark
Allocate
Copy

6 Mark:
PreMark

CHAPTER 17. CONCURRENT COPYING & COMPACTION

Algorithm 17.4: Sapphire phases

/* mark reachable objects 4
/* allocate tospace shells */

/* copy fromspace con tents into tospace shells 4

RootMark
HeapMark/StackMark

/* install Mark phase write barrier */
/* blacken global variables 4

/* process collector mark queue 4
1 0

n Flip:
1 2 PreFlip
13 HeapFlip
14 ThreadFlip
1s Reclaim

/* install Flip phase write barrier 4
/*flip all heap fromspace pointers to tospace */

/*flip threads, one at a time 4
/* reclaim fromspace */

Sapphire [Hudson and Moss, 2001 , 2003] is a concurrent copying algorithm designed
to work well in the presence of a large number of mutator threads on small- to medium
scale shared memory multiprocessors . It extends previous concurrent replication copying
algorithms to allow one thread at a time to f 1 ip from operating in fromspace, as opposed
to having to stop them to transition them all at once over to tospace. This minimises the
amount of time that any given application thread may need to block to support the col
lector. To cope with mutators operating in both fromspace and tospace at the same time,
Sapphire requires that they update both the fromspace and tospace copies of an object,
when both exist. Sapphire also requires that new objects created by the mutator be allo
cated black in a separate newspace in the heap that survives the current collection but is
not scanned like tospace. This helps guarantee termination of the collection cycle, since
fromspace (and hence tospace) are bounded in size. Because new objects are not scanned,
they are treated as black (behind the wavefront), and subject to an installation write barrier
that scans and forwards any pointer as it is written.

Collector phases

Sapphire has two major groups of phases (outlined in Algorithm 17.4) .

MarkCopy: The first group of phases marks the objects directly reachable from global
variables and mutator thread stacks and registers and copies them into tospace. Dur
ing these phases the mutators all read from the originals in fromspace, but also must
mirror their writes to the tospace copies. The fromspace and tospace copies are kept
loosely coherent by relying on the programming language memory model (in this
case for Java [Manson et al, 2005; Gosling et al, 2005], but which should also apply
to the forthcoming memory model for C++ [Boehm and Weiser, 1988]) to avoid a
barrier on reads of non-volatile fields (volatile fields require a read barrier) . This
means the updates to each copy need not be atomic or simultaneous. Rather, a Java
application need only perceive that the values in the copies cohere at application
level synchronisation points. Any changes made by a mutator thread to fromspace
copies between two synchronisation points will be propagated to the tospace copies
before passing the second synchronisation point. If all threads are at synchronisation

17.6. SAPPHIRE

Algorithm 17.5: Sapphire pointer equality

(a) Fast path

t pointe rEQ (p, q) :
i f p q return true
if q = null return false
if p = null return false
return f l ipP o i nt e rEQ(p, q)

f l ipP o i nte rEQ(p, q) :
pp +- fo rward (p)
qq +- forward(q)
return pp = qq

(b) Flip phase

/* called only during Flip phases */

(c) Pointer forwarding

f o rwa rd(p) :
pp +- toAddre s s (p)
if pp = null

pp +- p
return pp

/* p is a non - null pointer 4
/* pp is null if p is in tospace */

347

points, then the fromspace and tospace copies will be consistent with one another.3

This is important during the second group of phases, when mutators can observe
both fromspace and tospace copies .

Flip: The second group of phases forwards pointers in global variables and thread stacks
and registers, flipping them one at a time into tospace. Unflipped mutator threads
may hold references to both fromspace and tospace copies (even of the same ob
ject) . Previous concurrent copying collectors impose a tospace invariant using a read
barrier to redirect mutators out of fromspace [Baker, 1978], or impose a fromspace
invariant while replicating and then flip all at once [Nettles and O'Toole, 1993] . In
cremental flipping plus having no read barrier means that mutators may access both
fromspace and tospace at the same time, which requires slightly tighter synchronisa
tion of updates to both copies.

This also affects pointer equality, since the fromspace and tospace copies of the same
object must appear to have the same reference at the language level. Every pointer
equality operation must apply a barrier as illustrated in Algorithm 17.5a. Note that
if either argument is statically null then the compiler can revert the test to the
simple p=q. The Flip phases must also call the f l ipP o i n t e rEQ function (see Al
gorithm 17.5b) to compare the forwarded pointers similarly to the barrier of Brooks
(1984] .

MarkCopy: Mark. The Mark phase marks every fromspace object reachable from the
roots, both global variables and thread stacks/registers. The Sapphire design calls for the

3We emphasise that Sapphire assumes that there are no races on updating non-volatiles.

348 CHAPTER 17. CONCURRENT COPYING & COMPACTION

collector to perform all the marking, working from a queue. The mutator write barrier
ensures that if the mutator stores (into a global variable or the heap) a reference to an
unmarked fromspace object p then p is added to the queue. The collector first scans the
global variables, enqueuing any reference it finds to an unmarked fromspace object. The
collector then marks and scans the unmarked objects in the queue. When it removes a
pointer to object p from the queue, if p is not yet marked then it marks p and scans its slots
to enqueue any unmarked fromspace objects referred to by p.

When the collector finds the mark queue empty it scans each mutator, one at a time,
stopping each mutator to scan its stacks and registers and enqueuing any reference it finds
to an unmarked fromspace object. If the collector makes a pass through all the mutators
without enqueuing any objects for marking then marking is complete; otherwise marking
and scanning continue. Termination relies on the fact that the write barrier prevents re
treating the marking wavefront, and that new objects are allocated black. Eventually all
reachable fromspace objects will be marked and scanned.

The Mark phase has three steps . The PreMark step installs the Mark phase write barrier
W r i t eMarkl shown in Algorithm 1 7.6a. Mutators do not perform any marking directly, but
rather enqueue objects for the collector to mark. Fromspace objects that are not marked are
implicitly white. Objects in the mark queue are implicitly grey. This can be encoded using
an 'enqueued' bit which also allows avoiding enqueuing an object more than once. Each
mutator has its own queue, so enqueuing normally involves no synchronisation. When
the collector scans a mutator 's stack it also empties that mutator's queue by appending
the mutator 's queue onto its own queue.

The RootMark step scans and blackens the global variables by enqueuing their un
marked targets for the collector to mark using Wr i t eMark · Stores into newly-allocated
objects, including initialising stores, invoke the write barrier, so newly-allocated objects
are treated as black. Mutator stacks and registers are still grey.

Finally, the HeapMark/StackMark step processes the collector's mark queue, a sepa
rate set of explicitly grey (marked) objects, and the thread stacks. For each reference in the
mark queue, the collector checks if it is already marked. If not, the collector marks the
object and enters it into the explicit grey set for scanning (otherwise the already marked
object is ignored) . Each explicitly grey source object is scanned to blacken its slots by en
queuing their unmarked target objects for the collector to mark using W r i teMa rk, and then
the source object is considered to be black, as noted by the fact that the object is marked
but not in the explicit grey set. The collector iterates until both the mark queue and the
explicit grey set are both empty. (An object can be enqueued for marking more than once,
but eventually it will be marked and no longer enqueued by the mutators.)

Whenever the mark queue and grey sets are both empty, the collector scans a mutator
stack by briefly stopping the mutator thread at a safe point (which cannot be in the middle
of a write barrier), scanning the thread's stack and registers to blacken them by enqueu
ing every unmarked root using W r i t eMark · Having scanned every thread's stack without
finding any white pointers or enqueued objects, and with the mark queue and grey set
empty, then there can be no white pointers in the thread stacks, global variables, or newly
allocated objects . They are now all black. The termination argument for this phase relies
on the write barrier to keep globals and newly-allocated objects black. The write barrier
also prevents mutators from writing white references into the heap . A mutator can obtain
a white pointer only from a (reachable) grey or white object. Because there were no grey
objects since the mutator threads were scanned, it cannot obtain a white pointer from a
grey object, so it can only obtain a white pointer from another white object. But, because
the mutator had no white references when it was scanned, it must have discarded them
since the scan, so it cannot obtain any further white references after the scan. This applies
to all mutators, so the thread stacks must all be black.

1 7.6. SAPPHIRE

Algorithm 17.6: Sapphire write barriers

(a) The Mark phase barrier

1 Wr i t eMark (P, i, q) :
p [i] +--- q
if i sF r omSpace (q) && not marked(q)

enqueue (q)
/* white 4

/* collector will mark later 4

(b) The Copy phase barrier

1 W r i t ecopy (p, i, q) :
p [i] +--- q
pp +--- t oAddre s s (p)
if pp =/:- null

q +--- fo rwa rd(q)
pp [i] +--- q

(c) The Flip phase barrier

1 Wr i t eFl ip (P, i, q) :
q +--- f o rward(q)
p [i] +--- q

1 0

1 1

pp +--- t oAddre s s (p)
if pp =/:- null

pp [i] +--- q
return

pp +--- f romAddres s (p)
if pp =/:- null

pp [i] +--- q
return

$
$

/* p is in fromspace 4
/* omit this for non -pointer q 4

$

/* omit this for non -pointer q */

/* p is in fromspace */

/* p is in tospace 4

349

Note that only mutators active since their last scan during this Mark phase need to be
rescanned. Similarly, only stack frames active since their last scan within this Mark phase
need to be rescanned.

At this point, all white fromspace objects are unreachable.

MarkCopy: Allocate. Once the Mark phase has determined the set of reachable from
space objects, the collector allocates an empty tospace copy 'shell' for each marked from
space object. It sets a forwarding pointer in the fromspace object to refer to the tospace
copy, and builds a hash table for the reverse mapping from each tospace copy to its from
space copy. This is needed because a mutator thread that has been flipped to tospace still
needs to update fromspace copies whenever other threads are still operating in fromspace.

MarkCopy: Copy. Once every marked fromspace object has a tospace copy and forward
ing pointer installed, the collector begins copying the contents of fromspace objects to their
tospace shells. This phase maintains the invariant that tospace objects refer only to other
tospace objects by using a new Copy phase write barrier Write copy' which keeps both
the fromspace and tospace copies up to date with respect to all writes, and makes sure to

350 CHAPTER 1 7. CONCURRENT COPYING & COMPACTION

Algorithm 17.7: Sapphire word copying procedure

1 copyWo rd(p, q) :
for i +-- 1 to MAX_RETRY do

t oValue +-- * P
t oValue +-- forward(t oValue)
* q +-- t oVa l u e
frornVa lue +-- * P
if t oVa l u e = frornVa l ue

return

$
/* omit this for non -pointers 4

$
$

LoadLinked(q) $
w t oValue +-- * P $
n t oVa lue +-- forward(toVa l u e) /* omit this for non -pointers 4
12 S t o reCondi t i o n a l ly (q, t oValue) /* assuming no spuriousfailure 4 $
1 3

14 copyWo rdSafe (p, q) :
1 s for . . .
1 6 loop
v LoadLi nked (q)
I K
19

2{}

2 1

t oValue +-- * P
t oValue +-- forward(t oVa lue)
if StoreCondi t iona l l y (� t oValue)

return

/* as in copyWo rd 4

$
$

/* omit this for non -pointers */
$

/* SC succeeded 4

store only tospace pointers into tospace objects, as shown in Algorithm 17.6b. The mu
tators are all still operating unflipped in fromspace, so the barrier acts only to propagate
all updates of fromspace objects to their tospace copies . Here, t oAddre s s is the same as
forwardingAddre s s from previous copying schemes, returning null for tospace ob
jects. Thus, the forward operation in Sapphire will convert a fromspace pointer to its
corresponding tospace pointer, but act as the identity operation on non-fromspace point
ers. The memory accesses performed by this barrier (marked with $) must execute in the
specified order, but otherwise the barrier is unsynchronised because Sapphire assumes no
mutator-mutator data races on non-volatiles .

The Copy phase comprises the following steps. The Pre-Copy step installs the Copy
phase write barrier Wr i t e copy (Algorithm 17.6b) . The Copy step copies the contents of
each black (marked and scanned) fromspace object into its tospace copy. To cope with con
current updates by mutators while it is copying object contents, the collector uses lock-free
synchronisation to resolve any race that occurs, as shown in Algorithm 17.7. This tries
copying the value of a word from one location p to another location q without synchro
nisation primitives, retrying (up to some limit) when the 'from' location p is observed to
change, and then resorts to using a combination of the LoadLi nked/ S t o reCondi t i on
a l l y (LL/SC) primitives to effect the copy (so long as no update occurs to the 'to' location
q, otherwise the mutator write barrier ensures both copies are updated in which case the
collector need not) . Again, memory accesses (marked with $) must execute in the specified
order. Note that the algorithm as specified here using LoadLi nked/ S t o reCondi t i on
a l l y assumes that SC fails only in the case that the mutator really did update the 'from'
location p. Unfortunately, current hardware does not provide such guarantees (SC can fail
spuriously) . Thus, LoadLi nked/ S t o reCondi t i o na l l y cannot ensure that the collec
tor will make progress in the face of repeated updates to the 'from' location.4 In practice,

4We thank Laurence Hellyer for describing this problem.

17.7. CONCURRENT COMPACTION 351

the copyWo rd loop must be re-coded defensively as shown in copyWo rdSa fe, but the
collector will fail to make progress if the mutator repeatedly updates the 'from' location p

between every invocation of LoadLinked and StoreCondi t i onal ly .

Flip. Again, the phase operates in several steps. Beginning in this phase, unflipped mu
tators can operate in both fromspace and tospace. The PreFlip step installs the Flip phase
write barrier Writenip to cope with this (Algorithm 17.6c) . The HeapFlip step then pro
cesses references held in global variables and newspace objects, flipping all fromspace
pointers to tospace. W r i t e Fl ip guarantees not to undo this work by ensuring that only
tospace pointers are written into global variables and newspace. The ThreadFlip step then
flips each mutator thread, one at a time: it stops the thread, flips any fromspace pointers in
its stacks and registers over to tospace, and restarts the thread . During this phase, all muta
tors still need to update both fromspace and tospace copies . Thus, flipped threads need to
be able to map from tospace copies back to fromspace copies (using f r omAddress analo
gously to t oAddres s). Finally, once all threads are flipped and no thread is still executing
WriteFl ip, the Reclaim step reclaims fromspace and discards the reverse mapping table
from tospace back to fromspace.

Since unflipped threads may access both fromspace and tospace copies of the same
object, the pointer equality test needs to compare the tospace pointers (Algorithm 17.5b) .

Merging phases

Sapphire allows some phases to be merged. For example, RootMark, HeapMark/Stack
Mark, Allocate, and Copy can be merged into a single Replicate phase, which combines
the W r i t eMark and W r i t ecopy into a Replicate write barrier: when writing a fromspace
pointer into a tospace slot, in addition to enqueuing the fromspace object for copying, the
write barrier also enqueues the tospace slot so that it can be fixed later by the collector.

Volatile fields

Java volatile fields require a physical memory access for each source code access, and
accesses must appear to be sequentially consistent. For this reason, volatile fields re
quire heavier synchronisation on mutator access and while the collector is copying them
to ensure that their copies are kept properly coherent. Hudson and Moss describe several
techniques for achieving this, each of which imposes substantial additional overhead for
accessing volatile fields.

In summary, Sapphire extends previous concurrent copying algorithms, and has much
in common with replication schemes. It permits one thread at a time to flip from fromspace
to tospace rather than all at once, and minimises thread blocking (pauses) while avoiding
a read barrier for non-volatile fields. Mutators simply update both the fromspace and
tospace copies of an object (when both exist) to keep them coherent.

17.7 Concurrent compaction

Chapter 3 discussed approaches to garbage collection that split into two phases, marking
and compacting. Recall that compaction is decoupled from the tracing phase that deter
mines reachable objects . This allows greater freedom than a copying collector over the
order in which objects are relocated (by address, say, rather than in order of tracing for
reachability).

352 CHAPTER 17. CONCURRENT COPYING & COMPACTION

Compressor

Compressor [Kermany and Petrank, 2006] , presented earlier in Section 3 .4 and Section 14.8,
exploits the freedom allowed by separating marking from copying to perform compaction
concurrently with the mutator threads.

Recall that Compressor first computes an auxiliary first-object table that maps a tospace
page to the first fromspace object that will be moved into the page . Parallel compactor
threads then race to claim an unmapped tospace virtual page, map it to a physical page,
populate it with its copies from fromspace pages, and redirect each pointer field in the
copies to refer to tospace. Once all the live objects in a fromspace page have been copied it
is immediately unmapped.

To enable concurrent compaction, Compressor exploits virtual memory page protec
tion primitives similarly to Appel et al [1988], where protection served as the read barrier
for concurrent copying collection in order to prevent the mutator from accessing tospace
pages whose objects have not yet been copied or contain unforwarded pointers. Ossia et al
[2004] also used protection simply to allow concurrent forwarding of pointers in pages
containing compacted objects, but Compressor drives both compaction and forwarding
using page protection. Compressor protects the tospace pages from read and write access
(without yet mapping them to physical pages) . Computing the first-object table and pro
tecting tospace occurs concurrently with mutator threads operating in fromspace. Com
pressor then briefly stops all the mutator threads to switch their roots to refer to tospace
addresses before releasing the threads. Of course, the contents of those pages have not yet
been copied . At this point, if a mutator accesses a protected tospace page it will trap. Han
dling the trap requires doing the work of compaction to map and populate the page with
its copies (the mutator performs incremental compaction work as if it was a compactor
thread), and forward the references in those copies, before the mutator can resume and
access the page. Note that only the data for this page is copied, thus the handler will not
evacuate the beginning of an object that starts on the previous page or the end of one that
continues onto the next page. Concurrent compaction requires that a compactor thread be
able to access the page while other mutator threads are still protected from access. To sup
port this, Compressor double-maps each physical page when its contents are to be copied,
once in its 'natural' (still-protected) tospace virtual page, and again in an unprotected vir
tual page private to the compactor thread (see also Section 1 1 . 10). Once the compaction
work has been done for that page, the tospace virtual page can be unprotected so mutators
can proceed, and the private mapping is discarded.

In essence, Compressor applies the standard tricolour invariant. Fromspace pages are
white, protected tospace pages are grey, and unprotected tospace pages are black. Initially,
the mutator threads operate grey in fromspace while the first-object table is computed
along with the tospace addresses. When the mutator threads are flipped over to tospace
they are black. The protection-driven double mapping read barrier prevents the black
mutator threads from acquiring stale fromspace references from grey pages that are still in
the process of being populated with their fromspace copies .

Compressor must also handle other aspects of the tricolour invariant. In particular, af
ter marking and before the task of determining the first-object table begins, mutators must
allocate all new objects in tospace, to prevent those allocations from interfering with the
relocation map (otherwise, allocating to a hole in fromspace would interfere) . Moreover,
these newly allocated objects must eventually have their pointer fields scanned after the
mutators flip to tospace, to redirect any stale fromspace references in those fields over to
tospace, and similarly for global roots. Thus, both newly allocated tospace objects and the
global roots must be protected from access by mutators, with traps on their pages forcing
scanning to redirect their pointers.

17.7. CONCURRENT COMPACTION 353

Because the performance of Compressor depends heavily on the cost of virtual mem
ory page mapping and protection primitives, which can be onerous [Hosking and Moss,
1993], it is important to batch these operations as much as possible. For example, Com
pressor actually protects and double-maps the entire tospace at the beginning of collection
(to avoid the cost of double mapping each page as it is processed). Similarly, Compres
sor moves eight virtual pages per trap (to better amortise the trap overhead on mutator
threads) .

One downside of Compressor is that when a mutator traps on access to a protected
tospace page then it must not only copy all of that page's objects, it must also forward all
the pointers in those objects to refer to their relocated (or soon to be relocated) targets. This
can impose significant pauses on the mutator. In a moment, we will discuss the Pauseless
collector, which reduces the amount of incremental work needed to be performed by a mu
tator to copying at most one object (without needing to forward any of the stale fromspace
references it contains). Before doing so, let us briefly review the way in which Compressor
drives compaction using page protection, as illustrated in Figure 17. 1 . The figures show
the logical grouping of virtual pages into distinct categories (the linear address-ordered lay
out of the heap is intentionally not represented) :

Live: pages containing (mostly) live objects (initially dark grey in the figures)

Condemned: pages containing some live objects, but mostly dead, which are good candi
dates for compaction (light grey in the figures, with dark grey live objects)

Free: pages currently free but available for allocation (dashed borders)

New Live: pages in which copied live objects have been allocated but not yet copied
(dashed borders, with dashed space allocated for copies)

Dead: unmapped pages that can be recycled (freed for allocation) once there are no point
ers to them (shown hatched in the figures)

Figure 17.1a illustrates the initial state in which live objects have been identified along
with those to be relocated. For ease of later comparison with Pauseless, we take the liberty
here to restrict compaction only to pages sparsely occupied by live objects. In Compres
sor, live tospace pages containing stale references that need forwarding, and tospace pages
into which objects are yet to be relocated, must first be protected to prevent the mutators
from accessing them. Concurrently with the mutators, the forwarding information for the
live objects is prepared on the side in auxiliary data structures. At this point, the heap
pages are configured as in Figure 17. 1b, and the mutator roots are all flipped over to re
fer only to the protected tospace pages . Compaction can now proceed concurrently with
the mutators, which will trap if they try to access an unprocessed tospace page. Trapping
on a live tospace page causes all of the references in that page to be forwarded to refer to
tospace, as in Figure 17.1c . Trapping on a reserved tospace page evacuates objects from
condemned fromspace pages to fill the page, and the references contained in these copied
objects are forwarded to refer to tospace (Figure 17 .1d) . When all the live objects in a con
demned fromspace page have been evacuated, it is completely dead and its physical page
can be unmapped and returned to the operating system, though its virtual page cannot
be recycled until all references to it have been forwarded. Compaction ceases when all
tospace pages have been processed and unprotected (Figure 17.1e) . We now contrast this
approach with the Pauseless collector.

354 CHAPTER 17. CONCURRENT COPYING & COMPACTION

--r--, - - - - - - - ; - - - - - - -,
0

(a) Initial Compressor configuration. All pages are in fromspace.

; r-T--, - - - - - - - r - -.. - r- - -,
I I I 1
I I I 1
I I I 1
I I I 1
I I I 1

---'---"-----1...--.I......J----1..----L - - - - - - �- - � - � - - !
(b) Compute forwarding information, protect all tospace pages (illustrated by the dou
ble horizontal bars) . These include those reserved to hold evacuated objects and those
Live pages not condemned for evacuation. Then flip mutator roots to tospace. Muta
tors accessing a protected tospace page will now trap.

(c) Trapping on a Live page forwards pointers contained in that page to refer to their
tospace targets. Unprotect the Live page once all its stale fromspace references have
been replaced with tospace references.

(d) Trapping on a reserved tospace page evacuates objects from fromspace pages to
fill the page. The fields of these objects are updated to point to tospace. Unprotect the
tospace page and unmap fully-evacuated fromspace pages (releasing their physical
pages, shown as hatched) .

Roots �

(e) Compaction is finished when all Live pages have been scanned to forward ref
erences they contain, and all live objects in condemned pages have been copied into
tospace and the references they contain have been forwarded.

Figure 17.1: Compressor

17.7. CONCURRENT COMPACTION 355

Pauseless

The Pauseless collector [Click et al, 2005; Azul, 2008], and its generational extension C4
[Tene et al, 201 1] , protects fromspace pages that contain objects being moved, instead of
protecting tospace pages containing moved objects and/ or stale pointers. Rather than
needing to protect all of the tospace pages like Compressor, Pauseless protects the much
smaller set of pages whose objects are actually being moved (focusing on sparsely pop
ulated pages that will yield most space), and these pages can be protected incrementally.
Pauseless uses a read barrier to intercept and repair stale fromspace references before the
mutator can use them, and avoids blocking the mutator to fix up entire pages. The ini
tial implementation of Pauseless used proprietary hardware to implement the read barrier
directly as a special load-reference instruction, but on stock hardware Pauseless compiles
the necessary logic inline with every load-reference operation by the mutator.

Hardware and operating system support. Azul's proprietary hardware supports a num
ber of fast user-mode trap handlers . The hardware translation lookaside buffer supports
an additional GC-mode privilege level, in addition to the usual user and kernel modes .
Several of the fast user-mode traps switch to GC-mode in the trap handler. The translation
lookaside buffer also supports large (one or two megabyte) pages, much larger than the
usual page size of standard processors . These large pages are the standard unit of work
for the Pauseless collector.

The hardware also supports a fast co-operative preemption mechanism via interrupts
that are taken only on user-selected instructions, corresponding to GC-safe points. Blocked
threads are already at GC-safe points . Running threads can quickly be brought to a GC
safe point and allowed to continue, without idling them. This permits a very fast checkpoint
operation, where mutators can be asked to quickly perform a small amount of GC-related
work and then carry on, while blocked threads can have the work performed on their
behalf by the collector. In contrast, a normal stop-the-world operation requires that all
mutators reach a GC-safe point before they can proceed. In a checkpoint, running threads
are never idled, and the GC work is spread out in time.

As mentioned earlier, Azul's proprietary hardware supports a hardware read barrier,
which performs a number of checks and actions depending on the particular phase of the
collector. The read barrier, sketched in Algorithm 17.8, executes first the load, followed
by the barrier logic which cycles the loaded value (assumed to be an address) through the
translation lookaside buffer as if it were an address . If this address corresponds to a GC
protected page then a fast user-mode GC-trap handler is invoked. The barrier ignores null
references. Unlike a Brooks-style indirection barrier there is no null check, no memory ac
cess, no load-use penalty, no forwarding word in the object header and no cache footprint
imposed by this mechanism.

Pauseless also steals one address bit from the 64-bit address space. The hardware ig
nores (strips) this bit in loads and stores. This bit is called the Not-Marked-Through (NMT)
bit and is used during the concurrent marking phase of the collector to decide whether the
reference has previously been scanned by the collector. The hardware maintains a desired
value for the Not-Marked-Through bit and will trap to the Not-Marked-Through-trap han
dler if the reference has the wrong flavour. Null references are also ignored here.

On standard hardware, the read barrier must be emulated at some cost. The GC pro
tection check is emulated with standard page protection and the read barrier emulated
by issuing a dead load instruction or by explicitly checking a side-table in software for
the need to trap. The Not-Marked-Through check is emulated by multi-mapping mem
ory and changing page protections to reflect the expected Not-Marked-Through bit value.

356 CHAPTER 17. CONCURRENT COPYING & COMPACTION

Algorithm 17.8: Pauseless read barrier

1 Read(s r c , i) :
re f +--- s r c [i]
if p r ot ected(r e f)

r e f +-- GCt rap (re f, & s rc [i])
return ref

1 GCt rap (o l dRe f, add r) :

1 0

I I

1 2

1 3

1 4

newRe f +-- forwa rd(o l dRe f)
ma r k (newRe f)

/* forward/copy a s necessary 4
/* mark as necessary 4

I* will repeat only if CAS fails spuriously 4
CompareAndSwap (addr, o l dRe f, newRe f)

loop
i f oldRe f

return
i f oldRe f =/:

return

/* CAS succeed, so we are done 4
* addr

/* another thread updatedaddr but n e wRe f is ok 4

Null references are quite common, so must be filtered explicitly, though the compiler can
often fold this test into the existing null pointer safety checks required by languages like
Java. Stripping the Not-Marked-Through bit in software can be achieved by having the
compiler modify all dereferences to strip it before use, and reusing the stripped reference
where the reuse does not cross a GC-safe point. Alternatively, the operating system can be
modified to multi-map memory or alias address ranges so that the Not-Marked-Through
bit is effectively ignored.

The Pauseless garbage collection phases. The Pauseless collector is divided into three
main phases, each of which is fully parallel and concurrent:

Mark is responsible for periodically refreshing the mark bits. In the process of doing
that it will set the Not-Marked-Through bit for all references to the desired value
and gather liveness statistics for each page. The marker starts from the roots (static
global variables and mutator stacks) and begins marking reachable objects. The Not
Marked-Through bit assists in making the mark phase fully concurrent, as described
further below.

Relocate uses the most recently available mark bits to find sparse pages with little live
data, to compact those pages (relocating their objects), and to free their physical back
ing memory.

The relocate phase starts by protecting sparsely occupied pages from mutator access
and then copies live objects out of those pages. Forwarding information maintained
on the side tracks the location of relocated objects . If a mutator loads a reference
to a protected page the read barrier will trigger a GC-trap, which changes the stale
protected-page reference to the correctly forwarded reference. After the page con
tents have been relocated, the relocate phase frees the physical memory, which can
be immediately recycled by the operating system. Virtual memory cannot be freed
until no more stale references to that page remain in the heap.

A relocate phase runs continuously, freeing memory to keep pace with mutator allo
cation. It runs standalone or concurrently with the next mark phase.

17.7. CONCURRENT COMPACTION 357

Remap updates every pointer in the heap whose target has been relocated.

Collector threads traverse the object graph executing a read barrier against every
reference in the heap, forwarding stale references as if a mutator had trapped on the
reference. At the end of this phase no live heap reference can refer to pages protected
by the previous relocate phase, so virtual memory for those pages is freed.

Since both the remap and mark phases traverse all live objects Pauseless is able to
fold them together. The remap phase for the current GC cycle runs concurrently
with the mark phase for the next GC cycle.

Pauseless has several qualitative advantages. Firstly, there is no 'rush' to finish any
given phase. No phase imposes a substantial burden on the mutators that needs to be
relieved by ending the phase quickly. There is no 'race' to finish some phase before col
lection can begin again - the Relocate phase runs continuously and can immediately free
memory at any point. Since all phases are parallel, the collector can keep up with any
number of mutator threads simply by adding more collector threads. Unlike other con
current marking collectors, marking is guaranteed to complete in a single pass regardless
of the mutation rate (there is no need to re-mark - revert to grey - previously marked
objects, or stop the mutators in a final mark step to ensure termination) . Collector threads
will compete with mutator threads for CPU time, though any spare CPU can be employed
by the collector.

Secondly, the phases incorporate a 'self-healing' effect, where mutators immediately
correct the cause of each read barrier trap by replacing any trapping reference in the slot
from which it was loaded with its updated reference that will not trigger another trap. The
work involved depends on the type of the trap. Once the mutators' working sets have
been repaired they can execute at full speed without any further traps. This results in a
drop in mutator utilisation for a short period (a 'trap storm') following a phase shift, with
the minimum mutator utilisation penalty of approximately 20 milliseconds spread over a
few hundred milliseconds. But Pauseless has no stop-the-world pauses where all threads
must be simultaneously stopped. We now discuss the phases in more detail .

Mark. The mark phase manipulates mark bits managed on the side. It begins by clearing
the current cycle's mark bits. Each object has two mark bits, one for the current cycle and
one for the previous cycle. The mark phase then marks all global references, scans each
mutator thread's root set, and flips the per-thread expected Not-Marked-Through value.
Running threads cooperate by marking their own root set at a checkpoint. Blocked (or
stalled) threads are marked in parallel by mark phase collector threads. Each mutator
thread can immediately proceed once its root set has been marked (and expected Not
Marked-Through flipped) but the mark phase cannot proceed until all threads have passed
the checkpoint.

After the root sets have been marked, marking proceeds in parallel and concurrently
with the mutators in the style of Flood et al [2001] . The markers ignore the Not-Marked
Through bit, which is used only by the mutators. This continues until all live objects have
been marked. New objects are allocated in live pages. Because mutators can hold (and
thus store) only marked-through references, the initial state of the mark bit for new objects
does not matter for marking.

The Not-Marked-Through bit is crucial to completion of the mark phase in a single pass
over the live objects, regardless of stores by the mutator, because the read barrier prevents
mutators from acquiring unmarked references. A mutator that loads a reference with the
wrong flavour of Not-Marked-Through bit will take a Not-Marked-Through-trap which

358 CHAPTER 17. CONCURRENT COPYING & COMPACTION

will communicate the reference to the marker threads. Because it can never acquire an
unmarked reference, a mutator can never store and propagate an unmarked reference. The
Not-Marked-Through-trap also stores the corrected (marked) reference back to memory, so
that particular reference can never cause a trap in the future . This self-healing effect means
that a phase-change will not make the mutators wait until the marker threads can flip the
Not-Marked-Through bits in the objects on which the mutator is working. Instead, each
mutator flips each reference it encounters as it runs. Steady state Not-Marked-Through
traps are rare.

The mutator must take care that updating the trapping reference does not clobber a
store to the same location by another thread since the Not-Marked-Through-trap occurred.
Thus, the trap handler uses a CompareAndSwap operation to update the memory only if
it has not changed since the trapping thread read from that location. Because a checkpoint
is used to initiate the mark phase, different threads may briefly have a different view of the
desired Not-Marked-Through value. It is possible for two threads to compete repeatedly
over a single reference's Not-Marked-Through value via trapping and updating in mem
ory. This can last only until the unflipped thread passes its next GC-safe point where it
will trap, mark through its stack, and cross the checkpoint.

Note that it is not possible for a single thread to hold the same reference twice in its
root-set with different Not-Marked-Through settings, so pointer equality can always be
implemented using bit-wise equality.

Termination of the marking phase needs to worry only about the race between a mu
tator having loaded an unmarked reference but not having yet executed the read barrier.
Read barriers never span a GC-safe point, so it is sufficient that all the mutators cross a
GC-safe point without trapping. Thus, the marking phase requests an empty checkpoint.
Any references discovered before the checkpoint will be marked as normal . When all mu
tators have passed the checkpoint without reporting a new reference for marking then the
mark phase is complete. Otherwise the marker threads will consume the new references
for marking and the checkpoint can be repeated. Because no new references can be created
with the wrong Not-Marked-Through bit this process must eventually terminate.

Relocate. The relocate phase starts by finding sparsely occupied pages . Figure 17.2a
shows a logical grouping of virtual pages into distinct categories (again, the linear address
ordered layout of the heap is intentionally not illustrated) . There are references from both
the mutator roots and live pages into sparse pages whose live objects are to be compacted
by evacuation. The relocate phase first builds side arrays to hold forwarding pointers for
the objects to be relocated . These cannot be held in the fromspace originals because the
physical storage for the fromspace pages will be reclaimed immediately after copying and
long before all the fromspace references have been forwarded . The side array of forward
ing data is not large because only sparse pages are relocated, so it can be implemented
easily as a hash table. The relocate phase then protects the mostly dead condemned pages
from access by the mutators as in Figure 17.2b. Objects in these pages are now considered
stale, and can no longer be modified. Also, if a mutator loads a reference that points into a
protected page the read barrier will now take a GC-trap .

At the time the fromspace pages are protected, running mutators may have stale ref
erences in their root set. These are already past their read barrier and will not get caught
directly. Instead, the mutators are asked to forward any existing stale references from their
root set with a checkpoint, relocating the fromspace targets as necessary (Figure 17.2c) .
Once all the mutators have passed this checkpoint, copying of the remaining live objects
into tospace can proceed concurrently with the mutators . The read barrier prevents the
mutators from seeing a stale object before it has finished moving.

17.7. CONCURRENT COMPACTION

(a) Initial Pauseless configuration. All pages are in fromspace.

(b) Compute forwarding information, protect all condemned fromspace pages (illus
trated by the double horizontal bars), but leave tospace pages unprotected. These in
clude those reserved to hold evacuated objects and those Live pages not condemned
for evacuation.

(c) Flip mutator roots to tospace, copying their targets, but leaving the references they
contain pointing to fromspace. Mutators accessing an object on a protected fromspace
page will trap and wait until the object is copied.

Roots �

Live . ••
(d) Mutators loading a reference to a protected page will now trigger a GC-trap via
the read barrier, copying their targets.

(e) Compaction is finished when a11 live objects in condemned pages have been copied
into tospace, and all tospace pages have been scanned to forward references they con
tain.

Figure 17.2: Pauseless

359

360 CHAPTER 1 7. CONCURRENT COPYING & COMPACTION

As in the mark phase, the read barrier in the relocate phase prevents the mutator from
loading a stale reference. The self-healing GC-trap handler forwards the reference and
updates the memory location using C ompareAndSwap. If the fromspace object has not
yet been copied then the mutator will copy the object on behalf of the collector. This is
illustrated in Figure 17.2d . The mutator can read the GC-protected page because the GC
trap handler runs in the elevated GC-protection mode. Large objects that span multiple
pages are not relocated, nor are objects in mostly live pages. An object that consumes
about half of a page can be copied in about a millisecond .5

To amortise the cost of modifying translation lookaside buffer protections and forward
ing the mutator roots, Pauseless batches up groups of sparse pages for compaction, typi
cally protecting (and relocating and freeing) a few gigabytes at a time. The rate at which
relocation must proceed is dictated only by the need to keep up with the allocation rate of
the mutators .

Remap. Virtual memory is not freed immediately. The final step of forwarding the re
maining stale references in the live pages and reclaiming virtual memory falls to the remap
phase. At the end of the remap phase there are no more stale references to the fromspace
pages so their virtual memory can now be recycled (Figure 17.2e), the side array of for
warding pointers can be reclaimed, and the GC cycle is complete. Recall that real memory
for evacuated pages was reclaimed long before, during the relocate phase.

Finalisation and weak references. Java's soft and weak references (see Section 12. 1) lead
to a race between the collector nulling a reference and the mutator strengthening it. Fortu
nately, processing the soft and weak references concurrently with the mutator is possible
with Pauseless by having the collector CompareAndSwap down to null only when the ref
erence remains not marked-through. The Not-Marked-Through-trap handler already has
the proper CompareAndSwap behaviour allowing both the mutator and the collector to
race to CompareAndSwap. If the mutator wins then the reference is strengthened (and
the collector will know), while if the collector wins then the reference is nulled (and the
mutator sees only the null) .

Operating system extensions. Pauseless makes aggressive and sustained use of virtual
memory mapping and physical memory manipulation. This functionality can be imple
mented using standard operating system primitives, but the performance and rates at
which that functionality can be deployed using the standard primitives is prohibitive.
Pauseless-specific extensions to the operating system's memory manager result in signif
icant performance improvements [Azul, 2010] . Enterprise Java applications commonly
see allocation rates of from 200-500 megabyte/s per core, which must be matched by a
sustained garbage collection rate to avoid pauses. In Pauseless, each page will eventu
ally be remapped once (and later unmapped once) in order to reclaim dead object space.
No physical memory copying is required, so the remap rate is not significantly sensitive
to memory bandwidth. Instead, the cost of the remapping operations dominate. Typical
operating systems support remapping with three limitations :

1 . Each page remap includes an implicit translation lookaside buffer invalidation op
eration. Since translation lookaside buffer invalidations require multiple cross-CPU
interrupts (over all cores) the cost of remapping grows with the number of active
threads in the program. This happens even when the active threads do not partici
pate in the remapping, or have no interaction with the remapped memory.

5Recall that Pauseless's pages are quite large.

17.8. ISSUES TO CONSIDER 361

2. Only small (typically four kilobyte) page mappings can be remapped.

3. Remap operations are single-threaded within a process (grabbing a common write
lock) .

To address these shortcomings, Pauseless benefits from operating system extensions that
support remapping without translation lookaside buffer invalidation (these can be applied
in bulk at the end of a large set of remaps as necessary), remapping of large (typically
two megabyte) page mappings, and multiple concurrent remaps within the same process.
These operating system improvements result in approximately three orders of magnitude
speedup compared to a stock operating system, scaling almost linearly as the number of
active threads doubles.

Summing up, Pauseless is designed as a fully parallel and concurrent collector for large
multiprocessor systems. It requires no stop-the-world pauses and dead objects can be
reclaimed at any point during a collector cycle . There are no phases where the collector
must race to finish before the mutators run out of free memory. Mutators can perceive a
period of reduced utilisation during trap storms at some phase shifts, but the self-healing
property of these traps serves to recover utilisation quickly.

17.8 Issues to consider

This chapter has laid out the basic principles of concurrent copying collection and con
current compaction to reduce fragmentation, while also avoiding long pauses. As in any
concurrent collector algorithm, the collector must be protected against mutations that can
otherwise cause lost objects . But because the collector is moving objects, the mutator must
also be protected against accessing stale copies . Some algorithms protect the mutator by
making sure it operates with a tospace invariant so that it can never hold references to
stale fromspace objects [Baker, 1978] . Others protect the mutator by making it forward to
tospace copies as they are created, but otherwise allow it to continue operating in from
space [Brooks, 1984] . Still others permit continued operation in fromspace, so long as up
dates eventually propagate to tospace [Nettles et a[, 1992; Nettles and O'Toole, 1993] . Once
copying has finished all the mutators flip to tospace in a single step. Dispensing with this
global transition can mean accumulating chains of multiple versions, which mutators must
traverse to find the most up-to-date copy [Herlihy and Moss, 1992] . Alternatively, by per
forming updates on both copies, mutators can be transitioned one at a time [Hudson and
Moss, 2001, 2003] . Compaction can be performed in similar ways but without the need
to copy all objects at every collection [Kermany and Petrank, 2006; Click et al, 2005; Azul,
2008] .

These approaches may result in longer pauses than non-moving concurrent collection:
on any given heap access the mutator may need to wait for an object (or objects) to move or
indirect to the current version. Indeed, Baker [1992a] devised his Treadmill algorithm as an
antidote to the churn present in his original copying collector [Baker, 1978] . While copying
or compaction are needed to avoid fragmentation, they can present particular difficulties
for applications that are sensitive to prolonged or frequent pauses. Often, such applica
tions also operate in environments where memory is unusually constrained, such as em
bedded systems, where defragmentation can be even more important. We consider how to
manage concurrent copying or concurrent compaction while tightly bounding pauses for
such applications in Chapter 19.

Chapter 18

Concurrent reference counting

We discussed reference counting in Chapter 5. The two chief issues facing nai:ve refer
ence counting were its inability to collect garbage cycles and the high cost of manipulating
reference counts, particularly in the face of races between different mutator threads. The
solution to cyclic garbage was trial deletion (partial tracing) . We used deferred reference
counting to avoid having mutators manipulate reference counts on local variables and co
alescing to avoid having to make 'redundant' changes to reference counts that would be
cancelled out by later mutations; a useful side-effect of coalescing is that it tolerates mu
tator races. All three solutions required stopping the world while the collector reconciled
reference counts and reclaimed any garbage. In this chapter, we relax this requirement and
consider the changes that need to be made in order to allow a reference counting collector
thread to run concurrently with mutator threads.

18.1 Simple reference counting revisited

To be correct, reference counting algorithms must preserve the invariant that an object's
reference count is equal to the number of references to that object. Maintaining this invari
ant becomes more complicated with multiple mutator threads. At first sight, it may seem
that it is more difficult to Wri t e safely than to Read safely. Updating a pointer slot re
quires three actions: the reference count of the new target must be incremented, that of the
old target be decremented and the pointer written. It is important that these three actions
be coordinated, even though multiple mutator threads may manipulate pointers to the ob
jects in question. 1 Objects must not be reclaimed prematurely (for example, because their
reference count has temporarily dropped to zero) nor is it desirable for garbage to float
indefinitely in the heap. Figure 18 .1 illustrates the problem. Here, even if all the reference
count increments and decrements are be performed atomically, some thread interleavings
may lead to an incorrect result because the reference count of o l d may be decremented
twice and the reference count of one of the new targets may be too high.

The difficulty of concurrent reference counting does not lie solely with incrementing
or decrementing reference count fields. This can be done easily enough with one of the
atomic primitive operations like At omi c i n c rement discussed in Chapter 13 . The harder
problem is to synchronise reference count modifications with pointer loads or stores; in
Algorithm 5.1 we simply required the mutator Re ad and Wri t e actions to be atomic . The

1 Note that we are not concerned about the correctness of the user program in the face of races, but we must
ensure the consistency of the heap.

363

364 CHAPTER 18. CONCURRENT REFERENCE COUNTING

Thread 1 Writ e (o,i ,x)
addRe fe rence (x)
o l d +- o [i]
de l e t eRe fere n c e (o l d)
o [i] +- x

Thread 2 Write (o , i ,y)
addRe f e rence (y)
o l d +- o [i]
de l e t eRe ference (o l d)
o [i] +- y

Figure 18.1: Reference counting must synchronise the manipulation of
counts with pointer updates . Here, two threads race to update an object
field. Note that o l d is a local variable of each thread's Wr i t e method.

Algorithm 18.1: Eager reference counting with locks

Read (s rc, i) :
l ock (s r c)

tgt +- s r c [i]
addRe f e rence (tgt)

unlock (s r c)
return t g t

s W r i t e (s rc, i , re f) :
addRe ference (re f)

w l ock (src)
1 1 old +- s rc [i]
1 2 s rc [i] +- re f
u delet eRe fe rence (o l d)
1 4 unlock (s r c)

simplest way to d o this is to lock the object containing the field that is being read or writ
ten, s r c, as illustrated in Algorithm 18 . 1 . This is safe . After Read has locked s r c, the
value of field i cannot change. If it is null, Read is trivially correct. Otherwise, s r c holds
a reference to some object tgt . The reference counting invariant ensures that t gt 's ref
erence count cannot drop to zero before s rc is unlocked since there is a reference to t gt
from s rc . Thus, we can guarantee that t gt cannot be freed during the Read and that
addRe f e rence will be able to update the count rather than potentially corrupting mem
ory. A similar argument establishes the safety of Wr i t e .

I t is appealing to hope that we can find a lock-free solution, using commonly avail
able primitive operations. Unfortunately, single memory location primitives are insuffi
cient to guarantee safety. The problem does not lie in Write . Imagine that, instead of the
coarser grain lock, we use atomic increments and decrements to update reference counts
and CompareAndSwap for the pointer write, as in Algorithm 18.2 . If ref is non-null,
then the writing thread holds a reference to it so re f cannot be reclaimed until W r i t e
returns (whether or not w e use eager o r deferred reference counting) . W r i t e spins, at
tempting to set the pointer field until we are successful: at that point, we know that next
we will decrement the count of the correct old object and that only the winning thread
will do this. Note that the reference count of this o l d target remains an overestimate until
de l e t eRe ference (o l d) is called, and so old cannot be prematurely deleted.

We cannot apply the same tactic in Re ad, though. Even if Read uses a primitive atomic
operation to update the reference count, unless we lock src it is possible that some other

18. 1 . SIMPLE REFERENCE COUNTING REVISITED

Algorithm 18.2: Eager reference counting with Campa reAndSwap is broken

1 Write (s rc , i, re f) :
if re f =/:- null

365

At omi c i nc rement (& rc (re f)) /* re f guaranteed to be non-free 4
loop

o l d +-- s r c [i]
if Compa reAndSet (& s rc [i] , o l d, re f)

de leteRe fe rence (o ld)
return

1 0 de leteRe fe rence(re f) : /* ref guaranteed to be null or non-free */
n if re f =/:- null
1 2 At omi cDec rement (& rc (re f))
n if rc (re f) = 0
1 4 for each f l d in P o i nt e r s (r e f)
� de let eRe fe rence (• f l d)
1 6 f ree (r e f)
1 7

1 s Read(s rc, i) :
1 9 t gt = s r c [i]
20 At omi c i nc rement (& r c (t gt))
2 1 return t gt

Algorithm 18.3: Eager reference counting with Compa reAndSwap2

1 Read(s r c, i , root) :
loop

t gt +-- s r c [i]
if t gt = null

return null
rc +-- rc (tgt)

/* oops! 4

if CompareAnd S et 2 (& s rc [i] , & rc (t gt) , t gt , r c, t gt , r c+ l)
return t gt

thread will delete the pointer s r c [i] and reclaim its target between the point that we load
the reference (line 19) and the increment of the reference count. The attempt to increment
the reference count may corrupt memory that has been freed and maybe reallocated.

Although single memory location primitive operations are insufficiently powerful to
provide a solution, Detlefs et al (2001, 2002b] show that the CompareAndS wap2 primi
tive discussed in Section 13 .3 is sufficient. Compa reAndSwap 2 can atomically update two
independent memory locations . Although this is not sufficient to maintain accurate refer
ence counts at all times, it is sufficient to guarantee the weaker invariant that (i) while there
remains a pointer to an object, its reference count cannot be zero, and (ii) if there are no
pointers to an object, its reference count will eventually become zero. In Algorithm 18.3,
Compa reAndSwap2 is used to increment the reference count and simultaneously to check
that the pointer to the object still exists, thus avoiding the possibility of modifying an ob
ject's header after it has been freed.

366 CHAPTER 18. CONCURRENT REFERENCE COUNTING

18.2 Buffered reference counting

Eager reference counting schemes require either locks or multi-word atomic primitives,
which are (currently) not widely available. Deferred reference counting partially finessed
the problem we saw in the previous section by not applying reference count operations
to local variables and deferring reclamation of objects with zero reference counts (see Sec
tion 5.3) . This leaves the question of how to reduce the overhead of pointer writes to object
fields. We now tum to look at buffered reference counting techniques that use only simple
loads and stores in the mutator write barrier, yet support multithreaded applications.

In order to avoid the cost of synchronising reference count manipulations by differ
ent mutator threads, DeTreville [1990] had mutators log the old and new referents of each
pointer update to a buffer (in a hybrid collector for Modula-2+ that used mark-sweep as
an occasional backup collector to handle cycles) . A single, separate reference counting
thread processed the log and adjusted objects' reference counts, thereby ensuring that the
modifications were trivially atomic. In order to prevent inadvertently applying a reference
count decrement before an increment that causally preceded it (and hence prematurely re
claiming an object), increments were applied before decrements . Unfortunately, buffering
updates does not resolve the problem of coordinating the reference count manipulations
with the pointer write . DeTreville offered two solutions, neither of which is entirely satis
factory. His first approach was, as above, to protect the entire Wr i t e operation with a lock.
This ensures that records are correctly appended to the shared buffer as well as synchro
nising the updates. To avoid the cost of making every write atomic, his second solution
provided each mutator thread with its own buffer, which was periodically passed to the
reference counting thread, but this required the programmer to take care to ensure that
pointer writes were performed atomically, if necessary performing the locking manually,
to avoid the problems illustrated by Figure 18 . 1 .

Bacon and Rajan [2001] also provided each thread with a local buffer but required the
update of the pointer field to be atomic, as for example in Algorithm 18 .4; a CompareAnd
Swap with retry could be used to do this. The mutator write barrier on a processor adds
the old and new values of slot i to its local myUpdat e s buffer (line 9). Once again, refer
ence counting of local variables is deferred, and time is divided into ragged epochs to ensure
that objects are not prematurely deleted, by using a single shared epoch number plus per
thread local epoch numbers . Periodically, just as with deferred reference counting, a pro
cessor will interrupt a thread and scan all the processor 's local stacks, logging references
found to a local my St ackBu f fe r . The processor then transfers its my S t ackBu f fe r and
myUpdates to the collector, and updates its local epoch number, e . Finally, it schedules
the collection thread of the next processor before resuming the interrupted thread.

The collector thread runs on the last processor. In each collection cycle k, the collec
tor applies the increments of epoch k and the decrements of epoch k - 1. Finally it in
crements the global epoch counter (for simplicity, we assume an unbounded number of
global updat e s B u f f e rs in Algorithm 18.4) . The advantage of this technique is that it is
never necessary to halt all mutators simultaneously: the collector is on-the-fly. Note how
the collector uses a variant of deferred reference counting. At the start of the collection the
counts of objects directly referenced from thread stacks (in this epoch) are incremented; at
the end of the cycle, the reference counts of those directly reachable from the stacks in the
previous epoch are decremented.

18.3 Concurrent, cyclic reference counting

This leaves the question of collecting garbage cycles by reference counting without intro
ducing stop-the-world pauses. The Recycler [Bacon et al, 2001; Bacon and Rajan, 2001] re-

1 8.3. CONCURRENT, CYCLIC REFERENCE COUNTING 367

Algorithm 18.4: Concurrent buffered reference counting

, shared epoch
2 shared updatesBu f fe r [/* one buffer per epoch 4

4 Write (s r c, i, re f) :
if s rc = Root s

s rc [i] +- re f
else

1 0

o l d +- Atomi cExchange (& s r c [i] , r e f)
l og (o l d, re f)

" l og(o l d, new) :
1 2 myUpdates +- myUpda t e s + [(o l d, new)]
13

14 c o l l e ct () :
1 5 /* each processor passes its buffers on to a global updat e s Bu f fe r *f
1 6 myS t a ckBu f fe r +- []
17 for each local re f in mySt a c k s /* deferred reference counting */
1s myS t a ckBu f f e r +- mySta ckBu f fe r + [(re f, ref)]
1 9 atomic
20 updatesBu f fe r [e] +- updat e s B u f f e r [e] + myS t a ckBu f fe r
21 atomic
22 updatesBu f f e r [e] +- updat e s B u f f e r [e] + myUpdate s
n myUpdates +- []
24 e +- e + 1
25

26 me +- myP roce s s o r i d
27 if me < MAX_PROCE S SORS
28 s chedule (co l l e ct , me+ 1) /* schedule co l l e ct () on the next processor 4
29 else
30 /* the last processor updates the reference counts4
31 for each (o l d, new) in updat e s Bu f f e r [epoch]
n addRe f e r e n c e (new)
33 for each (o l d, new) in update s Bu f f e r [epo ch- 1]
� de leteRe f e rence (old)
35 release (upda t e s Bu f fe r [epoch - 1]) /*free the old buffer 4
36 epoch +- epo ch + 1

claims cyclic garbage by tracing candidate subgraphs, applying trial deletion to reference
counts. Although buffering successfully devolves reference counting to a spare processor,
the Recycler faces three problems in collecting cycles in a concurrent world.

• It cannot guarantee that it will retrace the same subgraph since the graph may be
modified by mutators while the Recycler is detecting garbage cycles.

• Pointer deletions may disconnect portions of the subgraph.

• Reference counts may be out of date.

To resolve these problems, the asynchronous Recycler operates in two phases. The first
phase is much the same as the synchronous collector described in Chapter 5. However the

368 CHAPTER 18. CONCURRENT REFERENCE COUNTING

Figure 18.2: Concurrent coalesced reference counting: in the previous epoch
A was modified to point to C and the values of its reference fields logged.
However, A has been modified again in this epoch (to point to D), and so
marked dirty and logged again. The original referent B can be found in the
collector 's global log, just as in Figure 5.2. The reference to C that was added
in the previous epoch will be in some thread's current log: this log can be
found from A's get LogP o i nt e r field.

asynchronous collector defers the freeing of objects discovered by c o l lect White (Algo
rithm 5.5) to the next phase which checks that these objects are indeed still garbage. There
are several disadvantages to this approach. In theory, but probably not in practice, it is
possible for some garbage cycles not to be collected - the collector is not guaranteed to
be complete. Further, trial deletion cannot use the original reference count but must add
a second, cyclic reference count field to object headers. Third, the algorithm must trace
candidate cycles again, in the second phase, in order to avoid incorrectly reclaiming live
objects. It also adds overhead to the reference counting write barrier as it must fix the
colours of objects left white or grey by improper traversals.

The fundamental problem is that the Recycler is trying to apply an algorithm designed
for synchronous collection in a world where the topology of the object graph is continually
changing. Next, we see below how this circle can be squared by providing the Recycler
with a fixed snapshot of the heap.

18.4 Taking a snapshot of the heap

We saw in Chapter 5 how coalesced reference counting provided the collector with a snap
shot of the heap. Thread-local buffers, passed synchronously to the collector, held replicas
of objects into which pointers had been written. Every thread was halted at the start of
a collection cycle, its buffers were transferred to the collector, and fresh buffers allocated.
The collector simply used the replica to find and decrement the reference counts of the old
targets and the current version of the object to find and increment the new targets. All
dirty objects were cleaned.

Let us see first how we can allow the reference counting thread to run concurrently with
the mutators (after a brief pause to transfer buffers), and then consider how to make that
concurrent algorithm on-the-fly. In the first case, all the mutator threads can be stopped
temporarily while their buffers are transferred to the collector. However, once all the mu
tator threads have transferred their buffers, they can be restarted. The collector 's task is
to modify the reference counts of the old and new children of every modified object. Ref
erence decrements can be handled as before, using the replicas in the logs, but handling
increments is more involved (Algorithm 18.5). The task is to increment the reference counts
of the children of each object in the collector 's log, using the state of the object at the time
that the log was transferred. There are two cases to consider, since the logged object may
have been modified since the logs were transferred to the collector.

18.5. SLIDING VIEWS REFERENCE COUNTING 369

1 0

I I

1 2

13

14

Algorithm 18.5: Sliding views: update reference counts

i n crementNew(ent ry) :
ob j +- ob j F romLog(ent ry)
if not di rt y (ob j)

repl i ca +- copy (ob j)
if dirty (ob j)

/* use the entry in the collector's log */
/* the current object 4

/* copy the object 's reference slots *I

rep l i c a +- getLogP o inter (ob j) /* entry in some thread's log 4
else

rep l i c a +- getLogP o i n t e r (ob j)

for each f l d in Point e r s (rep l i ca)
chi ld +- * f l d
if chi l d =/:- null

rc(chi l d) +- rc(chi l d) + 1

ma rk (ch i l d) I* if tracing young generation 4

If the object remains clean, its state has not changed, so the reference counts of its cur
rent children are incremented. Note that incrementNew in Algorithm 18.5 must check
again after making a replica of a clean object in case it was dirtied while the copy was
being taken.

If the object has been modified since the logs were transferred, then it will have been
re-marked dirty and its state at the time of the transfer can be found in a fresh log buffer
of some mutator. The object's dirty pointer will now refer to this log, which can be read
without synchronising with that thread. Consider the example in Figure 18.2 . A has been
modified again in this epoch, which complicates finding C, the target of the last update to
A in the previous epoch. As A is dirty, its previous contents will be held in some thread's
current local log (shown on the right of the figure) : the log refers to C. Thus, we can
decrement the reference count of B and increment the reference count of C. In the next
epoch, C's reference count will be decremented to reflect the action W r i t e (A, o, D) .

18.5 Sliding views reference counting

For the snapshot of the heap, we stopped the world while threads' modification buffers
were transferred to the collector. We relax that restriction now, instead stopping threads
one at a time, on-the-fly. This gives a distorted view of the heap. In this sliding view, the
values of different objects are recorded (and transferred to the collector thread) at differ
ent times. Sliding views require neither locks nor use of atomic instructions (at least, as
suming sequential consistency), but coordinates mutators and collector threads with four
handshakes between each mutator thread and the collector thread, similar to those used
by Doligez and Gonthier [1994) . We consider what modifications need to be made to the
algorithm to support weaker consistency models later. Sliding views can be used in sev
eral contexts: for plain reference counting [Levanoni and Petrank, 1999, 2001, 2006] , for
managing the old generation of generational [Azatchi and Petrank, 2003] and age-oriented
[Paz et al, 2003, 2005b] collectors, and for integration with cyclic reference counting col
lectors [Paz et al, 2005a, 2007] . Here, we consider how sliding views can be used in an
age-oriented collector and then extend it to reclaim cyclic structures.

370 CHAPTER 18. CONCURRENT REFERENCE COUNTING

Age-oriented collection

Age-oriented collectors partition the heap into young and old generations . Unlike tradi
tional generational collectors, both generations are collected at the same time: there are no
nursery collections and inter-generational pointers do not need to be trapped. Appropriate
policies and techniques are chosen for the management of each generation . Since the weak
generational hypothesis expects most objects to die young, and young objects are likely
to have high mutation rates (for example, as they are initialised), a young generation ben
efits from a collector tuned to low survivor rates. In contrast, the old generation can be
managed by a collector tuned to lower death and mutation rates. Paz et al [2003] adopt
a mark-sweep collector for the young generation (since it need not trace large volumes of
dead objects) and a sliding views reference counting collector for the old generation (as it
can handle huge live heaps) . Their age-oriented collector does not move objects: instead,
each object has a bit in its header denoting its generation.

The algorithm

On-the-fly collection starts by gathering a sliding view (Algorithm 18.6) . Incremental col
lection of a sliding view requires careful treatment of modifications made while the view
is being gathered. Pointer writes are protected by adding an incremental update write
barrier called snooping to the Write operation of Algorithm 5.3 (see Algorithm 18.7) . This
barrier prevents missing a referent o whose only reference is removed from a slot s1 before
the sliding view reads s1 , and then is written to another slot s2 after s2 is added to the view.

At the start of a cycle, each thread's s n o opFlag is raised (without synchronisation) .
While the sliding view is being collected (and the snoopF l ag is up for this thread), the
new referent of any modified object is recorded in the thread's local myS n oopedBu f f e r
(line 25 of Algorithm 18.7) . I n terms of the tricolour abstraction, this Dijkstra-style barrier
marks r e f black. Objects are allocated grey in the young generation (Algorithm 18.8) in
order to avoid activating the write barrier when their slots are initialised.

After the collector has raised the snoopF l ag for each mutator thread, it executes the
first handshake . The handshake stops each thread, one at a time, and transfers its local log
and young set to the collector 's update s buffer.

Next, all modified and young objects are cleaned. This risks a race. As cleaning is per
formed while mutator threads are running, it may erase the dirty state of objects modified
concurrently with cleaning. A second handshake therefore pauses each thread, again on
the-fly, and scans its local log to identify objects modified during cleaning. The dirty state
of these objects is restored ('reinforced') .

A third, empty handshake ensures that no thread has fallen behind. The collector is
now ready to begin to mark the young generation and update the reference counts of the
old generation .

Concurrent marking starts with a fourth handshake, again suspending threads one at a
time to scan their stacks in the usual way for mark-sweep and deferred reference counting
collectors. Each thread's snoop flag can then be dropped.

The items in each thread's mySnoopedBu f fe r are transferred to the work list asyn
chronously. The collector is then ready to process reference counts in the old generation.
Notice that the nursery cannot be marked until the old generation has been processed since
an update may have added a pointer from an old to a young object.

Processing the old generation also requires the counts of old and new objects in the
updates buffer to be processed : if the reference count of a young object is updated (it
is reachable from the old generation and will be promoted), and that object has not been
marked, it is added to the marker 's work list.

18.5. SLIDING VIEWS REFERENCE COUNTING

Algorithm 18.6: Sliding views: the collector

1 shared updat e s
2 shared snoopF l ag [MAX_PROCE S S ORS]

4 c o l l e ct () :
c o l l e ct S l i di ngVi ew()
o n - t he - fly hands hake 4 :

for each t h read t
su spend (t)
s canSt a c k (t)

w snoopF l ag [t] +-- false
n resume (t)
12 proces sRe fe re n ce Count s ()
13 markNu r s e ry ()
14 sweepNu r s e ry ()
1 s sweepZCT ()
� c o l l e ct Cyc l e s ()
1 7

1s c o l l e ct S l idingView () :
19 o n - t he - fly hands hake 1 :
20 for each t h re ad t
D su spend (t)
22 snoopF l ag [t] +-- true
23 transfer t 's buffers to updat e s
� resume (t)
2.' clean modified and young objects
26 o n - t he - fl y hands hake 2 :
27 for each t h read t
u su spend(t)
29 find modify-dean conflicts
� resume (t)
31 reinforce dirty objects
32 o n - t he - fl y hands hake 3 :
n for each t h read t
� suspend(t)
m resume (t)
36
37 proce s s Re ferenceCount s () :
� for each ob j in updat e s
� dec rementOld (ob j)
� incrementNew(ob j)
4 1

42 c o l l e ctCycle s () :
43 markCandidat e s ()
44 markLiveBl a c k ()
45 s can ()
% c o l l e ctWhite ()
47 proces sBu f fe r s ()

371

/* one per processor *I

372 CHAPTER 1 8. CONCURRENT REFERENCE COUNTING

Algorithm 18.7: Sliding views: Write

1 shared l ogs [MAX_PROCESSORS]
2 shared s noopF l a g [MAX_PROCE S S ORS]
3 me +-- myP roce s s o r i d

5 Wri t e (s rc , i , re f) :
i f s rc = Root s

s r c [i] +-- re f
else

i f not di rt y (s rc)
w log(s r c)
1 1 s r c [i] +-- re f
1 2 s noop (ref)
13

14 log (re f) :
15 for each f l d in Pointers (r e f)
1 6 if * f l d =/:- null
17 add(l ogs [me] , * f ld)
1 s i f not di rt y (re f)
1 • /* commit the en try if re f is still clean 4
20 e nt ry +-- add (l ogs [me] , re f)
21 l ogPo i nt e r (r e f) +-- ent ry
22

23 s noop (ref) :
24 i f s noopF l a g [me] && re f =/:- null
2s myS noopedBu f fe r +-- my SnoopedBu f f e r + [re f]

Algorithm 18.8: Sliding views: New

1 New() :
r e f +-- a l l ocat e ()
add(myYoungSet , re f)
s e t D i rt y (re f)
return re f

/* one per processor 4
/* one per processor 4

$
$

/* for sliding view 4

/* mark grey 4

/* allocate black */

Once the old generation has been processed and all inter-generational references have
been discovered, the young generation is traced (markNu r s e ry), marking objects with the
increment New procedure, and swept (s we epNursery), freeing any unmarked object.

Objects in the old generation can be reclaimed in the same way as with deferred refer
ence counting. Any object that is unmarked, has a zero reference count and is not directly
referenced by a root, is reclaimed (sweep Z CT) . If an object with a zero reference count is
dirty, recursive freeing decrements the reference counts of its descendants, found from its
log entry (see Figure 18.3); otherwise, its current fields are used.

Sliding views cycle reclamation

As presented so far, the age-oriented collector can reclaim cycles in the nursery but not in
the old generation. Paz et al [2007] combine the Recycler 's cycle collection algorithm with

18.5. SLIDING VIEWS REFERENCE COUNTING

X

z
!:"":]:, rTI
��------------�- Ll__j

D O D
Figure 18.3: Sliding views allow a fixed snapshot of the graph to be traced by
using values stored in the log. Here, the shaded objects indicate the state of
the graph at the time that the pointer from X to Y was overwritten to refer to
Z. The old version of the graph can be traced by using the value of X's field
stored in the log.

373

an age-oriented collector. The difficulty that faced the asynchronous Recycler was that
the topology of the heap could vary under its feet. In contrast, sliding views presents the
collector with a fixed view of the heap, using the original version of unmodified objects or
the logged copy of modified objects (see Figure 18.3) . It is therefore possible for each pass
of the trial deletion algorithm to retrace the steps of the first pass. Thus, by working on the
sliding view of the heap, we can apply the simpler synchronous algorithm rather than the
more complicated, multi-coloured asynchronous algorithm of Bacon and Rajan [2001] .

Paz e t a l introduce a number o f optimisations that can further reduce the number of
objects that trial deletion must trace. Like Bacon and Rajan [2001], they ignore scalar objects
that cannot be members of cycles. Mature objects are considered for cycle reclamation only
if they have survived several collections. This requires a queue of candidate buffers rather
than a single one (they found a delay of two collection cycles to be effective) . Paz et al also
try to avoid considering objects that might be live, including root referents, snooped objects
and objects modified after the sliding view was collected. An additional markBl ac k phase
pre-processes these objects, marking them and their sliding view descendants black. This
raises a dilemma. The set of objects known to be live (actually, a subset of the dirty objects)
is not fixed during the collection, so it is not possible to identify how many reference count
modifications the collector might have made to an object before it became dirty. Hence, it
is not possible to restore its original count. Instead, cycle detection operates on a second,
cyclic, reference count. The alternative, to consider these objects regardless, would lead to
more objects being processed by the reference counter.

Memory consistency

The sliding views algorithms presented above assume sequential consistency, which mod
ern processors do not always guarantee. On the mutator side, it is important that the order
of operations in Write are preserved to ensure that (i) the values seen in the log are the cor
rect ones (that is, those they represent a snapshot of the modified object as it was before the
collection cycle started; (ii) the collector reads only completed log entries; and (iii) object
fields cannot be updated after a collection starts without being snooped. The handshakes
used by the algorithm solve some dependency issues on weakly consistent platforms (en-

374 CHAPTER 18. CONCURRENT REFERENCE COUNTING

suring that the collector only sees complete log entries, or that new references are snooped
during the collection cycle) . Two further modifications are necessary. First, on the mutator
side, synchronisation must be added in the write barrier around the logging to ensure that
it is seen before the modification of the pointer. Levanoni and Petrank [2006] do this by
placing a memory fence before and after 1 og (s r c) . Second, something similar is needed
on the collector side. However, the approach above would be inefficient since most objects
are unlikely to be dirty since their log pointers have been reset. Instead, on a weakly con
sistent platform, the collector can reduce the cost of synchronisation by reading batches of
values from the buffers into a local array before processing them.

18.6 Issues to consider

The immediate problem facing reference counting is how to ensure that objects' reference
counts are correct in the face of concurrent modifications to the object graph. The simplest
solution is to require mutators to lock an object before it is modified. If the cost of locking
is considered to be too high, then an alternative solution must be found. Current solutions
rest on avoiding races between mutators that compromise the consistency of reference
counts. Note that the memory manager is concerned only to preserve the consistency of
the heap; whether or not mutator races violate the correctness of the user program is of no
interest to it.

To preserve coherence, we must ask how we can serialise pointer writes and reference
count operations. A partial solution is to use deferred reference counting, since this defers
reclamation of garbage objects and, in particular, devolves the task to a single collector
thread. However, this accounts only for pointer loads and stores, and not for writes into
object fields. Thus, the question becomes, how can we devolve reference count modifica
tions necessitated by writes to pointer fields from the mutator threads to a collector thread?
One solution is for each mutator to buffer its reference counting operations and periodi
cally pass them to the collector. A further step, coalesced reference counting, extends this
by taking a snapshot of objects before they are modified: this allows the collector thread
to avoid applying any redundant reference count modifications. In both cases reference
count manipulation and object reclamation is separated from the action of writing point
ers and is performed by a single collector thread (although it would be relatively straight
forward to use parallel collector threads) . Taking a snapshot of the state of the heap also
simplifies concurrent cyclic reference counting. Trial deletion algorithms need to traverse
a subgraph of the heap multiple times. By traversing the snapshot, the collector can ensure
that it traces the same subgraph each time, even in the face of concurrent mutator activity.

Finally we note that there is a large literature on safe reclamation of memory when
using dynamic memory structures, from the ABA-prevention tags used in IBM's System
370 onwards. Other lock-free reference counting methods that require multi-word atomic
primitives include Michael and Scott [1995] and Herlihy et a[[2002] . Techniques that use
timestamps to delay releasing an object until it is safe to do so are scheduler-dependent
and tend to be vulnerable to the delay or failure of a single thread. For example, the Read
Copy-Update method [McKenney and Slingwine, 1998], used in the Linux kernel, delays
reclamation of an object until all threads that have accessed it reach a 'quiescence' point.
Other mechanisms that use immediate (rather than deferred) reference counting require a
particular programming style, for example hazard pointers [Michael, 2004] or announcement
schemes [Sundell, 2005] .

Chapter 19

Real-time garbage collection

The concurrent and incremental garbage collection algorithms o f the preceding chapters
strive to reduce the pause times perceived by the mutator, by interleaving small increments
of collector work on the same processor as the mutator or by running collector work at the
same time on another processor. Many of these algorithms were developed with the goal
of supporting applications where long pauses result in the application providing degraded
service quality (such as jumpy movement of a mouse cursor in a graphical user interface) .
Thus, early incremental and concurrent collectors were often called 'real-time' collectors,
but they were real-time only under certain strict conditions (such as restricting the size of
objects) . However, as real-time systems are now understood, none of the previous algo
rithms live up to the promise of supporting true real-time behaviour because they cannot
provide strong progress guarantees to the mutator. When the mutator must take a lock
(within a read or write barrier or during allocation) its progress can no longer be guar
anteed. Worse, preemptive thread scheduling may result in the mutator being desched
uled arbitrarily in favour of concurrent collector threads. True real-time collection (RTGC)
must account precisely for all interruptions to mutator progress, while ensuring that space
bounds are not exceeded. Fortunately, there has been much recent progress in real-time
garbage collection that extends the advantages of automatic memory management to real
time systems.

19.1 Real-time systems

Real-time systems impose operational deadlines on particular tasks within an application.
These real-time tasks must be able to respond to application inputs (events) within a fixed
time window. A task that fails to meet its real-time constraint may degrade service (for
example, dropping a frame while displaying digital video), or much worse, cause catas
trophic failure of the system (such as mis-timing the spark-plug ignition signal resulting
in damage to an internal combustion engine) . Thus, a real-time system must not only be
correct logically, it must also be correct with respect to responsiveness to real-time events.

A soft real-time system (like video display) can tolerate missed deadlines at the expense
of service quality. Too many missed deadlines will result in unacceptable quality of service,
but the occasional missed deadline will not matter much. Printezis [2006] suggests for
systems a soft real-time goal that specifies a maximum garbage collection time, a time slice
duration and an acceptable failure rate. In any interval in this time slice duration, the
collector should avoid using more than the allowed maximum collection time, and any
violations of this goal be within the acceptable failure rate.

375

376 CHAPTER 19. REAL-TIME GARBAGE COLLECTION

time

I I I I I I I I
Figure 19.1: Unpredictable frequency and duration of conventional collec
tors. Collector pauses in grey.

Such a soft goal is inadequate for hard real-time systems (like engine control) which con
sider missed deadlines to mean failure of the system. A correct hard real-time system
must guarantee that all real-time constraints will be satisfied. ln the face of such timing
constraints, it is important to be able to characterise the responsiveness of garbage collec
tion in real-time systems in ways that reflect both needs of the application (hard or soft
real-time) and the behaviour of the garbage collector Printezis [2006] .

Overall performance or throughput in real-time systems i s less important than pre
dictability of performance. The timing behaviour of a real-time task should be able to be
determined analytically by design, or empirically during testing, so that its response-time
when deployed in the field can be known ahead of time (to some acceptable degree of
confidence). The worst-case execution time (WCET) of a task is the maximum length of time
the task could take to execute in isolation (that is, ignoring re-scheduling) on a particular
hardware platform. Multitasking real-time systems must schedule tasks so that their real
time constraints are met. Knowing that these constraints will be met at run time involves
performing schedulability analysis ahead-of-time, assuming a particular (usually priority
based) run-time scheduling algorithm.

Real-time applications are often deployed to run as embedded systems dedicated to
a specific purpose, such as the example above of a control system for engine timing.
Single-chip processors predominate in embedded systems, so incremental garbage col
lection techniques translate naturally to embedded settings, but with multicore embedded
processors becoming increasingly common, techniques for concurrent and parallel collec
tion also apply. Moreover, embedded systems often impose tighter space constraints than
general-purpose platforms.

For all of these reasons, stop-the-world, parallel, or even concurrent garbage collectors
that impose unpredictable pause times are not suited to real-time applications. Consider
the collector schedule illustrated in Figure 19.1 which results when the effort required to
reclaim memory depends on the total amount and size of objects that the application uses,
the interconnections among those objects, and the level of effort required to free enough
memory to satisfy future allocations. Given this schedule, the mutator cannot rely on
predictable and sustained utilisation of the processor.

19.2 Scheduling real-time collection

When and how to trigger collector work is the main factor affecting the impact of the collec
tor on the mutator. Stop-the-world collectors defer all collector work until some allocation
attempt detects that space is exhausted and triggers the collector. An incremental collec
tor will piggyback some amount of collector work on each heap access (using read/write
barriers) and allocation. A concurrent collector will trigger some amount of collector work
to be performed concurrently (possibly in parallel) with the mutator, but imposes muta
tor barriers to keep the collector synchronised with the mutator. To maintain steady-state
space consumption, the collector must free and recycle dead objects at the same rate (mea
sured by space allocated) as the mutator creates new objects. Fragmentation can lead to
space being wasted so that in the worst case an allocation request cannot be satisfied un-

1 9.3. WORK-BASED REAL-TIME COLLECTION 377

less the collector itself or a separate compaction phase is able to relocate objects . But object
relocation imposes an additional burden that can adversely affect real-time bounds.

There are a number of alternative techniques for scheduling the work of real-time
garbage collectors, and for characterising how that work can affect the mutator [Henriks
son, 1998; Detlefs, 2004b; Cheng and Blelloch, 2001; Pizlo and Vitek, 2008] . Work-based
scheduling imposes collector work as a tax on units of mutator work. Slack-based scheduling
runs collector work in the slack portions of the real-time task schedule (that is, when no
real-time task is running) . The slack can be a significant fraction of overall time when real
time tasks are infrequent or periodic (executing briefly at some known frequency) . This can
be achieved easily in a priority-scheduled system by giving the collector a lower priority
than any of the real-time tasks. Time-based scheduling reserves a pre-defined portion of ex
ecution time solely for collector work during which the mutator is stopped. This allows
meeting some pre-defined minimum mutator utilisation guarantee.

19.3 Work-based real-time collection

The classic Baker (1978] incremental semispace copying collector is one of the earliest at
tempts at real-time garbage collection. It uses a precise model for analysing for real-time
behaviour founded on the limiting assumption that objects (in this case Lisp cons cells)
have a fixed size. Recall that Baker's read barrier prevents the mutator from accessing
fromspace objects, by making the mutator copy any fromspace object it encounters into
tospace. This work is bounded because the objects have a single fixed size. Also, each mu
tator allocation performs some bounded amount of collector work (scanning some fixed
number of grey tospace fields, copying their fixed-size fromspace targets as necessary) .
The more fields scanned per allocation the faster the collection will finish, but the slower
the mutator will run. Baker [1978] derived bounds on both time and space for his collector.
His space bound was 2R (1 + 1 /k) , where R is the reachable space, and k is the adjustable
time bound defined to be the number of fields scanned at allocation time. Baker did offer
some solutions for incremental copying of variable-sized arrays, but these do not feature
in his analysis .

Parallel, concurrent replication

Blelloch and Cheng [1999] extended the analysis of Baker [1978] for multiprocessor col
lection by devising a concurrent and parallel replicating copying collector for which they
derive bounds on space and time. In evaluating their subsequent practical implementation
of this collector, Cheng and Blelloch (2001] were the first to characterise intrusiveness of
collection in terms of minimum mutator utilisation. Because their collector is still work
based, regardless of the efforts to which it goes towards minimising pause times, it can
still suffer from unpredictable variation in the distribution of pauses that make it difficult
to obtain real-time guarantees for the mutator. In Section 19.5 we will see that minimum
mutator utilisation can also be used to drive time-based scheduling of real-time garbage
collection by making minimum mutator utilisation an input constraint to the collector.
Still, Blelloch and Cheng offer useful insights into the way in which pause times can be
tightly bounded, while also bounding space, so we consider its detailed design here.

Machine model. Blelloch and Cheng assume an idealised machine model . A real imple
mentation must grapple with differences between this idealised model and the actual tar
get machine. The machine assumed is a typical shared-memory symmetric multiprocessor,
having atomic TestAndSet and Fet chAndAdd instructions for synchronisation. These

378 CHAPTER 19. REAL-TIME GARBAGE COLLECTION

are supported directly in hardware, or can be implemented easily on modem symmet
ric multiprocessors using LoadLinked/ St oreCondit i onal l y or C ompareAndSwap,
though it is important that Fet chAndAdd be implemented fairly so that all processors
make progress. They also assume a simple interrupt that is used to start and stop in
cremental collection on each of the processors. This can be implemented using GC-safe
points as described in Section 11 .6. More importantly, they assume memory accesses to be
sequentially consistent, which makes practical implementation of the collector more diffi
cult, since some memory accesses must be ordered appropriately to ensure correctness.

The memory is organised as a contiguous set of locations addressable from [2 . . M + 1]
(so pointers with value 0 and 1 have special meaning) where M is the maximum memory
size. Each location can hold at least a pointer.

For timing analysis, the longest time taken by any one instruction is used as the cost of
all instructions (interrupts occur between instructions and do not count towards this time) .

Application model. The application model assumes the usual mutator operations Re ad
and Write , and New(n) which allocates a new object with n fields and returns a pointer
to the first field; it also includes a header word for use by the memory manager. In ad
dition, Blelloch and Cheng require that on each processor every New (n) is followed by n
invocations of I n i t s 1 ot (v) to initialise each of the n fields of the last allocated object of
the processor with v, starting at slot 0. A processor must complete all n invocations of
I n it S l ot before it uses the new object or executes another New, though any number of
other operations including Read and Wr i t e can be interleaved with the I n i t S l ots . Fur
thermore, the idealised application model assumes that W r i t e operations are atomic (no
two processors can overlap execution of a Write) . The memory manager further uses a
function i s P o i nter (p, i) to determine whether the i th field of the object referenced by
p is a pointer, a fact often determined statically by the type of the object, or its class in an
object-oriented language.

The algorithm. The collector is structured as a replicating collector in the style of Nettles
and O'Toole [1993], except that, instead of a fromspace invariant and logging updates,
the mutators obey a replication invariant: whenever the collector is active and a mutator
wishes to update an object it must update both the primary and its replica (if one exists) .
When the collector is active, all allocations make both a primary and a replica in tospace
for the mutators to manipulate . Blelloch and Cheng also use a snapshot-at-the-beginning
style Yuasa [1990] deletion write barrier to ensure correctness.

Blelloch and Cheng assume a header field forwardingAddre s s (p) on each primary
object p and copyCount (r) on each replica r (these can be stored in the same slot because
they apply only to a primary or replica, respectively) . The header is used for several pur
poses: for synchronisation on the primary to control which thread generates the replica,
as a forwarding pointer from the primary to the replica, as a count on the replica of how
much remains to be copied to it from the primary, and to synchronise on the replica among
mutators and the thread copying the object. When a primary object p is white there is only
a primary copy and its header is zero (f orwa rdingAddres s (p) =null) . When the object
turns grey and space has been allocated for the replica r, the header of the primary points
to the replica (f orwardi ngAddres s (p) = r), and the header of the replica contains how
many fields remain to be copied (copyCou nt (r) =n) . When the object turns black (is fully
copied) then the header of the replica will be zero (copyCount (r) = 0) .

The heap i s configured into two semispaces a s shown in Figure 19.2 . Fromspace is
bounded by the variables fromBot and f r omTop which are private to each thread. The
collector maintains an explicit copy stack in the top part of tospace holding pointers to the

1 9.3. WORK-BASED REAL-TIME COLLECTION

lfromBot fromTopl
fromspace ._! ________________________ __,

tospace I a l located I free I copy stack I
LtoBot Lfree sha redStackJ toTopJ

Figure 19.2: Heap structure in the Blelloch and Cheng work-based collector

379

grey objects. As noted in Section 14.6, Blelloch and Cheng [1999] offer several arguments
that this explicit copy stack allows better control over locality and synchronisation than
Cheney queues in sharing the work of copying among concurrent collector threads. The
area between toBot and free holds all replicas and newly allocated objects. The area
between sharedStack and t o Top holds the copy stack (growing down from t o Top to
share dS t a c k) . When free= sharedSt a c k the collector has run out of memory. If the
collector is off when this happens then it is turned on. Otherwise an out of memory error
is reported. The variables t oBot and t o Top are also private to each thread, whereas free
and sharedStack are shared.

The code for copying a slot from a primary object to its replica is shown in Algo
rithm 19.1, where copyOneS l ot takes the address of the grey primary object p as its argu
ment, copies the slot specified by the current count stored in the replica, shades the object
pointed to by that slot (by calling makeGrey), and stores the decremented count. Finally,
the primary object p is still grey if it has fields that still need to be copied, in which case
it is pushed back onto the local copy stack (the operations on the local stack are defined
earlier in Algorithm 14.8).

The makeGrey function turns an object grey if it is white (has no replica allocated for
it) and returns the pointer to the replica . The atomic TestAndSet is used to check if the
object is white, since many processors could try to shade an object simultaneously, and it
is undesirable to allocate more than one replica in tospace. The processor that manages to
win this copy-copy race is the designated copier. The makeGrey function distinguishes three
cases for the header forwardingAddre s s (p) :

1 . The TestAndSet returns zero so this processor becomes the designated copier and
allocates the tospace replica r, sets its header copyCount (r) to the length of the ob
ject, sets the header forwardingAddre s s (p) of the primary to point to the replica,
pushes a reference to the primary on a private stack and returns the pointer to r.

2. The TestAndSet returns non-zero, and the value of the header is a valid forwarding
pointer so this pointer to the replica can be returned.

3. The Tes tAndSet returns non-zero, but the value in the header is 1 , so another pro
cessor is the designated copier but has not yet set the forwarding pointer. The current
processor must wait until it can return the proper forwarding pointer.

Algorithm 19.2 shows the code for the mutator operations when the collector is on. The
New operation allocates space for the primary and replica copies using a l locate, and
sets some private variables that parametrise the behaviour of I n it S l ot, saying where
it should write initial values. The variable l a stA tracks the address of the last allocated
object, l a s t L notes its length, and lastC holds the count of how many of its slots have
already been initialised. The I n i t S lot function stores the value of the next slot to be
initialised in both the primary and replica copies and increments l a s tC . These initial
ising stores shade any pointers that are stored to preserve the strong tricolour invariant
that black objects cannot point to white objects. The statement col lect (k) incrementally

380 CHAPTER 19. REAL-TIME GARBAGE COLLECTION

Algorithm 19.1: Copying in the Blelloch and Cheng work-based collector

1 shared gcOn +- false
2 shared free
3 shared sharedS t ack

5 copyOneSlot (p) :
r +- fo rwa rdingAddre s s (p)
i +- copyCount (r) - 1
c opyCount (r) +- - (i + 1)
v f-- p [i]

10 i f i sPo int e r (p, i)
u v +-- makeGrey (v)
12 r [i] +-- v
n c opyCount (r) +-- i
14 if i > 0
t s localPu s h (p)
1 6

/* allocation pointer 4
/* copy stack pointer 4

/* p is the primary copy of a grey object 4
/* pointer to the replica copy 4

/* index of slot to be copied 4
/* lock slot to prevent write while copying 4

/* grey if it is a pointer 4
/* copy the slot 4

/* unlock object with decremented index 4

/* push back on local stack 4

11 makeGrey (p) : /* p must be a primary copy 4
1 8 if TestAndS e t (& forwa r d i n gAddr e s s (p)) ::/:- 0 /* race to replicate primary 4
t 9 /* we lost the race 4
20 while forwardingAddre s s (p) = 1
21 /* do nothing: wait for a valid forwarding address 4
22
23

24
25
26
27

211
29
30

else
/* we won the race 4
count +- length (p)
r +-- a l l o c a t e (count)
copyCount (r) +-- count
forwardingAddres s (p) +- r
l ocalPu s h (p)

return forwardi ngAddre s s (p)

31 a l l ocate (n) :
32 re f +-- Fet chAndAdd (& f ree , n)
33 i f ref + n > s haredS t a c k
34
35

36
37

if gcOn
error " Out of memo r y "

inter rupt (col lect o rOn)
a l l ocat e (n)

38 return ref

/* length of primary 4
/* allocate replica */

/* set copy counter for replica */
/* set forwarding address for primary */
/* push primary on stack for copying 4

/* is tospace exhausted? 4

/* interrupt mutators to start next collection */
/* try again 4

copies k words for every word allocated. By design, the algorithm allows a collection
cycle to start while an object is only partially initialised (that is, when a processor has
l a s t C ::j:. l a st L) .

The W r i t e operation first shades any overwritten (deleted) pointer grey (to preserve
snapshot reachability), and then writes the new value into the corresponding slot of both
the primary and the replica (if it exists) . When writing to a grey object it is possible that
the designated copier is also copying the same slot. This copy-write race can lead to a
lost update, if the mutator writes to the replica after the copier has read the slot from

1 9.3. WORK-BASED REAL-TIME COLLECTION 381

Algorithm 19.2: Mutator operations in the Blelloch and Cheng collector (gcOn=true)

lastA
2 l a s t L
3 l a s t C

/* per-processor pointer to last allocated object 4
/* per-processor length of last allocated object 4

/* per-processor count of number of slots last filled 4

5 Read(p, i) :
return p [i]

8 New (n) :
p f- a l l ocat e (n)

1 0 r f- a l l ocat e (n)
1 1 fo rwa rdingAddres s (p)
1 2 copyCount (r) f- 0
13 l a s t A f- p
14 l a s t C f- 0
1 5 l a s t L f- n
1 6 return p
1 7

1 s atomic Write (p, i , v) :
1 9 if i s P o i nt e r (p, i)
20 makeGrey (p [i])
21 p [i] f- v

f- r

22 if fo rwa rdi ngAddr e s s (p) f:. 0

/* allocate primary 4
/* alloca te replica 4

/* primary forwards to replica 4
/* replica has no slots to copy 4

/* set las t allocated 4
/* set count 4

/* set length 4

/* grey old value 4
/* write new value into primary 4

/* check if object is forwarded 4
23 while forwardingAddres s (p) = 1

24 /* do nothing: wait for forwarding address 4
25 r f- forwardi ngAddress (p)
26 while copyCount (r) = - (i + l)

/* get pointer to replica 4

21 /* do nothing: wait while slot concurrently being copied 4
28 i f i s P o i nt e r (p, i)
29 v f- makeG rey (v)
30 r [i] f- v
31 c o l l e c t (k)
32

33 I n i t S lot (v) :
34 l a stA [l a s t C] f- v
35 if i s P o i nt e r (l a s tA, l a s t C)
36 v f- makeGrey (v)
37 fo rwardi ngAddre s s (l a s tA) [l a s t C + +]
38 c o l l ect (k)

/* update replica with grey new value 4
/* update replica 4

/* execute k copy steps 4

/* initialise next slot of last allocated */
/* initialise primary 4

/* replica gets grey initial value 4
+--- v /* initialise replica */

/* execute k copy steps */

the primary but before it has finished copying the slot to the replica. Thus, the Write
operation waits for the copier, both to allocate the replica and to finish copying the slot. It
is not a problem for the mutator to write to the primary before the copier locks the slot,
since the copier will then copy that value to the replica . The while statements that force
the mutator to wait are both time-bounded, the first by the time it takes for the copier to
allocate the replica and the second by the time it takes for the copier to copy the slot.

I n i t S lot is used for initialising stores instead of Write because it is much cheaper.
The uninitialised slots are implicitly null so do not need a deletion barrier to preserve

382 CHAPTER 19. REAL-TIME GARBAGE COLLECTION

Algorithm 19.3: Collector code in the Blelloch and Cheng work-based collector

c o l lect (k) :
enterRoom()
for i +- 0 to k- 1

if i s L o c a l St ackEmp t y ()
sharedP op ()
if i s LocalSt a c kEmpt y ()

break
p +- l o c a lPop ()
copyOne S l ot (p)

1 0 t rans it i onRooms ()
1 1 sharedP u s h ()
1 2 if exit Room ()
n int e rrupt (col lect o r O f f)

/* local stack empty 4
/* move work from shared stack to local 4

/* local stack still empty 4
/* no more work to do 4

/* move work to shared stack */

/* turn collector off */

the snapshot. Also, the new object always has a replica so there is no need to check for
the replica's presence . Finally, the collector is designed so that if a collection cycle starts
while an object is only partially initialised, only the initialised slots will be copied (see
co l l e ct o rOn in Algorithm 19.4) .

Algorithm 19.3 shows the collector function c o l l ect (k), which copies k slots. The
shared copy stack allows the copy work to be shared among the processors. To reduce
the number of invocations of the potentially expensive sharedP op operation (which uses
Fe t chAndAdd), to improve the chances for local optimisation, and to enhance locality,
each processor takes most of its work from a private local stack (the shared and private
stack operations are defined earlier in Algorithm 14.8) . Only when there is no work avail
able in this local stack will the processor fetch additional work from the shared copy stack.
After copying k slots, col lect places any remaining work back into the shared stack.
Note that no two processors can simultaneously execute the code to copy slots (obtaining
additional work from the shared copy stack) in lines 2-10 and move copy work back to the
copy stack after copying k slots in lines lines 10-12. This is enforced using the 'rooms' of
Algorithm 14.9, which we discussed in Section 14.6.

Algorithm 19.4 shows the code to start (co l l e ctorOn) and stop (co l l e ct o r O f f)
the collector. Here, the only roots are assumed to reside in the fixed number of registers
REG private to each processor. The s ynch routine implements barrier synchronisation to
block a processor until all processors have reached that barrier. These are used to ensure
a consistent view of the shared variables gcOn, free, and s h a redSt ack . When a new
collection cycle begins, each processor sets the replica header of its partially initialised last
allocated object to the last initialised slot l a s t c so that only the initialised slots need to
be copied. When the collection cycle ends, the registers and the last allocated object are
forwarded to refer to their replicas .

Other practical improvements. The original formulation of the real-time replication al
gorithm [Blelloch and Cheng, 1999] and its subsequent practical implementation [Cheng
and Blelloch, 2001 ; Cheng, 2001] describe a number of other practical improvements to
this algorithm. Instead of using F e t chAndAdd in every invocation of a l locate (line 32)
each processor can allocate from a private allocation area as described in Section 7.7. In
stead of spin-waiting for the forwarding pointer in makeGrey, because the processor can
know the location at which it is going to place an object in its private space, it can then

19.3. WORK-BASED REAL-TIME COLLECTION 383

Algorithm 19.4: Stopping and starting the Blelloch and Cheng work-based collector

I shared gcOn
2 shared t o Top
3 shared free
4 shared count
5 shared round

f-- 0
f-- 0

/* number of processors that have synched */
/* the current synchronisation round 4

7

10

I I

synch {) :
cu rRound +- round
s e l f +- Fet chAndAdd(& cnt , 1) + 1
if s e l f = numP roc

cnt +- 0
1 2 round++
n while round = cu rRound

/* round is done, reset for next one */

14 /* do nothing: wait until last processor changes round 4
15

16 c o l l e c t o ron () :
1 1 synch ()
1 8 gcOn +- true
19

20

21

22
23

24

2S

26

27

28

29

30

31

32

33

34

t oBot , fromBot +- fromBot , t oBot
t oTop, fromTop +- fromTop, t oTop
free , sharedS t a c k +- toBot , t oTop
s t a c kLimit +- sharedSt ack
synch ()
r +- a l locat e (l a s t L)
forwardingAddre s s (l astA) +- r
copyCount (r) +- l a s t C
if l a s t C > 0

l o calPush (l a s tA)
for i +- 0 to l ength(REG)

if i s Point e r (REG, i)
makeGrey (REG [i])

sharedPush ()
synch {)

35 co l l e ct o rOff () :
36 s yn ch {)
37 for i +- 0 to length (REG)
38 if i s Point e r (REG, i)

/* allocate replica of last allocated 4
/*forward last allocated 4

/* set number of slots to copy 4

/* push work onto local stack 4
/* make roots grey 4

/* move work to shared stack 4

/* make roots grey */

39 REG [i] +- forwardingAddre s s (REG (i]) /* forward roots 4
40 l a s tA +- fo rwa rdingAddre s s (l a s tA)
4 1 gcOn +- false
42 synch ()

384 CHAPTER 1 9. REAL-TIME GARBAGE COLLECTION

use a CompareAndSwap instead of Tes tAndSet . Other improvements include deferring
the collector work performed in New and I n itLoc until each local allocation area fills up
with (small) objects, avoiding the cost of double allocations (primary and replica) in New
and how to make W r i t e atomic using rooms synchronisation (only one writer can enter
the 'writing room' at any particular time) .

Time and space bounds. The considerable effort taken by this algorithm to place a well
defined bound on each increment of collector work allows for precise bounds to be placed
on space and the time spent in garbage collection. Blelloch and Cheng [1999] prove that
the algorithm requires at most 2 (R(l + 2/k) + N + SPD) memory words, where P is the
number of processors, R is the maximum reachable space during a computation (number
of words accessible from the root set), N is the maximum number of reachable objects,
D is the maximum depth of any object and k controls the tradeoff between space and
time, bounding how many words are copied each time a word is allocated. They also
show that mutator threads are never stopped for more than time proportional to k non
blocking machine instructions. These bounds are guaranteed even for large objects and
arrays, because makeGrey progresses the grey wavefront a field at a time rather than a
whole object at a time.

Performance. Cheng and Blelloch [2001] implemented their collector for ML, a statically
typed functional language. ML programs typically have very a high allocation rates, pos
ing a challenge to most collectors . Results reported are for a 64-processor Sun Enterprise
10000, with processor clock speeds on the order of a few hundred megahertz . On a single
processor, the collector imposes an average (across a range of benchmarks) overhead of
51% compared to an equivalent stop-the-world collector. These are the costs to support
both parallel (39%) and concurrent (12%) collection. Nevertheless, the collector scales well
for 32 processors (17.2 x speedup) while the mutator does not scale quite so well (9 .2 x
speedup), and near perfectly for 8 processors (7.8 x and 7.2 x , respectively). Minimum
mutator utilisation for the stop-the-world collector is zero or near zero for all benchmarks
at a granularity of lOms, whereas the concurrent collector supports a minimum mutator
utilisation of around 10% for k = 2 and 15% for k = 1 .2 . Maximum pause times for the
concurrent collector range from three to four milliseconds.

Uneven work and its impact on work-based scheduling

The argument against work-based scheduling for real-time garbage collection is that it
results in uneven minimum mutator utilisation, with the operations of the mutator so
tightly-coupled to those of the collector. A worst-case execution time analysis for work
based copying collection must assume the worst-case time for all mutator operations on
the heap. For the Baker [1978] collector, reading a pointer slot may require copying its
target. For Lisp c o n s cells this is a bounded cost, but variable-sized objects like arrays
cause problems. Allocation can cause some fixed amount of collector work, and at the
beginning of the collection cycle will also involve the flip, scanning the roots and copying
their targets. This includes the global variables (bounded in each particular program) and
local (thread stack) variables (potentially unbounded up to stack overflow) . In summary,
the worst case is so far from the usual case that the resulting worst-case execution time
analysis is virtually useless for schedulability analysis.

There have been several attempts at containing these worst-case overheads for work
based scheduling. To bound the cost of stack scanning Cheng and Blelloch [2001] propose
dividing the stack into fixed-size stacklets . The flip needs only to scan the top-most stacklet
in which the mutator is currently active, leaving the other stacklets for later scanning in due

1 9.3. WORK-BASED REAL-TIME COLLECTION

ti m e

I I ·I I · I I ·· I l l
>------1

lms O.lms

Figure 19.3: Low mutator utilisation even with short collector pauses. The
mutator (white) runs infrequently while the collector (grey) dominates.

385

course. To prevent a mutator from returning to an un-scanned stacklet, this approach adds
a stack barrier to the operations that pop the stacklets as the mutator executes, requiring
the mutator to scan the stacklet being returned to . Detlefs [2004b] notes two approaches for
handling the case in which the collector attempts to return into a stacklet that is already in
the process of being scanned by the collector. Either the mutator must wait for the collector,
or the collector must abort the scanning of that stacklet, deferring that work to the mutator.

Similarly, variable-sized objects can be broken into fixed-size oblets, and arrays into
array lets, to place bounds on the granularity of scanning/ copying to advance the collector
wavefront. Of course, these non-standard representations require corresponding changes
to the operations for accessing object fields and indexing array elements, increasing space
and time overheads for the additional indirections [Siebert, 1998, 2000, 2010] .

Nevertheless, Detlefs considers the asymmetric overheads of pure work-based schedul
ing to be the final nail in its coffin. For example, in the Baker concurrent copying collector
mutator operations have costs that vary greatly depending on where in the collector cycle
they occur. Before a flip operation, the mutator is taxed only for the occasional allocation
operation in order to progress the wavefront, while reads are most likely to load references
to already copied objects. For some time after the flip, when only mutator roots have been
scanned, the average cost of reads may come dose to the theoretical worst case as they
are forced to copy their targets. Similarly, for the Blelloch and Cheng [1999] collector, even
though writes are much less common than reads, there is still wide variability in the need
to replicate an object at any given write.

This variability can yield collector schedules that preserve predictably short pause
times, but do not result in satisfactory utilisation because of the frequency and duration
of collector work. Consider the schedule in Figure 19.3 in which the collector pauses are
bounded at a millisecond, but the mutator is permitted only a tenth of a millisecond be
tween collector pauses in which to run. Even though collector work is split into predictably
short bounded pauses, there is insufficient time remaining for a real-time mutator to meet
its deadlines.

While work-based scheduling may result in collector overhead being spread evenly
over mutator operations, on average, the big difference between average cost and worst
case cost leaves worst-case execution time analysis for work-based scheduling ineffective.
The result is unnecessary over-provisioning of processor resources resulting in reduced
utilisation of the processor by the mutator.

In a non-copying concurrent collector, where the mutator write barrier simply shades
the source or old/new target object, mutator overheads for accessing the heap are rela
tively tightly bounded. However, because allocations come in bursts, work-based schedul
ing still results in wide variation in the GC overheads imposed on mutators.

For this reason, more advanced scheduling approaches treat collector work as some
thing that must be budgeted for in a way that does not make it a pure tax on mutator work,
essentially by treating garbage collection as another real-time task that must be scheduled.
This results in mutator worst-case execution time analysis that is much closer to actual av
erage mutator performance, allowing for better processor utilisation. Rare but potentially
costly operations, such as flipping the mutator, need only be short enough to complete
during the portion of execution made available to the collector.

386 CHAPTER 1 9. REAL-TIME GARBAGE COLLECTION

lfromBot

fromspace

tospace I evacuated free

Lto Bot L L bottom �
scan �

fromTopl

allocated I
toTopJ

Figure 19.4: Heap structure in the Henriksson slack-based collector

19.4 Slack-based real-time collection

Henriksson attacks the real-time collector scheduling problem by adopting the rule that
garbage collection should be completely avoided while high priority (real-time) tasks are
executing [Magnusson and Henriksson, 1995; Henriksson, 1998] . Garbage collection work
is instead delayed until no high-priority tasks are eligible for execution. Allocation by
high-priority tasks is not taxed, while low-priority tasks perform some collector work
when allocating. A special task, the high-priority garbage collection task, is responsible for
performing collector work that was omitted while the high-priority tasks were execut
ing, as implied by the allocations performed by the high-priority tasks. The high-priority
garbage collection task has a priority lower than the high-priority tasks, but higher than
the low-priority tasks. It must always ensure that enough free memory is initialised and
available for allocation to meet the requirements of the high-priority tasks. Thus, collector
work operates entirely in the slack in the real-time task schedule.

The heap is configured into two semispaces as shown in Figure 19.4. New objects are
allocated at the top of tospace, at the position of the pointer t op. Evacuated objects are
placed at the bottom of tospace, at the position designated by bot t om. The collector scans
the evacuated objects in the usual Cheney style, evacuating all fromspace objects they refer
to. Low-priority threads perform some evacuation work incrementally as new objects are
allocated at the top of tospace. The position of s can indicates the progress of the collector
in scanning the evacuated objects.

Henriksson describes his approach in the context of a Brooks-style concurrent copy
ing collector that uses an indirection barrier on all accesses, including a Dijkstra insertion
write barrier to ensure that the new target object is in tospace, copying it if not. This
maintains a strong invariant for concurrent collection: no tospace object contains refer
ences to fromspace objects. However, Henriksson does not impose the full copying cost
of the write barrier on high-priority tasks. Instead, objects are evacuated lazily. The write
barrier simply allocates space for the tospace copy, but without actually transferring the
contents of the fromspace original. Eventually, the garbage collector will run (whether as
the high-priority garbage collection task, or as a tax on allocation by low-priority tasks),
and perform the deferred copying work when it comes to scan the contents of the tospace
copy. Before scanning the tospace version the collector must copy the contents over from
the fromspace original. To prevent any mutator from accessing the empty tospace copy be
fore its contents have been copied over, Henriksson exploits the Brooks indirection barrier
by giving every empty tospace shell a back-pointer to the fromspace original. This lazy
evacuation is illustrated in Figure 19.5 .

As sketched in Algorithms 19.5 and 19.6, the collector is similar to that of concur
rent copying (Algorithm 17.1), but uses the Brooks indirection barrier to avoid the need
for a tospace invariant on the mutators, and (like Sapphire) defers any copying from
the mutator write barrier to the collector. Note that the temporary t oAddre s s pointer
allows the collector to forward references held in tospace copies, even while the muta-

1 9.4. SLACK-BASED REAL-TIME COLLECTION

Fromspace

Tospace

(a) Before a high-priority task performs B.y+-A.x. The write bar
rier catches the assignment since the fromspace C object is not
previously evacuated or scheduled for evacuation.

(b) After having reserved a tospace location for C. A temporary
t oAdd r e s s pointer (dashed) to the reserved area prevents mul
tiple tospace reservations for C. Forwarding pointers prevent ac
cess to the uninitialised reserved space.

Fromspace

(c) When the high-priority task pauses, the collector finishes
evacuating C to its reserved tospace location, and sets the for
warding pointers to refer to the tospace copy. A.x will be for
warded later when the A object is scanned by the collector.

Figure 19.5: Lazy evacuation in the Henriksson slack-based collector.

Henriksson [1998] . Reprinted by permission.

387

388 CHAPTER 19. REAL-TIME GARBAGE COLLECTION

Algorithm 19.5: The Henriksson slack-based collector

10

I I

1 2

1 3

1 4

coroutine co l l e ct o r :
loop

while bot t om < t op
y i e 1 d /* revert to mutator 4

f l i p ()
for each f l d i n Root s

p r o ce s s (f l d)
if not beh i nd()

y i e 1 d /* revert to mutator 4
while s can < bott om

s can +- s canOb j e ct (s can)
if not behi nd()

y i e 1 d I* revert to mutator 4

15 f l ip () :
1 6 t oBot, f romBot f- f romBot , t oBot
1 1 t oTop, f romTop f- f romTop, t oTop
1 8 bott om, t op f- t oBot, t oTop
1 9 s can f- bot t om
20

21 s canOb j ect (t oRe f) :
22 f romRe f f- f o rwardi ngAddre s s (t oRe f)
23 move (f romRe f, t oRe f)
24 for each f l d in P o i nt e r s (t oRe f)
� proce s s (f l d)
� f o rwardi ngAddre s s (f romRe f) f- t oRe f
21 return t o Re f + s i z e (t oRe f)
28

29 proce s s (f l d) :
� f romRe f f- * f l d
3 1 if f romRe f f- null
3 2 * f ld f- f o rwa rd(f romRe f)
33
34 f o rwa rd(f romRe f) :
35 t oRe f +- f o rwardingAddre s s (f romRe f)

/* tospace is not full 4

/* update with tospace reference 4

36 if t oRe f = f r omRe f /* not evacuated */
37 t oRe f f- t oAddre s s (f romRe f)
38 if t oRe f = null /* not scheduled for evacuation (not marked) 4
39 t oRe f f- s chedu l e (f r omRe f)
� return t oRe f
4 1

42 s chedu l e (f romRe f) :
43 t oRe f +- bot t om
44 bot t om +- bot t om + s i z e (f romRe f)
45 if bot t om > t op
46

47

48

error " Out o f memo ry "
t oAddre s s (f r omRe f) +- t o Re f
return t o Re f

/* schedule for evacuation (mark) 4

1 9.4. SLACK-BASED REAL-TIME COLLECTION 389

Algorithm 19.6: Mutator operations in the Henriksson slack-based collector

1 atomic Read (s rc, i) :

1 0

s rc +- forwardi ngAddres s (s rc)
return s rc [i]

atomic W r i t e (s rc, i , r e f) :
s rc +- forwardi ngAddre s s (s r c)
if re f in f roms p a c e

ref +- forward (r e f)
s rc [i] +- ref

1 1 atomic NewHi ghPri ori ty (s i z e) :
1 2 t op +- t op - s i z e
1 3 t oRe f +- t op
14 fo rwa rdi ngAddre s s (t oRe f) +- t o Re f
1 5 return t oRe f
1 6

1 7 atomic NewLowPri ori ty (s i z e) :
1 s while behind ()
19 y i e l d I* wake up the collector 4
20 t op +- t op - s i z e
21 t oRe f +- t op
22 if bot t om > t op
n e r r o r "Out o f memory "
24 fo rwardingAddre s s (t oRe f) +- t o Re f
25 return t oRe f

I* Brooks indirection *I

I* Brooks indirection *I

tor continues to operate in fromspace, since this t oAddre s s pointer is distinct from the
forwa rdi ngAddre s s header word used by the mutator.

The collector itself is specified as a coroutine, so that collector execution interleaves
with the low-priority mutator tasks at well-defined y i e l d points, though high-priority
tasks can preempt the collector at any time to regain control. If the collector is in the
middle of copying an object, the copy is simply aborted and restarted when the collector
resumes. Also, Henriksson assumes that the execution platform is a uniprocessor, so that
disabling scheduler interrupts is sufficient to implement atomic operations.

Scheduling the collector work

The amount of work to perform in each collector increment (controlled by the call to
behind) must ensure that fromspace is completely evacuated before tospace fills up, thus
finishing a collector cycle. Let us assume that the amount of work (in terms of bytes pro
cessed) needed in the worst case to evacuate all live objects out of fromspace and to ini
tialise enough memory to satisfy allocation requests of the high-priority threads during
a collection cycle is Wmax, and that after the flip at least Fmin bytes of memory must be
free and available for allocation. That is, Wmax indicates the maximum work needed to
complete a collection cycle and Fmin the minimum space that must be free when the cycle
completes. Then the minimum GC ratio GCRmin is defined as:

GCR . _ Wmax
mm - Fmin

390 CHAPTER 1 9. REAL-TIME GARBAGE COLLECTION

The current GC ratio GCR is the ratio between performed GC work W and the amount A
of new allocated objects in tospace:

GCR =
W
A

Allocation by the mutator causes A to increase, while GC work increases W. The collector
must perform enough work W to make sure that the current GC ratio is no less than the
minimum GC ratio (GCR 2: GCRmm) . This will guarantee that fromspace is empty (all live
objects have been evacuated) before tospace is filled, even in the worst case.

Allocation of memory by low-priority tasks is throttled so that the current GC ratio
GCR does not drop too low (below GCRmin), by giving the collector task priority. The
upper bound on the collector work performed during allocation will be proportional to
the size of the allocated object.

If a high-priority task is activated shortly before a semispace flip is due then the remain
ing memory in tospace may not be sufficient to hold both the last objects to be allocated
by the high-priority task and the last objects to be evacuated from fromspace. The col
lector must ensure a sufficiently large buffer between bot t om and t op for these objects,
large enough to hold all new objects allocated by the high-priority tasks while the col
lector finishes the current cycle . To do this, the application developer must estimate the
worst-case allocation needed by the high-priority tasks in order to run, as well as their
periods and worst-case execution times for each period. Henriksson suggests that this
job is easy enough for the developer because high-priority tasks in a control system are
written to be fast and small, with little need to allocate memory. He provides an ana
lytical framework for deciding schedulability and the memory headroom needed by high
priority tasks, given a large set of program parameters such as task deadlines, task periods,
and so on.

Execution overheads

The overhead to high-priority tasks for collector activity consists of tight bounds on the
instructions required for memory allocation, pointer dereferencing and pointer stores. Of
course, instruction counts alone are not always a reliable measure of time, in the face of
loads that may miss in the cache. Worst-case execution time analysis must either assume
caches are disabled (slowing down all loads) or the system must be tested empirically to
ensure that real-time deadlines are met under the expected system load.

Heap accesses require single instruction indirection through the forwarding pointer,
plus the overhead of disabling interrupts. Pointer stores have worst-case overhead on
the order of twenty instructions to mark the target object for later evacuation. Allocation
requires simply bumping a pointer and initialising the header (to include the forwarding
pointer and other header information), having overhead on the order of ten instructions.

Low-priority tasks have the same overheads for heap accesses and pointer stores. On
allocation, the worst-case requirement is to perform collector work proportional to the
size of the new object. The exact worst case for allocation depends on the maximum object
size, total heap size, maximum live object set, and the maximum collector work performed
within any given cycle.

Worst-case latency for high-priority tasks depends on the time for the collector to com
plete (or abort) an ongoing item of atomic work, which is short and bounded. Henriksson
states that latency is dominated more by the cost of the context switch than the cost of com
pleting an item of atomic work.

1 9.5. TIME-BASED REAL-TIME COLLECTION: METRONOME

time

5001!5
....

I l l II 1

lOms

Figure 19.6: Metronome utilisation. Collector quanta are shown in grey and
mutator quanta in white.

Programmer input

391

The programmer must provide sufficient information about the application program, and
the high-priority tasks, to compute the minimum GC ratio and to track the GC ratio as
the program executes so that the collector does not disrupt the high-priority tasks. The
period and worst-case execution times for each high-priority task is required, along with
its worst-case allocation need for any one of its periodic invocations, so as to calculate the
minimum buffer requirements to satisfy high-priority allocations. The programmer must
also provide an estimate of the maximum live memory footprint of the application. These
parameters are sufficient to perform worst-case execution time analysis, and schedulability
analysis, for the high-priority real-time tasks. Henriksson [1998] provides further details.

19.5 Time-based real-time collection: Metronome

Slack-based scheduling of the collector requires sufficient slack available in the sched
ule of high-priority real-time tasks in which to run the collector. Time-based scheduling
treats minimum mutator utilisation as an input to the scheduling problem, with the sched
uler designed to maintain minimum mutator utilisation while providing real-time bounds.
This approach was first used in the Metronome real-time garbage collector for Java [Bacon
et al, 2003a] . Metronome is an incremental mark-sweep collector with partial on-demand
compaction to avoid fragmentation. It uses a deletion write barrier to enforce the weak
tricolour invariant, marking live any object whose reference is overwritten during a write.
Objects allocated during marking are black. The overhead of simply marking on writes is
much lower (and more predictable) than replicating as in Blelloch and Cheng [1999) .

After sweeping to reclaim garbage, Metronome compacts if necessary, to ensure that
enough contiguous free space is available to satisfy allocation requests until the next collec
tion. Like Henriksson [1998], Metronome uses Brooks-style forwarding pointers, imposing
an indirection on every mutator access.

Mutator utilisation

Metronome guarantees the mutator a predetermined percentage of execution time, with
use of the remaining time at the collector's discretion: any time not used by the collector
will be given to the mutator. By maintaining uniformly short collector pause times Metro
nome is able to give finer-grained utilisation guarantees than traditional collectors. Using
collector quanta of 500 microseconds over a 10 millisecond window Metronome sets a de
fault mutator utilisation target of 70%. This target utilisation can also be tuned further for
the application to meet its space constraints. Figure 19.6 shows a 20-millisecond Metro
nome collector cycle split into 500-microsecond time slices. The collector preserves 70%
utilisation over a tO-millisecond sliding window: there are at most 6 collector quanta and

392

�
c
0

p .,
.!!!
'.P
::::>

100 ..,.-------,

90 -

80 -

CHAPTER 1 9. REAL-TIME GARBAGE COLLECTION

70 -
� c: 60 -
0 p -� SO -

� 40 -

30 -

20 -

10 -

04----.---r---r--�--�---,---,----.
0

100

90

80

70

100 200 300 400

Time (ms)
500 600 700

Figure 19.7: Overall mutator utilisation in Metronome

A B c D E

200 210 220
Time (ms)

Figure 19.8: Mutator utilisation in Metronome during a collection cycle.

First published on IBM developerWorks: ht t p : I / www . ibm . com / deve l ope rwo r k s .

correspondingly at least 14 mutator quanta in any window. Here, each collector quantum
is followed by at least one mutator quantum so that pauses are limited to the length of one
quantum, even if utilisation would still be preserved by back-to-back quanta so as to min
imise pauses. Given a minimum mutator utilisation target below 50% then a window may
schedule more collector quanta than mutator quanta so some instances of back-to-back
collector quanta will be needed to ensure that the collector gets its share of the window.

Of course, when the collector is not active all quanta can be used by the mutator, giv
ing 100% utilisation. Overall, the mutator will see utilisation drop during periods that
the collector is running, but never lower than the target utilisation. This is illustrated in
Figure 19.7, which shows overall mutator utilisation dropping for each collector cycle.

Figure 19.8 shows mutator utilisation over the same collector cycle that was illustrated
in Figure 19.6 (grey bars indicate each collector quantum while white is the mutator) . At
time t on the x-axis this shows utilisation for the ten millisecond window leading up to

1 9.5. TIME-BASED REAL-TIME COLLECTION: METRONOME 393

time t. Note that while the schedule in Figure 19.6 is perfect in that utilisation is exactly
70% over the collector cycle, real schedules will not be quite so exact. A real scheduler will
typically allow collector quanta to run until minimum mutator utilisation is dose to the
target MMU and then back off to prevent overshooting the target.

Section A of the figure is a staircase graph where the descending portions correspond to
collector quanta and the flat portions correspond to mutator quanta . The staircase shows
the collector maintaining low pause times by interleaving with the mutator, as utilisation
steps down to the target. Section B comprises only mutator activity so as to preserve
mutator utilisation across all sliding windows that cover that section. It is common to
see this pattern showing collector activity only at the beginning of a window because the
collector runs whenever it is allowed to (while preserving pause times and utilisation) .
This means the collector will exhaust its allotted time at the beginning and then allow the
mutator to recover for the remainder of the window. Section C shows collector activity
when mutator utilisation is near the target. Ascending portions represent mutator quanta,
where the scheduler detects utilisation rising above the target, and descending portions
are collector quanta where the scheduler permits the collector to run to bring utilisation
back dose to the target. The sawtooth results from the interleaving of the mutator with the
collector to preserve low pause times while also preserving the target utilisation. Section
D shows that once the collector finishes its cycle the mutator must run for a while before
utilisation begins to rebound. In Section E the mutator regains 100% utilisation stepping
up the staircase from the target.

Supporting predictability

Metronome uses a number of techniques to achieve deterministic pause times while guar
anteeing collector safety. The first of these addresses the unpredictability of allocating
large objects when the heap becomes fragmented. The remainder advance predictability
by keeping collector pause times deterministically short.

Arraylets. Metronome was implemented to support arraylets to allow allocation of ar
rays in multiple chunks. This allows a degree of tolerance to fragmentation without the
need to perform compaction (which can adversely affect predictability) . Large arrays can
be allocated as a single contiguous spine object, which then contains pointers to separately
allocated fixed-size arraylets that contain the array elements. The size is a power of two
so that the division operation needed for indexing can be implemented using a shift. This
allows simple computation of the element position, using an extra indirection through the
spine. Metronome uses an arraylet size of two kilobytes and a maximum block size of
sixteen kilobytes for the spine, allowing arrays of up to eight megabytes in size .

Read barrier. Like Henriksson [1998], Metronome uses a Brooks-style read barrier to
ensure that the overhead for accessing objects has uniform cost even if the collector has
moved them. Historically, read barriers were considered too expensive to implement in
software - Zorn [1990] measured their run-time overhead at around 20% - but Metro
nome applies several optimisations to reduce their overhead to 4% on average. First, it
uses an eager read barrier, forwarding all references as they are loaded from the heap, to
make sure that they always refer to tospace. Thus, accesses from the stacks and registers
via these references incur no indirection overhead. In contrast, a lazy read barrier would
incur indirection every time a reference held in the stacks or registers is used. The cost for
this is that whenever a collector quantum moves objects it must also forward all references

394 CHAPTER 1 9. REAL-TIME GARBAGE COLLECTION

held in the registers and stacks . Second, Metronome applies several common compiler op
timisations to reduce the cost of read barriers, such as common subexpression elimination,
and specialised optimisations such as barrier sinking to move the barrier to the point of
use, allowing the barrier and use null-checks to be combined [Bacon et al, 2003a] .

Scheduling the collector. Metronome uses two different threads to control for both con
sistent scheduling and short, uninterrupted pause times. The alarm thread is a very high
priority thread (higher than any mutator thread) that wakes up every 500 microseconds. It
acts as the 'heartbeat' for deciding whether to schedule a collector quantum. If so, it initi
ates suspension of the mutator threads, and wakes the collector thread . The alarm thread
is active only long enough to carry out these duties (typically under 10 microseconds) so
that it goes unnoticed by the application.

The collector thread performs the actual collector work for each collector quantum. It
must first complete the suspension of the mutator threads that was initiated by the alarm
thread. Then it will perform collector work for the remainder of the quantum, before
restarting the mutator threads and going back to sleep. The collector thread can also pre
emptively sleep if it is unable to complete its work before the quantum ends.

Metronome produces consistent CPU utilisation because the collector and mutator are
interleaved using fixed time quanta . However, time-based scheduling is susceptible to
variations in memory requirements if the mutator allocation rate varies over time.

Suspending the mutator threads. Metronome uses a series of short incremental pauses
to complete each collector cycle. However, it must still stop all the mutator threads for each
collector quantum, using a handshake mechanism to make all the mutator threads stop at
a GC-safe point. At these points, each mutator thread will release any internally held
run-time metadata, store any object references from its current context into well-described
locations, signal that it has reached the safe point and then sleep while waiting for a re
sume signal. Upon resumption each thread will reload object pointers for the current con
text, reacquire any necessary run-time metadata that it previously held and then continue.
Storing and reloading object pointers allows the collector to update the pointers if their
targets move during the quantum. GC-safe points are placed at regularly-spaced intervals
by the compiler so as to bound the time needed to suspend any mutator thread.

The suspend mechanism is used only for threads actively executing mutator code.
Threads that do not access the heap, threads executing non-mutator 'native' code, and
already suspended mutator threads (such as those waiting for synchronisation purposes)
are ignored. If these threads need to begin (or return to) mutating the heap (for example,
when returning from 'native' code, invoking operations of the Java Native Interface, or
accessing other Java run-time structures), they will suspend themselves and wait for the
collector quantum to complete.

Ragged root scanning. Metronome scans each complete thread stack within a single col
lector quantum so as to avoid losing pointers to objects. Developers must make sure not
to use deep stacks in their real-time applications so as to permit each stack to be scanned
in a single quantum. Though each whole stack must be scanned atomically in a single
quantum, Metronome does allow scanning of distinct thread stacks to occur in different
quanta . That is, the collector and mutator threads are allowed to interleave their execution
while the collector is scanning the thread stacks . To support this, Metronome imposes an
installation write barrier on all unscanned threads, to make sure they do not hide a root
reference behind the wave front before the collector can scan it.

1 9.5. TIME-BASED REAL-TIME COLLECTION: METRONOME 395

Analysis

One of the biggest contributions of Metronome is a formal model of the scheduling of
collection work and its characterisation in terms of mutator utilisation and memory usage
[Bacon et al, 2003a] . The model is parametrised by the instantaneous allocation rate A* (T) of
the mutator over time, the instantaneous garbage generation rate G* (T) of the mutator over
time and the garbage collector processing rate P (measured over the live data) . All are defined
in units of data volume per unit time. Here, time T ranges over mutator time, idealised for a
collector that runs infinitely fast (or in practice assuming there is sufficient memory to run
without collecting).

These parameters allow simple definitions of the amount of memory allocated during
an interval of time (T1 , Tz) as

and similarly for garbage generated as

The maximum memory allocated for an interval of size tn is

a: * (ln) = max a:* (T, T + Lh)
T

which gives the maximum allocation rate1

(19 .1)

(19 .2)

(19 .3)

(19 .4)

The instantaneous memory requirement of the program (excluding garbage, overhead,
and fragmentation) at a given time T is

m * (T) = a:* (O, T) - -y* (O, T) . (19 .5)

Of course, real time must also include the time for the collector to execute, so it is
helpful to introduce a function <I> : t -+ T that maps from real t to mutator time T, where
T � t. A function that operates in mutator time is written f* whereas a function that
operates in real time is written f. Thus, the live memory of the program at time t is

m (t) = m * (<P (t))

and the maximum memory requirement over the entire program execution is

m = max m (t) = max m* (T) .
t T

(19 .6)

(19 .7)

Time utilisation. Time-based scheduling has two additional parameters: the mutator
quantum Qr and the collector quantum Cr, being the amount of time that the mutator and
collector (respectively) are allowed to run before yielding. These allow derivation of mini
mum mutator utilisation as

ur (M) =

Qr . L�J + x

M (19 .8)

1Note carefully here the distinction between a* (the maximum allocation rate over an interval) and a* (the
maximum allocated memory over an interval).

396 CHAPTER 1 9. REAL-TIME GARBAGE COLLECTION

1

0.8

0 .6
,........

Qr = 10

<]
'--"'

f-.o
;::!

0.4

0.2
Qr = 2.5

0
10 100 1000 10000

Figure 19.9: Minimum mutator utilisation u r (L'lt) for a perfectly scheduled

time-based collector. Cr = 10. Utilisation converges to Qr'tcr . Increasing the
frequency of the collector (reducing the mutator quantum) produces faster
convergence.

where Qr · l Qr�Cr J is the length of whole mutator quanta in the interval and x is the size
of the remaining partial mutator quantum, defined as

(19.9)

Asymptotically, minimum mutator utilisation approaches the expected ratio of total time
given to the mutator versus the collector:

(19 .10)

For example, consider a perfectly scheduled system that has a collector quantum Cr =

10, which is the maximum pause that will be experienced by the mutator. Figure 19.9 plots
minimum mutator utilisation for mutator quanta of Qr = 2.5, Qr = 10 and Qr = 40.

Notice that ur (M) converges to A in the limit for large L'lt, and that more frequent
collection (reducing the mutator quantum Qr) leads to faster convergence. Also, note that
the x term has more impact at the small time scales of interest in real-time systems. Of
course, in practice the collector will usually run only intermittently, so ur (L'lt) is only a
lower bound on mutator utilisation.

Space utilisation. As already noted, space utilisation will vary depending on the mutator
allocation rate . Assuming constant collector rate P, at time t the collector will run for time
m (t) / P to process the m (t) live data (work is proportional to the tracing needed to mark

1 9.5. TIME-BASED REAL-TIME COLLECTION: METRONOME 397

the live data) . In that time, the mutator will run for quantum Qr per quantum Cr of the
collector. Thus, to run a collection increment at time t requires an excess space overhead of

er (t) = �* (<l>(t) , <l>(t) +
m�t) · �;)

allowing definition of the maximum excess space required as

er = max er (t) .
I

(19 . 1 1)

(19 .12)

Freeing an object in Metronome can take as long as three collection cycles: one to collect
the object, two if the object became garbage only after the current snapshot cycle began so
it cannot be collected until the next cycle and three if the object needs also to be relocated
before its space can be reused.

Thus, the space required (ignoring internal fragmentation) at time t is

(19 . 13)

while the overall space needed is
(19 . 14)

These are in the worst case that all garbage objects are dragged into the next collector cycle
and that they all need to be moved. The expected space needed is simply m + er.

Mutation. Mutation also has a space cost because the write barrier must record every
deleted and inserted reference. It must filter null references and marked objects so as to
place a bound on collector work (at most all the objects in the heap will be marked live),
while keeping the cost of the write barrier constant. Thus, in the worst case, the write log
can have as many entries as there are objects. This space must be accounted for by treating
allocation of the log entries as an indirect form of allocation.

Sensitivity. Metronome will behave as predicted only when given accurate estimates of
the parameters used to describe the application and the collector: the application alloca
tion rate A* (t) and garbage generation rate G* (t) , and the collector processing rate P and
the quantisation parameters Qr and Cr. Utilisation ur depends solely on Qr and Cr, so
utilisation will remain steady (subject only to any jitter in the operating system delivering
a timely quantum signal and the minimum quantum it can support) .

The excess space required for collection er (t) , which determines the total space sr
needed, depends on both maximum application memory usage m and the amount of mem
ory allocated over an interval . If the application developer underestimates either the total
space required m or the maximum allocation rate a* then the total space requirement sr
may grow arbitrarily. Time-based collectors suffer from such behaviour particularly when
there are intervals of time in which the allocation rate is very high. Similarly, the estimate
of the collector processing rate P must be a conservative underestimate of the actual rate.

Fortunately, a collection cycle runs for a relatively long interval of mutator execution
time

�T = m (t) . Qr
P Cr

so the allocation rate in that time will be dose to the average allocation rate, resulting in
little variation in space consumed so long as the estimate of maximum memory required
m is accurate.

398 CHAPTER 1 9. REAL-TIME GARBAGE COLLECTION

Comparison with work-based scheduling. A similar analysis of work-based scheduling
yields the opportunity to compare time-based and work-based scheduling. However, this
analysis is compromised because operations of the mutator can affect the time allocated
to it. More formally, for time-based scheduling the time dilation <I> from t to T is linear
and fixed, whereas for work-based scheduling the dilation is variable and non-linear, and
dependent on the application.

The parameters for work-based scheduling reflect that the mutator and collector inter
leave by triggering the collector after some amount of allocation to perform some amount
of collector work: the work-based mutator quantum Qw and collector quantum Cw be
ing the amount of memory that the mutator and collector (respectively) are allowed to
allocate/process before yielding.

Because work-based time dilation is variable and non-linear there is no way to obtain a
closed-form solution for minimum mutator utilisation. Each collector increment processes
Cw memory at rate P, so each pause for collection takes time d = Cw I P. Each mutator
quantum involves allocation of Qw memory, so the minimum total mutator time �T; for i
quanta is the minimum �T; that solves the equation

(19.15)

Increasing the time interval does not decrease the maximum amount of allocation in that
time, so a * (�T) increases monotonically. Thus, �T; > �T;_ 1 , so Equation 19 .15 can be
solved using an iterative method. Let k be the largest integer such that

so that the minimum mutator utilisation over an interval � t is

(A)
�Tk + Y Uw ut =
--'-:------=--

M

(19.16)

(19.17)

where �Tk is the time taken by k whole mutator quanta in M and y is the size of the
remaining partial mutator quantum, defined as

y = max(O, M - �Tk - (k + 1) · d) . (19. 18)

Note that minimum mutator utilisation u w (M) will be zero for M < d. Moreover, any
large allocation of nQw bytes will force the collector to perform n units of work leading to
a pause lasting time nd in which the mutator will experience zero utilisation. This reveals
analytically that the application developer must take care with a work-based collector to
achieve real-time bounds by avoiding large allocations and making sure that allocation is
spaced evenly.

Now, minimum mutator utilisation depends on the allocation rate a* (�T) , where �T ::=;
�t, and on the collector processing rate P. Suppose that the interval M over which we re
quire real-time performance is small (say twenty milliseconds), so the peak allocation rate
for this interval is likely to be quite high. Thus, at real-time scales work-based minimum
mutator utilisation uw (M) will vary considerably with the allocation rate. In contrast, note
that the �T in which the time-based collector is dependent on allocation rate is at a much
larger scale: the time needed for a complete garbage collection cycle.

Analysing for space, the excess space required to perform a collection at time t is

ew (t) = m(t) · �:
and the excess space required for a collection cycle over its whole execution is

Qw
ew = m ·

Cw
.

(19. 19)

(19 .20)

1 9.6. COMBINING SCHEDULING APPROACHES: TAX-AND-SPEND 399

These will be accurate as long as the application developer 's estimate of total live memory
m is accurate. Also, note that the excess ew for a whole collection cycle will exceed the
maximum memory m needed for execution of the program unless Qw < Cw . The space
requirement of the program at time t is

sw (t) :::; m (t) + 3ew (19 .21)

and the space required overall is
sw = m + 3ew . (19 .22)

To sum up, while a work-scheduled collector will meet its space bound so long as
m is correctly estimated, its minimum mutator utilisation will be heavily dependent on
the allocation rate over a real-time interval, while a time-based collector will guarantee
minimum mutator utilisation easily but may fluctuate in its space requirements.

Robustness

Time-based scheduling yields the robustness needed for real-time collection, but when the
input parameters to the collector are not accurately specified it may fail to reclaim sufficient
memory. The only way for it to degrade gracefully is to slow down the allocation rate .

One approach to reducing the total allocation rate is to impose a generational scheme.
This treats the nursery as a filter to reduce the allocation rate into the primary heap. Fo
cusing collector effort on the portion of the heap most likely to yield free memory results
in higher mutator utilisation and also reduces the amount of floating garbage. However,
traditional nursery collection is unpredictable both in terms of the time to collect and the
quantity of data that is promoted. Syncopation is an approach for performing nursery col
lection synchronously with the mature-space collector, where the nursery is evacuated at
the beginning of the mature-space collection cycle and at the start of sweeping, as well as
outside the mature-space collection cycle [Bacon et al, 2005] . It relies on an analytic solu
tion for utilisation in generational collection taking the nursery survival rate as a parame
ter and sizing the nursery such that evacuation is needed only once per real-time window.
The analysis informs whether generational collection should be used in any given appli
cation. Syncopation handles the situation where temporary spikes in allocation rate make
it impossible to evacuate the nursery quickly enough to meet real-time bounds by moving
the work triggered by the temporary spike to a later time. Frampton et al [2007] adopt
a different approach, allowing nursery collection to be performed incrementally so as to
avoid having pause times degenerate to the time needed to evacuate the nursery.

Another strategy for slowing the allocation rate is simply to add an element of work
based collection to slow the mutator down, but of course this can lead to missed dead
lines. Alternatively, slack-based scheduling achieves this by preempting the low-priority
threads as necessary for the collector to keep up with allocation. So long as sufficient low
priority slack is available then real-time deadlines will be preserved. These observations
lead to the following Tax-and-Spend methodology that combines slack-based and time
based scheduling.

19.6 Combining scheduling approaches: Tax-and-Spend

Metronome works best on dedicated uniprocessor or small multiprocessor systems, be
cause of its need to suspend the mutator while an increment of collector work is per
formed. Typical work-based collectors can suffer latencies that are orders of magnitude
worse than time-based schemes. Henriksson's slack-based scheduling is best-suited to

400 CHAPTER 1 9. REAL-TIME GARBAGE COLLECTION

periodic applications and is fragile under overload conditions when there is no available
slack. To address these limitations Auerbach et al [2008] devised a general scheduling
methodology called Tax-and-Spend that subsumes the work-based, slack-based and time
based approaches. When applied to Metronome, the Tax-and-Spend methodology results
in latencies almost three times shorter, comparable utilisation at a time window two and a
half times shorter, and mean throughput improvements of 10% to 20%.

The basic principle of Tax-and-Spend is that each mutator thread is required to engage
in some amount of collection work (taxation) at a rate and intervals appropriate to its
desired minimum mutator utilisation. Collection work also proceeds in any available slack
left over by the mutators, building up credits that mutators can later spend to preserve or
improve their utilisation by avoiding some amount of collector work.

Taxation can occur at any GC-safe point as a result of some global decision, but a
thread-specific check for pending collector work is imposed on every slow path allocation
(when the thread's local allocation buffer is exhausted) that also enables a decision based
on mutator work (measured by units of allocation, thread execution time, safe points exe
cuted, absolute physical time, or whatever virtualised time makes sense).

Tax-and-Spend scheduling

As we have already seen, minimum mutator utilisation is simple for developers to rea
son about because they can consider the system as just running somewhat slower than the
native processor speed until the responsiveness requirements approach the quantisation
limits of the garbage collector. As a measure of garbage collector intrusiveness, minimum
mutator utilisation is superior to maximum pause time since it accounts for clustering
of the individual pauses that cause missed deadlines and pathological slowdowns. Tax
and-Spend scheduling allows different threads to run at different utilisations, providing
flexibility when threads have widely varying allocation rates, or for threads having partic
ularly stringent deadlines that must be interrupted as little as possible . Also, background
threads on spare processors can be used to offload collector work to obtain high utilisation
for mutator threads. The time metric can be physical or virtual as best suits the application.
Of course, this does mean that any analysis of the application must compose the real-time
constraints of the individual threads to obtain a global picture of application behaviour.

Per-thread scheduling. To manage per-mutator utilisation, Tax-and-Spend must mea
sure and schedule collector work based on per-thread metrics and allow a collector in
crement to be charged to a single mutator thread. All collector-related activity can be
accounted for in each thread (including the overheads of extending the mutation log, ini
tialising an allocation page, and other bookkeeping activities) . The collector can track all
of these so as to avoid scheduling too much work on any given mutator thread.

Also, by piggybacking collector increments on mutator threads before a thread volun
tarily yields to the operating system (say to take an allocation slow path, or to perform l/0
or execute native code that does not access the heap) Tax-and-Spend avoids having the op
erating system scheduler assume that the thread has finished with its operating system
time quantum and schedule some unrelated thread in its place . This is particularly impor
tant in a loaded system. By interleaving mutation and collection on the same operating
system thread the operating system scheduler is less likely to interfere in the scheduling
of the collection work.

Allowing different threads to run with different utilisation is important when alloca
tion rates vary significantly across threads or when high-priority threads like event han
dlers desire minimal interruption. This also permits threads that can tolerate less stringent
timing requirements to lower their quantisation overheads by running with larger quanta,
and so increase throughput.

1 9.6. COMBINING SCHEDULING APPROACHES: TAX-AND-SPEND 401

Tax-based versus slack-based scheduling. Slack-based scheduling works well in classi
cal periodic real-time systems, but it degrades badly when the system is overloaded and
has insufficient slack. This makes it poorly suited to queuing, adaptive (where the sys
tem saturates the processor to compute as accurate a result as possible, but tolerates less
accuracy to avoid total overload) or interactive real-time systems. Work-based scheduling
taxes mutator allocation work, choosing some amount of collector work proportional to al
location work that will permit the collector to finish its cycle before memory is exhausted.
It often suffers from poor minimum mutator utilisation and wide variations in pause time.
Time-based scheduling taxes mutator utilisation to interleave the collector with the muta
tor for given amounts of processor time. It is robust to overload because the tax continues
to be assessed, but when there is sufficient slack in the system it can result in unneces
sary jitter since collection can occur at any time so long as minimum mutator utilisation
requirements are preserved.

Combining tax-based and slack-based scheduling. Tax-and-Spend combines these dif
ferent scheduling approaches by adopting an economic model. Each mutator thread is
subject to a tax rate that determines how much collector work it must perform for a given
amount of execution time, specified as a per-thread minimum mutator utilisation. Dedi
cated collector threads run at low or idle priority during slack periods and accumulate tax
credits for their work. Credits are typically deposited in a single global account, though it
is possible to consider policies that use multiple accounts .

The aggregate tax over over all threads, combining the tax on the mutator threads with
the credits contributed by the collector threads, must be sufficient for the collector to finish
its cycle before memory is exhausted. The number of background collector threads is typ
ically the same as the number of processors, configured so that they naturally run during
slack periods in overall system execution. They execute a series of quanta each adding
the corresponding amount of credit. On real-time operating systems it is desirable to run
these threads at some low real-time priority rather than the standard idle priority so that
they are scheduled similarly to other threads that perform real work rather than as a true
idle thread. These low-priority real-time threads will still sleep for some small amount of
time, making it possible for non-real-time processes to make progress even when collec
tion might saturate the machine. This enables administrators to log in and kill run-away
real-time processes as necessary.

Each mutator thread is scheduled according to its desired minimum mutator utilisa
tion, guaranteeing that it can meet its real-time requirements while also allowing the col
lector to make sufficient progress. When a mutator thread is running and its tax is due, it
first attempts to withdraw credit from the bank equal to its tax quantum. If this is success
ful then the mutator thread can skip its collector quantum because the collector is keeping
up, so the mutator pays tax only when there is insufficient slack-scheduled background
collection. Even if only a partial quantum's credit is available then the mutator can per
form a smaller quantum of collector work than usual. Thus, if there is any slack available
the mutator can still run with both higher throughput and lower latencies without having
the collector falling behind. This treats slack in a uniprocessor and excess capacity in a
multiprocessor in the same way.

Tax-and-Spend prerequisites

Tax-and-Spend requires an underlying garbage collector that is both incremental (so col
lector work can be levied as a work-scheduled tax on the mutator threads) and concurrent
(so slack-scheduled collector work can run on a spare processor concurrently with the mu
tators) . To exploit multiprocessors effectively it should also be parallel (so slack-scheduled

402 CHAPTER 1 9. REAL-TIME GARBAGE COLLECTION

collector work can run concurrently with work-scheduled collector work) . While Metro
nome is incremental, it was not originally devised to be concurrent, because time-based
scheduling requires that the mutator interleave with the collector at precise intervals, with
the mutator suspended while the collector executes. Thus, Tax-and-Spend makes two
key changes . First, collector work occurs in collector threads concurrently with mutator
threads. This makes it easy for the collector threads to exploit any available slack on some
processors while the other processors continue to run mutator threads. Second, mutator
threads can be taxed by piggybacking an increment of collector work on them when the
load on the system makes it necessary to steal some time from the mutator.

Concurrent collection by itself is insufficient, since it devolves scheduling of the collec
tor threads to the operating system which does not provide the precision needed to meet
real-time guarantees and prevent heap exhaustion. Even a real-time operating system can
not account for the allocation patterns and space needs of the application in making its
scheduling decisions.

We describe below how Tax-and-Spend extends Metronome to achieve on-the-fly, con
current, parallel and incremental collection. These extensions are similar to those of other
on-the-fly concurrent and parallel collectors, but we reiterate them here in this context for
completeness.

Ragged epochs for global consensus. Rather than stopping all the mutator threads to
impose global consensus about the current activities of the collector, Tax-and-Spend sub
stitutes a ragged epoch protocol . This is used for several purposes. For example, during
certain phases of the collector all the mutators must install a particular write barrier. Al
ternatively, for termination of the collector, all mutator threads must have drained their
private store buffer. The thread installing the barrier, or checking for termination, uses the
epoch mechanism to assert that the new state is in effect for all threads.

The epoch mechanism uses a single shared epoch number that can be atomically in
cremented by any thread to initiate a new epoch, plus a per-thread local epoch number.
Each thread updates its local epoch number by copying the shared epoch, but it does so
only at GC-safe points. Thus, each thread's local epoch is always less than or equal to
the shared epoch. Any thread can examine the local epochs of all threads to find the least
local epoch, which is called the confirmed epoch . Only when the confirmed epoch reaches
or passes the value a thread sets for the global epoch can it be sure that all other threads
have noticed the change. On weakly-ordered hardware a thread must use a memory fence
before updating its local epoch. To cope with threads waiting on l/0 or executing native
code, Tax-and-Spend requires that they execute a GC-safe point on return to update their
local epoch before they resume epoch-sensitive activities. Thus, such threads can always
be assumed to be at the current epoch, so there is no need to wait for them.

Phase agreement using 'last one out'. Metronome easily achieved agreement on the col
lector phase (such as marking, sweeping, finalising, and so on) because all collector work
occurred on dedicated threads that could block briefly to effect a phase change so long
as there was enough remaining time in their shared collector quantum. With concurrent
collection piggy-backed on the mutator threads, each mutator might be at a different place
in its taxation quantum, so it is essential that phase detection be non-blocking or else a
taxed mutator might fail to meet its deadlines. Using ragged epochs for this is not efficient
because it does not distinguish taxed mutator threads from others . Instead, the 'last one
out' protocol operates by storing a phase identifier and worker count in a single shared
and atomically updatable location.

1 9.7. CONTROLLING FRAGMENTATION 403

Every taxed mutator thread atomically increments the worker count, leaving the phase
identifier unchanged. When a mutator thread exhausts its taxation quantum without com
pleting the phase it atomically decrements the worker count, also leaving the phase identi
fier unchanged. When any thread believes that the phase might be complete because there
is (apparently) no further work to do in that phase, and it is the only remaining worker
thread (the count is one), then it will change the phase and decrement the worker count in
one atomic operation to establish the new phase.

This protocol works only so long as each worker thread returns any incomplete work
to a global work queue when it exits. Eventually there will be no work left, some thread
will end up being the last one and it will be able to declare the next phase.

Unfortunately, termination of the mark phase in Metronome is not easily achieved us
ing this mechanism, because the deletion barrier employed by Metronome deposits the
overwritten pointer into a per-thread mutation log. Mark phase termination requires that
all threads have an empty mutation log (not just those performing collector work) . Thus,
Tax-and-Spend introduces a final marking phase in which the remaining marking work
is handled by one thread which uses the ragged epoch mechanism to ensure that there
is global agreement that all the mutation logs are empty. If this check fails then the de
ciding thread can declare a false alarm and switch back to parallel marking. Eventually
all the termination conditions will be met and the deciding thread can move to the next
post-marking phase.

Per-thread callbacks. Most phases of a collection cycle need just enough worker threads
to make progress, but others require that something be done by (or to) every mutator
thread. For example, the first phase of collection must scan every mutator stack. Other
phases require that the mutator threads flush their thread-local state to make information
available to the collector. To support this some phases impose a callback protocol instead
of 'last one out'.

In a callback phase some collector master thread periodically examines all the mutator
threads to see if they have performed the desired task. Every active thread that has not
is asked to perform a callback at their next GC-safe point to perform the required action
(stack scanning, cache flushing, and so on) . Threads waiting on 1/0 or executing native
code are prevented from returning while the action is performed on their behalf. Thus, the
maximum delay to any thread during a callback phase is the time taken to perform the
action.

Priority boosting to ensure progress. It is imperative that a real-time collector make
progress so that it finishes collection before the heap is exhausted. All three of the prior
protocols (ragged epochs, last one out and callback) can be prevented from making pro
gress if some lower priority thread is unable to respond because higher priority threads are
saturating the processors. The solution is to boost the priority of the lower priority thread
temporarily until it has been heard from.

19.7 Controlling fragmentation

A real-time collector must bound both its time and its space consumption. Unfortunately,
over time fragmentation can eat away at the space bound. Accounting for fragmentation
is impossible without precise characterisation of application-specific behaviours such as
pointer density, average object size, and locality of object size. Thus, a real-time collector

404 CHAPTER 1 9. REAL-TIME GARBAGE COLLECTION

must be designed to manage and limit fragmentation in some way. One way to achieve
this is through compaction. Another approach is to allocate objects in fragments (obJets
and arraylets) so as to preclude external fragmentation at the expense of some (bounded)
internal fragmentation and overhead on the mutator to access the appropriate fragment
during reads and writes to the heap. In this section we discuss both of these approaches.

The challenge in concurrent compaction is for the collector to relocate objects concur
rently with the mutator while guaranteeing that mutator accesses retain tight time bounds.
The replicating collectors of Chapter 17 and Blelloch and Cheng [1999] were originally de
vised expressly to allow concurrent copying but they maintain two copies of each object.
Keeping these copies consistent on modem multiprocessors that lack strict coherence usu
ally requires some form of locking, particularly for volatile fields. Moreover, replicating
collectors rely on a synchronous termination phase to ensure that the mutator roots have
been forwarded. Per-object locking does not scale. Compressor and Pauseless rely on
page-level synchronisation using page protection, but suffer from poor minimum mutator
utilisation both because of the cost of the traps and because they are work-based, with a
trap storm following a phase shift.

The absence of lock-freedom means we cannot guarantee progress of the mutator let
alone preserve time bounds. There are a number of approaches to making mutator accesses
wait-free or lock-free in the presence of concurrent compaction, which we now discuss.

Incremental compaction in Metronome

Metronome was designed as a mostly non-copying collector under the assumption that
external fragmentation is rare . It uses arraylets to break large objects (arrays) into chunks
which form the largest contiguous units allocated by the system. This combination greatly
reduces the number of objects that must be copied in order to minimise fragmentation.
Bacon et a[[2003b] derive an analytical framework to decide how many pages to defrag
ment during each collection so as to ensure that the mutator never needs to wait for any
allocation request. Because Metronome is an incremental collector it can perform defrag
mentation while all the mutator threads are stopped. When the mutator threads resume
they are forwarded to any copies as necessary via the Brooks indirection barrier. There is
no need to be concerned with mutators seeing objects in the middle of being copied. The
only cost to the mutator is the cost of the extra indirection, which has tight time bounds.
The Tax-and-Spend extension of Metronome is a concurrent collector but it does not per
form any compaction.

The framework of Bacon et a[[2003b] divides the defragmentation work (as determined
by the derived defragmentation target) as evenly as possible across the size classes of their
segregated-fits allocator. Each size class consists of a linked list of pages (as opposed to
individual objects). The algorithm for defragmenting a size class consists of the following
steps.

1. Sort the pages by the number of unused (free) objects per page from dense to sparse.

2. Set the allocation page to the first (densest) non-full page in the resulting list.

3 . Set the page to evacuate to the last (sparsest) page in the list.

4. While the target number of pages to evacuate in this size class has not been met, and
the page to evacuate does not equal the page in which to allocate, move each live
object from the sparsest page to the next available free cell on the allocation page
(moving to the next page in the list whenever the current allocation page fills up) .

1 9.7. CONTROLLING FRAGMENTATION

Algorithm 19.7: Replication copying for a uniprocessor

t atomic Read(p, i) :
return p [i]

405

• atomic Wri t e (p, i, value) : /* p may be primary or replica */
/* deletion barrier code also needed here for snapshot collection 4
p [i] +- value
r +- fo rwa rdingAddre s s (p)
r [i] +- value
I* insertion barrier code also needed here for incremental update collection */

This moves objects from the sparsest pages to the densest pages. It moves the minimal
number of objects and produces the maximal number of completely full pages. The choice
of the first allocation page in step 2 as the densest non-full page may result in poor cache
locality because previously co-located objects will be spread among the available dense
pages. To address this, one can set a threshold for the density of the page in which to
allocate at the head of the list, so that there are enough free cells in the page to satisfy the
locality goal.

References to relocated objects are redirected as they are scanned by the subsequent
tracing mark phase. Thus, at the end of the next mark phase, the relocated objects of the
previous collection can be freed. In the meantime, the Brooks forwarding barrier ensures
proper mutator access to the relocated objects. Deferring update of references to the next
mark phase has three benefits: there is no extra 'fixup' phase, fewer references need to be
fixed (since any object that dies will never be scanned) and there is the locality benefit of
piggybacking fixup on tracing.

Incremental replication on uniprocessors

Before considering more complicated schemes for concurrent compaction, it is worth not
ing that many real-time applications run in embedded systems, where uniprocessors have
been the predominant platform. Preserving atomicity of mutator operations (with respect
to the collector and other mutators) is simple on a uniprocessor, either by disabling sched
uler interrupts or by preventing thread switching except at GC-safe points (making sure
that mutator barriers never contain a GC-safe point) . In this setting, the collector can freely
copy objects so long as mutators subsequently access only the copy (using a Brooks indi
rection barrier to force a tospace invariant), or they make sure to update both copies (in
case other mutators are still reading from the old version in a replicating collector) .

Kalibera [2009] compares replication copying to copying with a Brooks barrier in the
context of a real-time system for Java running on uni-processors. His replication scheme
maintains the usual forwarding pointer in all objects, except that when the object is repli
cated the forwarding pointer in the replica refers back to the original instead of to itself
(in contrast to Brooks [1984]) . This arrangement allows for very simple and predictable
mutator barriers. On Read the mutator need not be concerned whether it is accessing a
fromspace or tospace object, and can simply load the value from whichever version the
mutator references. All that Wr i t e needs to do is to make sure that the update is per
formed on both versions of the object to keep them coherent. Pseudo-code for these bar
riers (omitting the support necessary for concurrent tracing) is shown in Algorithm 19.7.
Not surprisingly, avoiding the need to forward every read is a significant benefit, and the

406 CHAPTER 1 9. REAL-TIME GARBAGE COLLECTION

cost of the double-write is negligible given that most of the time both writes will be to the
same address because the forwarding address is a self-reference.

Concurrent compaction on a multiprocessor prevents us from assuming that Read
and Write can be made straightforwardly atomic . For that we must consider more fine
grained synchronisation among mutators, and between mutator and collector, as follows.

Stopless: lock-free garbage collection

Pizlo et al [2007] describe an approach to concurrent compaction for their lock-free Stop less
collector that ensures lock-freedom for mutator operations (allocation and heap accesses)
even while compaction proceeds concurrently. Unlike Blelloch and Cheng [1999], Stopless
does not require that the mutator update both copies of an object to keep them coherent.
Instead, it enforces a protocol that always updates just one definitive copy of the object.
The innovation in Stopless is to create an intermediate 'wide' version of the object being
copied, where each field has an associated status word, and to use CompareAndSwapWide
to synchronise copying of those fields with mutation. The field's status word changes
atomically with its data and indicates the up-to-date location of the data (in the fromspace
original, the wide copy, or the final tospace copy) . As in Blelloch and Cheng [1999] a header
word on each object stores a Brooks forwarding pointer, either to the wide copy or to the
tospace copy. During the compaction phase, mutator and collector threads race to create
the wide copy using CompareAndSwap to install the forwarding pointer.

Once the wide copy has been created, and its pointer installed in the original's for
warding pointer header field, the mutator can update only the wide copy. The status word
on each field lets the mutator know (via read and write barriers) where to read /write
the up-to-date field, encoding the three possibilities: inOrigi n a l , i nWide and i nCopy.
All status words on the fields in the wide object are initialised to i nOrigin a l . So long
as the status field is inOrigi n a l then mutator reads occur on the fromspace original.
All updates (both by the collector as it copies each field and the mutator as it performs
updates) operate on the wide copy, atomically updating both the field and its adjacent sta
tus to inWide using CompareAndSwapWide. The collector must assert that the field is
inOr iginal as it copies the field. If this fails then the field has already been updated by
the mutator and the copy operation can be abandoned.

Once all fields of an object have been converted to inWide (whether by copying or
mutation), the collector allocates its final 'narrow' version in tospace, whose pointer is then
installed as a forwarding pointer into the wide copy. At this point there are three versions
of the object: the out-of-date fromspace original which forwards to the wide copy, the up
to-date wide copy which forwards to the tospace copy, and the uninitialised tospace copy.
The collector concurrently copies each field of the wide copy into the narrow tospace copy,
using CompareAndSwapWide to assert that the field is unmodified and to set its status
to i nCopy. If this fails then the field was updated by the mutator and the collector tries
again to copy the field . If the mutator encounters an i nCopy field when trying to access
the wide copy then it will forward the access to the tospace copy.

Because Stopless forces all updates to the most up-to-date location of a field it also
supports Java volatile fields without the need for locking. It is also able to simulate
application-level atomic operations like compare-and-swap on fields by the mutator. For
details see Pizlo et al [2007] . The only remaining issue is coping with atomic operations
on double-word fields (such as Java long) where the Compa reAndSwapWide is not able
to cover both the double-word field and its adjacent status word. The authors of Stop less
propose a technique based on emulating n-way compare-and-swap using the standard
Compa reAndSwap [Harris et al, 2002] .

1 9.7. CONTROLLING FRAGMENTATION 407

Some might object to the space overhead of Stop less (three copies including one double
width), but Pizlo2 points out that so long as sparse pages are being evacuated, with at most
one third occupancy, one can make use of the dead space for the wide copies. Of course,
the reason for evacuating the page is that it is fragmented, so there may not be sufficient
contiguous free space available for all the copies. But if segregated-fits allocation is used
then the free portions are uniformly sized, and it is possible to allocate the wide objects
in multiple wide fragments so as to allocate each data field and its status word side-by
side. In Stopless, the space for the wide objects is retained until the next mark phase has
completed, having forwarded all pointers to their tospace copies .

Staccato: best-effort compaction with mutator wait-freedom

Whereas Metronome performs compaction while the mutator is stopped during a collector
quantum, Staccato [McCloskey et al, 2008] permits concurrent compaction without requir
ing any locks, and without requiring atomic operations like compare-and-swap in the com
mon case, even on multiprocessors with weak memory ordering. Storms of atomic oper
ations are avoided by moving few objects (only as necessary to reclaim sparsely-occupied
pages) and by randomising their selection.

Staccato inherits the Brooks-style indirection barrier of Metronome, placing a forward
ing pointer in every object header. It also relies on ragged synchronisation: the mutators are
instrumented to perform a memory fence (on weakly ordered machines like the Power PC)
at regular intervals (such as GC-safe points) to bring them up to date with any change to
global state. The collector reserves a bit in the forwarding pointer to denote that the ob
ject is being copied Oava objects are always word-aligned so a low bit in the pointer can
be used) . This COP Y I NG bit and the forwarding pointer can be changed atomically using
compare-and-swap /set. To move an object, the collector performs the following steps:

1 . Set the COP Y I NG bit using compare-and-swap /set. Mutators access the forwarding
pointer without atomic operations so this change takes some time to propagate to
the mutators .

2. Wait for a ragged synchronisation where every mutator performs a read fence to
ensure that all mutators have seen the update to the COP Y I NG bit.

3. Perform a read fence (on weakly ordered machines) to ensure that the collector sees
all updates by mutators from before they saw the change to the COPYING bit.

4. Allocate the copy, and copy over the fields from the original.

5. Perform a write fence (on weakly ordered machines) to push the newly written state
of the copy to make it globally visible.

6. Wait for a ragged synchronisation where every mutator performs a read fence to
ensure that it has seen the values written into the copy.

7. Set the forwarding address to point to the copy and simultaneously clear the COPY
ING bit using compare-and-swap/set. This commits the move of the object. If this
fails then the mutator must have modified the object at some point and the move is
aborted.

The collector will usually want to move a number of objects, so the cost of the ragged syn
chronisation can be amortised by batching the copying, as illustrated by the copyOb j ect s

2Filip Pizlo, personal communication.

408 CHAPTER 1 9. REAL-TIME GARBAGE COLLECTION

Algorithm 19.8: Copying and mutator barriers (while copying) in Staccato

copyOb j e ct s (candidat e s) :
for each p in candidat e s

I* set COPYING bit *I
Comp a reAndSet (& f o rwardingAddres s (p) , p, p I COPY ING)

wai t F o rRaggedSynch (readFence) I* ensure mutators see COP Y I NG bits *I
readF e n ce () I* ensure collector sees mutator updates from before CAS *I
for each p in candidat es

r +-- a l l ocat e (l e ngth(p)) I* allocate the copy 4
move (p, r) I* copy the contents 4

w f o rw a rdi ngAddre s s (r) I* the copy forwards t o itself *I
n add(rep l i cas , r) I* remember the copies *I
1 2 wri t e F e n c e () I* flush the copies so the mutators can see them *I
1 3 wai tFo rRaggedSynch (re adFence) I* ensure mutators see the copies *I
14 for each (p in candi dates , r in repl i c a s)
1 s I* try to commit the copy *I
16 i f not CompareAndS et (& f orwardi ngAddre s s (p) , p I COP Y I NG, r)
1 7 I* the commit failed so deal with it *I
1 s f r e e (r) I* free the aborted copy 4
19 add(aborted, p) I* remember the aborts *I
20 return aborted
2 1

22 Acce s s (p) :
23 r +- f o rwardingAddre s s (p)
24 if r & COPY ING = 0

I* load the forwarding pointer *I

2s ret urn r I* use the forwarding pointer only if not copying 4
26 I* try to abort the copy *I
27 if Compa reAndSet (& f o rwa rdi ngAddre s s (p) , r, p)
2s ret urn p I* the abort succeeded 4
29 I* collector committed or another aborted *I
30 atomic I* force reload of current f o rwardi ngAddre s s (p) *I
3 1 r +-- fo rwardi ngAddress (p)
32 return r

34 Read(p, i) :
35 p +- Acce s s (p)
36 return p [i]
37

38 Write (p, i , v a lue) :
39 p +- Acce s s (p)
40 p [i] +-- v a l ue

1 9.7. CONTROLLING FRAGMENTATION 409

Algorithm 19.9: Heap access (while copying) in Staccato using Cornpa reAndSwap

1 Acce s s (p) :
r +- f o rwardi ngAddre s s (p)
if r & COPYING = 0

/* load the forwarding pointer 4

return r /* use the forwarding pointer only if not copying 4
/* otherwise try to abort the copy */
r +- CornpareAndSwap (& forwa rdi ngAddres s (p) , r, p)
/*failure means collector committed or another aborted so r is good 4
return r & - coPY I NG /* success means we aborted so clear COP Y I NG bit 4

routine in Algorithm 19.8. This takes a list of candidat e s to be moved and returns a list
of abo rted objects that could not be moved.

Meanwhile, when the mutator accesses an object (to examine or modify its state for any
reason) it performs the following steps:

1 . Load the forwarding pointer.

2. Use the forwarding pointer as the object pointer only if the COPYING bit is clear.

3. Otherwise, try to abort the copy by using a compare-and-set to clear the COPYING
bit (which is the same as storing the original pointer) .

4 . Use the forwarding pointer (with the COP Y I NG bit cleared) as the object pointer only
if the compare-and-set succeeds.

5. Otherwise, the failure of the compare-and-set means either that the collector com
mitted the copy or else another mutator aborted it. So, reload the forwarding pointer
using an atomic read (needed on weakly ordered machines), guaranteed to see the
current value of the forwarding pointer (that is, the value placed there by the collec
tor or other mutator) .

These steps are shown in the Acce s s barrier helper function, used by both Read and
Write in Algorithm 19.8.

We note that when using compare-and-swap (instead of compare-and-set) Acce s s can
avoid the atomic read of the forwarding pointer and simply use the value that Cornpare
AndSwap returns, as shown in Algorithm 19 .9, clearing its COPY ING bit just in case the
compare-and-swap succeeded.

McCloskey et al [2008] note that frequently-accessed objects might prove difficult to
relocate because their move is more likely to be aborted. To cope with this they suggest that
when such a popular object is detected then its page can be made the target of compaction.
That is, instead of moving the popular object off of a sparsely populated page it suffices
simply to increase the population density of the page.

Also, abort storms can occur when the collector chooses to move objects that have tem
poral locality of access by the mutator, so degrading its minimum mutator utilisation be
cause of the need to run an increased number of CornpareAndSwap operations in a short
time. This is unlikely because only objects on sparsely populated pages are moved, so
objects allocated close together in time are unlikely all to move together. The probability
of correlated aborts can be reduced by breaking the defragmentation into several phases
to shorten the time window for aborts. Also, the set of pages chosen for defragmentation
in each phase can be randomised. Finally, by choosing to run several defragmentation

410 CHAPTER 19. REAL-TIME GARBAGE COLLECTION

Algorithm 19.10: Copying and mutator barriers (while copying) in Chicken

1 copyOb j ect s (c a n didat e s) :
for each p in candi dat e s

/* set COP Y I NG bit 4
forwar d i n gAddre s s (p) f- p I COP Y I NG

waitFo rRagge dSynch () /* ensure mutators see COPYING bits 4

10

for each p in candi dat e s
r f- a l l ocate (length (p))
move (p, r)
forwa r d i n gAddres s (r)
/* try to commit the copy 4

/* allocate the copy */
/* copy the contents */

/* the copy forwards to itself 4

I I if not C ompareAndS e t (& fo rwardi n gAddres s (p) , p I COP Y ING, r)
12

13

1 4

/* the commit Jailed so deal with it 4
f re e (r)
add (aborted, p)

t 5 return abo r t e d
1 6

t 7 Re ad (p, i) :

/* free the aborted copy 4
/* remember the aborts 4

1 8 r f- forwardi ngAddre s s (p) /* load the forwarding pointer 4
t 9 return r [i]
20

2 1 Wri t e (p, i, v a l u e) :
22 r f- forwardi ngAddre s s (p) /* load the forwarding pointer 4
23 if r & COP Y I NG =1- 0 /* use theforwarding pointer only ifnot copying 4
24 /* otherwise try to abort the copy 4
25 CompareAn dSet (& fo rwardi ngAddre s s (p) , r, r & - cOPYING)
26 /* failure means collector committed or another aborted 4
27 r f- forwardi ngAddre s s (p) /* reload forwardi ngAddre s s (p) 4
28 r [i] f- v a l u e

threads a t much the same time (though not synchronously, and respecting minimum mu
tator utilisation requirements), there will be fewer mutator threads running so reducing
the likelihood of aborts .

Chicken: best-effort compaction with mutator wait-freedom for x86

Pizlo et al [2008] offer a solution similar to Staccato (see Algorithm 19 .10) . Their Chicken al
gorithm, developed independently, is essentially the same as Staccato, though they assume
the stronger memory model of x86/x86-64 (recall Table 13 .1) . This means that only writes
need abort a copy (because atomic operations order reads) and that the ragged synchro
nisations need not perform the read fence. Both Staccato and Chicken support wait-free
mutator reads and writes, and wait-free copying at the cost that some copy operations
might be aborted by the mutator.

Clover: guaranteed compaction with probabilistic mutator lock-freedom

Pizlo et al describe an alternative approach called Clover that relies on probabilistic detec
tion of writes by the mutator to deliver guaranteed copying with lock-free mutator accesses

1 9.7. CONTROLLING FRAGMENTATION

Algorithm 19.11: Copying and mutator barriers (while copying) in Clover

1 copy S l ot (p, i) :
repeat

value +- p [i]
r f- f o rwardingAddre s s (p)
r [i] f- value

until Compa reAndSet (&p [i] , value, a)

s Re ad (p, i) :
value f- p [i]

w if value = a
n r f- fo rwardingAddre s s (p)
1 2 value f- r [i]
n return value
14
t 5 W r i t e (p, i , newVa lue) :
t6 if newValue = a
t7 sleep until copying ends
ts repeat
t9 oldValue f- p [i]
20 if oldVa lue = a
2 1 r f- f o rwardingAddre s s (p)
22 r [i] +- newValue
n break
24 until CompareAndSet (& s r c [i] , o ldVal ue, newValue)

4 1 1

(except in very rare cases) and lock-free copying by the collector. Rather than preventing
data races between the collector and the mutator, Clover detects when they occur, and in
that rare situation may need to block the mutator until the copying phase has finished.
Clover picks a random value a to mark fields that have been copied and assumes that the
mutator can never write that value to the heap. To ensure this, the write barrier includes a
check on the value being stored, and will block the mutator if it attempts to do so.

As the collector copies the contents of the original object to the copy it marks the origi
nal fields as copied by overwriting them with the value a using compare-and-swap. When
ever the mutator reads a field and loads the value a it knows that it must reload the up-to
date value of the field via the forwarding pointer (which points to the original if its copy
has not been made yet, or the copy if it has) . This works even if the true value of the field
is a from before the copy phase began.

Whenever the mutator tries to overwrite a field containing the value a it knows that it
must store to the up-to-date location of the field via the forwarding pointer. If the mutator
actually tries to store the value a then it must block until copying ends (so that a no longer
means a copied field that must be reloaded via the forwarding pointer) . We sketch Clover 's
collector copying routine and mutator barriers in Algorithm 19. 1 1 .

For some types a can be guaranteed not to clash with a proper value: pointers usually
have some illegal values that can never be used and floating point numbers can use any
one of the NaN forms so long as the program never generates them. For other types, a
needs to be chosen with care to minimise overlap with values used in the program. To
make the chance of overlap virtually impossible, Pizlo et al [2008] offer an innovative

412 CHAPTER 1 9. REAL-TIME GARBAGE COLLECTION

solution using a random choice for a . They use the largest width Compa reAndSwap
Wide available on the processor to assert copying of multiple fields at once. For example,
modern x86-64 processors support a 128-bit compare-and-swap, resulting in the infinites
imal chance of overlap of 2- 128 . Of course, this implies that when testing for a every
Read/Wr i t e must look at the full aligned 128-bit memory location and extract/insert the
value to load/store.

Stopless versus Chicken versus Clover

Pizlo et al [2008] compare Chicken and Clover to their earlier Stop less collector as well as to
a non-compacting concurrent mark-sweep collector. Qualitatively, Stopless cannot guar
antee progress to the collector, because there is a chance that repeated writes to a field in a
'wide' copy may cause copying to be postponed indefinitely. Chicken guarantees progress
for the collector, at the expense of aborting some copies . Pizlo et al claim that Clover can
guarantee collector progress, though in the simple formulation presented here it may stall
waiting to install a into a field it is copying while the mutator repeatedly updates the field,
causing its CompareAndSwap to fail repeatedly.

All three algorithms aim for lock-free heap access, but with subtle differences. Chicken
guarantees wait-free access for both reads and writes. Clover and Stopless provide only
lock-free writes, and reads require branching. Clover 's lock-free writes are only proba
bilistic, since it is possible that a heap write must be stalled until copying is complete as
noted above.

Clover never aborts an object copy. Stop less can abort copying an object in the unlikely
situation that two or more mutator threads write to the same field at much the same time
during entry into the compaction phase (see Pizlo et al [2007] for details) . Chicken is much
less careful: any write to an object while it is being copied will force the copy to abort.

Benchmarks comparing these collectors and non-compacting concurrent mark-sweep
collection show that throughput is highest for the non-compacting collector (because it
has much simpler barriers) . The copying collectors install their copying-tailored barriers
only during the compaction phase by hot-swapping compiled code at phase changes us
ing the techniques of Arnold and Ryder [2001] . Chicken is fastest (three times slow-down
while copying according to Pizlo3), though it results in many more copy aborts, followed
by Clover (five times slower while copying) and Stopless (ten times slower while copy
ing) . All the collectors scale well on a multiprocessor up to six processors . Because of
the throughput slow-downs copying degrades responsiveness to real-time events for both
Clover and Stop less. Responsiveness for Chicken is much better because it stays out of the
mutator's way by aborting copies quickly when necessary.

Fragmented allocation

The preceding discussion of compaction for real-time systems reveals that any real-time
collector relying on defragmentation to ensure space bounds must trade off throughput
and responsiveness to real-time events against the level of fragmentation it is willing to
tolerate. Wait-freedom of mutator heap accesses was guaranteed only by Chicken/Stac
cato at the price of aborting some copies . Stopless and Clover offer stronger space guar
antees but only with the weaker progress guarantee of lock-freedom for heap accesses. A
real-time collector needing hard space bounds may find this tradeoff unacceptable.

For this reason, Siebert has long advocated bounding external fragmentation by allo
cating all objects in (logically if not physically) discontiguous fixed-size chunks [Siebert,
1998, 2000, 2010], as implemented in his Jamaica VM for real-time Java. The Jamaica VM

3Personal communication.

1 9.7. CONTROLLING FRAGMENTATION 413

splits objects into a list of fixed-size oblets, with each successive oblet requiring an extra
level of indirection to access, starting at the head of the list. This results in linear-time ac
cess for object fields, depending on the field index. Similarly, arrays are represented as a
binary tree of arraylets arranged into a trie data structure [Fredkin, 1960] . Thus, accessing
an array element requires a number of indirections logarithmic in the size of the array. The
main problem with this scheme is this variable cost of accessing arrays . Worst-case exe
cution time analysis requires knowing (or bounding) statically the size of the array being
accessed . However, array size in Java is a dynamic property, so there is no way to prove
general bounds for programs in which array size is not known statically. Thus, in the ab
sence of other knowledge the worst-case access time for trie-based arrays can in general
be bounded only by the size of the largest allocated array in the application, or (worse) the
size of the heap itself if that bound is unknown.

To solve this problem, Pizlo et al [2010b] marry the spine-based arraylet allocation tech
niques of Metronome to the fragmented allocation techniques of the Jamaica VM in a sys
tem they call Schism. By allowing objects and arrays to be allocated as fixed-size fragments
there is no need to worry about external fragmentation . Moreover, both object and array
accesses have strong time bounds: indirecting a statically known number (depending on
the field offset) of oblets for object accesses, and indirecting through the spine to access
the appropriate arraylet for array accesses. To a first order approximation (ignoring cache
effects) both operations require constant time. Schism's scheme for allocating fragmented
objects and arrays is illustrated in Figure 19.10. An object or array is represented by a
'sentinel' fragment in the heap. Every object or array has a header word for garbage col
lection and another to encode its type. The sentinel fragment, representing the object or
array, contains these and additional header words to encode the remaining structure . All
references to an object or array point to its sentinel fragment.

Objects are encoded as a linked list of oblets as in Figure 19 .10a. An array that fits
in a single fragment is encoded as in Figure 19.10b. Arrays requiring multiple arraylet
fragments are encoded with a sentinel that refers to a spine, which contains pointers to
each of the arraylet fragments. The spine can be 'inlined' into the sentinel fragment if it is
small enough as in Figure 19.10c. Otherwise, the spine must be allocated separately.

The novelty of Schism is that separately allocated array spines need not be allocated
in the object/ array space . That space is managed entirely as a set of fixed-size fragments
using the allocation techniques of the immix mark-region collector. The 128-byte lines of
immix are the oblet and arraylet fragments of Schism. Schism adds fragmented allocation
and on-the-fly concurrent marking to immix, using an incremental update Dijkstra style
insertion barrier. The fragments never move, but so long as there are sufficient free frag
ments available any array or object can be allocated. Thus, fragmentation is a non-issue,
except for the variable-sized array spines.

To bound the fragmentation due to array spines, Schism allocates them in a separately
managed space that uses replication copying collection to perform compaction. Because
the array spines are immutable (they contain only pointers to arraylet fragments, which
never move) there is no problem of dealing with updates to the spines. Indeed, a mutator
can use either a fromspace primary spine or tospace replica spine without fear. Moreover,
each spine has a reference from at most one array sentinel. When replicating, the reference
to the primary from the sentinel can be lazily replaced with a reference to the replica at the
collector's leisure, without needing to synchronise with the mutator. Mutators can freely
continue to use the spine primary or switch over to using the spine replica when next they
load the spine pointer from the sentinel . Once replication of the spines has finished the
fromspace spines can be discarded without needing to fix any other pointers because the
tospace spines have only the single reference from their sentinel. A ragged synchronisation
of the mutators ensures that they all agree and are no longer in the middle of any heap
access that is still using a fromspace spine.

414 CHAPTER 1 9. REAL-TIME GARBAGE COLLECTION

(a) A two-fragment object with a payload of
six to twelve words. The sentinel fragment has
three header words: a fragmentation pointer
to the next object fragment, a garbage collec
tion header and a type header. Each fragment
has a header pointing to the next.

(b) A single-fragment array with a payload
of up to four words. The sentinel fragment
has four header words: a null fragmentation
pointer, a garbage collection header, a type
header and an actual length n :::; 4 words, fol
lowed by the inlined array fields.

(c) A multi-fragment array with a payload of up to three fragments (up to 24 words). The
sentinel fragment has five header words: a non-null fragmentation pointer to the inlined
array spine, a garbage collection header, a type header, a pseudo-length 0 indicating frag
mentation and an actual length 4 < n ::; 24 words (at the same negative offeset from the
spine as in (b)), followed by the inlined spine. Payload fragments have no headers.

(d) An array with a payload of four or more fragments (more than 24 words). The sen
tinel fragment has four header words: a non-null fragmentation pointer to the separately
allocated array spine, a garbage collection header, a type header and a pseudo-length 0 in
dicating fragmentation, followed by the rest of the sentinel which is unused. The spine has
a two-word header: the actual length and a forwarding pointer, at negative offsets. Payload
fragments have no headers.

Figure 19.10: Fragmented allocation in Schism.
Pizlo et al [2010b], doi: 1 0 . 1 1 4 5 / 1 8 0 6 5 9 6 . 1 8 0 6 6 1 5 .

© 2010 Association for Computing Machinery, Inc. Reprinted by permission.

1 9.8. ISSUES TO CONSIDER 415

Schism has a number of desirable properties . First, mutator accesses to the heap are
wait-free and tightly-bounded (costing constant time) . Second, fragmentation is strictly
controlled. Indeed, Pizlo et al [2010b] prove that given the number and type of objects
and arrays (including their size) in the maximum live set of the program, then total mem
ory needed for the program can be strictly bounded at 1 .3104b where b is the size of the
maximum live set. Third, as proposed for Jamaica VM by Siebert [2000], Schism can run
with contiguous allocation of arrays (objects are always fragmented) when there is suffi
cient contiguous space. Contiguous arrays are laid out as in Figure 19 .10d, except with
the payload extending into successive contiguous fragments. This allows for much faster
array access without indirection through the spine. These properties mean that Schism has
superior throughput compared to other production real-time collectors, while also being
tolerant of fragmentation by switching to fragmented allocation of arrays when contiguous
allocation fails . This comes at the cost of some slow-down to access the fragmented arrays .
The cost of the read and write barrier machinery to access fragmented arrays is through
put 77% of pure concurrent mark-region garbage collection (without the fragmented array
access support) .

For application developers requiring predictability of the cost for array accesses Schism
can be configured always to use fragmented allocation for arrays at the cost of having to
perform spine indirections on all array accesses . The benefit for this is much improved
maximum pause times. Since all allocations are performed in terms of fragments, pauses
due to allocation are essentially the cost of zero-initialising a four kilobyte page in the slow
path of allocation - 0.4 milliseconds on a forty megahertz embedded processor. When al
locating arrays contiguously the allocator must first attempt to locate a contiguous range
of fragments, which slows things down enough to cause maximum pauses around a mil
lisecond on that processor.

19.8 Issues to consider

Real-time systems demand precise control over garbage collection to ensure short pauses
and predictable minimum mutator utilisation. This chapter brings together techniques
from all the previous chapters in order to achieve these goals. In the absence of parallelism
and concurrency, real-time garbage collection is conceptually straightforward so long as
collection can be scheduled to preserve adequate responsiveness and performance. Our
focus here has been on the real-time garbage collection algorithms themselves, and not
so much on how to integrate their schedulability with that of the application. Real-time
application developers still need accurate analysis of worst-case execution time to feed
into schedulability analyses that will ensure that real-time constraints will be met [Wilhelm
et al, 2008] . The literature on real-time systems offers an abundance of guidance on analysis
of garbage collected applications for worst-case execution time and schedulability [Kim
et al, 2001; Robertz and Henriksson, 2003; Chang and Wellings, 2005, 2006a,b; Chang, 2007;
Cho et al, 2007, 2009; van Assche et al, 2006; Kalibera et al, 2009; Feizabadi and Back, 2005,
2007; Goh et al, 2006; Kim et al, 1999, 2000, 2001; Kim and Shin, 2004; Schoeberl, 2010; Zhao
et al, 1987] .

While we have focused on minimum mutator utilisation as the primary metric for mea
suring garbage collector responsiveness over time, we note that other metrics may be just
as important. Printezis [2006] argues that application-specific metrics are often more ap
propriate. Consider a periodic real-time task that must deliver a response within a fixed
window. From the perspective of this task, minimum mutator utilisation is immaterial,
so long as the real-time expectations of that task are met. Moreover, minimum muta
tor utilisation and maximum pause time may be difficult to account for when the only

416 CHAPTER 1 9. REAL-TIME GARBAGE COLLECTION

pauses related to garbage collection that the mutator experiences are those due to execut
ing the compiler-inlined slow path of a read or write barrier, or the slow path during allo
cation when the thread's local allocation buffer is exhausted. For some collectors, such as
Schism, these are the only collector-related pauses that the mutator will see (assuming col
lector work can be offloaded to another processor). Should these pauses be charged to the
garbage collector? If so, then how can a system account for them? Pizlo et al [2010a] even
go so far as to account for these slow paths using specialised hardware for on-device profil
ing of an embedded processor. To aid developers lacking such specialised hardware, Pizlo
et a[[2010b] provide a worst-case execution mode for their Schism collector that forces
slow path execution so that developers can get some reasonable estimate of worst-case
execution times during testing.

Glossary

A comprehensive glossary can also be found at http : I / www . memorymanagement . o r g .

ABA problem the inability o f certain
atomic operations to distinguish reading
the same value twice from a memory lo
cation as 'nothing changed' versus some
other thread changing the value after the
first read and then changing it back before
the second read.

accurate see type-accurate .

activation record a record that saves the
state of computation and the return ad
dress of a method, sometimes called a
frame.

age-based collection a collection tech
nique that partitions the heap into spaces
by age.

aging space a subspace of a generation,
typically the youngest generation, into
which objects are copied for a few collec
tions before promoting them.

alignment hardware or virtual machine
constraints may require that objects and
fields can be stored only on certain ad
dress boundaries.

allocation the action of allocating a free
cell .

allocator the memory manager component
responsible for creating objects (but not
initialising them) .

ambiguous pointer a value that may or
may not be a true pointer to an object; see
conservative collection.

ambiguous root a root that is an ambigu
ous pointer.

arraylet a fixed-size chunk representing
some subset of the cells of an array.

barrier an action (typically a sequence of
code emitted by the compiler) mediating
access to an object.

belt a collection of increments used by the
Beltway collector.

best-fit allocation a free-list allocation
strategy that places an object in the next
cell in the heap that most closely matches
the object's size.

big bag of pages allocation (BiBoP) a
segregated-fits allocation strategy that
places objects with the same attribute
(such as type) in the same block, thus al
lowing the type to be associated with the
block rather than with individual objects.

bitmap an array of bits (or often, bytes),
each associated with an object or granule.

bitmapped-fits allocation a sequential fits
allocation strategy that uses a bitmap to
record the free granules in the heap .

black an object is black if the collector has
finished processing it and considers it to
be live; see also tricolour abstraction.

black-listing an address range that has
been found to be a target of a false
pointer may be blacklisted in conserva
tive collection to prevent space leaks .

block an aligned chunk of a particular size,
usually a power of two .

boundary tag structures on the boundaries
of blocks that assist coalescing.

bounded mutator utilisation (BMU) the
minimum mutator utilisation observed
for a given time window or any larger

417

418

one; BMU is monotonically increasing
unlike MMU.

breadth-first traversal a traversal of the ob
ject graph in which an object's siblings are
visited before its descendants .

bucket a subspace used to segregate objects
by age within a step.

bucket brigade an approach to genera
tional collection using buckets.

buddy system a segregated-fits allocation
strategy that allocates blocks in power of
two sizes, allowing easy splitting and co
alescing.

buffered reference counting a form of ref
erence counting in which mutators buffer
reference counting operations and subse
quently send them for execution to the
collector.

bump pointer allocation see sequential al
location.

cache a fast memory which stores copies of
data from frequently used memory loca
tions.

cache block see cache line.

cache coherence the degree to which two
or more caches agree on the contents of
memory.

cache hit a memory access that finds its
containing cache line in the cache.

cache line the unit of memory that can be
transferred between the cache and mem
ory.

cache miss a memory access that does not
find its containing cache line in the cache.

call stack a stack holding the stack frames
of the methods being executed by a
thread.

car the unit of collection in the train collec
tor.

car (in Lisp) the word in a cons cell that
holds or points to the list element.

card a small, power of two sized and
aligned area of the heap.

GLOSSARY

card marking a technique used by the mu
tator to record the source of pointers of
interest to the collector; the write barrier
updates a card table.

causal consistency a consistency model in
which a prior read is ordered before any
write that may store the value obtained
by the read, and a prior write is ordered
before any read that may load the value
stored by the write.

cdr the word in a cons cell that holds or
points to the next cons cell in the list.

cell a contiguous group of granules, which
may be allocated or free, or even wasted
or unusable.

Cheney scanning a technique used with
copying collection for tracing live objects
without use of a stack.

chip multiprocessor (CMP) a multiproces
sor that has more than one processor on
a single integrated circuit chip; see also
multicore and many-core processor.

chunk a large contiguous group of gran
ules.

circular first-fit allocation see next-fit allo
cation.

coalesced reference counting a form of
buffered reference counting that avoids
applying redundant reference count op
erations.

coalescing recombining adjacent cells into
a single cell; see also segregated-fits allo
cation.

coherence protocol a cache management
protocol for maintaining some memory
consistency model .

collection a single instantiation of a collec
tor; typically this instantiation would re
claim at least all objects in the space being
collected that were dead at the time that
the collector was called.

collection cycle a complete execution of
the collector.

collector a system component responsible
for garbage collection.

compacting relocating marked (live) ob
jects and updating the pointer values of

GLOSSARY 419

all live references to objects that have dangling pointer a pointer to an object that
moved so as to eliminate external frag- has been reclaimed by the memory man-
mentation. ager.

compaction see compacting.

compaction order the order in which a
compacting collector rearranges objects;
this may be arbitrary (ignoring their previ
ous order or their relationship with other
objects), linearising (which attempts to
place objects next to those that they refer
ence), or sliding (preserving their original
order).

completeness the property of a collector
that guarantees to reclaim all garbage
eventually; for example reference count
ing is not complete because it cannot re
claim cycles of dead objects.

concurrent collection execution of the
garbage collector concurrently with ex
ecution of mutator threads.

condemned space the space or subspace
chosen to be collected.

connectivity-based (garbage) collection
(CBGC) a collection technique that parti
tions the heap into spaces based on con
nectivity.

cons cell a double-word cell used by Lisp
for storing the spine of a list.

conservative collection a technique for col
lection that receives no assistance from a
language's compiler or run-time system
and so must make over-estimates of the
set of live objects.

consistency model a specification of how
the memory system will appear to the
programmer, placing restrictions on the
values that can be returned by a read in
a shared-memory program execution.

copy reserve a space reserved for copying
in copying collection.

copying collection collection that evacu
ates live objects from one semispace to
another (after which, the space occupied
by the former can be reclaimed) .

creation space see nursery.

crossing map a map that decodes how ob
jects span areas (typically cards) .

dead an object is dead if it will not be ac
cessed at some time in the future execu
tion of the mutator.

deallocation the action of freeing an allo
cated cell.

deferred reference counting a reference
counting scheme in which some reference
count operations (typically those on local
variables) are deferred to a later time.

deletion barrier a write barrier that de
tects the removal of a reference; see also
snapshot-at-the-beginning .

dependent load a load from a memory lo
cation whose address depends on the re
sult of a prior load.

depth-first traversal a traversal of the ob
ject graph in which an object's descen
dants are visited before its siblings.

derived pointer a pointer obtained by
adding an offset to an object reference.

direct collection a collection algorithm that
determines whether an object is live sim
ply from that object itself.

double mapping a technique that maps the
same page at two different addresses with
different protections.

double-ended queue (deque) a data struc
ture allowing adding to and removing
from the front (head) and back (tail) .

epoch a period of execution of a reference
counting collector during which synchro
nised operations can be eliminated or re
placed by unsynchronised operations.

escape analysis an analysis (usually static)
that determines whether an object may
become reachable from outside the
method or thread that created it.

evacuating moving an object from a con
demned space to its new location (in to
space); see copying collection or mark
compact collection.

explicit deallocation the action of deallo
cation under the control of the program
mer, rather than automatically.

420

external fragmentation space wasted out
side any cell; see also internal fragmen
tation.

false pointer a value that was falsely as
sumed to be a pointer to an object; see
conservative collection.

false sharing the coincidence of different
processors accessing memory locations
that happen to lie in the same cache line,
resulting in increased cache coherence
traffic.

GLOSSARY

frame a power of two sized and aligned
chunk; typically a discontiguous space
comprises a number of frames; however,
see also activation record.

free the state of a cell in being available for
reallocation.

free pointer a pointer to the free granules
of a chunk; see sequential allocation.

free-list allocation a sequential fits alloca
tion strategy that uses a data structure to
record the location and size of free cells.

fromspace the semispace from which
fast-fits allocation a sequential fits alloca- copying collection copies objects .

tion strategy that uses an index to search fromspace invariant the invariant that the
for the first or next cell that satisfies the mutator holds only fromspace references .
allocation request.

Fibonacci buddy system a buddy system
in which the size classes form a Fibonacci
sequence.

field a component of an object holding a
reference or scalar value.

filler object an object allocated in the gaps
between real objects to support heap
parsability.

finalisation an action performed on an ob
ject when it is no longer reachable.

finaliser a method that runs when the col
lector determines that the object is no
longer reachable.

first-fit allocation a free-list allocation
strategy that places an object in the first
cell in the heap that matches the object's
size.

first-in, first-out (FIFO) see queue.

flip the swapping of fromspace and to
space in copying collection at the start of
a collection cycle .

floating garbage garbage that was not re
claimed in a previous collection cycle .

forwarding address the address to which
an object has been evacuated (typically
stored in the fromspace object's header) .

fragmentation the inability to use free
memory because of the arrangement of
other objects; see also internal fragmen
tation and external fragmentation .

garbage an object that is not live but whose
space has not been reclaimed.

garbage collection (GC) an automatic ap
proach to memory management that re
claims memory occupied by objects that
are no longer in use by the program.

garbage collector see collector.

GC-check point a point in the mutator
code that does not itself trigger collection,
but at which the mutator can safely stop
while collection occurs.

GC-point a point in the mutator code that
may trigger garbage collection (such as
an allocation site) .

GC-safe point see GC-point.

generation a space characterised by the age
of the objects it contains.

generational collection collection that seg
regates objects by age into generations
and preferentially collects the youngest
generation.

generational hypothesis the hypothesis
that object lifetime is correlated with age;
see also weak generational hypothesis
and strong generational hypothesis.

gibibyte (GiB) standard usage unit mean
ing 230 bytes; see also gigabyte.

gigabyte (GB) common usage unit mean
ing 230 bytes; see also gibibyte.

granule the smallest unit of allocation, say
a word or a double-word.

GLOSSARY

grey an object is grey if the collector has not
yet finished processing it but considers it
to be live; see also tricolour abstraction.

guard page a page mapped with no-access
protection.

handle a structure holding a reference to an
object; typically, a handle is not moved
by the collector whereas its target object
might be.

happens-before a requirement on the order
in which operations occur on memory.

hard real-time system a real-time system
in which all deadlines must be met within
a strict bound; missing a deadline is a crit
ical system failure.

header a part of an object used to store
metadata used by the run-time system.

heap a data structure in which objects may
be allocated or deallocated in any order,
independent of the lifetime of the method
that created them.

heap allocation allocation of an object in
the heap.

heap parsability the capability to advance
through the heap from one object to the
next.

heap let a subset of the heap containing ob
jects accessible to only a single thread.

hyperthreading see simultaneous multi
threading.

421

concludes that anything else must be
garbage.

insertion barrier a write barrier that de
tects the insertion of a reference; see also
incremental update.

interior pointer a derived pointer to an in
ternal object field.

internal fragmentation space wasted in
side a cell, for example due to rounding
up requested sizes; see also external frag
mentation.

JVM a virtual machine for the Java lan
guage.

kibibyte (KiB) standard usage unit mean
ing 210 bytes; see also kilobyte.

kilobyte (KB) common usage unit meaning
210 bytes; see also kibibyte.

large object space (LOS) a space reserved
for objects larger than a given threshold,
and typically managed by a non-moving
collector.

last-in, first-out (LIFO) see stack.

lazy reference counting deferring freeing
of zero-count objects when reference
counting until they are subsequently ac
quired by the allocator, at which point
their children can be processed.

lazy sweeping sweeping only on demand
(when fresh space is required) .

leak see memory leak.

increment a unit of collection in the Belt- limit pointer a pointer to the end of a
way collector; however, see also incre- chunk; see sequential allocation.
mental collection. linear allocation see sequential allocation.

incremental collection collection in which
the mutator performs small quanta of col
lection work; see also concurrent collec
tion.

incremental update a technique for solv
ing the lost object problem that informs
the collector of incremental changes made
by the mutator to the set of objects known
to be live.

indirect collection a collection algorithm
that does not detect garbage per se, but
rather identifies all live objects and then

linearisable an execution history of con
current operations that appear to execute
serially in some non-overlapped way,
where if two operations do not overlap in
the history then they must appear to hap
pen in the order they were invoked.

linearisation point the point in time at
which an operation in a linearisable his
tory appears instantaneously to occur.

live an object is live if it will be accessed at
some time in the future execution of the
mutator.

422

livelock a situation in which two (or more)
competing threads prevent progress of
the other(s) indefinitely.

liveness (of collector) the property of a
(concurrent) collector that it eventually
completes its collection cycle.

liveness (of object) the property of an ob
ject that will be accessed at some time in
the future execution of the mutator.

local allocation buffer (LAB) a chunk of
memory used for allocation by a single
thread.

locality the degree to which to items
(fields, objects) are accessed together in
space or time; see also spatial locality and
temporal locality.

lock a synchronisation mechanism for con
trolling access to a resource by multi
ple concurrent threads; usually only one
thread at a time can hold the lock, while
all other threads must wait.

lock-free a guarantee of system-wide
progress, although individual threads
may fail to make progress; implies
obstruction-free; see also non-blocking.

lost object problem a situation that can
arise when their interleaved execution
results in the mutator hiding references
from the collector so that it erroneously
reclaims live objects.

maj or collection collection of both the old
generation and young generation; see
also generational collection.

malloc a function in the C standard library
that allocates memory in the heap .

managed code application code running
on a managed run-time.

managed run-time a run-time system that
provides services such as automatic
memory management.

many-core processor a multiprocessor
that has a large number of processors on
a single integrated circuit chip .

mark bit a bit (stored in the object's header
or on the side in a mark table) recording
whether an object is live.

GLOSSARY

mark-compact collection a tracing collec
tion that typically operates in three or
more phases, first marking all live ob
jects and then compacting these objects to
eliminate fragmentation.

mark-sweep collection a tracing collection
that typically operates in two phases, first
marking all live objects and then sweep
ing through the heap, reclaiming the stor
age of all unmarked, and hence dead, ob
jects.

mark/cons ratio a common garbage collec
tion metric that compares the amount of
work done by the collector ('marking')
with the amount of allocation ('consing')
done; see cons cell.

marking recording that an object is live, of
ten by setting a mark bit.

mature object space (MOS) a space re
served for older (mature) objects man
aged without respect to their age.

mebibyte (MiB) standard usage unit mean
ing 220 bytes; see also megabyte.

megabyte (MB) common usage unit mean
ing 220 bytes; see also mebibyte.

memory fence an operation on a processor
that prevents certain reorderings of mem
ory accesses.

memory leak a failure to reclaim memory
that is no longer in use by the program.

memory order the order of writes (and
reads) to multiple memory locations at
caches or memories, and thus as per
ceived by other processors; see also pro
gram order.

minimum mutator utilisation (MMU) the
minimum mutator utilisation for a given
time window.

minor collection collection of only the
young generation or nursery; see also
generational collection.

mmap a Unix system call that creates a
mapping for a range of virtual addresses.

mostly-concurrent collection a technique
for concurrent collection that may pause
all mutator threads briefly.

GLOSSARY

mostly-copying collection a technique for
copying collection that copies most ob
jects but does not move others (because
of pinning).

moving collection any collection technique
that moves objects .

multi-tasking virtual machine (MVM) a
virtual machine that runs several appli
cations (tasks) within a single invocation
of the virtual machine.

multicore see chip multiprocessor.

multiprocessor a computer that provides
more than one processor.

multiprogramming the execution of multi
ple processes or threads on a single pro
cessor.

multitasking the execution of multiple
tasks on a single processor.

multithreading the execution of multiple
threads on one or more processors.

mutator the user program, so called be
cause from the collector 's point of view it
simply mutates the graph of objects.

mutator utilisation the fraction of CPU

423

giving that processor faster access to that
memory unit.

Not-Marked-Through (NMT) a state of a
reference indicating that it has not been
traced through by the Pauseless collector
to assure that its target object has been
marked.

null a distinguished reference value that
does not refer to any object.

nursery a space in which objects are cre
ated, typically by a generational collector.

object a cell allocated for use by the appli
cation.

object inlining see scalar replacement.

oblet a fixed-size chunk representing some
subset of the cells of an object.

obstruction-free a guarantee that at any
point, a single thread executed in isola
tion (that is, with all obstructing threads
suspended) will complete its operation
within a bounded number of steps; see
also non-blocking.

old generation a space into which objects
are promoted or tenured.

time used by the mutator, as opposed to on-stack replacement a technique for re
the collector. placing a method's code with new code

while it has active invocations .
nepotism the situation where a dead ob-

on-the-fly collection a technique
ject in an uncollected space preserves an

current collection that stops
for con
mutator

otherwise dead object in the condemned threads at most one at a time.
space.

newspace the space in which objects are al- padding extra space inserted by the alloca-
located. tor to meet alignment constraints .

next-fit allocation a free-list allocation page a block of virtual memory.
strategy that places an object in the next parallel collection use of multiple proces
cell in the heap that matches the object's sors or threads to perform collection; not
size.

to be confused with concurrent collec-
node see object.

non-blocking a guarantee that threads
competing for a shared resource do not
have their execution delayed indefinitely;
see also obstruction-free, lock-free, wait
free.

non-uniform memory access (NUMA) a
multiprocessor in which a shared mem
ory unit is associated with each processor,

tion.

partial tracing tracing only a subset of the
graph of objects; typically used to refer
to a trial deletion algorithm that traces
a sub-graph that is suspected of being
garbage.

pause time the time during which muta
tors are halted while stop-the-world col
lection runs.

424

pinning preventing a collector from mov
ing a particular object (typically because
it is accessible to code that is not collector
aware).

pointer the address in memory of an object.

pointer field a field that contains a pointer
to another object.

pointer reachability the property of all live
objects (and some dead objects) that they
be reachable by following a chain of refer
ences from the roots .

prefetching fetching a value into the cache
earlier than it would naturally be fetched.

prefetching on grey fetching the first cache
line of an object when that object is
marked grey.

GLOSSARY

real-time (garbage) collection (RTGC) a
technique for concurrent collection or
incremental collection supporting a real
time system.

real-time system a hardware or software
system that is subject to deadlines from
event to system response .

reference the canonical pointer used to
identify an object.

reference count a count of the number of
references that point to an object, typi
cally stored in the object's header.

reference counting a collection scheme
that manages objects by maintaining a
count of the number of references to each
object.

pretenuring allocating an object directly reference listing a collection scheme that
into an old generation. manages objects by maintaining a list of

process an instance of a computer program
that is executing within its own address
space; a process may comprise multiple
threads executing concurrently.

program order the order of writes (and
reads) to multiple memory locations as
they appear in the program; see also
memory order.

prolific type an object type having many
instantiations.

promoting moving an object into an old
generation.

promptness the degree to which a collector
reclaims all garbage at each collection cy
cle.

queue a first-in, first-out data structure, al
lowing adding to the back (tail) and re
moving from the front (head) .

raw pointer a plain pointer (in contrast to a
smart pointer) .

reachable the property of an object that can

references to each object.

region a space visible to and managed by
the programmer or (typically inferred au
tomatically by the) compiler; a region can
typically be made free in constant time.

relaxed consistency any consistency
model that is weaker than sequential
consistency.

release consistency a consistency model in
which acquire operations prevent later
accesses from occurring before the ac
quire, but earlier accesses can happen af
ter the acquire and release operations pre
vent earlier accesses from happening after
the release but later accesses can happen
before the release.

remembered set (remset) a set of objects
or fields that the collector must process;
typically, mutators supported by gener
ational collection, or concurrent collec
tion or incremental collection add en
tries to the remembered set as they create
or delete pointers of interest to the collec
tor.

be accessed by following a chain of refer- remset see remembered set.
ences from a set of mutator roots.

read barrier a barrier on reference loads by
the mutator.

rendezvous barrier a code point at which
each thread waits until all other threads
have reached that point.

GLOSSARY

replicating collection a technique for con
current copying collection in which two
(or more) copies of live objects are main
tained.

restricted deque a double-ended queue
where the action of adding or removing
is allowed at only one end of the queue.

resurrection an action performed by a fi
naliser that causes the previously un
reachable object to become reachable.

root a reference that is directly accessible to
the mutator without going through other
objects.

root object an object in the heap referred to
directly by a root.

run-time system the code that supports the
execution of a program, providing ser
vices such as memory management and
thread scheduling.

safety the property of a collector in never
reclaiming a live object.

scalar a non-reference value.

scalar field a field that contains a scalar
value.

scalar replacement an optimisation tech
nique that replaces an object with local
variables representing its fields.

scanning processing each pointer field of
an object.

scavenging picking out live objects from
the fromspace; see copying collection.

schedulability analysis the analysis of a
set of real-time tasks to decide whether
they can be scheduled so that none of
them misses a deadline.

scheduler an operating system component
that chooses which threads to execute on
which processors at any given time.

scheduling choosing when to execute a
unit of collection.

segregated-fits allocation an allocation
strategy that partitions the heap by size
class in order to minimise fragmentation.

semispace one of two spaces into which a
copying collection divides the heap.

425

semispace copying see copying collection.

sequential allocation an allocation strat
egy that allocates objects consecutively
from one end of a free chunk; often called
bump pointer allocation or linear alloca
tion.

sequential consistency a consistency
model in which all memory operations
appear to execute one at a time, and the
operations of each processor appear to
execute in its program order.

sequential fits allocation a free-list alloca
tion strategy that searches the free-list se
quentially for a cell that satisfies the allo
cation request.

sequential store buffer (SSB) an efficient
implementation of a remembered set
such as a chain of blocks of slots .

shared pointer a form of smart pointer de
fined for C++ based on reference count
ing.

simultaneous multithreading (SMT) the
capability of a processor to execute multi
ple independent threads at the same time.

size class a logical set of objects that are
managed by the same allocation and col
lection policies.

slack-based scheduling a technique for
scheduling real-time collection that per
forms collector work when no real-time
task is running.

slot see field.

smart pointer a form of pointer upon
which operations such as copying or
dereferencing are overloaded in order
to perform memory management opera
tions.

snapshot-at-the-beginning a technique for
solving the lost obj ect problem that pre
serves the set of objects live at the start of
the collection cycle.

soft real-time system (controversially) a
real-time system in which most dead
lines must be met within strict bounds to
preserve quality of service; completion of
an operation after its deadline results in
degraded service.

426

space a subset of the heap managed by a
particular collection policy.

spatial locality the degree to which two
items (fields, objects) are likely to be al
located close to each other (for example,
on the same page or cache line) .

spin lock a lock where the waiting threads
simply 'spin' in a loop until they can ac
quire the lock.

GLOSSARY

strong reference a reference to an object
that contributes to its reachability; normal
references are usually strong.

strong tricolour invariant a tricolour ab
straction invariant that no black object
ever refers to a white object.

sweeping reclaiming unmarked (dead) ob
jects in a linear pass through (a subset) of
the heap.

symmetric multiprocessor (SMP) a multi
splitting dividing a cell into two adjacent

processor in which shared memory units
cells; see also segregated-fits allocation.

stack a last-in, first-out data structure, al
lowing adding and removing only from
the front (top); see also call stack.

stack allocation allocation of an object in
the stack frame of its allocating method.

are separate from the processors.

task a unit of work performed by a process
or thread, usually in a real-time system.

tebibyte (TiB) standard usage unit mean
ing 240 bytes; see also terabyte .

stack barrier a barrier on returning (or temporal locality the degree to which two

throwing) beyond a given stack frame in items (fields, objects) are likely to be ac-

a thread's call stack. cessed close in time to each other.

stack frame an activation record allocated
in the call stack.

tenuring see promoting.

terabyte (TB) common usage unit meaning
240 bytes; see also tebibyte.

stack map a data structure indicating
which addresses the collector should con- test-and-set lock see spin lock.

sider to be references to objects in a call test-and-test-and-set lock a lower
stack. overhead variant of a test-and-set lock

static allocation allocation of an object at
an address known at compile time.

step a subspace used to segregate objects
by age within a generation.

sticky reference count a reference count
that has been incremented to the maxi
mum permissible value, not changed by
subsequent pointer updates .

stop-the-world collection a technique for
collection during which all mutator
threads are halted.

store buffer see write buffer.

strict consistency a consistency model in
which every memory access and atomic
operation appears to occur in the same or
der everywhere.

strong generational hypothesis the hy-
pothesis that object lifetime is inversely
related to age.

that uses (expensive) atomic hardware
primitives only when the lock appears to
be free.

thread a sequential execution path through
an address space; the smallest unit of pro
cessing that can be scheduled for execu
tion by an operating system; see also pro
cess.

threaded compaction a technique for com
pacting that links objects so that all the
objects originally pointing to a given ob
ject can be discovered from that object.

tidy pointer the canonical pointer used as
an object's reference.

time-based scheduling a technique for
scheduling real-time collection that re
serves a pre-defined portion of execu
tion time solely for collector work during
which the mutator is stopped.

tospace the semispace to which copying
collection evacuates live objects.

GLOSSARY 427

tospace invariant the invariant that the virtual machine (VM) a run-time system
mutator holds only tospace references. that abstracts away details of the under-

tracing visiting the reachable objects by
lying hardware or operating system.

traversing all or part of an object graph.

tracing collection a technique for indirect
collection that operates by tracing the
graph of live objects.

train a component of the mature object
space collector.

transaction a collection of reads and writes
that must appear to execute atomically.

transaction abort the unsuccessful termi
nation of a transaction which discards its
effects.

transaction commit the successful comple
tion of a transaction which ensures that
its effects are made visible.

translation lookaside buffer (TLB) a small
associative memory that caches part of
the translation between virtual and phys
ical addresses.

traversal visiting each node in a graph ex
actly once.

trial deletion the temporary deletion of a
reference in order to discover whether
this causes an object's reference count to
drop to zero.

tricolour abstraction a characterisation of
the work of the garbage collector as parti
tioning objects into white (not yet visited)
and black (need not be revisited), using
grey to represent the remaining work (to
be revisited) .

type-accurate a property of a garbage col
lector that can precisely identify every
slot or root that contains a pointer.

ulterior reference counting a reference
counting scheme that manages young
objects by copying and older ones by ref
erence counting.

unique pointer a smart pointer that pre
serves the property that no object is ever
referred to by more than one unique
pointer.

wait-free a guarantee of both system-wide
(lock-free) and per-thread progress so
that a thread will complete its operation
in a bounded number of steps; see also
non-blocking.

wavefront the boundary, comprising grey
objects (still to be processed), separating
black objects (already processed) from
white objects (not yet processed) .

weak consistency a consistency model
which treats each atomic operation as a
total memory fence.

weak generational hypothesis the hypoth
esis that most objects die young.

weak reference a reference to an object
that does not contribute to its reachabil
ity; Java for example provides several
flavours of weak reference.

weak tricolour invariant a tricolour ab
straction invariant that any white object
pointed to by a black object must also be
reachable from some grey object either di
rectly or through a chain of white objects .

white an object is white if the collector has
not processed it; at the end of a collection
cycle, white objects are considered dead;
see also tricolour abstraction.

wilderness the last free chunk in the heap.

wilderness preservation a policy of allo
cating from the wilderness only as a last
resort.

work stealing a technique for balanc
ing work among threads where lightly
loaded threads pull work from more
heavily loaded threads.

work-based scheduling a technique for
scheduling real-time collection that im
poses collector work as a tax on units of
mutator work.

worst-case execution time (WCET) the
maximum time an operation can take on
a specific hardware platform; knowing
worst-case execution times is necessary

428

for schedulability analysis of a hard real
time system.

write barrier a barrier on reference stores
by the mutator.

write buffer a buffer that holds pending

GLOSSARY

writes to memory.

young generation see nursery.

zero count table (ZCT) a table of objects
whose reference counts are zero .

Bibliography

This bibliography contains over 400 references. However, our comprehensive database
at http : I lwww . c s . kent . a c . u k l - re j l gcbibl contains over 2500 garbage collection
related publications. This database can be searched online or downloaded as BIBT£X,
PostScript or PDF. As well as details of the article, papers, books, theses and so on, the
bibliography also contains abstracts for some entries and URLs or DOis for most of the
electronically available ones. We continually strive to keep this bibliography up to date as
a service to the community. Here you can help : Richard (R.E.Jones@kent.ac.uk) would be
very grateful to receive further entries (or corrections) .

Santosh Abraham and J. Patel. Parallel garbage collection on a virtual memory system. In
International Conference on Parallel Processing, University Park, PA, August 1987, pages
243-246. Pennsylvania State University Press. Also technical report CSRD 620,
University of Illinois at Urbana-Champaign, Center for Supercomputing Research and
Development. xvii, 316, 317, 318, 326, 466

Diab Abuaiadh, Yoav Ossia, Erez Petrank, and Uri Silbershtein. An efficient parallel heap
compaction algorithm. In OOPSLA 2004, pages 224-236.
doi: 1 0 . 1 1 4 5 1 1 0 2 8 9 7 6 . 1 0 2 8 9 9 5 . XX, 32, 38, 46, 301, 302, 319

Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: A
tutorial . WRL Research Report 95/7, Digital Western Research Laboratory, September
1995. 237

Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: A
tutorial. IEEE Computer, 29(12) :66-76, December 1996. doi: 1 0 . 1 1 0 9 I 2 . 5 4 6 6 1 1 . 237

Ole Agesen. GC points in a threaded environment. Technical Report SMLI TR-98-70, Sun
Microsystems Laboratories, Palo Alto, CA, 1998. 188, 189

Rafael Alonso and Andrew W. Appel. An advisor for flexible working sets. In ACM
SIGMETRICS International Conference on Measurement and Modeling of Computer Systems,
Boulder, CO, May 1990, pages 153-162. ACM Press. doi: 1 0 . 1 1 4 5 1 9 8 4 5 7 . 9 8 7 5 3 .
208, 209

Andrew W. Appel. Garbage collection can be faster than stack allocation. Information
Processing Letters, 25(4):275-279, 1987. doi: 1 0 . 1 0 1 6 1 0 0 2 0 - 0 1 9 0 (8 7) 9 0 1 7 5 - X . 125,
171

Andrew W. Appel. Simple generational garbage collection and fast allocation. Software:
Practice and Experience, 19(2) : 171-183, 1989a. doi: 1 0 . 1 0 0 2 l sp e . 4 3 8 0 1 9 0 2 0 6 . 121,
122, 125, 195, 197

429

430 BIBLIOGRAPHY

Andrew W. Appel. Runtime tags aren't necessary. Lisp and Symbolic Computation, 2:
153-162, 1989b . doi: 10 . 1 0 0 7 / BF 0 1 8 1 1 5 3 7 . 171, 172

Andrew W. Appel. Tutorial: Compilers and runtime systems for languages with garbage
collection. In PLDI 1992. doi: 1 0 . 1 1 4 5 / 1 4 3 0 9 5 . 113

Andrew W. Appel . Emulating write-allocate on a no-write-allocate cache. Technical
Report TR-459-94, Department of Computer Science, Princeton University, June 1994.
100, 165, 166

Andrew W. Appel and Zhong Shao. An empirical and analytic study of stack vs. heap
cost for languages with closures . Technical Report CS-TR-450-94, Department of
Computer Science, Princeton University, March 1994. 171

Andrew W. Appel and Zhong Shao . Empirical and analytic study of stack versus heap
cost for languages with closures . Journal of Functional Programming, 6(1) :47-74, January
1996. doi: 1 0 . 1 0 1 7 / S O 9 5 6 7 9 6 8 0 0 0 0 1 5 7 X . 171

Andrew W. Appel, John R. Ellis, and Kai Li. Real-time concurrent collection on stock
multiprocessors. In PLDI 1988, pages 11-20. doi: 1 0 . 1 1 4 5 / 5 3 9 9 0 . 5 3 9 9 2 . xvii, 316,
317, 318, 340, 352, 467

J. Armstrong, R. Virding, C. Wikstrom, and M. Williams. Concurrent Programming in
Erlang. Prentice-Hall, second edition, 1996. 146

Matthew Arnold and Barbara G. Ryder. A framework for reducing the cost of
instrumented code. In PLDI 2001 , pages 168-179. doi: 1 0 . 1 1 4 5 / 3 7 8 7 9 5 . 3 7 8 8 3 2 . 412

Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for
multiprogrammed multiprocessors. In 1 0th ACM Symposium on Parallel Algorithms and
Architectures, Puerto Vallarta, Mexico, June 1998, pages 1 19-129. ACM Press.
doi: 1 0 . 1 1 4 5 / 2 7 7 6 5 1 . 2 7 7 6 7 8 . 267, 268, 280

Joshua Auerbach, David F. Bacon, Perry Cheng, David Grove, Ben Biron, Charlie Gracie,
Bill McCloskey, Aleksandar Micic, and Ryan Sciampacone. Tax-and-spend: Democratic
scheduling for real-time garbage collection. In 8th ACM International Conference on
Embedded Software, Atlanta, GA, 2008, pages 245-254. ACM Press.
doi: 1 0 . 1 1 4 5 / 1 4 5 0 0 58 . 1 4 5 0 0 9 2. 400

Thomas H. Axford . Reference counting of cyclic graphs for functional programs.
Computer Journal, 33(5) :466-470, 1990. doi: 1 0 . 1 0 9 3 / com j n l / 3 3 . 5 . 4 6 6 . 67

Alain Azagury, Elliot K. Kolodner, and Erez Petrank. A note on the implementation of
replication-based garbage collection for multithreaded applications and multiprocessor
environments. Parallel Processing Letters, 9(3) :391-399, 1999.
doi: 1 0 . 1 1 4 2 / S 0 1 2 9 6 2 6 4 9 9 0 0 0 3 6 0 . 342

Hezi Azatchi and Erez Petrank. Integrating generations with advanced reference
counting garbage collectors. In 12 th International Conference on Compiler Construction,
Warsaw, Poland, May 2003, pages 185-199. Volume 2622 of Lecture Notes in Computer
Science, Springer-Verlag. doi: 1 0 . 1 0 0 7 / 3- 5 4 0 - 3 6 5 7 9 - 6_1 4 . 369

Hezi Azatchi, Yossi Levanoni, Harel Paz, and Erez Petrank. An on-the-fly mark and
sweep garbage collector based on sliding views. In OOPSLA 2003, pages 269-281 .
doi: 1 0 . 1 1 4 5 / 9 4 9 3 0 5 . 9 4 9 3 2 9 . 331

BIBLIOGRAPHY 431

Azul. Pauseless garbage collection. White paper AWP-005-020, Azul Systems Inc., July
2008. 355, 361

Azul. Comparison of virtual memory manipulation metrics. White paper, Azul Systems
Inc., 2010. 360

David F. Bacon and V.T. Rajan. Concurrent cycle collection in reference counted systems.
In J0rgen Lindskov Knudsen, editor, 1 5th European Conference on Object-Oriented
Programming, Budapest, Hungary, June 2001, pages 207-235. Volume 2072 of Lecture
Notes in Computer Science, Springer-Verlag. doi: 1 0 . 1 0 0 7 I 3 - 5 4 0 - 4 5 3 3 7 - 7 _1 2 . 59,
67, 72, 108, 157, 366, 373

David F. Bacon, Clement R. Attanasio, Han Bok Lee, V. T. Rajan, and Stephen E. Smith.
Java without the coffee breaks: A nonintrusive multiprocessor garbage collector. In
PLDI 2001, pages 92-103. doi: 1 0 . 1 1 4 5 1 3 7 8 7 9 5 . 3 7 8 8 1 9 . 67, 366

David F. Bacon, Perry Cheng, and V.T. Rajan. A real-time garbage collector with low
overhead and consistent utilization. In POPL 2003, pages 285-298.
doi: 1 0 . 1 1 4 5 1 6 0 4 1 3 1 . 6 0 4 1 5 5 . 323, 391, 394, 395

David F. Bacon, Perry Cheng, and V.T. Rajan. Controlling fragmentation and space
consumption in the Metronome, a real-time garbage collector for Java. In LCTES 2003,
pages 81-92. doi: 1 0 . 1 1 4 5 / 7 8 0 7 32 . 7 8 0 7 4 4 . 404

David F. Bacon, Perry Cheng, and V. T. Rajan. A unified theory of garbage collection. In
OOPSLA 2004, pages 50-68. doi: 1 0 . 1 1 4 5 1 1 0 3 5 2 9 2 . 1 0 2 8 9 8 2 . 77, 80, 134

David F. Bacon, Perry Cheng, David Grove, and Martin T. Vechev. Syncopation:
Generational real-time garbage collection in the Metronome. In ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems,
Chicago, IL, June 2005, pages 183-192. ACM SIGPLAN Notices 40(7), ACM Press.
doi: 1 0 . 1 1 4 5 I 1 0 6 5 9 1 0 . 1 0 6 5 9 3 7 a . 399

Scott B. Baden. Low-overhead storage reclamation in the Smalltalk-80 virtual machine. In
Glenn Krasner, editor, Smalltalk-80: Bits of History, Words of Advice, pages 331-342.
Addison-Wesley, 1983. 61, 63

Brenda Baker, E. G. Coffman, and D. E. Willard. Algorithms for resolving conflicts in
dynamic storage allocation. Journal of the ACM, 32(2) :327-343, April 1985.
doi: 1 0 . 1 1 4 5 / 3 1 4 9 . 3 3 5 1 2 6 . 139

Henry G. Baker. List processing in real-time on a serial computer. Communications of the
ACM, 21(4) :280-294, 1978. doi: 1 0 . 1 1 4 5 1 3 5 9 4 6 0 . 3 5 9 4 7 0 . Also AI Laboratory
Working Paper 139, 1977. xvii, 138, 277, 316, 317, 318, 337, 340, 341, 342, 347, 361, 377,
384, 385

Henry G. Baker. The Treadmill, real-time garbage collection without motion sickness.
ACM SIGPLAN Notices, 27(3) :66-70, March 1992a. doi: 1 0 . 1 1 4 5 1 1 3 0 8 5 4 . 1 3 0 8 6 2 .
104, 139, 361

Henry G. Baker. CONS should not CONS its arguments, or a lazy alloc is a smart alloc.
ACM SIGPLAN Notices, 27(3), March 1992b. doi: 1 0 . 1 1 4 5 1 1 3 0 8 5 4 . 1 3 0 8 5 8 . 147

Henry G. Baker. ' Infant mortality' and generational garbage collection. ACM SIGPLAN
Notices, 28(4) :55-57, April 1993. doi: 1 0 . 1 1 4 5 I 1 5 2 7 3 9 . 1 5 2 7 4 7 . 106

432 BIBLIOGRAPHY

Jason Baker, Antonio Cunei, Filip Pizlo, and Jan Vitek. Accurate garbage collection in
uncooperative environments with lazy pointer stacks. In In ternational Conference on
Compiler Construction, Braga, Portugal, March 2007. Volume 4420 of Lecture Notes in
Computer Science, Springer-Verlag. doi: 1 0 . 1 0 0 7 I 9 7 8 - 3 - 5 4 0 - 7 1 2 2 9- 9_5 . 432

Jason Baker, Antonio Cunei, Tomas Kalibera, Filip Pizlo, and Jan Vitek. Accurate garbage
collection in uncooperative environments revisited. Concurrency and Computation:
Practice and Experience, 21(12) : 1572-1606, 2009 . doi: 1 0 . 1 0 0 2 I cpe . 1 3 9 1 . Supersedes
Baker et al [2007] . 171

Katherine Barabash, Yoav Ossia, and Erez Petrank. Mostly concurrent garbage collection
revisited. In OOPSLA 2003, pages 255-268. doi: 1 0 . 1 1 4 5 1 9 4 9 3 0 5 . 9 4 9 3 2 8 . 319, 320

Katherine Barabash, Ori Ben-Yitzhak, Irit Goft, Elliot K. Kolodner, Victor Leikehman,
Yoav Ossia, Avi Owshanko, and Erez Petrank. A parallel, incremental, mostly
concurrent garbage collector for servers. ACM Transactions on Programming Languages
and Systems, 27(6) :1097-1 146, November 2005 . doi: 1 0 . 1 1 4 5 1 1 1 0 8 9 7 0 . 1 1 0 8 9 7 2 .
284, 319, 320, 474

David A Barrett and Benjamin Zorn. Garbage collection using a dynamic threatening
boundary. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, La Jolla, CA, June 1995, pages 301-314. ACM SIGPLAN Notices 30(6),
ACM Press. doi: 1 0 . 1 1 4 5 1 2 0 7 1 1 0 . 2 0 7 1 6 4 . 123

David A Barrett and Benjamin G. Zorn. Using lifetime predictors to improve memory
allocation performance. In PLDI 1993, pages 187-196.
doi: 1 0 . 1 1 4 5 1 1 5 5 0 9 0 . 1 5 5 1 0 8 . 114

Joel F. Bartlett. Compacting garbage collection with ambiguous roots. WRL Research
Report 88/2, DEC Western Research Laboratory, Palo Alto, CA, February 1988a. Also
appears as Bartlett [1988b] . 30, 104

Joel F. Bartlett. Compacting garbage collection with ambiguous roots. Lisp Pointers, 1 (6) :
3-12, April 1988b . doi: 1 0 . 1 1 4 5 1 1 3 1 7 2 2 4 . 1 3 1 7 2 2 5 . 432

Joel F. Bartlett. Mostly-Copying garbage collection picks up generations and C++.
Technical Note TN-12, DEC Western Research Laboratory, Palo Alto, CA, October
1989a. 170, 192

Joel F. Bartlett. SCHEME->C: a portable Scheme-to-e compiler. WRL Research Report
89/1 , DEC Western Research Laboratory, Palo Alto, CA, January 1989b. 170

George Belotsky. C++ memory management: From fear to triumph. O'Reilly
linuxdevcenter.com, July 2003 . 3

Mordechai Ben-Ari . Algorithms for on-the-fly garbage collection. ACM Transactions on
Programming Languages and Systems, 6(3):333-344, July 1984. doi: 1 0 . 1 1 4 5 I 5 7 9 . 5 8 7 .
309

Emery Berger, Kathryn McKinley, Robert Blumofe, and Paul Wilson. Hoard: A scalable
memory allocator for multithreaded applications. In 9th International Conference on
Architectural Support for Programming Languages and Operating Systems, Cambridge, MA,
November 2000, pages 117-128. ACM SIGPLAN Notices 35(1 1), ACM Press.
doi: 1 0 . 1 1 4 5 / 3 5 6 9 8 9 . 3 5 7 0 0 0 . 102

BIBLIOGRAPHY 433

Peter B. Bishop. Computer Systems with a Very Large Address Space and Garbage Collection.
PhD thesis, MIT Laboratory for Computer Science, May 1977. doi: 1 7 2 1 . 1 I 1 6 4 2 8 .
Technical report MIT /LCS/TR-178. 103, 140

Stephen Blackburn and Kathryn S. McKinley. Immix garbage collection: Mutator locality,
fast collection, and space efficiency. In PLDI 2008, pages 22-32.
doi: 1 0 . 1 1 4 5 1 1 3 7 5 5 8 1 . 1 3 7 5 5 8 6 . 30, 100, 152, 153, 154, 159, 186

Stephen Blackburn, Robin Garner, Chris Hoffman, Asjad M. Khan, Kathryn S. McKinley,
Rotem Bentzur, Amer Diwan, Daniel Feinberg, Samuel Z. Guyer, Martin Hirzel,
Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko
Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiederman. The
DaCapo benchmarks: Java benchmarking development and analysis (extended
version) . Technical report, The DaCapo Group, 2006a. 59, 114, 125

Stephen Blackburn, Robin Garner, Kathryn S. McKinley, Amer Diwan, Samuel Z. Guyer,
Antony Hosking, J. Eliot B. Moss, Darko Stefanovic, et al. The DaCapo benchmarks:
Java benchmarking development and analysis. In ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, Portland, OR,
October 2006b, pages 169-190. ACM SIGPLAN Notices 41{10), ACM Press.
doi: 1 0 . 1 1 4 5 1 1 1 6 7 4 7 3 . 1 1 6 7 4 8 8 . 10

Stephen M. Blackburn and Antony L . Hosking. Barriers: Friend or foe? In ISMM 2004,
pages 143-151 . doi: 1 0 . 1 1 4 5 1 1 0 2 9 8 7 3 . 1 0 2 9 8 9 1 . 202, 203

Stephen M. Blackburn and Kathryn S. McKinley. In or out? putting write barriers in their
place. In ISMM 2002, pages 175-184. doi: 1 0 . 1 1 4 5 I 5 1 2 4 2 9 . 5 1 2 4 5 2 . 80

Stephen M. Blackburn and Kathryn S. McKinley. Ulterior reference counting: Fast
garbage collection without a long wait. In OOPSLA 2003, pages 344-458.
doi: 1 0 . 1 1 4 5 1 9 4 9 3 0 5 . 9 4 9 3 3 6 . 49, 55, 60, 61, 108, 157, 158, 159, 322

Stephen M. Blackburn, Sharad Singhai, Matthew Hertz, Kathryn S. McKinley, and
J. Eliot B. Moss. Pretenuring for Java. In OOPSLA 2001, pages 342-352.
doi: 1 0 . 1 1 4 5 1 5 0 4 2 8 2 . 5 0 4 3 0 7 . 1 10, 132

Stephen M. Blackburn, Richard E. Jones, Kathryn S. McKinley, and J. Eliot B. Moss .
Beltway: Getting around garbage collection gridlock. In PLDI 2002, pages 153-164.
doi: 1 0 . 1 1 4 5 1 5 1 2 5 2 9 . 5 1 2 5 4 8 . 130, 131, 140, 202

Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Myths and realities : The
performance impact of garbage collection. In ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, June 2004a, pages 25-36.
ACM SIGMETRICS Performance Evaluation Review 32{1), ACM Press.
doi: 1 0 . 1 1 4 5 1 1 0 0 5 6 8 6 . 1 0 0 5 6 9 3 . 46, 49, 54, 55, 79, 88, 105, 126, 130, 203

Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Oil and water? High
performance garbage collection in Java with MMTk. In 26th Interna tional Conference on
Software Engineering, Edinburgh, May 2004b, pages 137-146. IEEE Computer Society
Press. doi: 1 0 . 1 1 0 9 / I CSE . 2 0 0 4 . 1 3 1 7 4 3 6 . 26, 107, 1 16, 195, 196

Stephen M. Blackburn, Matthew Hertz, Kathryn S. Mckinley, J . Eliot B. Moss, and Ting
Yang. Profile-based pretenuring. ACM Transactions on Programming Languages and
Systems, 29(1) : 1-57, 2007. doi: 1 0 . 1 1 4 5 1 1 1 8 0 4 7 5 . 1 1 8 0 4 7 7 . 1 1 0, 132

434 BIBLIOGRAPHY

Bruno Blanchet. Escape analysis for object oriented languages : Application to Java. In
OOPSLA 1999, pages 20-34. doi: 1 0 . 1 1 4 5 / 3 2 0 3 8 4 . 3 2 0 3 8 7 . 147

Ricki Blau. Paging on an object-oriented personal computer for Smalltalk. In ACM
SIGMETRICS International Conference on Measurement and Modeling of Computer Systems,
Minneapolis, MN, August 1983, pages 44-54. ACM Press.
doi: 1 0 . 1 1 4 5 1 8 0 0 0 4 0 . 8 0 1 3 9 4 . Also appears as Technical Report UCB/ CSD 83/125,
University of California, Berkeley, Computer Science Division (EECS) . 50

Guy E. Blelloch and Perry Cheng. On bounding time and space for multiprocessor
garbage collection. In PLDI 1999, pages 104-1 17. doi: 1 0 . 1 1 4 5 1 3 0 1 6 1 8 . 3 0 1 6 4 8 .
xviii, xx, 256, 289, 292, 377, 378, 379, 380, 381 , 382, 383, 384, 385, 391, 404, 406, 468, 477

Daniel G. Bobrow. Managing re-entrant structures using reference counts. A CM
Transactions on Programming Languages and Systems, 2(3) :269-273, July 1980.
doi: 1 0 . 1 1 4 5 I 3 5 7 1 0 3 . 3 5 7 1 0 4 . 67

Hans-Juergen Boehm. Mark-sweep vs. copying collection and asymptotic complexity.
http : l lwww . hp l . hp . comlpersonal i Ha n s_Boehml g c l complex i t y . h tml,
September 1995. 26

Hans-Juergen Boehm. Reducing garbage collector cache misses . In ISMM 2000, pages
59-64. doi: 1 0 . 1 1 4 5 1 3 6 2 4 2 2 . 3 6 2 4 3 8 . 23, 27

Hans-Juergen Boehm. Destructors, finalizers, and synchronization. In POPL 2003, pages
262-272. doi: 1 0 . 1 1 4 5 1 6 0 4 1 3 1 . 6 0 4 1 5 3 . 218, 219, 221

Hans-Juergen Boehm. The space cost of lazy reference counting . In 31st Annual ACM
Symposium on Principles of Programming Languages, Venice, Italy, January 2004, pages
210-219. ACM SIGPLAN Notices 39(1), ACM Press. doi: 1 0 . 1 1 4 5 1 6 0 4 1 3 1 . 6 0 4 1 5 3 .
59, 60

Hans-Juergen Boehm. Space efficient conservative garbage collection. In PLDI 1993,
pages 197-206. doi: 1 0 . 1 1 4 5 I 1 5 5 0 9 0 . 1 5 5 1 0 9 . 105, 168

Hans-Juergen Boehm and Mike Spertus. Garbage collection in the next C++ standard. In
ISMM 2009, pages 30-38. doi: 1 0 . 1 1 4 5 / 1 5 4 2 4 3 1 . 1 5 4 2 4 3 7 . 3, 4

Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative
environment. Software: Practice and Experience, 18(9) :807-820, 1988.
doi: 1 0 . 1 0 0 2 l spe . 4 3 8 0 1 8 0 9 0 2 . 22, 23, 31 , 79, 94, 95, 96, 104, 137, 163, 166, 209, 280,
346

Hans-Juergen Boehm, Alan J. Demers, and Scott Shenker. Mostly parallel garbage
collection. In PLDI 1991 [PLDI 1991], pages 157-164. doi: 1 0 . 1 1 4 5 1 1 1 3 4 4 5 . 1 1 3 4 5 9 .
xvii, 202, 315, 316, 318, 323, 326, 466

Michael Bond and Kathryn McKinley. Tolerating memory leaks. In ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
Nashville, TN, October 2008, pages 109-126. ACM SIGPLAN Notices 43(10), ACM
Press. doi: 1 0 . 1 1 4 5 1 1 4 4 9 7 6 4 . 1 4 4 9 7 7 4 . 208

Tim Brecht, Eshrat Arjomandi, Chang Li, and Hang Pham. Controlling garbage collection
and heap growth to reduce the execution time of Java applications. In OOPSLA 2001,
pages 353-366. doi: 1 0 . 1 1 4 5 I 5 0 4 2 8 2 . 5 0 4 3 0 8 . 209

BIBLIOGRAPHY 435

Tim Brecht, Eshrat Arjomandi, Chang Li, and Hang Pham. Controlling garbage collection
and heap growth to reduce the execution time of Java applications. ACM Transactions
on Programming Languages and Systems, 28(5) :908-941, September 2006.
doi: 1 o . 1 1 4 5 I 1 1 52 6 4 9 . 1 1 5 2 6 5 2 . 209

R. P. Brent. Efficient implementation of the first-fit strategy for dynamic storage
allocation. ACM Transactions on Programming Languages and Systems, 1 1 (3) :388-403, July
1989. doi: 1 0 . 1 1 4 5 1 6 5 9 7 9 . 6 5 9 8 1 . 139

Rodney A. Brooks. Trading data space for reduced time and code space in real-time
garbage collection on stock hardware. In LFP 1984, pages 256-262.
doi: 1 0 . 1 1 4 5 1 8 0 0 0 55 . 8 0 2 0 4 2 . 340, 341, 347, 361, 386, 404, 405

David R. Brownbridge. Cyclic reference counting for combinator machines. In Jean-Pierre
Jouannaud, editor, Conference on Functional Programming and Computer Architecture,
Nancy, France, September 1985, pages 273-288. Volume 201 of Lecture Notes in Computer
Science, Springer-Verlag. doi: 1 0 . 1 0 0 7 I 3 - 5 4 0 - 1 5 9 7 5 - 4_ 4 2 . 67

F. Warren Burton. A buddy system variation for disk storage allocation. Communications
of the ACM, 19(7) :416-417, July 1976. doi: 1 0 . 1 1 4 5 1 3 6 0 2 4 8 . 3 6 0 2 5 9 . 96

Albin M. Butters. Total cost of ownership: A comparison of C/C++ and Java. Technical
report, Evans Data Corporation, June 2007. 1 , 4

Brad Calder, Chandra Krintz, S. John, and T. Austin. Cache-conscious data placement. In
8th International Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, October 1998, pages 139-149. ACM SIGPLAN Notices
33(11), ACM Press. doi: 1 0 . 1 1 4 5 1 2 9 1 0 6 9 . 2 9 1 0 3 6 . 50

D. C. Cann and Rod R. Oldehoeft. Reference count and copy elimination for parallel
applicative computing. Technical Report CS-88-129, Department of Computer Science,
Colorado State University, Fort Collins, CO, 1988. 61

Dante Cannarozzi, Michael P. Plezbert, and Ron Cytron. Contaminated garbage
collection. In PLDI 2000, pages 264-273. doi: 1 0 . 1 1 4 5 / 3 4 9 2 9 9 . 3 4 9 3 3 4 . 147

Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and Greg
Nelson. Modula-3 language definition. ACM SIGPLAN Notices, 27(8) :15-42, August
1992. doi: 1 0 . 1 1 4 5 1 1 4 2 1 3 7 . 1 4 2 1 4 1 . 340

Patrick J. Caudill and Allen Wirfs-Brock. A third-generation Smalltalk-80
implementation. In ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Portland, OR, November 1986, pages 119-130. ACM
SIGPLAN Notices 21(11), ACM Press. doi: 1 0 . 1 1 4 5 1 2 8 6 9 7 . 2 8 7 0 9. 114, 138

CC 2005. 14th International Conference on Compiler Construction, Edinburgh, April 2005.
Volume 3443 of Lecture Notes in Computer Science, Springer-Verlag.
doi: 1 0 . 1 0 0 7 lb 1 0 7 1 0 8 . 451

Pedro Celis, Per-Ake Larson, and J. Ian Munro. Robin Hood hashing. In 26th Annual
Symposium on Foundations of Computer Science, Portland, OR, October 1985, pages
261-288. IEEE Computer Society Press. doi: 1 0 . 1 1 0 9 I SFCS . 1 9 8 5 . 4 8 . 195

Yang Chang. Garbage Collection for Flexible Hard Real-time Systems . PhD thesis, University
of York, 2007. 415

436 BIBLIOGRAPHY

Yang Chang and Andy Wellings. Integrating hybrid garbage collection with dual priority
scheduling. In 1 1 th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), August 2005, pages 185-188. IEEE Press, IEEE
Computer Society Press. doi: 1 0 . 1 1 0 9 IRTC SA . 2 0 0 5 . 5 6 . 415

Yang Chang and Andy Wellings. Low memory overhead real-time garbage collection for
Java. In 4th International Workshop on Java Technologies for Real-time and Embedded
Systems, Paris, France, October 2006a. doi: 1 0 . 1 1 4 5 I 1 1 6 7 9 9 9 . 1 1 6 8 0 1 4 . 415

Yang Chang and Andy J . Well ings . Hard real-time hybrid garbage collection with low
memory requirements. In 27th IEEE Real-Time Systems Symposium, December 2006b,
pages 77-86 . doi: 1 0 . 1 1 0 9 I RT S S . 2 0 0 6 . 2 5. 415

David R. Chase. Garbage Collection and Other Optimizations. PhD thesis, Rice University,
August 1987. doi: 1 9 1 1 1 1 6 1 2 7 . 104

David R. Chase. Safety considerations for storage allocation optimizations. In PLDI 1988,
pages 1-10 . doi: 1 0 . 1 1 4 5 1 5 3 9 9 0 . 5 3 9 9 1 . 104

A . M. Cheadle, A . J. Field, and J. Nystrom-Persson. A method specialisation and
virtualised execution environment for Java. In David Gregg, Vikram Adve, and Brian
Bershad, editors, 4th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, Seattle, WA, March 2008, pages 51-60. ACM Press.
doi: 1 0 . 1 1 4 5 1 1 3 4 62 5 6 . 1 3 4 6 2 6 4 . 170, 341

Andrew M. Cheadle, Anthony J . Field, Simon Marlow, Simon L. Peyton Jones, and R.L
While. Non-stop Haskell. In 5th ACM SIGPLAN International Conference on Functional
Programming, Montreal, September 2000, pages 257-267. ACM Press .
doi : 1 0 . 1 1 4 5 1 3 5 1 2 4 0 . 3 5 1 2 6 5 . 170, 171

Andrew M. Cheadle, Anthony J . Field, Simon Marlow, Simon L . Peyton Jones, and
Lyndon While. Exploring the barrier to entry - incremental generational garbage
collection for Haskell . In ISMM 2004, pages 163-174.
doi: 1 0 . 1 1 4 5 1 1 0 2 9 8 7 3 . 1 0 2 9 8 9 3 . 99, 170, 171 , 340, 341

Wen-Ke Chen, Sanjay Bhansali, Trishul M. Chilimbi, Xiaofeng Gao, and Weihaw Chuang.
Profile-guided proactive garbage collection for locality optimization. In PLDI 2006,
pages 332-340. doi: 1 0 . 1 1 4 5 1 1 1 3 3 9 8 1 . 1 1 3 4 0 2 1 . 53

C . J. Cheney. A non-recursive list compacting algorithm. Communications of the ACM, 13
(1 1) :677-8, November 1970. doi: 1 0 . 1 1 4 5 1 3 6 2 7 9 0 . 3 6 2 7 9 8 . 43, 44

Perry Cheng and Guy Blelloch. A parallel, real-time garbage collector. In PLDI 2001 ,
pages 125-136. doi: 10 . 1 1 4 5 I 3 7 8 7 9 5 . 3 7 8 8 2 3 . 7, 187, 289, 290, 304, 377, 382, 384, 468

Perry Cheng, Robert Harper, and Peter Lee. Generational stack collection and
profile-driven pretenuring. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, Montreal, Canada, June 1998, pages 162-173. ACM
SIGPLAN Notices 33(5), ACM Press. doi: 1 0 . 1 1 4 5 1 2 7 7 6 5 0 . 2 7 7 7 1 8 . 1 10, 132, 146

Perry Sze-Din Cheng. Scalable Real-Time Parallel Garbage Collection for Symmetric
Multiprocessors. PhD thesis, Carnegie Mellon University, September 2001 . SCS
Technical Report CMU-CS-01-174. 289, 382, 468

BIBLIOGRAPHY 437

Chen-Yong Cher, Antony L. Hosking, and T.N. Vijaykumar. Software prefetching for
mark-sweep garbage collection: Hardware analysis and software redesign. In Shubu
Mukherjee and Kathryn S. McKinley, editors, 1 1 th International Conference on
Architectural Support for Programming Languages and Operating Systems, Boston, MA,
October 2004, pages 199-210. ACM SIGPLAN Notices 39(11), ACM Press.
doi: 1 0 . 1 1 4 5 I 1 0 2 4 3 9 3 . 1 0 2 4 4 1 7 . 27, 51

Trishul M. Chilimbi and James R. Larus. Using generational garbage collection to
implement cache-conscious data placement. In ISMM 1998, pages 37-48.
dot 1 0 . 1 1 4 5 l 3 0 1 5 8 9 . 2 8 6 8 6 5 . 53

Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-conscious structure layout.
In PLDI 1999, pages 1-12. doi: 1 0 . 1 1 4 5 1 3 0 1 6 1 8 . 3 0 1 6 3 3 . 50

Hyeonjoong Cho, Chewoo Na, Binoy Ravindran, and E. Douglas Jensen. On scheduling
garbage collector in dynamic real-time systems with statistical timing assurances.
Real-Time Systems, 36(1-2) :23-46, 2007. doi: 1 0 . 1 0 0 7 I s 1 1 2 4 1 - 0 0 6- 9 0 1 1 - 0 . 415

Hyeonjoong Cho, Binoy Ravindran, and Chewoo Na. Garbage collector scheduling in
dynamic, multiprocessor real-time systems. IEEE Transactions on Parallel and Distributed
Systems, 20(6) :845-856, June 2009 . doi: 1 0 . 1 1 0 9 I TP D S . 2 0 0 9 . 2 0 . 415

Dave Christie, Jae-Woong Chung, Stephan Diestelhorst, Michael Hohmuth, Martin
Pohlack, Christo£ Fetzer, Martin Nowack, Torvald Riegel, Pascal Felber, Patrick Marlier,
and Etienne Riviere. Evaluation of AMD's advanced synchronization facility within a
complete transactional memory stack. In European Conference on Computer Systems
(EuroSys), 2010, pages 27-40. ACM Press. doi: 1 0 . 1 1 4 5 1 1 7 5 5 9 1 3 . 1 7 5 5 9 1 8 . 271

Douglas W. Clark and C. Cordell Green. An empirical study of list structure in Lisp .
Communications of the ACM, 20(2) :78-86, February 1977.
doi: 1 0 . 1 1 4 5 / 3 5 9 4 2 3 . 3 5 9 4 2 7 . 73

Cliff Click, Gil Tene, and Michael Wolf. The Pauseless GC algorithm. In VEE 2005, pages
46-56. doi: 1 0 . 1 1 4 5 I 1 0 6 4 9 7 9 . 1 0 6 4 9 8 8 . 355, 361

Marshall P. Cline and Greg A. Lomow. C++ FAQs: Frequently Asked Questions.
Addison-Wesley, 1995. 3

William D. Clinger and Lars T. Hansen. Generational garbage collection and the
radioactive decay model. In PLDI 1997, pages 97-108.
doi: 1 0 . 1 1 4 5 I 2 5 8 9 1 5 . 2 5 8 9 2 5. 128

Jacques Cohen and Alexandru Nicolau. Comparison of compacting algorithms for
garbage collection. ACM Transactions on Programming Languages and Systems, 5(4):
532-553, 1983. doi: 1 0 . 1 1 4 5 1 6 9 5 7 5 . 3 5 7 2 2 6 . 34

George E. Collins . A method for overlapping and erasure of lists. Communications of the
ACM, 3(12):655-657, December 1960. doi: 1 0 . 1 1 4 5 1 3 6 7 4 8 7 . 3 6 7 5 0 1 . xxiii, 2, 57

W. T. Comfort. Multiword list items. Communications of the ACM, 7(6) :357-362, June 1964.
doi: 1 0 . 1 1 4 5 I 5 1 2 2 7 4 . 5 1 2 2 8 8 . 94

Eric Cooper, Scott Nettles, and Indira Subramanian. Improving the performance of SML
garbage collection using application-specific virtual memory management. In LFP
1992, pages 43-52. doi: 1 0 . 1 1 4 5 I 1 4 1 4 7 1 . 1 4 1 5 0 1. 209

438 BIBLIOGRAPHY

Erik Corry. Optimistic stack allocation for Java-like languages. In ISMM 2006, pages
162-173. doi : 1 0 . 1 1 4 5 1 1 1 3 3 9 5 6 . 1 1 3 3 9 7 8 . 147

Jim Crammond. A garbage collection algorithm for shared memory parallel processors.
International Journal OJ Parallel Programming, 17(6) :497-522, 1988.
doi: 1 0 . 1 0 0 7 I BF 0 1 4 0 7 8 1 6 . 299, 300

David Detlefs. Automatic inference of reference-count invariants . In 2nd Workshop on
Semantics, Program Analysis, and Computing Environments for Memory Management
(SPACE), Venice, Italy, January 2004a. 152

David Detlefs. A hard look at hard real-time garbage collection. In 7th International
Symposium on Object-Oriented Real-Time Distributed Computing, Vienna, May 2004b,
pages 23-32. IEEE Press. doi: 1 0 . 1 1 0 9 I I SORC . 2 0 0 4 . 1 3 0 0 3 2 5. Invited paper. 377,
385

David Detlefs, William D. Clinger, Matthias Jacob, and Ross Knippel. Concurrent
remembered set refinement in generational garbage collection. In 2nd Java Virtual
Machine Research and Technology Symposium, San Francisco, CA, August 2002a. USENIX.
196, 197, 199, 201, 319

David Detlefs, Christine Flood, Steven Heller, and Tony Printezis. Garbage-first garbage
collection. In ISMM 2004, pages 37-48. doi: 1 0 . 1 1 4 5 I 1 0 2 9 8 7 3 . 1 0 2 9 8 7 9 . 150, 159

David L. Detlefs . Concurrent garbage collection for C++. Technical Report
CMU-C5-90-1 19, Carnegie Mellon University, Pittsburgh, PA, May 1990. 340

David L. Detlefs, Paul A. Martin, Mark Moir, and Guy L. Steele. Lock-free reference
counting. In 20th ACM Symposium on Distributed Computing, Newport, Rhode Island,
August 2001, pages 190-199. ACM Press. doi: 1 0 . 1 1 4 5 1 3 8 3 9 6 2 . 3 8 4 0 1 6 . 365

David L. Detlefs, Paul A. Martin, Mark Moir, and Guy L. Steele. Lock-free reference
counting. Distributed Computing, 15:255-271, 2002b.
doi : 1 0 . 1 0 0 7 l s 0 0 4 4 6- 0 0 2 - 0 0 7 9 - z . 365

John DeTreville . Experience with concurrent garbage collectors for Modula-2+ . Technical
Report 64, DEC Systems Research Center, Palo Alto, CA, August 1990. 338, 340, 366

L. Peter Deutsch and Daniel G. Bobrow. An efficient incremental automatic garbage
collector. Communications of the ACM, 19(9) :522-526, September 1976.
doi: 1 0 . 1 1 4 5 / 3 6 0 3 3 6 . 3 6 0 3 4 5 . 61, 105

Sylvia Dieckmann and Urs Holzle. The allocation behaviour of the SPECjvm98 Java
benchmarks. In Rudolf Eigenman, editor, Performance Evaluation and Benchmarking with
Realistic Applications, chapter 3, pages 77-108. MIT Press, 2001 . 59

Sylvia Dieckmann and Urs Holzle. A study of the allocation behaviour of the SPECjvm98
Java benchmarks. In Rachid Guerraoui, editor, 13 th European Conference on
Object-Oriented Programming, Lisbon, Portugal, July 1999, pages 92-1 15. Volume 1628 of
Lecture Notes in Computer Science, Springer-Verlag. doi: 1 0 . 1 0 0 7 / 3 - 5 4 0 - 4 8 7 4 3 - 3_5 .
59, 1 14, 125

Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C . S. Scholten, and E. F. M. Steffens .
On-the-fly garbage collection: An exercise in cooperation. In Language Hierarchies and
Interfaces: International Summer School, volume 46 of Lecture Notes in Computer Science,
pages 43-56. Springer-Verlag, Marktoberdorf, Germany, 1976.
doi: 1 0 . 1 0 0 7 / 3 - 5 4 0 - 0 7 9 9 4 - 7 _ 4 8. 12, 20, 309, 315, 316, 323, 466, 467

BIBLIOGRAPHY 439

Edsgar W. Dijkstra, Leslie Lamport, A. J . Martin, C. S. Scholten, and E. F. M. Steffens.
On-the-fly garbage collection: An exercise in cooperation. Communications of the ACM,
21 (11) :965-975, November 1978. doi: 1 0 . 1 1 4 5 / 3 5 9 6 4 2 . 3 5 9 6 5 5 . xvii, 12, 20, 309, 315,
316, 317, 318, 323, 330

Robert Dimpsey, Rajiv Arora, and Kean Kuiper. Java server performance: A case study of
building efficient, scalable JVMs. IBM Systems Journal, 39(1) : 151-174, 2000.
doi: 1 0 . 1 1 4 7 I s j . 3 9 1 . 0 1 5 1 . 30, 100, 101, 150, 151 , 152, 186

Amer Diwan, J. Eliot B. Moss, and Richard L. Hudson. Compiler support for garbage
collection in a statically typed language. In PLDI 1992, pages 273-282.
doi: 1 0 . 1 1 4 5 / 1 4 3 0 9 5 . 1 4 3 1 4 0 . 179, 180, 183, 184

Amer Diwan, David Tarditi, and J. Eliot B. Moss. Memory subsystem performance of
programs using copying garbage collection. In POPL 1994, pages 1-14.
doi: 1 0 . 1 1 4 5 / 1 7 4 6 7 5 . 1 7 4 7 1 0 . 100, 165

Julian Dolby. Automatic inline allocation of objects. In PLDI 1997, pages 7-17.
doi: 1 0 . 1 1 4 5 I 2 5 8 9 1 5 . 2 5 8 9 1 8 . 148

Julian Dolby and Andrew A. Chien. An automatic object inlining optimization and its
evaluation. In PLDI 2000, pages 345-357. doi: 1 0 . 1 1 4 5 / 3 4 9 2 9 9 . 3 4 9 3 4 4 . 148

Julian Dolby and Andrew A. Chien. An evaluation of automatic object inline allocation
techniques . In ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Vancouver, Canada, October 1998, pages 1-20. ACM
SIGPLAN Notices 33(10) , ACM Press . doi: 1 0 . 1 1 4 5 1 2 8 6 9 3 6 . 2 8 6 9 4 3 . 148

Damien Doligez and Georges Gonthier. Portable, unobtrusive garbage collection for
multiprocessor systems . In POPL 1994, pages 70-83. doi: 1 0 . 1 1 4 5 1 1 7 4 6 7 5 . 1 7 4 6 7 3 .
xxi, 107, 108, 329, 331 , 369

Damien Doligez and Xavier Leroy. A concurrent generational garbage collector for a
multi-threaded implementation of ML. In 20th Annual ACM Symposium on Principles of
Programming Languages, Charleston, SC, January 1993, pages 113-123. ACM Press .
doi: 1 0 . 1 1 4 5 / 1 5 8 5 1 1 . 1 5 8 6 1 1 . 107, 108, 146, 329

Tamar Domani, Elliot K. Kolodner, and Erez Petrank. A generational on-the-fly garbage
collector for Java. In PLDI 2000, pages 274-284. doi: 1 0 . 1 1 4 5 1 3 4 9 2 9 9 . 3 4 9 3 3 6 . 330,
331

Tamar Domani, Elliot K. Kolodner, Ethan Lewis, Erez Petrank, and Dafna Sheinwald.
Thread-local heaps for Java. In ISMM 2002, pages 76-87.
doi: 1 0 . 1 1 4 5 1 5 1 2 4 2 9 . 5 1 2 4 3 9 . 109, 1 10, 146

Kevin Donnelly, Joe Hallett, and Assaf Kfoury. Formal semantics of weak references. In
ISMM 2006, pages 126-137. doi: 1 0 . 1 1 4 5 1 1 1 3 3 9 5 6 . 1 1 3 3 9 7 4 . 228

R. Kent Dybvig, Carl Bruggeman, and David Eby. Guardians in a generation-based
garbage collector. In PLDI 1993, pages 207-216. doi : 1 0 . 1 1 4 5 / 1 5 5 0 9 0 . 1 55 1 1 0 . 220

ECOOP 2007, Erik Ernst, editor. 21st European Conference on Object-Oriented Programming,
Berlin, Germany, July 2007. Volume 4609 of Lecture Notes in Computer Science,
Springer-Verlag. doi: 1 0 . 1 0 0 7 I 9 7 8 - 3 - 5 4 0 - 7 3 5 8 9 - 2 . 440, 460

440 BIBLIOGRAPHY

Daniel R. Edelson. Smart pointers: They're smart, but they're not pointers . In USENIX
C++ Conference, Portland, OR, August 1992. USENIX. 59, 74

Toshio Endo, Kenjiro Taura, and Akinori Yonezawa. A scalable mark-sweep garbage
collector on large-scale shared-memory machines. In ACM/IEEE Conference on
Supercomputing, San Jose, CA, November 1997. doi: 1 0 . 1 1 0 9 I s c . 1 9 9 7 . 1 0 0 5 9 . xvii,
249, 277, 280, 281, 283, 289, 299, 304, 474

A. P. Ershov. On programming of arithmetic operations. Communications of the ACM, 1 (8) :
3-6, August 1958. doi: 1 0 . 1 1 4 5 1 3 6 8 8 9 2 . 3 6 8 9 0 7 . 169

Shahrooz Feizabadi and Godmar Back. Java garbage collection scheduling in utility
accrual scheduling environments. In 3rd International Workshop on Java Technologies for
Real-time and Embedded Systems (/TRES), San Diego, CA, 2005. 415

Shahrooz Feizabadi and Godmar Back. Garbage collection-aware sheduling utility
accrual scheduling environments. Real-Time Systems, 36(1-2), July 2007.
doi: 1 0 . 1 0 0 7 l s 1 1 2 4 1 - 0 0 7 - 9 0 2 0 - 7 . 415

Robert R . Fenichel and Jerome C. Yochelson. A Lisp garbage collector for virtual memory
computer systems. Communications of the A CM, 12(11) :61 1-612, November 1969.
doi: 1 0 . 1 1 4 5 1 3 6 3 2 6 9 . 3 6 3 2 8 0 . 43, 44, 50, 107

Stephen J. Fink and Feng Qian. Design, implementation and evaluation of adaptive
recompilation with on-stack replacement. In 1st International Symposium on Code
Generation and Optimization (CGO), San Francisco, CA, March 2003, pages 241-252. IEEE
Computer Society Press. doi: 1 0 . 1 1 0 9 I CG0 . 2 0 0 3 . 1 1 9 1 5 4 9 . 190

David A. Fisher. Bounded workspace garbage collection in an address order preserving
list processing environment. Information Processing Letters, 3(1) :29-32, July 1974.
doi: 1 0 . 1 0 1 6 I 0 0 2 0- 0 1 9 0 (7 4) 9 0 0 4 4 - 1 . 36

Robert Fitzgerald and David Tarditi. The case for profile-directed selection of garbage
collectors . In iSMM 2000, pages 111-120 . doi: 1 0 . 1 1 4 5 / 3 6 2 4 2 2 . 3 6 2 4 7 2 . 5, 77, 138,
202

Christine Flood, Dave Detlefs, Nir Shavit, and Catherine Zhang. Parallel garbage
collection for shared memory multiprocessors . ln JVM 2001 . xvii, xx, 34, 36, 248, 278,
280, 282, 283, 284, 288, 289, 292, 298, 300, 301 , 303, 304, 357, 465, 468, 474

John K. Foderaro and Richard J. Fateman. Characterization of VAX Macsyma. In 1981
ACM Symposium on Symbolic and Algebraic Computation, Berkeley, CA, 1981 , pages
14-19. ACM Press. doi: 1 0 . 1 1 4 5 1 8 0 0 2 0 6 . 8 0 6 3 6 4 . 1 13

John K. Foderaro, Keith Sklower, Kevin Layer, et al. Franz Lisp Reference Manual. Franz
Inc., 1985. 27

Daniel Frampton, David F. Bacon, Perry Cheng, and David Grove. Generational real-time
garbage collection: A three-part invention for young objects. In ECOOP 2007, pages
101-125. doi: 1 0 . 1 0 0 7 I 9 7 8 - 3 - 5 4 0 - 7 3 5 8 9 - 2 6. 399

Edward Fredkin. Trie memory. Communications of the ACM, 3(9) :490-499, September 1960.
doi: 1 o . 1 1 4 5 I 3 6 7 3 9 o . 3 6 7 4 o o. 413

Daniel P. Friedman and David S. Wise. Reference counting can manage the circular
environments of mutual recursion. Information Processing Letters, 8(1):41-45, January
1979. doi: 1 0 . 1 0 1 6 1 0 0 2 0 - 0 1 9 0 (7 9) 9 0 0 9 1 - 7 . 66, 67

BIBLIOGRAPHY

Robin Garner, Stephen M. Blackburn, and Daniel Frampton. Effective prefetch for
mark-sweep garbage collection. In ISMM 2007, pages 43-54.
doi: 1 0 . 1 1 4 5 1 1 2 9 6 9 0 7 . 1 2 9 6 9 1 5 . 23, 26, 28, 29

441

Alex Garthwaite. Making the Trains Run On Time. PhD thesis, University of Pennsylvania,
2005 . 194

Alex Garthwaite, Dave Dice, and Derek White. Supporting per-processor local-allocation
buffers using lightweight user-level preemption notification. In VEE 2005, pages 24-34.
doi: 1 0 . 1 1 4 5 1 1 0 64 9 7 9 . 1 0 6 4 9 8 5 . 101 , 195

Alexander T. Garthwaite, David L. Detlefs, Antonios Printezis, and Y. Srinivas
Ramakrishna. Method and mechanism for finding references in a card in time linear in
the size of the card in a garbage-collected heap. United States Patent 7,136,887 B2, Sun
Microsystems, November 2006. xxi, 200, 201

David Gay and Bjarne Steensgaard. Fast escape analysis and stack allocation for
object-based programs. In 9th International Conference on Compiler Construction, Berlin,
April 2000, pages 82-93. Volume 2027 of Lecture Notes in Computer Science,
Springer-Verlag. doi: 1 0 . 1 0 0 7 I 3 - 5 4 0 - 4 6 4 2 3 - 9_6 . 147, 148

GC 1990, Eric Jul and Niels-Christian Juul, editors. OOPSLA/ECOOP Workshop on Garbage
Collection in Object-Oriented Systems, Ottawa, Canada, October 1990. 444, 459

GC 1991, Paul R. Wilson and Barry Hayes, editors. OOPSLA Workshop on Garbage
Collection in Object-Oriented Systems, October 1991 . 444, 460

GC 1993, Eliot Moss, Paul R. Wilson, and Benjamin Zorn, editors. OOPSLA Workshop on
Garbage Collection in Object-Oriented Systems, October 1993. 444, 460

Andy Georges, Dries Buytaert, and Lieven Eeckhout . Statistically rigorous Java
performance evaluation. In ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, Montreal, Canada, October 2007, pages 57-76 .
ACM SIGPLAN Notices 42(10), ACM Press. doi: 1 0 . 1 1 4 5 1 1 2 9 7 0 2 7 . 1 2 9 7 0 3 3 . 10

Joseph (Yossi) Gil and Itay Maman. Micro patterns in Java code. In OOPSLA 2005, pages
97-1 16 . doi: 1 0 . 1 1 4 5 1 1 0 9 4 8 1 1 . 1 0 9 4 8 1 9 . 132

0. Goh, Yann-Hang Lee, Z. Kaakani, and E. Rachlin. Integrated scheduling with garbage
collection for real-time embedded applications in CU. In 9th International Symposium on
Object-Oriented Real-Time Distributed Computing, Gyeongju, Korea, April 2006. IEEE
Press. doi : 1 0 . 1 1 0 9 I I SORC . 2 0 0 6 . 4 1 . 415

Benjamin Goldberg. Tag-free garbage collection for strongly typed programming
languages . In PLDI 1991 [PLDI 1991] , pages 165-176. doi: 1 0 . 1 1 4 5 I 1 1 3 4 4 5 . 1 1 3 4 6 0 .

171, 172

Benjamin Goldberg. Incremental garbage collection without tags. In European Symposium
on Programming, Rennes, France, February 1992, pages 200-218. Volume 582 of Lecture
Notes in Computer Science, Springer-Verlag. doi: 1 0 . 1 0 0 7 1 3 - 5 4 0 - 5 5 2 5 3 - 7_1 2 . 171

Benjamin Goldberg and Michael Gloger. Polymorphic type reconstruction for garbage
collection without tags . In LFP 1992, pages 53-65. doi: 1 0 . 1 1 4 5 I 1 4 1 4 7 1 . 1 4 1 5 0 4 .

171, 172

442 BIBLIOGRAPHY

Marcelo J. R. Gonc;alves and Andrew W. Appel. Cache performance of fast-allocating
programs. In Conference on Functional Programming and Computer Architecture, La Jolla,
CA, June 1995, pages 293-305. ACM Press . doi: 1 0 . 1 1 4 5 1 2 2 4 1 6 4 . 2 2 4 2 1 9 . 165

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification.
Addison-Wesley, third edition edition, May 2005. 346

Eiichi Goto. Monocopy and associative algorithms in an extended LISP. Technical Report
74-03, Information Science Laboratories, Faculty of Science, University of Tokyo, 1974.

169

David Gries . An exercise in proving parallel programs correct. Communications of the
ACM, 20(12) :921-930, December 1977. doi: 1 0 . 1 1 4 5 1 3 5 9 8 9 7 . 3 5 9 9 0 3 . 457

Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James
Cheney. Region-based memory management in Cyclone. In PLDI 2002, pages 282-293.

doi: 1 0 . 1 1 4 5 1 5 1 2 5 2 9 . 5 1 2 5 6 3 . 106

Chris Grzegorczyk, Sunil Soman, Chandra Krintz, and Rich Wolski. Isla Vista heap
sizing: Using feedback to avoid paging. In 5th International Symposium on Code
Generation and Optimization (CGO), San Jose, CA, March 2007, pages 325-340. IEEE
Computer Society Press . doi: 1 0 . 1 1 0 9 I CGO . 2 0 0 7 . 2 0 . 209

Samuel Guyer and Kathryn McKinley. Finding your cronies: Static analysis for dynamic
object colocation. In OOPSLA 2004, pages 237-250.

doi: 1 0 . 1 1 4 5 / 1 0 2 8 9 7 6 . 1 0 2 8 9 9 6 . 1 10, 132, 143

Robert H. Halstead. Implementation of Multilisp: Lisp on a multiprocessor. In LFP 1984,
pages 9-17. doi: 1 0 . 1 1 4 5 1 8 0 0 0 5 5 . 8 0 2 0 1 7 . 277, 294

Robert H. Halstead. Multilisp : A language for concurrent symbolic computation. ACM
Transactions on Programming Languages and Systems, 7(4) :501-538, October 1985.

doi: 1 o . 1 1 4 5 I 4 4 7 2 . 4 4 7 8 . 277, 338, 342, 345

Lars Thomas Hansen. Older-first Garbage Collection in Practice. PhD thesis, Northeastern
University, November 2000. 128

Lars Thomas Hansen and William D. Clinger. An experimental study of
renewal-older-first garbage collection. In 7th ACM SIGPLAN In ternational Conference on
Functional Programming, Pittsburgh, PA, September 2002, pages 247-258. ACM
SIGPLAN Notices 37(9), ACM Press. doi : 1 0 . 1 1 4 5 1 5 8 1 4 7 8 . 5 8 1 5 0 2 . 128

David R. Hanson. Storage management for an implementation of SNOBOL4. Software:
Practice and Experience, 7(2) : 1 79-192, 1977. doi: 1 0 . 1 0 0 2 l sp e . 4 3 8 0 0 7 0 2 0 6 . 41

Tim Harris and Keir Fraser. Language support for lightweight transactions. In OOPSLA
2003, pages 388-402. doi: 1 0 . 1 1 4 5 1 9 4 9 3 0 5 . 9 4 9 3 4 0 . 272

Timothy Harris. Dynamic adaptive pre-tenuring. In ISMM 2000, pages 127-136.

doi: 1 0 . 1 1 4 5 / 3 6 2 4 2 2 . 3 6 2 4 7 6 . 132

Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A practical multi-word
compare-and-swap operation. In Dahlia Malkhi, editor, International Conference on
Distributed Computing, Toulouse, France, October 2002, pages 265-279. Volume 2508 of
Lecture Notes in Computer Science. doi: 1 0 . 1 0 0 7 I 3 - 5 4 0 - 3 6 1 0 8 - 1_1 8 . 406

BIBLIOGRAPHY 443

Pieter H. Hartel . Performance Analysis of Storage Management in Combinator Graph
Reduction . PhD thesis, Department of Computer Systems, University of Amsterdam,
Amsterdam, 1988. 73

Barry Hayes . Using key object opportunism to collect old objects. In ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
Phoenix, AZ, November 1991, pages 33--46. ACM SIGPLAN Notices 26(1 1), ACM
Press. doi: 1 0 . 1 1 4 5 / 1 1 7 9 5 4 . 1 1 7 9 5 7 . 23, 100, 1 14

Barry Hayes. Finalization in the collector interface. In IWMM 1992, pages 277-298.
doi: 1 0 . 1 0 0 7 / BFb0 0 1 7 1 9 6 . 221

Barry Hayes. Ephemerons : A new finalization mechanism. In ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, Atlanta, GA,
October 1997, pages 176-183. ACM SIGPLAN Notices 32(10), ACM Press.
doi: 1 0 . 1 1 4 5 / 2 6 3 6 9 8 . 2 6 3 7 3 3 . 227

Laurence Hellyer, Richard Jones, and Antony L. Hosking. The locality of concurrent write
barriers. In ISMM 2010, pages 83-92. doi: 1 0 . 1 1 4 5 / 1 8 0 6 6 5 1 . 1 8 0 6 6 6 6 . 316

Fergus Henderson. Accurate garbage collection in an uncooperative environment. In
ISMM 2002, pages 150-156. doi: 1 0 . 1 1 4 5 / 5 1 2 4 2 9 . 5 1 2 4 4 9. 171

Roger Henriksson. Scheduling Garbage Collection in Embedded Systems. PhD thesis, Lund
Institute of Technology, July 1998. xviii, xx, 377, 386, 387, 388, 389, 390, 391 , 393, 399

Maurice Herlihy and J. Eliot B Moss. Lock-free garbage collection for multiprocessors.
IEEE Transactions on Parallel and Distributed Systems, 3(3) :304-311, May 1992.
doi: 1 0 . 1 1 0 9 / 7 1 . 1 3 9 2 0 4 . xvii, 249, 342, 343, 344, 345, 361

Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan
Kaufman, April 2008. xxiii, 2, 229, 240, 243, 254, 255, 256

Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems, 12(3) :
463--492, 1990. doi: 1 0 . 1 1 4 5 / 7 8 9 6 9 . 7 8 9 7 2 . 254

Maurice P. Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support for
lock-free data structures . In 20th Annual International Symposium on Computer
Architecture, San Diego, CA, May 1993, pages 289-300. IEEE Press.
doi: 1 0 . 1 1 4 5 / 1 6 5 1 2 3 . 1 6 5 1 6 4 . 270, 344

Maurice P. Herlihy, Victor Luchangco, and Mark Moir. The repeat offender problem: A
mechanism for supporting dynamic-sized lock-free data structures. In 1 6th International
Symposium on Distributed Computing, Toulouse, France, October 2002, pages 339-353.
Volume 2508 of Lecture Notes in Computer Science, Springer-Verlag.
doi: 1 0 . 1 0 0 7 / 3 - 5 4 0 - 3 6 1 0 8 - 1_2 3 . 374

Matthew Hertz. Quantifying and Improving the Performance of Garbage Collection. PhD
thesis, University of Massachusetts, September 2006. 208

Matthew Hertz and Emery Berger. Quantifying the performance of garbage collection vs.
explicit memory management. In OOPSLA 2005, pages 313-326.
doi: 1 0 . 1 1 4 5 I 1 0 9 4 8 1 1 . 1 0 9 4 8 3 6. 30, 55, 79

444 BIBLIOGRAPHY

Matthew Hertz, Yi Feng, and Emery D. Berger. Garbage collection without paging. In
Vivek Sarkar and Mary W. Hall, editors, ACM SIGPLAN Conference on Programming
Language Design and Implementation, Chicago, IL, June 2005, pages 143-153. ACM
SIGPLAN Notices 40(6), ACM Press. doi: 1 0 . 1 1 4 5 / 1 0 6 4 9 7 8 . 1 0 6 5 0 2 8 . 9, 108, 1 10,
156, 208

Matthew Hertz, Jonathan Bard, Stephen Kane, Elizabeth Keudel, Tongxin Bai, Kirk
Kelsey, and Chen Ding. Waste not, want not - resource-based garbage collection in a
shared environment. Technical Report TR-951, The University of Rochester, December
2009. doi: 1 8 0 2 / 8 8 3 8 . 210

D. S . Hirschberg. A class of dynamic memory allocation algorithms. Communications of
the ACM, 16(10):615-618, October 1973. doi: 1 0 . 1 1 4 5 / 3 6 2 3 7 5 . 3 6 2 3 9 2 . 96

Martin Hirzel, Amer Diwan, and Matthew Hertz. Connectivity-based garbage collection.
In OOPSLA 2003, pages 359-373. doi: 1 0 . 1 1 4 5 / 9 4 9 3 0 5 . 9 4 9 3 3 7 . 143, 144, 158

Urs Holzle. A fast write barrier for generational garbage collectors. In GC 1993. xvi, 197,
198

Antony L Hosking. Portable, mostly-concurrent, mostly-copying garbage collection for
multi-processors. In ISMM 2006, pages 40-51 . doi: 1 0 . 1 1 4 5 / 1 1 3 3 9 5 6 . 1 1 3 3 9 6 3 . 30,
340

Antony L. Hosking and Richard L. Hudson. Remembered sets can also play cards. In GC
1993. 201

Antony L. Hosking and J . Eliot B. Moss. Protection traps and alternatives for memory
management of an object-oriented language. In 14th ACM Symposium on Operating
Systems Principles, Asheville, NC, December 1993, pages 106-1 19. ACM SIGOPS
Operating Systems Review 27(5), ACM Press. doi: 1 0 . 1 1 4 5 / 1 6 8 6 1 9 . 1 6 8 6 2 8 . 353

Antony L. Hosking, J. Eliot B. Moss, and Darko Stefanovic. A comparative performance
evaluation of write barrier implementations. In ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, Vancouver, Canada,
October 1992, pages 92-109. ACM SIGPLAN Notices 27(10), ACM Press.
doi: 1 0 . 1 1 4 5 / 1 4 1 9 3 6 . 1 4 1 9 4 6 . 137, 138, 193, 194, 195, 197, 199, 201 , 202, 206

Antony L. Hosking, Nathaniel Nystrom, Quintin Cutts, and Kumar Brahnmath.
Optimizing the read and write barrier for orthogonal persistence. In Ronald Morrison,
Mick J. Jordan, and Malcolm P. Atkinson, editors, 8th International Workshop on
Persistent Object Systems (August, 1998), Tiburon, CA, 1999, pages 149-159. Advances in
Persistent Object Systems, Morgan Kaufmann. 323

Xianlong Huang, Stephen M. Blackburn, Kathryn S. McKinley, J. Eliot B. Moss, Z. Wang,
and Perry Cheng. The garbage collection advantage: Improving program locality. In
OOPSLA 2004, pages 69-80. doi: 1 0 . 1 1 4 5 / 1 0 2 8 9 7 6 . 1 0 2 8 9 8 3 . 52, 170

Richard L. Hudson. Finalization in a garbage collected world. In GC 199 1 . 221

Richard L. Hudson and Amer Diwan. Adaptive garbage collection for Modula-3 and
Smalltalk. In GC 1990. 195

Richard L. Hudson and J. Eliot B. Moss. Sapphire: Copying GC without stopping the
world. In Joint ACM-ISCOPE Conference on Java Grande, Palo Alto, CA, June 2001, pages
48-57. ACM Press. doi: 1 0 . 1 1 4 5 / 3 7 6 6 5 6 . 3 7 6 8 1 0 . 346, 361

BIBLIOGRAPHY 445

Richard L. Hudson and J. Eliot B. Moss. Sapphire: Copying garbage collection without
stopping the world. Concurrency and Computation: Practice and Experience, 15(3-5) :
223-261, 2003. doi: 1 0 . 1 0 0 2 I cpe . 7 1 2 . 346, 351, 361

Richard L. Hudson and J . Eliot B. Moss. Incremental collection of mature objects . In
IWMM 1992, pages 388-403. doi: 1 0 . 1 0 0 7 I BFb 0 0 1 7 2 0 3 . 109, 130, 137, 140, 143, 158,
202, 208

Richard L. Hudson, J . Eliot B. Moss, Amer Diwan, and Christopher F. Weight. A
language-independent garbage collector toolkit. Technical Report COINS 91 -47,
University of Massachusetts, September 1991 . 1 18, 138

R. John M. Hughes. A semi-incremental garbage collection algorithm. Software: Practice
and Experience, 12(11) : 1081-1082, November 1982. doi: 1 0 . 1 0 0 2 I spe . 4 3 8 0 1 2 1 1 0 8 .

25, 26

Akira Imai and Evan Tick. Evaluation of parallel copying garbage collection on a
shared-memory multiprocessor. Transactions on Parallel and Distributed Systems, 4(9):
1030-1040, 1993. doi: 1 0 . 1 1 0 9 / 7 1 . 2 4 3 52 9. xx, xxi, 294, 295, 296, 297, 304, 468

ISMM 1998, Simon L. Peyton Jones and Richard Jones, editors. 1st International Symposium
on Memory Management, Vancouver, Canada, October 1998. ACM SIGPLAN Notices
34(3), ACM Press. doi: 1 0 . 1 1 4 5 I 2 8 6 8 6 0 . 437, 451, 455

ISMM 2000, Craig Chambers and Antony L. Hosking, editors. 2nd International
Symposium on Memory Management, Minneapolis, MN, October 2000. ACM SIGPLAN
Notices 36(1), ACM Press. doi: 1 0 . 1 1 4 5 1 3 6 2 4 2 2 . 434, 440, 442, 453, 456, 457

ISMM 2002, Hans-J . Boehm and David Detlefs, editors. 3rd International Symposium on
Memory Management, Berlin, Germany, June 2002. ACM SIGPLAN Notices 38(2
supplement), ACM Press. doi: 1 0 . 1 1 4 5 1 7 7 3 1 4 6 . 433, 439, 443, 446, 453

ISMM 2004, David F. Bacon and Amer Diwan, editors. 4th International Symposium on
Memory Management, Vancouver, Canada, October 2004. ACM Press.
doi: 1 0 . 1 1 4 5 1 1 0 2 9 8 7 3. 433, 436, 438, 446, 451, 454, 456, 460

ISMM 2006, Erez Petrank and J. Eliot B. Moss, editors. 5th International Symposium on
Memory Management, Ottawa, Canada, June 2006. ACM Press.
doi: 1 0 . 1 1 4 5 1 1 1 3 3 9 5 6 . 438, 439, 444, 449, 455, 456, 461

ISMM 2007, Greg Morrisett and Mooly Sagiv, editors. 6th International Symposium on
Memory Management, Montreal, Canada, October 2007. ACM Press.
doi: 1 o . 1 1 4 5 I 1 2 9 6 9 o 7 . 441, 448, 452, 455

ISMM 2008, Richard Jones and Steve Blackburn, editors. 7th International Symposium on
Memory Management, Tucson, AZ, June 2008. ACM Press. doi: 1 0 . 1 1 4 5 I 1 3 7 5 6 3 4 .

446, 448, 455

ISMM 2009, Hillel Kolodner and Guy Steele, editors. 8th International Symposium on
Memory Management, Dublin, Ireland, June 2009. ACM Press. doi: 1 0 . 1 1 4 5 I 1 5 4 2 4 3 1 .

434, 450, 459

ISMM 2010, Jan Vitek and Doug Lea, editors. 9th International Symposium on Memory
Management, Toronto, Canada, June 2010. ACM Press. doi: 1 0 . 1 1 4 5 1 1 8 0 6 6 5 1 . 443,
455

446 BIBLIOGRAPHY

ISMM 201 1, Hans Boehm and David Bacon, editors . 1 0th International Symposium on
Memory Management, San Jose, CA, June 201 1 . ACM Press . doi: 1 0 . 1 1 4 5 1 1 9 9 3 4 7 8 .

457

IWMM 1992, Yves Bekkers and Jacques Cohen, editors. International Workshop on Memory
Management, St Malo, France, 17-19 September 1992. Volume 637 of Lecture Notes in
Computer Science, Springer. doi: 1 0 . 1 0 0 7 I BFb 0 0 1 7 1 8 1 . 443, 445, 447, 450

IWMM 1995, Henry G. Baker, editor. International Workshop on Memory Management,
Kinross, Scotland, 27-29September 1995. Volume 986 of Lecture Notes in Computer
Science, Springer. doi : 1 0 . 1 0 0 7 / 3 - 5 4 0 - 6 0 3 6 8 - 9 . 448, 460

Erik Johansson, Konstantinos Sagonas, and Jesper Wilhelmsson. Heap architectures for
concurrent lanugages using message passing. In ISMM 2002, pages 88-99.
doi: 1 0 . 1 1 4 5 1 5 1 2 4 2 9 . 5 1 2 4 4 0 . 146

Mark S. Johnstone. Non-Compacting Memory Allocation and Real-Time Garbage Collection.
PhD thesis, University of Texas at Austin, December 1997. 152

Richard Jones and Chris Ryder. A study of Java object demographics. In ISMM 2008,
pages 121-130. doi: 1 0 . 1 1 4 5 1 1 3 7 5 6 3 4 . 1 3 7 5 6 5 2 . 23, 106, 1 13, 114

Richard E. Jones. Garbage Collection: Algorithms for Automatic Dynamic Memory
Management. Wiley, Chichester, July 1996. With a chapter on Distributed Garbage
Collection by R. Lins. xxiv, xxv, 6, 17, 30, 42, 54, 67, 79, 117, 1 19, 124, 138, 142, 150, 167

Richard E. Jones and Andy C. King. Collecting the garbage without blocking the traffic.
Technical Report 1 8-04, Computing Laboratory, University of Kent, September 2004.
This report summarises King [2004] . 446

Richard E. Jones and Andy C. King. A fast analysis for thread-local garbage collection
with dynamic class loading. In 5th IEEE International Workshop on Source Code Analysis
and Manipulation (SCAM), Budapest, September 2005, pages 129-138. IEEE Computer
Society Press. doi: 1 0 . 1 1 0 9 I S CAM . 2 0 0 5 . 1 . This is a shorter version of Jones and
King [2004] . 107, 109, 145, 146, 159

H. B . M. Jonkers. A fast garbage compaction algorithm. Information Processing Letters, 9(1) :
26-30, July 1979 . doi : 1 0 . 1 0 1 6 1 0 0 2 0 - 0 1 9 0 (7 9) 9 0 1 0 3 - 0 . 32, 37, 38

Maria Jump, Stephen M. Blackburn, and Kathryn S. McKinley. Dynamic object sampling
for pretenuring. In ISMM 2004, pages 152-162. doi: 1 0 . 1 1 4 5 I 1 0 2 9 8 7 3 . 1 0 2 9 8 9 2 . 132

JVM 2001 . 1st Java Virtual Machine Research and Technology Symposium, Monterey, CA,
April 2001 . USENIX. 440, 453

Tomas Kalibera. Replicating real-time garbage collector for Java. In 7th International
Workshop on Java Technologies for Real-time and Embedded Systems (/TRES), Madrid, Spain,
September 2009, pages 100-109. ACM Press. doi: 1 0 . 1 1 4 5 1 1 6 2 0 4 0 5 . 1 6 2 0 4 2 0 . 405

Tomas Kalibera, Filip Pizlo, Antony L. Hosking, and Jan Vitek. Scheduling hard real-time
garbage collection. In 30th IEEE Real-Time Systems Symposium, Washington, DC,
December 2009, pages 81-92. IEEE Computer Society Press.
doi: 1 0 . 1 1 0 9 I R T S S . 2 0 0 9 . 4 0 . 415

Haim Kermany and Erez Petrank. The Compressor: Concurrent, incremental and parallel
compaction. In PLDI 2006, pages 354-363. doi: 1 0 . 1 1 4 5 1 1 1 3 3 9 8 1 . 1 1 3 4 0 2 3 . 38, 39,
202, 302, 352, 361

BIBLIOGRAPHY 447

Taehyoun Kim and Heonshik Shin. Scheduling-aware real-time garbage collection using
dual aperiodic servers. In Real-Time and Embedded Computing Systems and Applications,
2004, pages 1-17. Volume 2968 of Lecture Notes in Computer Science, Springer-Verlag.
doi: 1 0 . 1 0 0 7 1 9 7 8 - 3 - 5 4 0 - 2 4 6 8 6 - 2_1 . 415

Taehyoun Kim, Naehyuck Chang, Namyun Kim, and Heonshik Shin. Scheduling garbage
collector for embedded real-time systems. In ACM SIGPLAN Workshop on Languages,
Compilers, and Tools for Embedded Systems (LCTES), Atlanta, GA, May 1999, pages 55-64.

ACM SIGPLAN Notices 34(7), ACM Press. doi: 1 0 . 1 1 4 5 I 3 1 4 4 0 3 . 3 1 4 4 4 4 . 415

Taehyoun Kim, Naehyuck Chang, and Heonshik Shin. Bounding worst case garbage
collection time for embedded real-time systems. In 6th IEEE Real-Time Technology and
Applications Symposium (RTAS), Washington, DC, May /June 2000, pages 46-55.

do� 1 0 . 1 1 0 9 I RTTAS . 2 0 0 0 . 8 5 2 4 5 0 . 415

Taehyoun Kim, Naehyuck Chang, and Heonshik Shin. Joint scheduling of garbage
collector and hard real-time tasks for embedded applications. Journal of Systems and
Software, 58(3) :247-260, September 2001 . doi: 1 0 . 1 0 1 6 I S 0 1 6 4 - 1 2 1 2 (0 1) 0 0 0 4 2 - 5 .

415

Andy C. King. Removing Garbage Collector Synchronisation. PhD thesis, Computing
Laboratory, The University of Kent at Canterbury, 2004. 145, 446

Kenneth C. Knowlton. A fast storage allocator. Communications of the ACM, 8(10) :623-625,
October 1965. doi: 1 0 . 1 1 4 5 1 3 6 5 6 2 8 . 3 6 5 6 5 5 . 96

Donald E. Knuth. The Art of Computer Programming, volume I: Fundamental Algorithms.
Addison-Wesley, second edition, 1973. 89, 90, 98

Elliot K. Kolodner and Erez Petrank. Parallel copying garbage collection using delayed
allocation. Technical Report 88.384, IBM Haifa Research Lab., November 1999. 284, 289

David G. Korn and Kiem-Phong Vo. In search of a better malloc. In USENIX Summer
Conference, Portland, OR, 1985, pages 489-506. USENIX Association. 100, 152

H. T. Kung and S. W. Song. An efficient parallel garbage collection system and its
correctness proof. In IEEE Symposium on Foundations of Computer Science, 1977, pages
120-131 . IEEE Press . doi : 1 0 . 1 1 0 9 I S F C S . 1 9 7 7 . 5 . 326, 329

Michael S. Lam, Paul R. Wilson, and Thomas G. Moher. Object type directed garbage
collection to improve locality. In IWMM 1992, pages 404-425.
doi: 1 0 . 1 0 0 7 I BFb 0 0 1 7 2 0 4 . 52, 53

Leslie Lamport. Garbage collection with multiple processes: an exercise in parallelism. In
International Conference on Parallel Processing (ICPP), 1976, pages 50-54. xxi, 326, 327

Bernard Lang and Francis Dupont. Incremental incrementally compacting garbage
collection. In Symposium on Interpreters and Interpretive Techniques, St Paul, MN, June
1987, pages 253-263. ACM SIGPLAN Notices 22(7), ACM Press.
doi: 1 0 . 1 1 4 5 1 2 9 6 5 0 . 2 9 6 7 7 . 137, 149, 150, 151, 159

LCTES 2003. ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems, San Diego, CA, June 2003. ACM SIGPLAN Notices 38(7), ACM
Press. doi: 1 0 . 1 1 4 5 / 7 8 0 7 3 2 . 431, 453

448 BIBLIOGRAPHY

Ho-Fung Leung and Hing-Fung Ting. An optimal algorithm for global termination
detection in shared-memory asynchronous multiprocessor systems. IEEE Transactions
on Parallel and Distributed Systems, 8(5) :538-543, May 1997. doi: 1 0 . 1 1 0 9 I 7 1 . 5 9 8 2 8 0 .

248, 249

Yossi Levanoni and Erez Petrank. An on-the-fly reference counting garbage collector for
Java . In OOPSLA 2001, pages 367-380. doi: 1 0 . 1 1 4 5 1 5 0 4 2 8 2 . 5 0 4 3 0 9 . 157, 369

Yossi Levanoni and Erez Petrank. An on-the-fly reference counting garbage collector for
Java. ACM Transactions on Programming Languages and Systems, 28(1) : 1--69, January 2006.
doi: 1 0 . 1 1 4 5 1 1 1 1 1 5 9 6 . 1 1 1 1 5 9 7 . 108, 369, 374

Yossi Levanoni and Erez Petrank. A scalable reference counting garbage collector.
Technical Report CS--0967, Technion - Israel Institute of Technology, Haifa, Israel,
November 1999. 63, 331, 369

LFP 1984, Guy L. Steele, editor. ACM Conference on LISP and Functional Programming,
Austin, TX, August 1984. ACM Press. doi: 1 0 . 1 1 4 5 1 8 0 0 0 5 5 . 435, 442, 449, 457

LFP 1992. ACM Conference on LISP and Functional Programming, San Francisco, CA, June
1992. ACM Press. doi: 1 0 . 1 1 4 5 1 1 4 1 4 7 1 . 437, 441

Henry Lieberman and Carl E . Hewitt. A real-time garbage collector based on the lifetimes
of objects . Communications of the ACM, 26(6):419-429, 1983 .
doi: 1 0 . 1 1 4 5 I 3 5 8 1 4 1 . 3 5 8 1 4 7 . Also report TM-184, Laboratory for Computer
Science, MIT, Cambridge, MA, July 1980 and AI Lab Memo 569, 1981 . 1 03, 1 16

Rafael D. Lins . Cyclic reference counting with lazy mark-scan. Information Processing
Letters, 44(4) :215-220, 1992 . doi: 1 0 . 1 0 1 6 1 0 0 2 0 - 0 1 9 0 (9 2) 9 0 0 8 8 - D . Also
Computing Laboratory Technical Report 75, University of Kent, July 1990. 72

Boris Magnusson and Roger Henriksson. Garbage collection for control systems. In
IWMM 1995, pages 323-342 . doi: 1 0 . 1 0 0 7 / 3 - 5 4 0 - 6 0 3 6 8 - 9_3 2 . 386

Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory model. In 32nd
Annual ACM Symposium on Principles of Programming Languages, Long Beach, CA,
January 2005, pages 378-391 . ACM SIGPLAN Notices 40(1) , ACM Press.
doi: 1 0 . 1 1 4 5 I 1 0 4 0 3 0 5 . 1 0 4 0 3 3 6 . 346

Sebastien Marion, Richard Jones, and Chris Ryder. Decrypting the Java gene pool:
Predicting objects' lifetimes with micro-patterns. In ISMM 2007, pages 67-78.
dot 1 0 . 1 1 4 5 l 1 2 9 6 9 0 7 . 1 2 9 6 9 1 8 . 11� 132

Simon Marlow, Tim Harris, Roshan James, and Simon Peyton Jones. Parallel
generational-copying garbage collection with a block-structured heap. In ISMM 2008,
pages 1 1-20. doi: 1 0 . 1 1 4 5 1 1 3 7 5 6 3 4 . 1 3 7 5 6 3 7 . 116, 132, 292, 296, 468

Johannes J. Martin. An efficient garbage compaction algorithm. Communications of the
ACM, 25(8):571-581, August 1982. doi: 1 0 . 1 1 4 5 1 3 5 8 5 8 9 . 3 5 8 6 2 5 . 38

A. D. Martinez, R. Wachenchauzer, and Rafael D. Lins. Cyclic reference counting with
local mark-scan. Information Processing Letters, 34:31-35, 1990.
doi: 1 0 . 1 0 1 6 I 0 0 2 0- 0 1 9 0 (9 0) 9 0 2 2 6- N . 72

John McCarthy. Recursive functions of symbolic expressions and their computation by
machine, Part I. Communications of the ACM, 3(4) :184-195, April 1960.
doi: 1 0 . 1 1 4 5 / 3 6 7 1 7 7 . 3 6 7 1 9 9 . xxiii, 2, 18, 29

BIBLIOGRAPHY 449

John McCarthy. History of LISP. In Richard L. Wexelblat, editor, History of Programming
Languages I, pages 173-185. ACM Press, 1978. doi: 1 0 . 1 1 4 5 / 8 0 0 0 2 5 . 1 1 9 8 3 6 0 . xxiii

Bill McCloskey, David F. Bacon, Perry Cheng, and David Grove. Staccato: A parallel and
concurrent real-time compacting garbage collector for multiprocessors. IBM Research
Report RC24505, IBM Research, 2008. 407, 409

Phil McGachey and Antony L Hosking. Reducing generational copy reserve overhead
with fallback compaction. In ISMM 2006, pages 17-28.
doi : 1 0 . 1 1 4 5 / 1 1 3 3 9 5 6 . 1 1 3 3 9 6 0 . 126

Phil McGachey, Ali-Reza Adl-Tabatabi, Richard L. Hudson, Vijay Menon, Bra tin Saha,
and Tatiana Shpeisman. Concurrent GC leveraging transactional memory. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, Salt Lake City,
UT, February 2008, pages 217-226. ACM Press. doi: 1 0 . 1 1 4 5 I 1 3 4 5 2 0 6 . 1 3 4 5 2 3 8 .

270

Paul E. McKenney and Jack Slingwine. Read-copy update: Using execution history to
solve concurrency problems. In 1 0th lASTED International Conference on Parallel and
Distributed Computing and Systems, October 1998. 374

Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE
Transactions on Parallel and Distributed Systems, 15(6) :491-504, June 2004.
doi: 1 0 . 1 1 0 9 / TP D $. 2 0 0 4 . 8 . 374

Maged M. Michael and M.L. Scott. Correction of a memory management method for
lock-free data structures. Technical Report UR CSD I TR59, University of Rochester,
December 1995. doi: 1 8 0 2 / 5 0 3 . 374

James S. Miller and Guillermo J. Rozas. Garbage collection is fast, but a stack is faster.
Technical Report AIM-1462, MIT AI Laboratory, March 1994. doi: 1 7 2 1 . 1 / 6 6 2 2 . 171

David A. Moon. Garbage collection in a large LISP system. In LFP 1984, pages 235-245 .
doi: 1 0 . 1 1 4 5 / 8 0 0 0 5 5 . 8 0 2 0 4 0 . 50, 51 , 202, 296

F. Lockwood Morris. A time- and space-efficient garbage compaction algorithm.
Communications of the ACM, 21(8):662-5, 1978. doi: 1 0 . 1 1 4 5 / 3 5 9 5 7 6 . 3 5 9 5 8 3 . 36, 42,
299

F. Lockwood Morris . On a comparison of garbage collection techniques . Communications
of the ACM, 22(10) :571, October 1979. 37, 42

F. Lockwood Morris. Another compacting garbage collector. Information Processing Letters,
15(4) : 139-142, October 1982. doi: 1 0 . 1 0 1 6 / 0 0 2 0 - 0 1 9 0 (8 2) 9 0 0 9 4 - 1 . 37, 38, 42

J. Eliot B. Moss . Working with persistent objects: To swizzle or not to swizzle? IEEE
Transactions on Software Engineering, 18(8) :657-673, August 1992.
doi: 1 0 . 1 1 0 9 / 3 2 . 1 5 3 3 7 8 . 207

Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. Producing
wrong data without doing anything obviously wrong! In Mary Lou Soffa, editor, 14th
International Conference on Architectural Support for Programming Languages and Operating
Systems, Seattle, WA, March 2008, pages 265-276. ACM SIGPLAN Notices 43(3), ACM
Press. doi: 1 0 . 1 1 4 5 / 1 5 0 8 2 4 4 . 1 5 0 8 2 7 5. 10

450 BIBLIOGRAPHY

John Nagle. Re: Real-time GC (was Re: Widespread C++ competency gap) . USENET
comp.lang.c++, January 1995. 4

Scott Nettles and James O'Toole. Real-time replication-based garbage collection. In PLDI
1993, pages 217-226. doi: 1 0 . 1 1 4 5 1 1 5 5 0 9 0 . 1 5 5 1 1 1 . 341, 342, 347, 361, 378

Scott M. Nettles, James W. O'Toole, David Pierce, and Nicholas Haines. Replication-based
incremental copying collection. In IWMM 1992, pages 357-364.
doi: 1 0 . 1 0 0 7 I BFb 0 0 1 7 2 0 1 . 341, 361

Yang Ni, Vijay Menon, Ali-Reza Adl-Tabatabai, Antony L. Hosking, Richard L. Hudson,
J. Eliot B. Moss, Bratin Saha, and Tatiana Shpeisman. Open nesting in software
transactional memory. In A CM SIC PLAN Symposium on Principles and Practice of Parallel
Programming, San Jose, CA, March 2007, pages 68-78. ACM Press.
dot 1 0 . 1 1 4 5 l 1 2 2 9 4 2 8 . 1 2 2 9 4 4 2 . 272

Gene Novark, Trevor Strohman, and Emery D. Berger. Custom object layout for
garbage-collected languages. Technical report, University of Massachusetts, 2006. New
England Programming Languages and Systems Symposium, March, 2006 . 53

Cosmin E. Oancea, Alan Mycroft, and Stephen M. Watt. A new approach to parallelising
tracing algorithms. In ISMM 2009, pages 10-19. doi: 1 0 . 1 1 4 5 1 1 5 4 2 4 3 1 . 1 5 4 2 4 3 4 .

262, 263, 264, 265, 298, 304, 305, 468

Takeshi Ogasawara. NUMA-aware memory manager with dominant-thread-based
copying GC. In ACM SIC PLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Orlando, FL, October 2009, pages 377-390. ACM SIGPLAN
Notices 44(10), ACM Press. doi: 1 0 . 1 1 4 5 I 1 6 4 0 0 8 9 . 1 6 4 0 1 1 7 . 293, 468

OOPSLA 1999. ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Denver, CO, October 1999 . ACM SIGPLAN Notices 34(10),
ACM Press. doi: 1 0 . 1 1 4 5 I 3 2 0 3 8 4 . 434, 457

OOPSLA 2001 . ACM SIC PLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Tampa, FL, November 2001 . ACM SIGPLAN Notices
36(11), ACM Press. doi: 1 0 . 1 1 4 5 I 5 0 4 2 8 2 . 433, 434, 448

OOPSLA 2002. ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Seattle, WA, November 2002 . ACM SIGPLAN Notices
37(1 1), ACM Press. doi: 1 0 . 1 1 4 5 1 5 8 2 4 1 9 . 455, 461

OOPSLA 2003. ACM SIC PLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Anaheim, CA, November 2003. ACM SIGPLAN Notices
38(11), ACM Press. doi: 1 0 . 1 1 4 5 1 9 4 9 3 0 5 . 430, 432, 433, 442, 444, 454

OOPSLA 2004. ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Vancouver, Canada, October 2004. ACM SIGPLAN Notices
39(10), ACM Press . doi: 1 0 . 1 1 4 5 1 1 0 2 8 9 7 6 . 429, 431, 442, 444, 454

OOPSLA 2005. ACM SIC PLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, San Diego, CA, October 2005. ACM SIGPLAN Notices
40(10), ACM Press. doi: 1 0 . 1 1 4 5 I 1 0 9 4 8 1 1 . 441, 443, 459

Yoav Ossia, Ori Ben-Yitzhak, Irit Goft, Elliot K. Kolodner, Victor Leikehman, and Avi
Owshanko. A parallel, incremental and concurrent GC for servers. In PLDI 2002, pages
129-140. doi: 1 0 . 1 1 4 5 I 5 1 2 5 2 9 . 5 1 2 5 4 6 . 284, 285, 288, 296, 304, 474

BIBLIOGRAPHY 451

Yoav Ossia, Ori Ben-Yitzhak, and Marc Segal . Mostly concurrent compaction for
mark-sweep GC. In ISMM 2004, pages 25-36. doi: 1 0 . 1 1 4 5 I 1 0 2 9 8 7 3 . 1 0 2 9 8 7 7 . 321,
352

Ivor P. Page and Jeff Hagins. Improving the performance of buddy systems. IEEE
Transactions on Computers, C-35(5) :441-447, May 1986.
doi: 1 0 . 1 1 0 9 I TC . 1 9 8 6 . 1 6 7 6 7 8 6 . 96

Krzysztof Palacz, Jan Vitek, Grzegorz Czajkowski, and Laurent Daynes. Incommunicado:
efficient communication for isolates. In ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, Portland, OR, October 1994, pages
262-274. ACM SIGPLAN Notices 29(10), ACM Press. doi: 1 0 . 1 1 4 5 1 5 8 2 4 1 9 . 5 8 2 4 4 4 .

107

Stephen K. Park and Keith W. Miller. Random number generators: Good ones are hard to
find. Communications of the ACM, 31(10) : 1 192-1201, October 1988.
doi: 1 0 . 1 1 4 5 1 6 3 0 3 9 . 6 3 0 4 . 194

Harel Paz and Erez Petrank. Using prefetching to improve reference-counting garbage
collectors. In 1 6th International Conference on Compiler Construction, Braga, Portugal,
March 2007, pages 48-63. Volume 4420 of Lecture Notes in Computer Science,
Springer-Verlag. doi: 1 0 . 1 0 0 7 I 9 7 8 - 3 - 5 4 0 - 7 1 2 2 9 - 9 _ 4 . 64

Harel Paz, David F. Bacon, Elliot K. Kolodner, Erez Petrank, and V.T. Rajan. Efficient
on-the-fly cycle collection. Technical Report CS--2003-10, Technion University, 2003.
369, 370

Harel Paz, Erez Petrank, David F. Bacon, Elliot K. Kolodner, and V.T. Rajan. An efficient
on-the-fly cycle collection. In CC 2005, pages 156--171 .
doi: 1 o . 1 o o 7 I 9 7 8- 3- 5 4 o - 31 9 8 5- 6 _1 1 . 369

Harel Paz, Erez Petrank, and Stephen M. Blackburn. Age-oriented concurrent garbage
collection. In CC 2005, pages 121-136. doi: 1 0 . 1 0 0 7 1 9 7 8 - 3 - 5 4 0 - 3 1 9 8 5 - 6_9 . 369

Harel Paz, David F. Bacon, Elliot K. Kolodner, Erez Petrank, and V. T. Rajan. An efficient
on-the-fly cycle collection. ACM Transactions on Programming Languages and Systems, 29
(4) : 1-43, August 2007. doi: 1 0 . 1 1 4 5 / 1 2 5 5 4 5 0 . 1 2 5 5 4 5 3 . 67, 369, 372, 373

E. J . H. Pepels, M. C. J . D. van Eekelen, and M. J . Plasmeijer. A cyclic reference counting
algorithm and its proof. Technical Report 88-10, Computing Science Department,
University of Nijmegen, 1988. 67

James L. Peterson and Theodore A. Norman. Buddy systems. Communications of the ACM,
20(6) :421-431, 1977. doi: 1 o . 1 1 4 5 1 3 5 9 6 0 5 . 3 5 9 6 2 6. 96

Erez Petrank and Elliot K. Kolodner. Parallel copying garbage collection using delayed
allocation. Parallel Processing Letters, 14(2):271-286, June 2004.
doi: 1 0 . 1 1 4 2 1 5 0 1 2 9 6 2 6 4 0 4 0 0 1 8 7 8 . 284

Erez Petrank and Dror Rawitz. The hardness of cache conscious data placement. In
Twenty-ninth Annual ACM Symposium on Principles of Programming Languages, Portland,
OR, January 2002, pages 101-1 12. ACM SIGPLAN Notices 37(1), ACM Press.
doi: 1 0 . 1 1 4 5 1 5 0 3 2 7 2 . 5 0 3 2 8 3 . 49

Pekka P. Pirinen. Barrier techniques for incremental tracing. In ISMM 1998, pages 20-25.
doi: 1 0 . 1 1 4 5 1 2 8 6 8 6 0 . 2 8 6 8 6 3 . xvii, 20, 315, 316, 317, 318

452 BIBLIOGRAPHY

Filip Pizlo and Jan Vitek. Memory management for real-time Java: State of the art. In 1 1 th
International Symposium on Object-Oriented Real-Time Distributed Computing, Orlando,
FL, 2008, pages 248-254. IEEE Press. doi: 1 0 . 1 1 0 9 I I S ORC . 2 0 0 8 . 4 0 . 377

Filip Pizlo, Daniel Frampton, Erez Petrank, and Bjame Steensgard. Stop less: A real-time
garbage collector for multiprocessors . In ISMM 2007, pages 159-172.
doi: 1 0 . 1 1 4 5 1 1 2 9 6 9 0 7 . 1 2 9 6 9 2 7 . 406, 412

Filip Pizlo, Erez Petrank, and Bjame Steensgaard. A study of concurrent real-time
garbage collectors. In PLDI 2008, pages 33-44. doi: 1 0 . 1 1 4 5 I 1 3 7 9 0 2 2 . 1 3 7 5 5 8 7 .
410, 411 , 412

Filip Pizlo, Lukasz Ziarek, Ethan Blanton, Petr Maj, and Jan Vitek. High-level
programming of embedded hard real-time devices. In 5th European Conference on
Computer Systems (EuroSys), Paris, France, April 2010a, pages 69-82. ACM Press.
doi: 1 0 . 1 1 4 5 I 1 7 5 5 9 1 3 . 1 7 5 5 9 2 2 . 416

Filip Pizlo, Lukasz Ziarek, Petr Maj, Antony L. Hosking, Ethan Blanton, and Jan Vitek.
Schism: Fragmentation-tolerant real-time garbage collection. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, Toronto, Canada, June
2010b, pages 146-159. ACM SIGPLAN Notices 45(6), ACM Press.
doi: 1 0 . 1 1 4 5 1 1 8 0 6 5 9 6 . 1 8 0 6 6 1 5 . 413, 414, 415, 416

PLDI 1988. ACM SIGPLAN Conference on Programming Language Design and
Implementation, Atlanta, June 1988. ACM SIGPLAN Notices 23{7), ACM Press.
doi: 1 0 . 1 1 4 5 1 5 3 9 9 0 . 430, 436

PLDI 1991 . ACM SIGPLAN Conference on Programming Language Design and
Implementation, Toronto, Canada, June 1991 . ACM SIGPLAN Notices 26{6), ACM Press.
doi: 1 0 . 1 1 4 5 1 1 1 3 4 4 5 . 434, 441, 460

PLDI 1992. ACM SIGPLAN Conference on Programming Language Design and
Implementation, San Francisco, CA, June 1992. ACM SIGPLAN Notices 27{7), ACM
Press. doi: 1 0 . 1 1 4 5 1 1 4 3 0 9 5 . 430, 439

PLDI 1993. ACM SIGPLAN Conference on Programming Language Design and
Implementation, Albuquerque, NM, June 1993. ACM SIGPLAN Notices 28(6), ACM
Press . doi: 1 0 . 1 1 4 5 1 1 5 5 0 9 0 . 432, 434, 439, 450

PLDI 1997. ACM SIGPLAN Conference on Programming Language Design and
Implementation, Las Vegas, NV, June 1997. ACM SIGPLAN Notices 32{5), ACM Press.
doi: 1 0 . 1 1 4 5 1 2 5 8 9 1 5 . 437, 439

PLDI 1999. ACM SIGPLAN Conference on Programming Language Design and
Implementation, Atlanta, GA, May 1999. ACM SIGPLAN Notices 34(5), ACM Press .
doi: 1 0 . 1 1 4 5 / 3 0 1 6 1 8 . 434, 437, 457

PLDI 2000. ACM SIGPLAN Conference on Programming Language Design and
Implementation, Vancouver, Canada, June 2000. ACM SIGPLAN Notices 35(5), ACM
Press. doi: 1 0 . 1 1 4 5 / 3 4 9 2 9 9 . 435, 439, 454

PLDI 2001 . ACM SIGPLAN Conference on Programming Language Design and
Implementation, Snowbird, UT, June 2001 . ACM SIGPLAN Notices 36(5), ACM Press.
doi: 1 0 . 1 1 4 5 / 3 7 8 7 9 5 . 430, 431, 436

BIBLIOGRAPHY 453

PLDI 2002. ACM SIGPLAN Conference on Programming Language Design and
Implementation, Berlin, Germany, June 2002. ACM SIGPLAN Notices 37(5), ACM Press.
doi: 1 0 . 1 1 4 5 I 5 1 2 5 2 9. 433, 442, 450

PLDI 2006, Michael I . Schwartzbach and Thomas Ball, editors. ACM SIGPLAN Conference
on Programming Language Design and Implementation , Ottawa, Canada, June 2006. ACM
SIGPLAN Notices 41 (6), ACM Press. doi: 1 0 . 1 1 4 5 1 1 1 3 3 9 8 1 . 436, 446, 458

PLDI 2008, Rajiv Gupta and Saman P. Amarasinghe, editors. ACM SIGPLAN Conference
on Programming Language Design and Implementation , Tucson, AZ, June 2008. ACM
SIGPLAN Notices 43(6), ACM Press. doi: 1 o . 1 1 4 5 I 1 3 7 5 5 8 1 . 433, 452

POPL 1994. 2 1 st Annual ACM Symposium on Principles of Programming Languages,
Portland, OR, January 1994. ACM Press. doi: 1 0 . 1 1 4 5 I 1 7 4 6 7 5 . 439, 458

POPL 2003. 30th Annual ACM Symposium on Principles of Programming Languages, New
Orleans, LA, January 2003. ACM SIGPLAN Notices 38(1), ACM Press.
doi: 1 0 . 1 1 4 5 1 6 0 4 1 3 1 . 431, 434

POS 1992, Antonio Albano and Ronald Morrison, editors. 5th International Workshop on
Persisten t Object Systems (September, 1 992), San Miniato, Italy, 1992. Workshops in
Computing, Springer. 455, 460

Tony Printezis. Hot-Swapping between a Mark&Sweep and a Mark&Compact Garbage
Collector in a Generational Environment. In JVM 2001 . 6, 41, 138

Tony Printezis. On measuring garbage collection responsiveness. Science of Computer
Programming, 62(2) : 164-183, October 2006. doi: 1 0 . 1 0 1 6 1 j . s c i co . 2 0 0 6 . 0 2 . 0 0 4 .

375, 376, 415

Tony Printezis and David Detlefs. A generational mostly-concurrent garbage collector. In
ISMM 2000, pages 143-154. doi: 1 0 . 1 1 4 5 1 3 6 2 4 2 2 . 3 6 2 4 8 0 . 23, 151 , 326

Tony Printezis and Alex Garthwaite. Visualising the Train garbage collector. In ISMM
2002, pages 100-105. doi: 1 0 . 1 1 4 5 I 5 1 2 4 2 9 . 5 1 2 4 3 6 . 22, 73, 143

Feng Qian and Laurie Hendren. An adaptive, region-based allocator for Java. In ISMM
2002, pages 127-138. doi: 1 0 . 1 1 4 5 I 5 1 2 4 2 9 . 5 1 2 4 4 6 . Sable Technical Report 2002-1
provides a longer version. 147

Christian Queinnec, Barbara Beaudoing, and Jean-Pierre Queille. Mark DURING Sweep
rather than Mark THEN Sweep. In Eddy Odijk, Martin Rem, and Jean-Claude Syre,
editors, Parallel Architectures and Languages Europe (PARLE), Eindhoven, The
Netherlands, June 1989, pages 224-237. Volume 365 of Lecture Notes in Computer Science,
Springer-Verlag. doi: 1 0 . 1 0 0 7 / 3 5 4 0 5 1 2 8 4 5_ 4 2 . 328

John H. Reppy. A high-performance garbage collector for Standard ML. Technical
memorandum, AT&T Bell Laboratories, Murray Hill, NJ, December 1993. 105, 121, 195,
201

Sven Gestegeard Robertz and Roger Henriksson. Time-triggered garbage collection:
Robust and adaptive real-time GC scheduling for embedded systems. In LCTES 2003,
pages 93-102. doi: 1 0 . 1 1 4 5 / 7 8 0 7 3 2 . 7 8 0 7 4 5 . 415

J . M. Robson. An estimate of the store size necessary for dynamic storage allocation.
Journal of the ACM, 18(3):416-423, July 1971 . doi: 1 0 . 1 1 4 5 / 3 2 1 6 5 0 . 3 2 1 6 5 8 . 30

454 BIBLIOGRAPHY

J . M. Robson. Bounds for some functions concerning dynamic storage allocation. Journal
of the ACM, 21 (3) :419-499, July 1974. doi: 1 0 . 1 1 4 5 1 3 2 1 8 3 2 . 3 2 1 8 4 6 . 30

J. M. Robson. A bounded storage algorithm for copying cyclic structures. Communications
of the ACM, 20(6) :431-433, June 1977. doi: 1 0 . 1 1 4 5 1 3 5 9 6 0 5 . 3 5 9 6 2 8 . 90

J. M. Robson. Storage allocation is NP-hard. Information Processing Letters, 1 1 (3) : 1 19-125,
November 1980. doi: 1 0 . 1 0 1 6 I 0 0 2 0 - 0 1 9 0 (8 0) 9 0 1 2 4 - 6 . 93

Helena C. C. D. Rodrigues and Richard E. Jones. Cyclic distributed garbage collection
with group merger. In Eric Jul, editor, 12 th European Conference on Object-Oriented
Programming, Brussels, Belgium, July 1998, pages 249-273. Volume 1445 of Lecture Notes
in Computer Science, Springer-Verlag. doi: 1 0 . 1 0 0 7 IBFb O 0 5 4 0 9 5 . Also UKC Technical
report 17-97, December 1997. 58

Paul Rovner. On adding garbage collection and runtime types to a strongly-typed,
statically-checked, concurrent language. Technical Report CSL-84-7, Xerox PARC, Palo
Alto, CA, July 1985. 4

Erik Ruf. Effective synchronization removal for Java. In PLDI 2000, pages 208-218.
doi: 1 0 . 1 1 4 5 / 3 4 92 9 9 . 3 4 9 3 2 7 . 145

Narendran Sachindran and Eliot Moss. MarkCopy: Fast copying GC with less space
overhead. In OOPSLA 2003, pages 326-343 . doi: 1 0 . 1 1 4 5 1 9 4 9 3 0 5 . 9 4 9 3 3 5 . 154, 155,
159

Narendran Sachindran, J. Eliot B . Moss, and Emery D. Berger. MC2 : High-performance
garbage collection for memory-constrained environments. In OOPSLA 2004, pages
81-98. doi : 1 0 . 1 1 4 5 1 1 0 2 8 9 7 6 . 1 0 2 8 9 8 4 . 7, 155, 159

Konstantinos Sagonas and Jesper Wilhelmsson. Message analysis-guided allocation and
low-pause incremental garbage collection in a concurrent language. In ISMM 2004,
pages 1-12. doi: 1 0 . 1 1 4 5 / 1 0 2 9 8 7 3 . 1 0 2 9 8 7 5 . 146

Konstantinos Sagonas and Jesper Wilhelmsson. Efficient memory management for
concurrent programs that use message passing. Science of Computer Programming, 62(2) :
98-121, October 2006. doi: 1 0 . 1 0 1 6 1 j . s c i c o . 2 0 0 6 . 0 2 . 0 0 6 . 146

Jon D. Salkild . Implementation and analysis of two reference counting algorithms.
Master 's thesis, University College, London, 1987. 67

Patrick M. Sansom and Simon L. Peyton Jones. Generational garbage collection for
Haskell. In John Hughes, editor, Conference on Functional Programming and Computer
Architecture, Copenhagen, Denmark, June 1993, pages 106-1 16 . ACM Press.
doi: 1 o . 1 1 4 5 I 1 6 5 1 8 o . 1 6 5 1 9 5. 113

Robert A. Saunders. The LISP system for the Q-32 computer. In E. C. Berkeley and
Daniel G. Bobrow, editors, The Programming Language LISP: Its Operation and
Applications, Cambridge, MA, 1974, pages 220-231 . Information International, Inc. 32

Martin Schoeberl. Scheduling of hard real-time garbage collection. Real-Time Systems, 45
(3) :176-213, 2010. doi: 1 0 . 1 0 0 7 I s 1 1 2 4 1 - 0 1 0 - 9 0 9 5 - 4 . 415

Jacob Seligmann and Steffen Grarup. Incremental mature garbage collection using the
train algorithm. In Oscar Nierstrasz, editor, 9th European Conference on Object-Oriented
Programming, eAarhus, Denmark, August 1995, pages 235-252. Volume 952 of Lecture
Notes in Computer Science, Springer-Verlag. doi: 1 0 . 1 0 0 7 I 3 - 5 4 0 - 4 9 5 3 8 - X_1 2 . 143

BIBLIOGRAPHY 455

Robert A Shaw. Empirical Analysis of a Lisp System. PhD thesis, Stanford University, 1988.
Technical Report CSL-TR-88-351 . 116, 1 18, 192, 202

Yefim Shuf, Manish Gupta, Hubertus Franke, Andrew Appel, and Jaswinder Pal Singh.
Creating and preserving locality of Java applications at allocation and garbage
collection times. In OOPSLA 2002, pages 13-25. doi: 1 0 . 1 1 4 5 / 5 8 2 4 1 9 . 5 8 2 4 2 2 . 53

Fridtjof Siebert. Eliminating external fragmentation in a non-moving garbage collector for
Java. In Compilers, Architecture, and Synthesis for Embedded Systems (CASES), San Jose,
CA, November 2000, pages 9-17. ACM Press. doi: 1 0 . 1 1 4 5 / 3 5 4 8 8 0 . 3 5 4 8 8 3 . 385,
412, 415

Fridtjof Siebert. Limits of parallel marking collection. In ISMM 2008, pages 21-29.
doi: 1 0 . 1 1 4 5 / 1 3 7 5 6 3 4 . 1 3 7 5 6 3 8 . 276, 277, 303, 474

Fridtjof Siebert. Concurrent, parallel, real-time garbage-collection. In ISMM 2010, pages
1 1-20. doi: 1 o . 1 1 4 5 / 1 8 o 6 6 5 1 . 1 8 o 6 6 5 4 . 280, 282, 283, 304, 385, 412, 474

Fridtjof Siebert. Guaranteeing non-disruptiveness and real-time deadlines in an
incremental garbage collector. In ISMM 1998, pages 130-137.
doi: 1 0 . 1 1 4 5 / 2 8 6 8 6 0 . 2 8 6 8 7 4 . 385, 412

Fridtjof Siebert. Hard real-time garbage collection in the Jamaica Virtual Machine. In 6th
International Workshop on Real-Time Computing Systems and Applications (RTCSA), Hong
Kong, 1999, pages 96-102. IEEE Press, IEEE Computer Society Press .
doi: 1 0 . 1 1 0 9 / RTCSA . 1 9 9 9 . 8 1 1 1 9 8 . 182

David Siegwart and Martin Hirzel. Improving locality with parallel hierarchical copying
GC. In ISMM 2006, pages 52-63. doi: 1 0 . 1 1 4 5 / 1 1 3 3 9 5 6 . 1 1 3 3 9 6 4 . xx, xxi, 52, 295,
296, 297, 304, 468

Jeremy Singer, Gavin Brown, Mikel Lujan, and Ian Watson. Towards intelligent analysis
techniques for object pretenuring. In ACM International Symposium on Principles and
Practice of Programming in Java, Lisbon, Portugal, September 2007a, pages 203-208.
Volume 272 of ACM International Conference Proceeding Series.
doi: 1 0 . 1 1 4 5 / 1 2 9 4 3 2 5 . 1 2 9 4 3 5 3 . 80

Jeremy Singer, Gavin Brown, Ian Watson, and John Cavazos. Intelligent selection of
application-specific garbage collectors. In ISMM 2007, pages 91-102.
doi: 1 0 . 1 1 4 5 / 1 2 9 6 9 0 7 . 1 2 9 6 9 2 0 . 6

Vivek Singhal, Sheetal V. Kakkad, and Paul R. Wilson. Texas: an efficient, portable
persistent store. In POS 1992, pages 1 1-33. 207

Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees.
Journal of the ACM, 32(3) :562-686, July 1985. doi: 1 0 . 1 1 4 5 / 3 8 2 8 . 3 8 3 5 . 92

Patrick Sobalvarro. A lifetime-based garbage collector for Lisp systems on
general-purpose computers. Bachelor of Science thesis AITR-1417, MIT AI Lab,
February 1988. doi: 1 7 2 1 . 1 I 6 7 9 5 . 197

Sunil Soman and Chandra Krintz. Efficient and general on-stack replacement for
aggressive program specialization. In International Conference on Software Engineering
Research and Practice (SERP) & Conference on Programming Languages and Compilers,
Volume 2, Las Vegas, NV, June 2006, pages 925-932. CSREA Press. 190

456

Sunil Soman, Chandra Krintz, and David Bacon. Dynamic selection of
application-specific garbage collectors . In ISMM 2004, pages 49-60.
doi: 1 0 . 1 1 4 5 1 1 0 2 9 8 7 3 . 1 0 2 9 8 8 0 . 6, 41, 80

BIBLIOGRAPHY

Sunil Soman, Laurent Daynes, , and Chandra Krintz. Task-aware garbage collection in a
multi-tasking virtual machine. In ISMM 2006, pages 64-73.
doi: 1 0 . 1 1 4 5 I 1 1 3 3 9 5 6 . 1 1 3 3 9 6 5 . 107

Sunil Soman, Chandra Krintz, and Laurent Daynes. MTM2 : Scalable memory
management for multi-tasking managed runtime environments. In Jan Vitek, editor,
22nd European Conference on Object-Oriented Programming, Paphos, Cyprus, July 2008,
pages 335-361 . Volume 5142 of Lecture Notes in Computer Science, Springer-Verlag.
doi: 1 0 . 1 0 0 7 I 9 7 8 - 3 - 5 4 0 - 7 0 5 9 2 - 5_1 5 . 107

Daniel Spoonhower, Guy Blelloch, and Robert Harper. Using page residency to balance
tradeoffs in tracing garbage collection. In VEE 2005, pages 57-67.
doi: 1 o . 1 1 4 5 1 1 0 6 4 9 7 9 . 1 0 6 4 9 8 9 . 149, 150, 152

James W. Stamos. Static grouping of small objects to enhance performance of a paged
virtual memory. ACM Transactions on Computer Systems, 2(3) : 155-180, May 1984.
doi: 1 o . 1 1 4 5 I 1 9 o . 1 9 4 . 50

James William Stamos. A large object-oriented virtual memory: Grouping strategies,
measurements, and performance. Master 's thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, April 1982.
doi: 1 7 2 1 . 1 1 1 5 8 0 7 . 50

Thomas A. Standish. Data Structure Techniques. Addison-Wesley, 1980. 87, 92

Guy L. Steele. Multiprocessing compactifying garbage collection. Communications of the
ACM, 18 (9) :495-508, September 1975. doi: 1 0 . 1 1 4 5 1 3 6 1 0 0 2 . 3 6 1 0 0 5 . xvii, 229, 315,
316, 330

Guy L. Steele. Corrigendum: Multiprocessing compactifying garbage collection.
Communications of the ACM, 19(6) :354, June 1976. doi: 1 0 . 1 1 4 5 / 3 6 0 2 3 8 . 3 6 0 2 4 7 . 315,
316, 318, 323, 326, 335

Peter Steenkiste. Lisp on a Reduced-Instruction-Set Processor: Characterization and
Optimization. PhD thesis, Stanford University, March 1987. Available as Technical
Report CSL-TR-87-324. 27

Peter Steenkiste. The impact of code density on instruction cache performance. In 1 6th
Annual International Symposium on Computer Architecture, Jerusalem, Israel, May 1989,
pages 252-259. IEEE Press. doi: 1 0 . 1 1 4 5 1 7 4 9 2 5 . 7 4 9 5 4 . 80

Bjarne Steensgaard. Thread-specific heaps for multi-threaded programs. In ISMM 2000,
pages 18-24. doi: 1 0 . 1 1 4 5 1 3 6 2 4 2 2 . 3 6 2 4 3 2 . 107, 145, 146, 159

Darko Stefanovic. Properties of Age-Based Automatic Memory Reclamation Algorithms. PhD
thesis, University of Massachusetts, 1999. 128, 157

Darko Stefanovic and J . Eliot B. Moss. Characterisation of object behaviour in Standard
ML of New Jersey. In ACM Conference on LISP and Functional Programming, Orlando, FL,
June 1994, pages 43-54. ACM Press . doi: 1 0 . 1 1 4 5 1 1 8 2 4 0 9 . 1 8 2 4 2 8 . 1 13

BIBLIOGRAPHY

Darko Stefanovic, Kathryn S. McKinley, and J. Eliot B. Moss. Age-based garbage
collection. In OOPSLA 1999, pages 370-381 . doi: 1 0 . 1 1 4 5 1 3 2 0 3 8 4 . 3 2 0 4 2 5 . 128

457

Darko Stefanovic, Matthew Hertz, Stephen Blackburn, Kathryn McKinley, and J. Eliot
Moss. Older-first garbage collection in practice: Evaluation in a Java virtual machine. In
Workshop on Memory System Performance, Berlin, Germany, June 2002, pages 25-36. ACM
SIGPLAN Notices 38{2 supplement), ACM Press. doi: 1 0 . 1 1 4 5 I 7 7 3 1 4 6 . 7 7 3 0 4 2 . 129

V. Stenning. On-the-fly garbage collection. Unpublished notes, cited by Gries [1977],
1976. 315

C. J. Stephenson. New methods of dynamic storage allocation (fast fits) . In 9th ACM
Symposium on Operating Systems Principles, Bretton Woods, NH, October 1983, pages
30-32. ACM SIGOPS Operating Systems Review 17(5), ACM Press.
doi: 1 0 . 1 1 4 5 I 8 0 0 2 1 7 . 8 0 6 6 1 3 . 92

James M. Stichnoth, Guei-Yuan Lueh, and Michal Cierniak. Support for garbage
collection at every instruction in a Java compiler. In PLDI 1999, pages 1 18-127.
doi: 1 0 . 1 1 4 5 1 3 0 1 6 1 8 . 3 0 1 6 5 2 . 179, 1 80, 181, 188

Will R. Stoye, T. J . W. Clarke, and Arthur C. Norman. Some practical methods for rapid
combinator reduction. In LFP 1984, pages 159-166. doi: 1 0 . 1 1 4 5 1 8 0 0 0 5 5 . 8 0 2 0 3 2 .

73

Sun Microsystems. Memory management in the Java HotSpot Virtual Machine, April
2006. Technical White Paper. 41, 120

H. Sundell. Wait-free reference counting and memory management. In 1 9th International
Parallel and Distributed Processing Symposium (IPDPS), Denver, CO, April 2005. IEEE
Computer Society Press. doi: 1 0 . 1 1 0 9 I I P D P S . 2 0 0 5 . 4 5 1 . 374

Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in software.
Dr. Dobb's Journal, 30(3), March 2005. 275

M. Swanson. An improved portable copying garbage collector. OPnote 86-03, University
of Utah, February 1986. 192

M. Tadman. Fast-fit: A new hierarchical dynamic storage allocation technique. Master 's
thesis, University of California, Irvine, 1978. 92

David Tarditi. Compact garbage collection tables. In ISMM 2000, pages 50-58.
doi: 1 0 . 1 1 4 5 1 3 6 2 4 2 2 . 3 62 4 3 7 . 179, 180, 181, 182

Gil Tene, Balaji Iyengar, and Michael Wolf. C4: The continuously concurrent compacting
collector. In ISMM 201 1 , pages 79-88. doi: 1 0 . 1 1 4 5 I 1 9 9 3 4 7 8 . 1 9 9 3 4 9 1 . 355

S. Thomas, W. Charnell, S. Darnell, B. A A Dias, J. G. P. Kramskoy, J. Sextonand, J. Wynn,
K. Rautenbach, and W. Plummer. Low-contention grey object sets for concurrent,
marking garbage collection. United States Patent Application, 20020042807, 1998. 285,
304

Stephen P. Thomas. The Pragmatics of Closure Reduction . PhD thesis, The Computing
Laboratory, University of Kent at Canterbury, October 1993. 170

Stephen P. Thomas. Having your cake and eating it: Recursive depth-first copying
garbage collection with no extra stack. Personal communication, May 1995a. 170

458 BIBLIOGRAPHY

Stephen P. Thomas . Garbage collection in shared-environment closure reducers:
Space-efficient depth first copying using a tailored approach. Information Processing
Letters, 56(1) : 1-7, October 1995b . doi: 1 0 . 1 0 1 6 1 0 0 2 0 - 0 1 9 0 (9 5) 0 0 1 3 1 - U . 170

Stephen P. Thomas and Richard E. Jones. Garbage collection for shared environment
closure reducers . Technical Report 31-94, University of Kent and University of
Nottingham, December 1994. 170, 190

Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value A-calculus
using a stack of regions . In POPL 1994, pages 188-201 .
doi: 1 0 . 1 1 4 5 1 1 7 4 6 7 5 . 1 7 7 8 5 5 . xxv, 106

Mads Tofte, Lars Birkedal, Martin Eisman, and Niels Hallenberg. A retrospective on
region-based memory management. Higher-Order and Symbolic Computation, 17(3) :
245-265, September 2004. doi: 1 0 . 1 0 2 3 I B : L I SP . 0 0 0 0 0 2 9 4 4 6 . 7 8 5 6 3 . a 4 . 148, 159

David A. Turner. A new implementation technique for applicative languages. Software:
Practice and Experience, 9:31-49, January 1979. doi: 1 0 . 1 0 0 2 l spe . 4 3 8 0 0 9 0 1 0 5 . 66

David M. Ungar. Generation scavenging: A non-disruptive high performance storage
reclamation algorithm. In ACM/SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, Pittsburgh, PA, April 1984, pages 157-167.
ACM SIGPLAN Notices 19(5), ACM Press. doi: 1 0 . 1 1 4 5 I 8 0 0 0 2 0 . 8 0 8 2 6 1 . 61, 63,
103, 106, 1 16, 1 19, 120, 130

David M. Ungar. The Design and Evaluation of a High Performance Small talk System. ACM
distinguished dissertation 1986. MIT Press, 1986. 114

David M. Ungar and Frank Jackson. Tenuring policies for generation-based storage
reclamation. In ACM SIGPLAN Conference on Object-Orien ted Programming, Systems,
Languages, and Applications, San Diego, CA, November 1988, pages 1-17. ACM
SIGPLAN Notices 23(1 1), ACM Press . doi: 1 0 . 1 1 4 5 1 6 2 0 8 3 . 6 2 0 8 5 . 1 14, 1 16, 121,
123, 137, 138, 140

David M. Ungar and Frank Jackson. An adaptive tenuring policy for generation
scavengers . ACM Transactions on Programming Languages and Systems, 14(1) : 1-27, 1992.
doi : 1 o . 1 1 4 5 I 1 1 1 1 8 6 . 1 1 6 7 3 4 . 121, 123, 138

Maxime van Assche, Joel Goossens, and Raymond R. Devillers. Joint garbage collection
and hard real-time scheduling. Journal of Embedded Computing, 2(3-4):313-326, 2006.
Also published in RTS'05 International Conference on Real-Time Systems, 2005. 415

Martin Vechev. Derivation and Evaluation of Concurren t Collectors . PhD thesis, University of
Cambridge, 2007. 331

Martin Vechev, David F. Bacon, Perry Cheng, and David Grove. Derivation and
evaluation of concurrent collectors . In Andrew P. Black, editor, 1 9th European Conference
on Object-Oriented Programming, Glasgow, Scotland, July 2005, pages 577-601 . Volume
3586 of Lecture Notes in Computer Science, Springer-Verlag.
doi: 1 0 . 1 0 0 7 1 1 1 5 3 1 1 4 2_2 5 . 311, 331

Martin T. Vechev, Eran Yahav, and David F. Bacon. Correctness-preserving derivation of
concurrent garbage collection algorithms. In PLDI 2006, pages 341-353.
doi: 1 0 . 1 1 4 5 1 1 1 3 3 9 8 1 . 1 1 3 4 0 2 2 . 326, 331

BIBLIOGRAPHY 459

Martin T. Vechev, Eran Yahav, David F. Bacon, and Noam Rinetzky. CGCExplorer: A
semi-automated search procedure for provably correct concurrent collectors . In Jeanne
Ferrante and Kathryn S. McKinley, editors, ACM SIGPLAN Conference on Programming
Language Design and Implementation, San Diego, CA, June 2007, pages 456-467. ACM
SIGPLAN Notices 42{6), ACM Press. doi: 1 0 . 1 1 4 5 / 1 2 5 0 7 3 4 . 1 2 5 0 7 8 7 . 313

VEE 2005, Michael Hind and Jan Vitek, editors. 1st ACM SIGPLAN/SIGOPS In ternational
Conference on Virtual Execution Environments, Chicago, IL, June 2005. ACM Press.
doi: 1 0 . 1 1 4 5 / 1 0 6 4 9 7 9 . 437, 441, 456

David Vengerov. Modeling, analysis and throughput optimization of a generational
garbage collector. In ISMM 2009, pages 1-9. doi: 1 0 . 1 1 4 5 I 1 5 4 2 4 3 1 . 1 5 4 2 4 3 3 . 123

Jean Vuillemin. A unifying look at data structures. Communications of the ACM, 29(4) :
229-239, April 1980. doi: 1 0 . 1 1 4 5 / 3 5 8 8 4 1 . 3 5 8 8 5 2 . 92

Michal Wegiel and Chandra Krintz. The mapping collector: Virtual memory support for
generational, parallel, and concurrent compaction. In Susan J. Eggers and James R.
Larus, editors, 1 3th In ternational Conference on Architectural Support for Programming
Languages and Operating Systems, Seattle, WA, March 2008, pages 91-102. ACM
SIGPLAN Notices 43(3), ACM Press. doi: 1 0 . 1 1 4 5 / 1 3 4 6 2 8 1 . 1 3 4 6 2 9 4 . 107

J . Weizenbaum. Recovery of reentrant list structures in SLIP. Communications of the ACM,
12(7) :370-372, July 1969. doi: 1 0 . 1 1 4 5 / 3 6 3 1 5 6 . 3 6 3 1 5 9 . 60

Adam Welc, Suresh Jag anna than, and Antony L. Hosking. Transactional monitors for
concurrent objects. In Martin Odersky, editor, 1 8th European Conference on
Object-Oriented Programming, Oslo, Norway, June 2004, pages 519-542. Volume 3086 of
Lecture Notes in Computer Science, Springer-Verlag.
doi: 1 0 . 1 0 0 7 / 9 7 8 - 3 - 5 4 0 - 2 4 8 5 1 - 4_2 4 . 272

Adam Welc, Suresh Jag anna than, and Antony L. Hosking. Safe futures for Java. In
OOPSLA 2005, pages 439-453. doi: 1 0 . 1 1 4 5 / 1 0 9 4 8 1 1 . 1 0 9 4 8 4 5 . 272

Jon L. White. Address/memory management for a gigantic Lisp environment, or, GC
Considered Harmful. In LISP Conference, Stanford University, CA, August 1980, pages
119-127. ACM Press. doi: 1 0 . 1 1 4 5 / 8 0 0 0 8 7 . 8 0 2 7 9 7 . 49, 107

Jon L. White. Three issues in objected-oriented garbage collection. In GC 1990. 139

Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David B. Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika
Mitra, Frank Mueller, Isabelle Puaut, Peter P. Puschner, Jan Staschulat, and Per
Stenstrem. The worst-case execution-time problem - overview of methods and survey
of tools. ACM Transactions on Embedded Computer Systems, 7(3), April 2008.
doi: 1 0 . 1 1 4 5 / 1 3 4 7 3 7 5 . 1 3 4 7 3 8 9 . 415

Jesper Wilhelmsson. Efficient Memory Management for Message-Passing Concurrency - part
I: Single-threaded execution. Licentiate thesis, Uppsala University, May 2005. 146

Paul R. Wilson. A simple bucket-brigade advancement mechanism for generation-based
garbage collection. ACM SIGPLAN Notices, 24(5) :38-46, May 1989.
doi: 1 0 . 1 1 4 5 / 6 6 0 6 8 . 6 6 0 7 0 . 116

Paul R . Wilson. Uniprocessor garbage collection techniques. Technical report, University
of Texas, January 1994. Expanded version of the IWMM92 paper. 3, 310, 312, 314

460 BIBLIOGRAPHY

Paul R. Wilson and Mark S. Johnstone. Truly real-time non-copying garbage collection. In
GC 1993. 139

Paul R. Wilson and Thomas G. Moher. A card-marking scheme for controlling
intergenerational references in generation-based garbage collection on stock hardware.
ACM SIGPLAN Notices, 24(5) :87-92, 1989a. doi: 1 0 . 1 1 4 5 I 6 6 0 6 8 . 6 6 0 7 7 . 197

Paul R. Wilson and Thomas G. Moher. Design of the opportunistic garbage collector. In
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, New Orleans, LA, October 1989b, pages 23-35. ACM SIGPLAN Notices
24(10), ACM Press. doi: 1 0 . 1 1 4 5 / 7 4 8 7 7 . 7 4 8 8 2 . 1 16, 1 18, 120, 121 , 197

Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. Effective "static-graph"
reorganization to improve locality in garbage-collected systems. In PLDI 1991, pages
177-191 . doi: 1 0 . 1 1 4 5 1 1 1 3 4 4 5 . 1 1 3 4 6 1 . 50, 51, 53, 296

Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic storage
allocation: A survey and critical review. In IWMM 1995, pages 1-1 16 .
doi: 1 0 . 1 0 0 7 / 3- 5 4 0 - 6 0 3 6 8 - 9_1 9 . 10, 90

Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Memory allocation
policies reconsidered. Unpublished manuscript, 1995b . 96

David S. Wise. The double buddy-system. Computer Science Technical Report TR79,
Indiana University, Bloomington, IN, December 1978. 96

David S. Wise. Stop-and-copy and one-bit reference counting. Computer Science
Technical Report 360, Indiana University, March 1993a. See also Wise [1993b] . 73

David S. Wise. Stop-and-copy and one-bit reference counting. Information Processing
Letters, 46(5) :243-249, July 1993b. doi : 1 0 . 1 0 1 6 1 0 0 2 0 - 0 1 9 0 (9 3) 9 0 1 0 3 - G. 460

David S. Wise and Daniel P. Friedman. The one-bit reference count. BIT, 17(3) :351-359,
1977. doi: 1 0 . 1 0 0 7 I B F O 1 9 3 2 1 5 6 . 73

P. Tucker Withington. How real is "real time" garbage collection? In GC 1991 . 104, 140

Mario I . Wolczko and Ifor Williams. Multi-level GC in a high-performance persistent
object system. In POS 1992, pages 396-418 . 108

Ming Wu and Xiao-Feng Li. Task-pushing: a scalable parallel GC marking algorithm
without synchronization operations . In IEEE International Parallel and Distribution
Processing Symposium (!POPS), Long Beach, CA, March 2007, pages 1-10.
doi : 1 0 . 1 1 0 9 I IPDPS . 2 0 0 7 . 3 7 0 3 1 7 . 288, 289, 298, 304, 474

Feng Xian, Witawas Srisa-an, C. Jia, and Hong Jiang. AS-GC: An efficient generational
garbage collector for Java application servers. In ECOOP 2007, pages 126-150.
doi: 1 0 . 1 0 0 7 I 9 7 8 - 3 - 5 4 0- 7 3 5 8 9 - 2 7 . 107

Ting Yang, Emery D. Berger, Matthew Hertz, Scott F. Kaplan, and J . Eliot B. Moss.
Autonomic heap sizing: Taking real memory into account. In ISMM 2004, pages 61-72.
doi: 1 0 . 1 1 4 5 / 1 0 2 9 8 7 3 . 1 0 2 9 8 8 1 . 209

Taiichi Yuasa. Real-time garbage collection on general-purpose machines . Journal of
Systems and Software, 1 1 (3) : 181-198, March 1990.
doi: 1 0 . 1 0 1 6 1 0 1 6 4 - 1 2 1 2 (9 0) 9 0 0 8 4 - Y. xvii, 316, 317, 318, 323, 326, 378, 466

BIBLIOGRAPHY 461

Karen Zee and Martin Rinard. Write barrier removal by static analysis. In OOPSLA 2002,
pages 191-210. doi : 1 0 . 1 1 4 5 / 5 8 2 4 1 9 . 5 8 2 4 3 9 . 132, 143, 163, 323

Chengliang Zhang, Kirk Kelsey, Xipeng Shen, Chen Ding, Matthew Hertz, and Mitsunori
Ogihara. Program-level adaptive memory management. In ISMM 2006, pages 174-183.
doi: 1 0 . 1 1 4 5 / 1 1 3 3 9 5 6 . 1 1 3 3 9 7 9 . 210

W. Zhao, K. Ramamritham, and J. A. Stankovic. Scheduling tasks with resource
requirements in hard real-time systems. IEEE Transactions on Software Engineering, SE-13
(5) :564-577, May 1987. doi: 10 . 1 1 0 9 / T S E . 1 9 8 7 . 2 3 3 2 0 1 . 415

Benjamin Zorn. Barrier methods for garbage collection. Technical Report CU-CS-494-90,
University of Colorado, Boulder, November 1990. 124, 125, 323, 393

Benjamin Zorn. The measured cost of conservative garbage collection. Software: Practice
and Experience, 23:733-756, 1993. doi: 1 0 . 1 0 0 2 / spe . 4 3 8 0 2 3 0 7 0 4 . 1 16

Benjamin G . Zorn. Comparative Performance Evaluation of Garbage Collection Algorithms.
PhD thesis, University of California, Berkeley, March 1989. Technical Report UCB/CSD
89/544. 10, 113

Index

Note: I f an entry has particular defining occurrences, the page numbers appear in bold,
such as 17, and if it has occurrences deemed primary, their page numbers appear in italics,
such as 53 .
$ (notation), 246

ABA problem, 2, 238, 239, 285, 374, see
also Concurrency, hardware
primitives: CornpareAndSwap;

LoadL i nked and
St oreCondi t i ona l l y

Abstract concurrent collection, 331-335
addOr i g i n s , 333, 334
c o l l e ct , 333
expo s e, 334, 335
mark-sweep, 332-335
New, 333, 334
s can, 333
W r i t e, 333, 334
write barriers, 334

Abstract generational collection, 134-136
Abstract reference counting, 82-85

deferred, 84
Abstract tracing, 81-82
Acquire-release, see Concurrency,

memory consistency
acqu i reWo r k, 278, 281, 283, 287, 288,

290
Adaptive systems, 80

generational collection, 121-123, 156
ThruMax algorithm, 123

add, 258-267, 271
addO r i g i n s, 333
Affinity, see Memory affinity; Processor

affinity scheduling
Age-based collection, 103, 127, see also

Beltway collector; Generational
collection; Older-first collection

Algorithmic complexity, 78, see also
specific collection algorithms

a l l o cat e, 14
Cartesian trees, 92

463

free-list allocation
best-fit, 91
first-fit, 89
next-fit, 9 1

immix, 153
lazy sweeping, 25
real-time collection, replicating, 380,

382
segregated-fits allocation, 95
semispace copying, 44
sequential allocation, 88, 287

Allocation, 14, 87-102
alignment constraints, 97-98
asymptotic complexity, 93
bitmaps, 92, 100, 102

advantages, 93
boundary tags, 98, 168
bump a pointer, see Sequential

allocation
cache behaviour, 97, 100, 105
concurrent mark-sweep, 324
concurrent systems, 101-102
copying collection, 53
different in garbage collected systems,

87
free-list, see Free-list allocation
hash consing, 169
heap parsability, 98-100, see also

Crossing maps
linear, see Sequential allocation
local allocation buffers, 53, 101-102,

150, 151 , 153, 165, 285, 292, 293, 320,
400

performance of various schemes, 94
run-time interface, 161-166
segregated-fits, see Segregated-fits

allocation
sequential, see Sequential allocation

464

sequential fits, see Free-list allocation
size classes, 94

size constraints, 98

space overhead, 98

stack, see Stack allocation
zeroing, see Zeroing

Allocation colour (black or grey), see
Tricolour abstraction, allocation
colour

Allocation threshold, see Hybrid
mark-sweep, copying

Allocators, custom, 3

Ambiguous pointers, see Pointers,
ambiguous

Ambiguous roots, 104, 338, see also
Boehm-Demers-Weiser collector

AMD processors, 298

Amdahl's law, 303

Anthracite (colour), 283

Appel, see Concurrent collection, read
barriers

Appel-style collection, see Generational
collection, Appel-style

Arraylets, 385, 393, 404, 413, 414

atomic, 245

Atomic operations, 15

Atomic primitives, see Concurrency,
hardware primitives

At omi cAdd, 241 , 252, 253

At omi cDecrement , 241

At omi cExchange, 232-234

At omi c i n crement , 241 , 365

Atomicity, see Concurrency; Transactions
awk, 58
Azul Systems, 147, 355, see also

Concurrent copying and
compaction, Pauseless collector

Baker 's algorithm, 277, 337-338, 377, 384

Brooks's variant, see Brooks's
indirection barriers

Cheney scanning, 338

c o l l e ct, 339

c opy, 339

f l i p, 339

Read, 338, 339

read barrier, 338

time and space bounds, 377

Baker 's Treadmill, see Treadmill collector
b a r r i e r (rendezvous barrier), 253

Barriers, see Brooks's indirection
barriers; Read barriers; Stack
barriers; Write barriers

INDEX

Beltway collector, 129-131, 140, see also
Age-based collection

Benchmarks, 10

Best-fit, see Free-list allocation, best-fit
BiBoP, see Big bag of pages technique
Big bag of pages technique, 27, 168-169,

183, 294, 295, see also Sequential-fits
allocation, block-based

Bitmapped-fits, see Allocation, bitmaps
Black (colour), see Tricolour abstraction
Black mutator, see Tricolour abstraction,

mutator colour
Black-listing, 168

Block-structured heaps, see Heaps,
block-structured

Blocks, 12
BMU, see Bounded mutator utilisation
Boehm, see Concurrent collection,

insertion barriers
Boehm-Demers-Weiser collector, 1 66,

1 67, 168, 209, 280

Bookmarking collector, 108, 1 10,

156-157, 208

Boot image, 132, 171

Bounded mutator utilisation, 7
Brooks's indirection barriers, 340-341,

386, 391, 393, 404-407

Re ad, 341

Wr i t e, 341

Buddy system allocation, see
Segregated-fits allocation, splitting
cells

Buffered reference counting, see
Concurrent reference counting,
buffered

C, 104, 106, 161, 162, 165, 168, 170, 171,

182, 185, 188

C++, 3, 59, 104, 1 70, 185, 188, 340, 346

Boost libraries, 59, 228

C++0x, 3

destructors, 220

Standard Template Library, 3

C4 collector, see Concurrent copying and
compaction, Pauseless collector

C#, 53, 150, 218

Cache behaviour, 78-80, 133, 191, 208, see
also Locality

INDEX

alignment effects, 97
allocation, 100, 105
block-based allocation, 95
marking, 21-22, 27-29
mutator performance, see Copying,

improves mutator performance
next-fit allocation, 90
partitioning by kind, 105
sequential allocation, 88
threaded compaction, 38
Treadmill collector, 139
Two-Finger algorithm, 34
zeroing, 165, 166

Cache hits, 231
Cache lines, 12, 152, 230, 231

dirty, 231
eviction, 231, 235
false sharing, 232
flushing, 231, 235
victim, 231

Cache misses, 231, 235
Caches

associativity
direct-mapped, 231
fully-associative, 231
set-associative, 231

coherence, 232-234
contention, 233
exclusive/inclusive, 231
levels, 231
replacement policy, 231
write-back, 231, 232, 235
write-through, 231

Canonicalisation tables, 221, 222
Card tables, 12, 124, 151, 156, 193,

197-201, see also Crossing maps
concurrent collection, 318-321
space overhead, 198
summarising cards, 201, 319
two-level, 199
W r i t e, 198

Cards, 12
Cartesian trees, see Free-list allocation,

Cartesian trees
Cells, 12
Cheney scanning, see Baker 's algorithm,

Copying; Copying, work list
Chunked lists, 203-204
Chunks, 12, 103

for partitioning, 108

Circular buffers, see Concurrent data
structures: queues, bounded;
buffers

465

Closures, 1, 8, 99, 125, 132, 162, 170, 190,
216, 341

Cold, see Hot and cold
co l l e ct , 174

Baker 's algorithm, 339
basic mark-sweep, 18
concurrent mark-sweep

(co l l e ctEnough), 324
concurrent reference counting
age-oriented, 371
buffered, 367
sliding views, 371

copying, 52
semispace, 45

generational, abstract, 135
incremental tracing

(co l l e ct T ra c i n g i n c), 333
mark-compact, 32
real-time collection, replicating, 382
reference counting
abstract, 83
abstract deferred, 84
coalesced, 65
deferred, 62

tracing, abstract, 82
co l l e c t Nu r s e ry, 135

Collector, 12
Collector threads, 12, 15
co l l e c t o rOn / O f f, real-time

collection, replicating, 382, 383
comp a c t

mark-compact, 33, 35

Compressor, 40
threaded compaction Oonkers), 37

Compaction
concurrent, see Concurrent copying

and compaction
incremental, see Hybrid mark-sweep,

copying
need for, 40
parallel, 299-302
Compressor, 302, see also Concurrent
copying and compaction,
compaction, Compressor

Flood et al, 300-301, 357
Compare-and-swap, 237-238, 243, see

also Concurrency, hardware
primitives, Comp a r eAndSwap

466

C ompa r eAndS et, 237

Comp a r eAndS et 2 , 242

comp a r eAndS etByLLSC, 239

C ompa r eAndS etWi de, 242

C ompa r eAndSwap, 237, 239, 243, 252,
254, 257, 260, 281, 283, 285, 292, 293,
343-345, 358, 360, 364-366, 378, 384,
406, 407, 409-412

C ompa r eAndSwap2 , 241, 242, 344, 365,
374

c ompa r eAndSwapByLLSC, 239

Comp a r eAndSwapW i de, 241, 242, 257,
406, 412

comp a r e ThenComp a r e AndSwap, 238

Comparing collectors, 77-85
Compiler analysis, 132, 144-146

escape analysis, 109, 147
Compiler optimisations, 6, 10, 53, 61,

104, 148, 168, 187, 190, 192, 211 , 218,
226, 235, 270, 323, 341 , 382, 394

Compiler replay, 10
Completeness, 6, 79, 313

Beltway collector, 130, 140
partitioned collection, 109

c omput e Locat i o n s , mark-compact, 35
Concurrency, 56, see also Lock-free

algorithms; Wait-free algorithms
consensus algorithms, 240, 243, 247,

248
consensus number, 240
happens-before, 236
hardvvare, 229-243

interconnect, 230--231
hardvvare primitives, 233, 234,

237-242, see also top-level entries for
primitives

At om i cAdd, 241

At omi cDecrement , 241

At omi cExchange, 233

At omi c i ncrement, 241

C ompa r eAndS et 2 , 242

C ompa r eAndS e t W i de, 242

C ompa r eAndS et , 237

C ompa r eAndSwap, 237

C ompa r eAndSwap2, 242

C ompa r eAndSwapWi de, 242

Fet chAndAdd, 241

LoadLi nked, 238

multi-vvord, 240--242
relative povver, 240
St o r e Condi t i o n a l l y, 238

INDEX

T e s tAndSet, 234

time overhead, 242-243
linearisability, see Linearisability
livelock, 244
memory consistency, 234-237, 378
acquire-release model, 236

causal, 236

memory order, 235

program order, 235

relaxed, 237, 265, 331 , 373-374
release, 236

sequential, 236

strict, 236

memory fences, 236, 245, 246, 285, 374,
407

mutual exclusion, 246--248, 253, 254
Peterson's algorithm, 247
progress guarantees, 243-245
lock-free, 243
mutual exclusion, 246
obstruction-free, 243
vvait-free, 243

shared memory, 231
Concurrent algorithms, see also

Concurrent collection
Concurrent collection, 7, 244, 275, 276,

307-321 , see also specific concurrent
collection algorithms

abstract, see Abstract concurrent
collection

collector liveness, 309, 313, 344
compaction, see Concurrent copying

and compaction
copying, see Concurrent copying and

compaction
correctness, 309-314
deletion barriers, 317, 318, 328, 329,

345, 391
Abraham and Patel, see Yuasa
logging, 331
Yuasa, 317, 318, 323, 329, 330, 335, 378

handshakes, 328, 329, 331 , 343,
369-371, 373, 394

incremental update approach, 314
insertion barriers, 315, 394
Boehm et al, 315, 318, 323
Dijkstra et al, 315, 318, 323, 326, 329,
330, 335, 340, 370, 386, 413

Steele, 315, 318, 323, 326, 335
lost object problem, 310-312

INDEX

mark-sweep, see Concurrent
mark-sweep

mostly-concurrent, 307, 308
on-the-fly, 107, 308, 309, 313, 332, see

also specific concurren t collection
algorithms

progress guarantees, 244
read barriers, 314-321, 323, 346
Appel et al, 317, 318, 340
Bake� 317, 318, 338, 340
Brooks's indirection barriers, see
Brooks's indirection barriers

Compressor, 352-354
Pauseless, 355
self-erasing, 340-341
self-healing, 357, 358, 360

replicating, see Concurrent copying
and compaction, replicating
collection

snapshot-at-the-beginning approach,
314

termination, 244, 248-252, 313, 332
throughput, 313, 345
work list, 319
write barriers, 314-321, 330, 348
mechanisms, 318-320
on-the-fly mark-sweep, 329
time overhead, 342

Concurrent copying and compaction,
337-361

Baker 's algorithm, see Baker 's
algorithm

C4 collector, see Concurrent copying
and compaction, Pauseless collector

compaction, 351-361, 391, see also
Concurrent copying and
compaction, Pauseless collector

Compressor, 352-354, see also
Compaction, parallel, Compressor

copying, 337-351
mostly-concurrent, see Baker 's
algorithm

fromspace and tospace invariants, 337,
341, 345, 378

mostly-copying collection, 338-340
multi-version copying, 342-345
Pauseless collector, 355-361
real-time, see Real-time collection,

compaction
replicating collection, 289, 341-351 , see

also multi-version copying

real-time, see Real-time collection,
replicating

Sapphire collector, 345-351, 386
copyWo r d, 350
Java volatile fields, 351

467

W r i t e , see W r i t e, Sapphire phases
write barriers, 349

termination, 342, 357, 358
Concurrent data structures, 253-267

buffers, 256, 261-267, 298
circular buffers, see queues, bounded;

buffers
coarse-grained locking, see Locks,

coarse-grained locking
counting locks, 253, 254
deques, 251, 331
fine-grained locking, see Locks,

fine-grained locking
lazy update, 255
linked-lists, 256-261, 271
non-blocking, 255
optimistic locking, see Locks,

optimistic locking
queues, 256-267
bounded, 256, 259, 261-268, 271
double-ended, see deques
unbounded, 256, 258, 260

stacks, 256-257
Concurrent mark-sweep, 323-335, 391

abstract, see Abstract concurrent
collection

allocation, 324-326
co l l e ct (c o l lectEnough), 324
handshakes, 328, 329, 331
insertion barriers
Dijkstra et al, 331

marking, 324, 325, 356
New, 324

on-the-fly, 328-331
marking from stacks, 328, 358

sliding views, 331
sweeping, 330
concurrently with marking, 326-328

termination, 324-326, 328, 330
triggering collection, 323-324

Concurrent reference counting, 363-374
age-oriented, 369-372

New, 372
Wri t e, 372

buffered, 366-367
co l l e ct , 367

468

W r i t e, 367
coalesced, 368-369, see also sliding

views
i n c rementNew, 368, 369
W r i t e, 370

correctness, 363-366
cycles, 366-369, 372-373, see also

Recycler algorithm, asynchronous
deferred, 366, see also buffered
generational, 369, see age-oriented
handshakes, 369-371, 373
on-the-fly, see sliding views
races, 363-366, 370
Re ad, 364, 365
sliding views, 369-374

c o l l e ct, 371
i n crementNew, 368, 369, 372
New, 372
W r i t e, 370, 372, 373

snapshot of heap, see coalesced
snooping write barrier, 370
trial deletion, 373, see also Recycler

algorithm
W r i t e, 364, 365

Connectivity-based collection, 143-144
time overhead, 144

Conservative collection, 30, 104, 105, see
also Boehm-Demers-Weiser collector

bitmap marking, 23
copy

Baker 's algorithm, 339
copying, semispace, 45

Copy reserve, see Copying, copy reserve
Copying, 17, 43-56, 79, 126, 127, 140, 152,

157, 158, see also Hybrid
mark-sweep, copying

a l l ocate, 44
approximately depth-first, see

traversal order
asymptotic complexity, 54
breadth-first, see traversal order
Cheney scanning, 46-48, 139, 145, 146,

150, 156, 294, 295, 338, 386
parallel, 289
termination, 46

c o l l e ct, 45, 52
concurrent, 312, see Concurrent

copying and compaction
copy, 45
copy reserve, 54, 1 16, 1 19, 121, 122,

126-128, 137, 139, 149, 154

depth-first, see traversal order
f l i p, 45
flipping, 139

INDEX

forwarding addresses, see Forwarding
addresses, copying collection

fragmentation solution, 43
hierarchical decomposition, see

Hierarchical decomposition
improves mutator performance,

49-53, 106
Moon's algorithm, 50, 51
mostly-copying collection, 30, 104
moving objects, 55
optimal object order, 49
order, see traversal order
paging behaviour, 50
parallel, 279, 289-298

Blelloch and Cheng, 289-292
card tables, 298
channels, 298
Cheng, see Blelloch and Cheng
Cheng and Blelloch, see Blelloch and
Cheng

dominant-thread tracing, 293-294
Flood et al, 292-293, 298
generational, 298
Imai and Tick, 294-296
Marlow et al, 296
memory-centric, 294-298
Oancea et al, see channels
Ogasawara, see dominant-thread

tracing
processor-centric, 289-294
remembered sets, 298
rooms, 382, see Blelloch and Cheng
Siegwart and Hirzel, 296-297
termination, 292, 298

performance, 49, 54
reordering, 46-53, 296
online, 52

replicating collection, see Concurrent
copying and compaction,
replicating collection

s c an, 45
semispace, 43-56, 78, 102, 139, 192
allocation issues, 53
Beltway, 130, 131
flipping, 43
overview, 43

space overhead, 44, 53, 54
termination, 44

INDEX

traversal order, 46-53, 139, see also
Hierarchical decomposition

approximately depth-first, 50, 51
breadth-first, 49, 50
depth-first, 49, 50, 53

work list, 43, 46, 298
Cheney scanning, 44-46
implementations, 44-53
stack, 44

c opyWord (Sapphire), 350
Correctness, 13, 79, 278
count i ngLock, 254

Critical sections, see Concurrency,
mutual exclusion

Crossing maps, 101, 182, 199-201, see also
Card tables; Heap parsing

s e a rch, 200
Custom allocators, see Allocators,

custom
Cyclic data structures, 3, 140, 157, see also

Reference counting, cycles
segregating, 105

Cyclone, 106

Dangling pointers, see Pointers, dangling
Deadlock, 2
Deallocation, explicit, 2-3
de c i de, 243, 247
decNu r s e ry, 136
dec reme n t O l d, reference counting,

coalesced, 65
Demographics, of objects, 105
Dependent loads, 235
Deques, see Concurrent data structures:

deques; queues
Derived pointers, see Pointers, derived
Dijkstra, see Concurrent collection,

insertion barriers
Dynamic compilation, 10, 187
Dynamic memory allocation

description, 1
heap allocation, 1

Eden, see Generational collection:
generation, young; nursery

ente rRoom, 291
Ephemeral collection, see Generational

collection
Ephemerons, 227, see also References,

weak
Epochs, 60, 368

ragged, 366, 402
Ergonomic collector, see HotSpot

collector

469

Erlang, 146, see also Functional languages
Escape analysis, see Compiler analysis,

escape analysis
Evacuating, 43
Evacuation threshold, see Hybrid

mark-sweep, copying
ExactVM, 118, 138, 145
e x c h a ngeLock, 233

e x i t Ro om, 291
Explicit deallocation, see Deallocation,

explicit
Explicit freeing, see Deallocation, explicit
External pointers, see Pointers, external

False sharing, see Cache lines, false
sharing

Fast and slow path, 80, 164, 165, 191
block-structured allocation, 53

Fast-fits allocation, see Free-list
allocation, Cartesian trees

Fat pointers, see Pointers, fat
F e t chAndAdd, 241, 264, 265, 289-291,

377, 382, 383
Fields, 12
Finalisation, 13, 2 13-221 , 223, 224, 330

.NET, 220-221
C++, 220
concurrency, 216, 218-219
context, 216
cycles of objects, 218
errors, 217
Java, 219-220
Lisp, 220
order of, 217-218, 225-226
reference counting, 214, 216, 220
resurrection, 13, 216
thread, 215-216
time of, 214-215

First-fit, see Free-list allocation, first-fit
Fixed-points, 81

least, 81, 84-85
f l i p

Baker 's algorithm, 339
concurrent copying and compaction
multi-version copying, 343

copying, semispace, 45
Floating garbage, 7, 79, 106, 1 13, 313,

327, 328, 330

470

Forwarding addresses, 8, 36, 42, 126, 147,
299, 390, 405, 406

allocation, 98
Baker 's algorithm, 339
compaction, 407-409
Compressor, 38, 301, 302, 353
copying collection, 44, 292-293, 300,

305, 340, 342-345, 378-379, 389
Lisp 2, 34
Pauseless, 355, 356, 358, 360
Sapphire, 349
Two-Finger algorithm, 32

Fragmentation, 30-31, 53, 78, 93, 105,
149, 152, 154, 296, 300, 391 , 415

asymptotic lower bound, 30
block-based allocation, 96
copying eliminates, 43
external and internal, 95
large objects, 137
mark-sweep, 41
negative effects, 93
next-fit allocation, 90
old generation, 126
pinned objects, 186
real-time collection, 403-415
segregated-fits allocation, 95

Frames, 12, 204-205
generational write barrier, 205
partitioning, 109

f ree, 14
Free pointer, 87
Free-list allocation, 87-93, 102, 105, 126,

137, 151, 299
balanced trees, 92
best-fit, 91

a l locate , 91

Cartesian trees, 92
a l locat e , 92

circular first-fit, see next-fit
combining multiple schemes, 96-97
first-fit, 89-90, 151 , 153

a l locate , 89

characteristics of, 90
locality, 54
multiple lists, 93
next-fit, 90-91 , 153

a l locate , 91

cache behaviour, 90
drawbacks of, 90

space overhead, 89
speeding up, 92-93

splay trees, 92
splitting cells, 89-90

Fromspace, 43

INDEX

Fromspace invariant, see Concurrent
copying and compaction, fromspace
and tospace invariants

Functional languages, 73, 1 1 5, 161 , 190,
see also Erlang; Haskell; ML

lazy, 66, 125, 132
pure, 66

Fundamental algorithms for garbage
collection, 17

Garbage, 14
Garbage collection

abstract algorithms, 81-85, see also
Abstract specific collection algorithms

advantages, 4
chaotic nature, 1 1
comparing algorithms, 5-9
correctness, 6
criticisms, 4
defined, 3-5
experimental methodology, 10
importance, 3
memory leaks, 4
optimisations for specific languages, 8
partitioning the heap, see Partitioned

collection
performance, 9
portability, 9
safety issues, 6, 309, 313, 344
scalability, 9
space overhead, 8
tasks of, 17
unified theory, 80-85

Garbage collection of code, 190
Garbage-First collector, see Generational

collection, Garbage-First collector
GC-check points, 188-189
GC-points, 179-180, 187-189, 279, 355,

356, 358, 378, 394, 400, 402, 403, 405,
407

GC-safe points, see GC-points
gene rateWo rk, 278, 281, 283, 287, 288,

290
Generational collection, 103, 107, 109,

111-135, 146, 154, 157, 158, 171 , 191,
192, 296, 322, see also Age-based
collection

INDEX

abstract, see Abstract generational
collection

age recording, 1 16-121
aging spaces, 1 16-120
high water mark, 120
in header word, 1 18

Appel-style, 121-122, 126, 127, 144,
208, 209

Beltway, 130, 131
defining, 122

Beltway, 130, 131
bucket, 1 14
bucket brigade system, 1 18-120
card marking and scanning, see Card

tables
Eden, see generation, young; nursery
full heap collection, 1 15, 121-123, 126,

127, 133
Garbage-First collector, 151
generation, 111
old, 126, 145
young, 106, 1 1 1 , 1 19, 125, 126, 133,

145
generational hypothesis, 113-1 14
strong, 1 14
weak, 106, 1 1 1, 1 13, 121, 130, 370

heap layout, 1 14-117
inter-generational pointers, see

Pointers, inter-generational
large object space, 114
long-lived data, 41, 132
major collection, see full heap

collection
Mature Object Space, see Mature

Object Space collector
measuring time, 1 13
minor collection, 112, 113, 1 15, 1 16,

1 19, 120, 122, 123
multiple generations, 1 15--116
nepotism, 113, 1 14
nursery collection, 112, 121, 126, 127,

133, 141, 146, 157
pretenuring, 1 10, 132
promoting, 110, 111, 112-1 17, 121 , 127,

130, 132-134
en masse, 116, 122
feedback, 123

read barriers, see Read barriers
reference counting, see Concurrent

reference counting, age-oriented

remembered sets, see Remembered
sets

471

sequential store buffers, see
Remembered sets, sequential store
buffers

space overhead, 1 19, 121, 122, 126-127,
133

step, 114, 118, 119, 128, 132, 134, 296
survival rate, see Survival rate
survivor spaces, 119-121
tenuring, 111
threatening boundary scheme, 123
throughput, 1 1 1
Ulterior reference counting, see

Ulterior reference counting
write barriers, see Write barriers

Generational hypothesis, see
Generational collection,
generational hypothesis

Granules, 11
Grey (colour), see Tricolour abstraction
Grey mutator, see Tricolour abstraction,

mutator colour
Grey packets, see Marking, parallel, grey

packets
Grey protected, see Objects, grey

protected

Handles, 1, 104, 184, 185
advantages, 1

happens-before, see Concurrency,
happens-before

Hash consing, see Allocation, hash
consing

Haskell, 8, 1 13, 1 18, 125, 161, 162, 165,
170, 171, 228, 292, 296, 341, see also
Functional languages

Heap layout, 203-205, see also Virtual
memory techniques and specific
collection algorithms

Heap nodes, 12
Heap parsing, 20, 166, 168, 170, 1 82, see

also Allocation, heap parsability
Heaplets, see Thread-local heaps
Heaps, 11

block-structured, 22, 31, 122, 152,
1 66-168, 183, 294-297

relocating, 205
size, 208-210

Hierarchical decomposition, 51-53, 55,
296, 297

472

Hot and cold
fields, 49, 52
objects, 53

HotSpot collector, 41 , 107, 108, 1 19, 150,
165, 201

Ergonomics, 1 23
Hybrid copying, reference-counting, see

Ulterior reference counting
Hybrid mark-sweep, copying, 149-156,

see also Copying, mostly-copying
collection; Immix; Mark-Copy

Garbage-First collector, 150-151
incremental incrementally compacting

collector, 150
Hybrid reference counting, mark-sweep,

366, 370
Hyperthreading, see Multithreading,

simultaneous

IBM, 151
Immix, l52-154, 413

a l l ocat e, 153
Immortal data, 41
Implementation, difficulty, 79-80
i n c Nu r s e ry, 136
Incremental collection, 7, 139, 275,

307-308
Baker 's algorithm, see Baker 's

algorithm
incremental incrementally compacting

collector, 150
Treadmill collector, see Treadmill

collector
Incremental compaction, see Hybrid

mark-sweep, copying
i n c r ementNew

concurrent reference counting
coalesced, 369
sliding views, 369, 372

reference counting, coalesced, 65
Intel processors, 298, 410
Interesting pointers, see Pointers,

interesting
Interior pointers, see Pointers, interior

J9, 296
Jamaica (Java virtual machine), 282, 412,

415
Java, 106, 1 13, 124, 125, 145, 151 , 152,

162-165, 169-172, 179, 185, 190, 201,
209, 215, 216, 218, 219, 223, 224, 234,

INDEX

282, 296, 330, 341, 346, 356, 360, 391,
405, 406, 412

pointer equality, 347
Real-Time Specification for, 148
volatile fields, 346, 351, 406

Java Native Interface, 104, 394
Java virtual machines, 1 16, 138, see also

ExactVM; HotSpot; J9; Jamaica;
Jikes RVM; JRockit

switching collectors, 6
JavaScript, 228
Jikes RVM, 26, 1 1 6, 341
Jonkers's threaded compactor, see

Mark-compact, Jonkers
JRockit, 138
JVM, see Java virtual machine

Large address space, 128, 129
Large object space, 94, 104, 1 10, 137-140,

152, see also Objects, large; Treadmill
collector

generational collection, 1 14, 124
Large objects, see Objects, large
Lazy sweeping, see Sweeping, lazy
l a z ySweep, 25

Lifetime of objects, 105, 1 14, 121 , 132,
143, 147, see also Generational
collection, measuring time

Linearisability, 253
Linearisation points, 254-256
Lisp, 50, 58, 1 13, 1 15, 124, 162, 164, 169,

171, 190, 220, 226, 323, 384, see also
Scheme

Lisp 2 algorithm, see Mark-compact,
Lisp 2 algorithm

Livelock, 2, see Concurrency, livelock
Liveness, 3, 13, 334

concurrent collector, see Concurrent
collection, collector liveness

Load balancing, 277-278, 279, 280, 282,
285, 288, 294, 298-300, 303-305

dynamic, 277
over-partitioning, 278
static, 277

Load -linked Is tore-conditionally,
238-239, 245, 289, 350, 378, see also
Concurrency, hardware primitives:
LoadLi n k e d;

Store C o n d i t i ona l l y

L o adLi nked, 238, 239, 257, 260,
264-266, 268, 350, see also

INDEX

Concurrency, hardware primitives,
LoadL i nk e d

Local allocation buffers, see Allocation,
local allocation buffers

Locality, 78, 279, 296, 297, 304, see also
Cache behaviour; Paging behaviour

after copying, 46
copying, 46
free-list allocation, 54
lazy sweeping, 26
mark-compact, 32, 41
marking, 21-22
parallel copying, 293
sequential allocation, 54
Two-Finger algorithm, 34

Lock-free algorithms, 244, 249, 251,
255-257, 260, 261, 263-268, 271, 280,
342-345, 374, 406, 410, see also
Concurrency, progress guarantees,
lock-free

Locks, 232, 254
coarse-grained locking, 254
counting locks, 253, 254
exchange L o c k, 233
fine-grained locking, 254, 256, 258,

259, 261-263
lock coupling, 255
optimistic locking, 255
spin, 232

At omi cExch ange, 233
T e s tAndS e t , 234

test then test then set, 240
test then test-and-set, 240
test-and-set, 232, 234
test-and-test-and-set, 233
t e stAndS e t L o c k, 234

t e s tAndT e s tAndS etExchange Lock,

233
Logic programming languages, 9, 299
Lost object problem, see Concurrent

collection, lost object problem

Mach operating system, 209
Machine learning, 80
Major collection, see Generational

collection, full heap collection
Managed languages, 1
Managed run-time systems, 1
Managing machine code, 105
Many-core processors, 230
mark

basic, 24
basic mark-sweep, 19
marking edges, 28

473

Mark-compact, 17, 31-42, 79, 1 1 1, 126,
127, 184, see also Hybrid;
Mark-sweep

arbitrary order, 31
c o l l e ct, 32
c ompact, 33, 35, 37, 40
compact phase, 31
compaction
cache behaviour, 38
one-pass, 38
three-pass, 34
two-pass, 32, 37

Compressor, 38-41, 127, 302
c o mput e L o c a t i o n s, 35

Jonkers, 36-38, 127
limitations, 42
linearising compaction, 31
Lisp 2 algorithm, 32, 34-36
locality, 32
mark phase, 31
parallel compactors, 36
r e l o cate, 33, 35
sliding compaction, 31
threaded compaction, 32, 36-38
parallel, 299

threading pointers, 36
throughput, 34, 41
Two-Finger algorithm, 32-34, 36, 184
updateRe f e r e n c e s, 33, 35

Mark-compact, time overhead, 32
Mark-Copy, 154-156

space overhead, 154
Mark-sweep, 17-30, 122, 126, 137, 146,

see also Mark-compact; Marking;
Sweeping

asymptotic complexity, 24
basic algorithm, 18
concurrent, 296, see Concurrent

mark-sweep
heap layout, 20
lazy sweeping, see Sweeping, lazy
mark phase, 18, 19
mutator overhead, 29
space overhead, 29, 40, 74
sweep, 20
sweep phase, 18, 20
termination of basic algorithm, 19
throughput, 29

474

time overhead, 24
tricolour marking, 20

Mark/cons ratio, 6, 54, 111 , 129, 144
copying and mark-sweep compared,

55
m a rkF romRo o t s , basic mark-sweep, 19
Marking, 153

asymptotic complexity, 276
atomicity, 22
bitmap, 22-24, 151 , 299
cache behaviour, 21-22, 27-29
concurrent, see Concurrent

mark-sweep
incremental, 155
ma rk, 28
mark stacks, 23, 28

overflow, 24
marking edges, 28-29
order (breadth-first, depth-first), 27
paging, 23
parallel, 279-289

Barabash et al, see grey packets
channels, 288-289
Endo et al, 280, 281, 283, 289
Flood et al, 278, 280, 282-284, 288, 289
grey packets, 282, 284-288, 296
Ossia et al, see grey packets
Siebert [2008], 276
Siebert [2010] , 280, 282
termination, see Concurrent
collection, termination

Wu and Li, see using channels
prefetching, see Prefetching, marking
time overhead, 27
work list, 19, 28, 279, 280

Marmot, 138
Mature Object Space collector, 109, 130,

140-143, 151 , 194, 208
time overhead, 143

Measurement bias, 10
Memory affinity, 293
Memory consistency, see Concurrency,

memory consistency
Memory fences, 243, see Concurrency,

memory fences
Memory leaks, 2
Mercury, 171
Metronome collector, 391-399, 402, 407,

413, see also Real-time collection,
Tax-and-Spend

compaction, 404-405

generational collection, 399
handshakes, 394

INDEX

mutator utilisation, 391-393, 395
pause time, 391, 393, 394
read barriers, 393
robustness, 399
root scanning, 394
scheduling, 394
sensitivity, 397
syncopation, 399
time and space analysis, 395-399
write barriers, 397

Minimum mutator utilisation, 7, 377,
384, 391-393, 396, 398-400, 409

Minor collection, see Generational
collection, minor collection

MIPS processor, 181, 194
ML, 8, 106, 1 13, 121, 124, 125, 146, 148,

162, 165, 170, 171, 201, 208, 209, 228,
329, 330, 342, 384, see also Functional
languages

MMTk, 26, 1 16, 195, 196, see also Jikes
RVM

MMU, see Minimum mutator utilisation
Modula-2+, 340, 366
Modula-3, 162, 179, 184, 340
Moon's algorithm, see Copying, Moon's

algorithm
Mortality of objects, 105
Mostly-concurrent collection, see Baker 's

algorithm
Mostly-copying collection, see Copying,

mostly-copying collection;
Concurrent copying and
compaction, mostly-copying
collection

Motorola MC68000, 169
Moving objects, 55
Multi-tasking virtual machine, 107
Multi-version copying, see Concurrent

copying and compaction,
multi-version copying

Multiprocessors, 230
chip, 230
many-core, 230
multicore, 230
symmetric, 230

Multiprogramming, 230
Multisets, definition and notation, 15
Multithreading, 230

simultaneous, 230

INDEX

Mutator, 12
performance, see Copying, improves

mutator performance
threads, see Mutator threads

Mutator colour (black or grey), see
Tricolour abstract, mutator colour

Mutator overhead, see specific collection
algorithms

Mutator suspension, see GC-points
Mutator threads, 12, 15
Mutator utilisation, 7, 385, 391-393, 395,

see also Bounded mutator utilisation;
Minimum mutator utilisation

Tax-and-Spend, 400
Mutual exclusion, see Concurrency,

mutual exclusion

Nepotism, see Generational collection,
nepotism

.NET, 218, 220
New

basic mark-sweep, 18
concurrent mark-sweep, 324
concurrent reference counting

age-oriented, 372
sliding views, 372

generational, abstract, 136
incremental tracing, 333
real-time collection
replicating, 378, 381, 384
slack-based, 389

reference counting, abstract, 83
tracing, abstract, 82

Next-fit, see Free-list allocation, next-fit
NMT, see Not-Marked-Through
Non-uniform memory access, 230,

293-294, 298, 344, 345
Not-Marked-Through, 355-360
Notation, 12-16, 245-246
Nursery, see Generational collection,

generation, young

Object inlining, see Scalar replacement
Object layout, bidirectional, 170
Object tables, 184-185
Object-oriented languages, 169

per-class GC methods, 170, 341
Objects, 12

boot image, 124, 126
cold, see Hot and cold, objects
filler, 99-100

grey, 43
grey protected, 3 12
hot, see Hot and cold, objects
immortal, 110, 124, 126, 132-134
immutable, 108, 146

475

Java Re fe rence, see References, weak
large, 56, 1 14, 138, 151, 152, 201 , see

also Large object space
moving, 139-140
pointer-free, 140

pointer-free, 140
popular, 143, 156
type of, 169-171

Oblets, 385, 404, 413, 414
Obstruction-free algorithms, 243, 255, see

also Concurrency, progress
guarantees, obstruction-free

Old generation, see Generational
collection, generation, old

Older-first collection, 127-129, 131, see
also Age-based collection

Beltway, 130, 131
deferred older-first, 128-129
renewal older-first, 128

On-stack replacement (of method code),
190

On-the-fly collection, see Concurrent
collection, on-the-fly and specific
concurrent collection algorithms

Online sampling, 50, 132
Opportunistic collector, 120, 121
Over-partitioning, see Load balancing,

over-partitioning
Ownership of objects, 3

Page faults, see Paging behaviour
Pages, 12
Paging behaviour, see Bookmarking

collector; Copying, paging
behaviour; Marking, paging

Parallel collection, 7, 244, 275-306, 308
correctness, 278
grey packets, see Marking, parallel,

grey packets
load balancing, see Load balancing
memory-centric, 279
parallel sweeping, see Sweeping,

parallel
parallelisation concerns, 276-277
processor-centric, 279
synchronisation, 278-280, 305

476

termination, 279, 283-284, 289, 300
Partitioned collection, 103-1 10

non-age-based schemes, 137-159, see
also Conectivity-based collection;
Hybrid mark-sweep, copying; Large
object space; Mature Object Space
collection; Thread-local collection

partitioning approaches, 108-109
partitioning by age, 109
partitioning by availability, 1 07-108
partitioning by kind, 105
cache behaviour, 105

partitioning by mobility, 104
partitioning by mutability, 1 08
partitioning by size, 104
partitioning by thread, 107
partitioning for locality, 106-107
partitioning for space, 104-105
partitioning for yield, 105-106
partitioning to reduce pause time, 106
reasons to partition, 103-108
reclaiming whole regions, 106, 148
space overhead, 105
when to partition, 109-1 10

Pause time, 7, 78, 140, 144, 156, 275, 335,
342, 375, 384, 391, 393, 394, 415

generational collection, 1 1 1 , 1 23, 133
sweeping, 24

Pauseless collector, see Concurrent
copying and compaction, Pauseless
collector

p e r fo rmWo r k, 278, 281, 283, 287, 288,
290

perl, 58
Peterson's algorithm, see Concurrency,

Peterson's algorithm
Pinning objects, 104, 109, 183, 185-186
Pointers

ambiguous, 166
dangling, 2, 148
dangling, garbage collection as

prevention for, 3
derived, 173, 181, 183-184, 186
direction, 125-126, 128, 144-146
external, 185-186
fat, 2
finding, 55, 1 66-184
conservative, 166-168
in code, 181-182
in global roots, 171
in objects, 169-171

in registers, 173-179
in stacks, 171-181

INDEX

stack maps, 172-173, 175, 176, 178,
179

tags, 168-169
hazard, 374
inter-generational, 112, 1 13, 1 15,

123-126, 134, 154, 191
interesting, 124, 125, 128, 130, 132, 151,

191-193
interior, 32, 34, 38, 166, 168, 173, 181,

182-183, 184, 186
shared, 59
smart, 3, 73
reference counting, 58, 59

strong, see References, strong
tidy, 183
unique, 58, 73
updates of, 124-125, 132
weak, see References, weak

P o i nt e r s , 13
Poor Richard's Memory Manager, 210
p op, 257, 268
PowerPC architecture, 262, 298, 407
Precision, of concurrent collection, 313,

334-335
Prefetching, 24, 78

allocation, 165, 166
compaction, 36
copying, 51 , 53
marking, 21 , 27-29
reference counting, coalesced, 64
Two-Finger algorithm, 34

Pretenuring, see Generational collection,
pretenuring

Primitives, see Concurrency, hardware
primitives

Processor affinity scheduling, 293
Processors, 229
Profiling, 50, 52
Promptness, 6, 79, 132, 313

finalisation, 217
generational collection, 1 1 1
reference counting, 73

Pseudo-code for algorithms, 14
Purple (colour), 326, 327
push, 257, 268
python, 58, 228

Queues, see Concurrent data structures,
queues

INDEX

Reachability, 13, 18
a-reachable, 223
finaliser-reachable, 213, 223
phantom-reachable, 224
softly-reachable, 223
strongly reachable, 221
weakly-reachable, 221

Read, 15
Baker 's algorithm, 338, 339
Brooks's indirection barriers, 341
concurrent reference counting, 364,

365
Pauseless collector, 356
real-time collection
Chicken, 410
Clover, 41 1
incremental replicating, 405
replicating, 378, 381
slack-based, 389

Staccato, 409
Read barriers, 14, 53, 1 10, 147, 170,

191-192
Baker 's algorithm, 338
concurrent collection, see Concurrent

collection, read barriers
Metronome, 393
time overhead, 323

Real-time collection, 245, 375-415
Blelloch and Cheng, see replicating
Chicken, 410, 412

Read, 410
W r i t e, 410

Clover, 410--412
Read, 41 1
Wr i t e, 411

combined scheduling strategies, see
Tax-and-Spend

compaction, 403-415
fragmentation, 403-415
incremental replicating, 405--406

Read, 405
Wr i t e, 405

lock-free, see Clover and Stopless
Metronome, see Metronome collector
replicating, 377-384, see also

incremental replicating
a l l ocate, 380, 382

c o l l ect, 382
c o l l e ct o r On / O f f, 382, 383
New, 378, 381, 384
Read, 378, 381

time and space bounds, 384
W r i te, 378, 381

scheduling overview, 376-377
Schism, 413-415
slack-based, 377, 386-391, 401

c o l l e c t o r, 388
lazy evacuation, 387
New, 389
Read, 389
scheduling, 389-391
time overheads, 390
Wr i te, 389
write barriers, 386

Staccato, 407-410
Read, 409
W r i t e, 409

Stopless, 406-407, 412
Tax-and-Spend, 399--403

mutator utilisation, 400
termination, 403

477

time-based, 377, see also Metronome
collector

wait-free, see Chicken and Staccato
work-based, 377-385, 391, see also

replicating
time and space analysis, 398-399

Real-time systems, 375-376
hard and soft, 375
multitasking, 376
schedulability analysis, 376, 384
tasks, 376
WCET, see worst-case execution time
worst-case execution time, 376, 384,

385, 390, 413
Recycler algorithm, 68-70, 157

asymptotic complexity, 72
asynchronous, 72, 366-373
synchronous, 67-72, 372

Reference counting, 3, 17, 18, 57-75, 79,
108, 146, 157, 275

abstract, see Abstract reference
counting

advantages and disadvantages, 58, 73
buffered, 60, see Buffered reference

counting
coalesced, 63-66, 74, 78, 82, 157

c o l lect, 65
d e c reme n t O l d, 65
i n c rementNew, 65
W r i te, 64

478

concurrent, see Concurrent reference
counting

counter overflow, 73

cycles, 59, 66-72, 74, 79, see also
Recycler algorithm

deferred, 60, 6 1-66, 74, 78, 79, 157, 366

c o l lect , 62

performance, 63

W r i t e, 62

zero count table, 61, 366, 372

finalisation, 214, 216, 220

generational, see Concurrent reference
counting, age-oriented

lazy, 60

limited counter fields, 72-74

partial tracing, 67-72

promptness, 73

simple, 79

W r i t e, 58
sliding views, 60
smart pointers, see Pointers, smart
space overhead, 72-74

sticky counts, 73

throughput, 74

trial deletion, 67-72, 373, see also
Recycler algorithm

ulterior, see Ulterior reference counting
weak pointer algorithms, 67

weak references, 224

References, 12
accessing heap allocated objects, 1

counting, see Reference counting
phantom, 224

soft, 223, 360

strong, 221

weak, 67, 169, 218, 221-228, 330, 360

Region inference, see Partitioned
collection, reclaiming whole regions

r e l o cate, mark-compact, 33, 35

Remembered sets, 113, 124-125, 126, 128,

134, 141, 143, 144, 151, 154, 157, 191 ,
1 92, 1 93, see also Card tables;
Chunked lists

card tables, see Card tables
hash tables, 194-196
overflow, 195-197

sequential store buffers, see Sequential
store buffers

r emove, 258-268, 271

Remsets, see Remembered sets
Rendezvous barriers, 251-253, 382

INDEX

Replicating collection, see Copying,
concurrent, replicating

Resurrection of objects, see Finalisation,
resurrection

Roots, 12
Ro ot s, 13

r o o t sNu r s e ry, 135

Run-times
interface, see Run-time interface
managed, 1

Sampling, 52, 53

Sapphire collector, see Concurrent
copying and compaction, Sapphire
collector

Scalar replacement, 148
Scalars, 12
s c a n

copying, semis pace, 45

incremental tracing
(s canTra c i n g i n c), 333

s ca nNur s e ry, 135

Scavenging, 43, 106

Scheme, 121, 128, 170, see also Lisp
Segregated-fits allocation, 23, 30, 41, 54,

93-95, 102, 104, 157, 165, 299

a l l ocate, 95

block-based, 95-96, 102
cache behaviour, 95

space overhead, 96
buddy system, 96
splitting cells, 96

Self-adjusting trees, 92
Semispace copying, see Copying,

semispace
Sequences, definition and notation, 15

Sequential allocation, 31, 44, 54, 87-88,
102, 105, 126, 133, 151-153, 157, 164,

165, 294, 301

a l l ocate , 88, 287

cache behaviour, 88
locality, 54

Sequential store buffers, 156, 193,

195-196, 207, see also Chunked lists
W r i t e, 195

Sequential-fits allocation, see Free-list
allocation

Sets, definition and notation, 15

shared, 245

Shared pointers, see Pointers, shared
SITBOL, 41

INDEX

Sliding views, see Reference counting,
coaleseced; Concurrent
mark-sweep, sliding views

Slow path, see Fast and slow path
Smalltalk, 50, 58, 1 13, 1 15, 168, 1 71, 185,

193, 228

Smart pointers, see Pointers, smart
Space leak, see Memory leak
Space overhead, see specific collection

algorithms
Space usage, 78-79

Spaces, 12, 103
SPARC architecture, 168, 197, 300

Splay trees, 92

Staccato collector, see Real-time
collection, Staccato

Stack allocation, 147-148

Stack barriers, 170, 186-187, 328, 385

Stack frames, 171-179, 186-187

Stack maps, 188, see Pointers, finding,
stack maps

compressing, 179-181

Stacklets, 187, 384

Stacks, see Concurrent data structures,
stacks

Standard Template Library, see C++,
Standard Template Library

Steele, see Concurrent collection,
insertion barriers

Step, see Generational collection, step
Stop-the-world collection, 275, 276

Stopless collector, see Real-time
collection, Stopless

Store buffers, see Write buffers
S t o reCondi t i o n a l l y, 238, 239, 257,

260, 264-268, 350, see also
Concurrency, hardware primitives,
S t oreCondi t i on a l l y

Survival rate, 106, 1 16, 118

Survivor spaces, see Generational
Collection, survivor spaces

swe ep, basic mark-sweep, 20

Sweeping, 102, 153

a l l ocate, 25

bitmaps, 23

concurrent, see Concurrent
mark-sweep

laz� 24-26, 55, 78, 95, 299, 326

l a z ySwe ep, 25

parallel, 299

pause time, 24

479

swe epNu r s e ry, 135

Tax-and-Spend scheduling, see Real-time
collection, Tax-and-Spend

Tenuring objects, see Generation
collection, promoting objects

t e s tAndE x c h a nge, 233

T e s tAndS e t , 233, 234, 241, 377, 379, 384

t e s tAndS e t L o c k, 234

t e s tAndT e s t AndS et, 234

t e s tAndT e s t AndSetExchange Lock,

233

t e s tAndT e s t AndSet Lock, 234

Thread-local collection, 144-147

space overhead, 147

Thread-local heaps, 101, 107, 108, 109,

1 10, 144-1 47, 230, 329

Thread-local log buffers, 342

Threaded compaction, see
Mark-compact, threaded
compaction

Threads, 12, 229
Throughput, 6, 77-78, 208, see also specific

collection algorithms
ThruMax algorithm, see Adaptive

systems, ThruMax algorithm
Thunks, 8, 125, 132, 170

Time overhead, see specific collection
algorithms

Time, measuring, see Generational
collection, measuring time

Tospace, 43
Tospace invariant, see Concurrent

copying and compaction, fromspace
and tospace invariants

Tracing, see Copying; Mark-compact;
Mark-sweep

abstract, see Abstract tracing
Train collector, see Mature Object Space

collector
Transactional memory, 267-273

hardware, 271

Transactions, 267-269
abort and commit, 269

t ra n s i t i onRooms, 291

Traversal order, see Copying, traversal
order

Treadmill collector, 104, 138-1 39, 361, see
also Large object space

cache behaviour, 139

space overhead, 139

480

time overhead, 139
Tricolour abstraction, 20--21, see also

Anthracite; Purple; Yellow
abstract concurrent collection, 334
abstract tracing, 8 1
allocation colour, 314, 391
concurrent collection, 309-313, 352
concurrent reference counting, 370
mutator colour, 313, 314, 324, 325, 328,

329, 336, 337, 340
strong and weak tricolour invariants,

312-313, 324, 325, 391
Treadmill collector, 138

Tuples, definition and notation, 15
Two-finger algorithm, see

Mark-compact, Two-Finger
algorithm

cache behaviour, 34
Type information

BiBoP, see Big Bag of Pages technique
Type-accurate collection, 23, 104

Ulterior reference counting, 157-158
UMass GC Toolkit, 1 18
Unique pointers, see Pointers, unique
Unreachable, 14
updat eRe fe r e n c e s , mark-compact,

33, 35

Virtual machine, see Java virtual
machine; Multi-tasking virtual
machine

Virtual memory, see also Paging
behaviour

Virtual memory techniques, 140, 165,
193, 202, 203-2 1 0

double mapping, 206, 352, 355-361
guard pages, see page protection
page protection, 140, 195, 205-208,

317, 340, 352-361

Wait-free algorithms, 243, 255, 261, 271,
301, 302, 410, 415, see also
Concurrency, progress guarantees,
wait-free

consensus, 240, 243
Wavefront, 20

concurrent collection, 310, 334, 338,
340

Weak references, see References, weak
White (colour), see Tricolour abstraction

INDEX

Wilderness preservation, 100, 152
Work lists, 324, 338, see also Chunked

lists
Work pulling, see Work stealing
Work pushing, see Work sharing
Work sharing, 248-252, 303-305, see also

Work stealing
Work stealing, 248-252, 267-268,

279-284, 292, 299, 303-305, 342, see
also Work sharing

stealable work queue, 280
termination, see Concurrent collection,

termination
Wr i t e, 15, 310, 330

Brooks's indirection barriers, 341
card table on SPARC, 198
concurrent reference counting, 364,

365
age-oriented, 372
buffered, 366, 367
sliding views, 370, 372, 373

concurrent reference counting,
coalesced, 370

generational, abstract, 136
generational, with frames, 205
incremental tracing, 333
multi-version copying, 344
real-time collection
Chicken, 410
Clover, 41 1
incremental replicating, 405
replicating, 378, 381
slack-based, 389

reference counting
abstract, 83
abstract deferred, 84
coalesced, 64
deferred, 62
simple, 58

Sapphire Copy phase, 349-351
Sapphire Flip phase, 349, 351
Sapphire Mark phase, 348-349
sequential store buffer, 195
Staccato, 409

Write barriers, 14, 57, 67, 109, 1 10, 132,
144, 146-148, 151 , 154, 155, 157, 162,
188, 191-205

abstract concurrent collection, 334
Beltway, 130, 131
card tables, see Card tables

INDEX

concurrent collection, see Concurrent
collection, write barriers

generational, 1 12, 1 15, 1 19, 124-126,
133, 134

Metronome, 397
Older-first, 128, 129
reference counting
coalesced, 63, 64
deferred, 62
performance, 61
simple, 58

sequential store buffers, see Sequential
store buffers

time overhead, 202-203, 323
when required, 57

Write buffers, 235

Yellow (colour), 326
Young generation, see Generational

collection, generation, young
Yuasa, see Concurrent collection,

deletion barriers

Zero count table, see Reference counting,
deferred, zero count table

Zeroing, 43, 164, 1 65-166
cache behaviour, 165, 166

481

Colophon

This book was set in Palatino (algorithms in Courier) with pdftex (from the TeX Live 2010
distribution) . The Illustrations were drawn with Adobe Illustrator CS3. We found the
following packages to be useful: comme nt (comments), p a r a l i s t (in-paragraph lists),
ge ome t ry (page size), c r op (crop marks), x space (space suppression), s e t space (line
spacing), f nb reak (detect footnotes spread over more than one page), a f t e rpage (page
break control), mu lt i c o l (multiple columns), t abu l a rx (tabular material), mu lt i row

(multiple rows and columns in tables), dc o l umn ("decimal points" in tables), graph i cx

and ep s t opdf (graphics), s u b f ig (subfigures), rotat i n g (rotate objects), l i s t i n g s

(algorithm listings), capt i o n (captions), mathpa z o (typesetting mathematics to match
Palatino body text), ams s ymb and amsmat h (mathematics), hype rre f (hyperlinks and
back-references), g l o s s a r i e s (glossaries), natb ib (bibliography), make i dx and i nde x

(index).

	Front Cover
	Front Matter
	Dedication
	Contents
	List Of Algorithms
	List Of Figures
	List Of Tables
	Preface
	Acknowledgements
	Authors
	Chapter 1: Introduction
	1.1 Explicit Deallocation
	1.2 Automatic Dynamic Memory Management
	1.3 Comparing Garbage Collection Algorithms
	Safety
	Throughput
	Completeness And Promptness
	Pause Time
	Space Overhead
	Optimisations For Specific Languages
	Scalability And Portability

	1.4 A Performance Disadvantage?
	1.5 Experimental Methodology
	1.6 Terminology And Notation
	The Heap
	The Mutator And The Collector
	The Mutator Roots
	References, Fields, And Addresses
	Liveness, Correctness, And Reachability
	Pseudo-Code
	The Allocator
	Mutator Read And Write Operations
	Atomic Operations
	Sets, Multisets, Sequences, And Tuples

	Chapter 2: Mark-Sweep Garbage Collection
	2.1 The Mark-Sweep Algorithm
	2.2 The Tricolour Abstraction
	2.3 Improving Mark-Sweep
	2.4 Bitmap Marking
	2.5 Lazy Sweeping
	2.6 Cache Misses In The Marking Loop
	2.7 Issues To Consider
	Mutator Overhead
	Throughput
	Space Usage
	To Move Or Not To Move?

	Chapter 3: Mark-Compact Garbage Collection
	3.1 Two-Finger Compaction
	3.2 The Lisp 2 Algorithm
	3.3 Threaded Compaction
	3.4 One-Pass Algorithms
	3.5 Issues To Consider
	Is Compaction Necessary?
	Throughput Costs Of Compaction
	Long-Lived Data
	Locality
	Limitations Of Mark-Compact Algorithms

	Chapter 4: Copying Garbage Collection
	4.1 Semispace Copying Collection
	Work List Implementations
	An Example

	4.2 Traversal Order And Locality
	4.3 Issues To Consider
	Allocation
	Space And Locality
	Moving Objects

	Chapter 5: Reference Counting
	5.1 Advantages And Disadvantages Of Reference Counting
	5.2 Improving Efficiency
	5.3 Deferred Reference Counting
	5.4 Coalesced Reference Counting
	5.5 Cyclic Reference Counting
	5.6 Limited-Field Reference Counting
	5.7 Issues To Consider
	The Environment
	Advanced Solutions

	Chapter 6: Comparing Garbage Collectors
	6.1 Throughput
	6.2 Pause Time
	6.3 Space
	6.4 Implementation
	6.5 Adaptive Systems
	6.6 A Unified Theory Of Garbage Collection
	Abstract Garbage Collection
	Tracing Garbage Collection
	Reference Counting Garbage Collection

	Chapter 7: Allocation
	7.1 Sequential Allocation
	7.2 Free-List Allocation
	First-Fit Allocation
	Next-Fit Allocation
	Best-Fit Allocation
	Speeding Free-List Allocation

	7.3 Fragmentation
	7.4 Segregated-Fits Allocation
	Fragmentation
	Populating Size Classes

	7.5 Combining Segregated-Fits With First-, Best-, And Next-Fit
	7.6 Additional Considerations
	Alignment
	Size Constraints
	Heap Parsability
	Locality
	Wilderness Preservation
	Crossing Maps

	7.7 Allocation In Concurrent Systems
	7.8 Issues To Consider

	Chapter 8: Partitioning The Heap
	8.1 Terminology
	8.2 Why To Partition
	Partitioning By Mobility
	Partitioning By Size
	Partitioning For Space
	Partitioning By Kind
	Partitioning For Yield
	Partitioning To Reduce Pause Time
	Partitioning For Locality
	Partitioning By Thread
	Partitioning By Availability
	Partitioning By Mutability

	8.3 How To Partition
	8.4 When To Partition

	Chapter 9: Generational Garbage Collection
	9.1 Example
	9.2 Measuring Time
	9.3 Generational Hypothesis
	9.4 Generations And Heap Layout
	9.5 Multiple Generations
	9.6 Age Recording
	En Masse Promotion
	Aging Semispaces
	Survivor Spaces And Flexibility

	9.7 Adapting To Program Behaviour
	Appel-Style Garbage Collection
	Feedback Controlled Promotion

	9.8 Inter-Generational Pointers
	Remembered Sets
	Pointer Direction

	9.9 Space Management
	9.10 Older-First Garbage Collection
	9.11 Beltway
	9.12 Analytic Support For Generational Collection
	9.13 Issues To Consider
	9.14 Abstract Generational Garbage Collection

	Chapter 10: Other Partitioned Schemes
	10.1 Large Object Spaces
	The Treadmill Garbage Collector
	Moving Objects With Operating System Support
	Pointer-Free Objects

	10.2 Topological Collectors
	Mature Object Space Garbage Collection
	Connectivity-Based Garbage Collection
	Thread-Local Garbage Collection
	Stack Allocation
	Region Inferencing

	10.3 Hybrid Mark-Sweep, Copying Collectors
	Garbage-First
	Immix And Others
	Copying Collection In A Constrained Memory Space

	10.4 Bookmarking Garbage Collection
	10.5 Ulterior Reference Counting
	10.6 Issues To Consider

	Chapter 11: Run-Time Interface
	11.1 Interface To Allocation
	Speeding Allocation
	Zeroing

	11.2 Finding Pointers
	Conservative Pointer Finding
	Accurate Pointer Finding Using Tagged Values
	Accurate Pointer Finding In Objects
	Accurate Pointer Finding In Global Roots
	Accurate Pointer Finding In Stacks And Registers
	Accurate Pointer Finding In Code
	Handling Interior Pointers
	Handling Derived Pointers

	11.3 Object Tables
	11.4 Reference From External Code
	11.5 Stack Barriers
	11.6 GC-Safe Points And Mutator Suspension
	11.7 Garbage Collection Code
	11.8 Read And Write Barriers
	Engineering
	Precision Of Write Barriers
	Hash Tables
	Sequential Store Buffers
	Overflow Action
	Card Tables
	Crossing Maps
	Summarising Cards
	Hardware And Virtual Memory Techniques
	Write Barrier Mechanisms: In Summary
	Chunked Lists

	11.9 Managing Address Space
	11.10 Applications Of Virtual Memory Page Protection
	Double Mapping
	Applications Of No-Access Pages

	11.11 Choosing Heap Size
	11.12 Issues To Consider

	Chapter 12: Language-Specific Concerns
	12.1 Finalisation
	When Do Finalisers Run?
	Which Thread Runs A Finaliser?
	Can Finalisers Run Concurrently With Each Other?
	Can Finalisers Access The Object That Became Unreachable?
	When Are Finalised Objects Reclaimed?
	What Happens If There Is An Error In A Finaliser?
	Is There Any Guaranteed Order To Finalisation?
	The Finalisation Race Problem
	Finalisers And Locks
	Finalisation In Particular Languages
	For Further Study

	12.2 Weak References
	Additional Motivations
	Supporting Multiple Pointer Strengths
	Using Phantom Objects To Control Finalisation Order
	Race In Weak Pointer Clearing
	Notification Of Weak Pointer Clearing
	Weak Pointers In Other Languages

	12.3 Issues To Consider

	Chapter 13: Concurrency Preliminaries
	13.1 Hardware
	Processors And Threads
	Interconnect
	Memory
	Caches
	Coherence
	Cache Coherence Performance Example: Spin Locks

	13.2 Hardware Memory Consistency
	Fences And Happens-Before
	Consistency Models

	13.3 Hardware Primitives
	Compare-And-Swap
	Load-Linked/Store-Conditionally
	Atomic Arithmetic Primitives
	Test Then Test-And-Set
	More Powerful Primitives
	Overheads Of Atomic Primitives

	13.4 Progress Guarantees
	Progress Guarantees And Concurrent Collection

	13.5 Notation Used For Concurrent Algorithms
	13.6 Mutual Exclusion
	13.7 Work Sharing And Termination Detection
	Rendezvous Barriers

	13.8 Concurrent Data Structures
	Concurrent Stacks
	Concurrent Queue Implemented With Singly Linked List
	Concurrent Queue Implemented With Array
	A Concurrent Deque For Work Stealing

	13.9 Transactional Memory
	What Is Transactional Memory?
	Using Transactional Memory To Help Implement Collection
	Supporting Transactional Memory In The Presence Of Garbage Collection

	13.10 Issues To Consider

	Chapter 14: Parallel Garbage Collection
	14.1 Is There Sufficient Work To Parallelise?
	14.2 Load Balancing
	14.3 Synchronisation
	14.4 Taxonomy
	14.5 Parallel Marking
	Processor-Centric Techniques

	14.6 Parallel Copying
	Processor-Centric Techniques
	Memory-Centric Techniques

	14.7 Parallel Sweeping
	14.8 Parallel Compaction
	14.9 Issues To Consider
	Terminology
	Is Parallel Collection Worthwhile?
	Strategies For Balancing Loads
	Managing Tracing
	Low-Level Synchronisation
	Sweeping And Compaction
	Termination

	Chapter 15: Concurrent Garbage Collection
	15.1 Correctness Of Concurrent Collection
	The Tricolour Abstraction, Revisited
	The Lost Object Problem
	The Strong And Weak Tricolour Invariants
	Precision
	Mutator Colour
	Allocation Colour
	Incremental Update Solutions
	Snapshot-At-The-Beginning Solutions

	15.2 Barrier Techniques For Concurrent Collection
	Grey Mutator Techniques
	Black Mutator Techniques
	Completeness Of Barrier Techniques
	Concurrent Write Barrier Mechanisms
	One-Level Card Tables
	Two-Level Card Tables
	Reducing Work

	15.3 Issues To Consider

	Chapter 16: Concurrent Mark-Sweep
	16.1 Initialisation
	16.2 Termination
	16.3 Allocation
	16.4 Concurrent Marking And Sweeping
	16.5 On-The-Fly Marking
	Write Barriers For On-The-Fly Collection
	Doligez-Leroy-Gonthier
	Doligez-Leroy-Gonthier For Java
	Sliding Views

	16.6 Abstract Concurrent Collection
	The Collector Wavefront
	Adding Origins
	Mutator Barriers
	Precision
	Instantiating Collectors

	16.7 Issues To Consider

	Chapter 17: Concurrent Copying & Compaction
	17.1 Mostly-Concurrent Copying: Baker's Algorithm
	Mostly-Concurrent, Mostly-Copying Collection

	17.2 Brooks's Indirection Barrier
	17.3 Self-Erasing Read Barriers
	17.4 Replication Copying
	17.5 Multi-Version Copying
	Extensions To Avoid Copy-On-Write

	17.6 Sapphire
	Collector Phases
	Merging Phases
	Volatile Fields

	17.7 Concurrent Compaction
	Compressor
	Pauseless

	17.8 Issues To Consider

	Chapter 18: Concurrent Reference Counting
	18.1 Simple Reference Counting Revisited
	18.2 Buffered Reference Counting
	18.3 Concurrent, Cyclic Reference Counting
	18.4 Taking A Snapshot Of The Heap
	18.5 Sliding Views Reference Counting
	Age-Oriented Collection
	The Algorithm
	Sliding Views Cycle Reclamation
	Memory Consistency

	18.6 Issues To Consider

	Chapter 19: Real-Time Garbage Collection
	19.1 Real-Time Systems
	19.2 Scheduling Real-Time Collection
	19.3 Work-Based Real-Time Collection
	Parallel, Concurrent Replication
	Uneven Work And Its Impact On Work-Based Scheduling

	19.4 Slack-Based Real-Time Collection
	Scheduling The Collector Work
	Execution Overheads
	Programmer Input

	19.5 Time-Based Real-Time Collection: Metronome
	Mutator Utilisation
	Supporting Predictability
	Analysis
	Robustness

	19.6 Combining Scheduling Approaches: Tax-And-Spend
	Tax-And-Spend Scheduling
	Tax-And-Spend Prerequisites

	19.7 Controlling Fragmentation
	Incremental Compaction In Metronome
	Incremental Replication On Uniprocessors
	Stopless: Lock-Free Garbage Collection
	Staccato: Best-Effort Compaction With Mutator Wait-Freedom
	Chicken: Best-Effort Compaction With Mutator Wait-Freedom For x86
	Clover: Guaranteed Compaction With Probabilistic Mutator Lock-Freedom
	Stopless Versus Chicken Versus Clover
	Fragmented Allocation

	19.8 Issues To Consider

	Glossary
	Bibliography
	Index
	Colophon
	Back Cover

