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Let’s just get this out of the way

And now, on with the talk



Perl’s Three Data Structures

Scalar

Array
Hash?



“A Dictionary”
‘the hash is a "dictionary", a mapping between one thing and another’

%french = (
    apple  => "pomme",
    pear   => "poire",
    orange => "Léon Brocard"
);

$french{"apple"} # "pomme"



But...

It doesn’t preserve order
That doesn’t tell us much
We hardly ever use hashes like that anyway

Hash



Exceptions...

There will be many
Command line arguments
$args{“help”}



“A Bag of Pairs”

pommeapple

poirepear

Léon

Brocard
orange

You could
also call it a

  set



Hashes in Real Life

Hashes are mainly used for
“answering questions about lists”



That means...

Counting
Uniqueness
Caching
Searching
Dispatch tables



Counting

    my $apples = 0;
    for (@list) {
        $apples++ if $_ eq "apple";
    }



Counting

    my $apples = 0;
   my $pears = 0;
    for (@list) {
        $apples++ if $_ eq "apple";
        $pears++  if $_ eq "pear";
    }



Hmm....

    my $apples = 0;
   my $pears = 0;
    for (@list) {
        ${$_}++;
    }

The list contains *
This sets $* = 1
None of your regexes match
It takes days to debug
Oh, the embarrassment



A Histogram

    my %histogram;
    for (@list) {
        $histogram{$_}++;
    }

Who cares if $histogram{“*”} = 1



General Principle
Replace a

set of related variables
with a hash

A hash is a “safe private symbol-table”
(Actually, a symbol table is an unsafe hash...)



Private variables?

pommeapple

poirepear

Léon

Brocard
orange

$apples++ 
  if $_ eq "apple";

Variable name
Value



Counting numbers of different things

holidays

austria

hahnenkamm

hagia sophia



We ask each photo for its tags...
push @tags, $_->tags for @photos
my $count = @tags; # 7

holidays

austria

hahnenkamm

holidays

austria

holidays

hagia sophia



We find the set of tags used

for my $photo (@photos) {
 $tags{$_}++ for $photo->tags
  # $tags{“austria”}
  # $tags{“holidays”}, etc.
}

my $count = keys %tags; # 4



A “question about a list”

# How many times was Austria tagged?

my $count = $tags{“Austria”}; # 2



Uniqueness

Another “question about a list” - what were the unique tags?

for my $photo (@photos) {
 $tags{$_}++ for $photo->tags
}

my @unique = keys %tags;



Combining the two - Popularity
Another “question about a list” - what were the most 

popular tags?
for my $photo (@photos) {
 $tags{$_}++ for $photo->tags
}

my @top_five = (
   sort { $tags{$b} <=> $tags{$a} }
     keys %tags
   )[0..4];

How many times

Unique tags



Uniqueness revisited

for (@list) { $unique{$_}++ }
@unique = keys %unique;

for (@list) { $unique{$_} = 1 }
@unique = keys %unique;

%unique = map { $_ => 1 } @list;
@unique = keys %unique;



Actually I lied...
Tags are objects

my @tags;
push @tags, Memories::Tag->retrieve_random
  for 1..10;
%unique = map { $_ => 1 } @tags;
@unique = keys %unique;

print $unique[0]->name;
# Can't locate object method "test" via
# package "Memories::Tag(0x1801380)"



The solution

%unique = map { $_->name => $_ } @list;
@unique = values %unique;

Then retrieve by value

Map the name to the tag



Have I seen this before?

    my @tags;
    my %seen;
    while (@tags < 10) {
        my $candidate = 
                Memories::Tag->retrieve_random;
        next if $seen{$candidate->name}++;
        push @tags, $candidate;
    }



Caching

Have I seen this before?
 



Caching

Have I done this before?
What was the answer last time?



Caching - Retrieving values

my %cache;

sub retrieve {
    my ($self, $id) = @_;
    return $cache{$id} if exists $cache{$id};
    return $cache{$id} = $self->_hard_retrieve($id);
} Mind the cache doesn’t get full!

Cache::Cache handles all this
See also Memoize.pm



Searching - linear
my $index;
for $index (0..@chambers) {
    last if $chambers[$index] eq $bullet;
}
print "Found at index $index" 
    if $index < @chambers;

...DogCharlieBakerAble

STOP!



Searching - binary
my ($lower, $upper) = (0, $#names);
while ($lower <= $upper) {
      my $index = ($lower + $upper) / 2;
      if ($names[$index] lt $target) {
          $lower = $index + 1;
      } elsif ($names[$index] gt $target) {
          $upper = $index - 1;
      } else { return $index }
}
# Not found!

ZebraYoke...Mike..BakerAble



I’ll name that tune in none, Lionel...

my %search = map { 
                   $names[$_] => $_ 
                 } 0..$#names;

print $search{"George"};



More To Discover...

Config files
Dispatch tables
More besides
http://simon-cozens.org/programmer/
articles/hashes.pod 



Thank you!


