
Hash Crash Course
Simon Cozens

Let’s just get this out of the way

And now, on with the talk

Perl’s Three Data Structures

Scalar

Array
Hash?

“A Dictionary”
‘the hash is a "dictionary", a mapping between one thing and another’

%french = (
 apple => "pomme",
 pear => "poire",
 orange => "Léon Brocard"
);

$french{"apple"} # "pomme"

But...

It doesn’t preserve order
That doesn’t tell us much
We hardly ever use hashes like that anyway

Hash

Exceptions...

There will be many
Command line arguments
$args{“help”}

“A Bag of Pairs”

pommeapple

poirepear

Léon

Brocard
orange

You could
also call it a

 set

Hashes in Real Life

Hashes are mainly used for
“answering questions about lists”

That means...

Counting
Uniqueness
Caching
Searching
Dispatch tables

Counting

 my $apples = 0;
 for (@list) {
 $apples++ if $_ eq "apple";
 }

Counting

 my $apples = 0;
 my $pears = 0;
 for (@list) {
 $apples++ if $_ eq "apple";
 $pears++ if $_ eq "pear";
 }

Hmm....

 my $apples = 0;
 my $pears = 0;
 for (@list) {
 ${$_}++;
 }

The list contains *
This sets $* = 1
None of your regexes match
It takes days to debug
Oh, the embarrassment

A Histogram

 my %histogram;
 for (@list) {
 $histogram{$_}++;
 }

Who cares if $histogram{“*”} = 1

General Principle
Replace a

set of related variables
with a hash

A hash is a “safe private symbol-table”
(Actually, a symbol table is an unsafe hash...)

Private variables?

pommeapple

poirepear

Léon

Brocard
orange

$apples++
 if $_ eq "apple";

Variable name
Value

Counting numbers of different things

holidays

austria

hahnenkamm

hagia sophia

We ask each photo for its tags...
push @tags, $_->tags for @photos
my $count = @tags; # 7

holidays

austria

hahnenkamm

holidays

austria

holidays

hagia sophia

We find the set of tags used

for my $photo (@photos) {
 $tags{$_}++ for $photo->tags
 # $tags{“austria”}
 # $tags{“holidays”}, etc.
}

my $count = keys %tags; # 4

A “question about a list”

How many times was Austria tagged?

my $count = $tags{“Austria”}; # 2

Uniqueness

Another “question about a list” - what were the unique tags?

for my $photo (@photos) {
 $tags{$_}++ for $photo->tags
}

my @unique = keys %tags;

Combining the two - Popularity
Another “question about a list” - what were the most

popular tags?
for my $photo (@photos) {
 $tags{$_}++ for $photo->tags
}

my @top_five = (
 sort { $tags{$b} <=> $tags{$a} }
 keys %tags
)[0..4];

How many times

Unique tags

Uniqueness revisited

for (@list) { $unique{$_}++ }
@unique = keys %unique;

for (@list) { $unique{$_} = 1 }
@unique = keys %unique;

%unique = map { $_ => 1 } @list;
@unique = keys %unique;

Actually I lied...
Tags are objects

my @tags;
push @tags, Memories::Tag->retrieve_random
 for 1..10;
%unique = map { $_ => 1 } @tags;
@unique = keys %unique;

print $unique[0]->name;
Can't locate object method "test" via
package "Memories::Tag(0x1801380)"

The solution

%unique = map { $_->name => $_ } @list;
@unique = values %unique;

Then retrieve by value

Map the name to the tag

Have I seen this before?

 my @tags;
 my %seen;
 while (@tags < 10) {
 my $candidate =
 Memories::Tag->retrieve_random;
 next if $seen{$candidate->name}++;
 push @tags, $candidate;
 }

Caching

Have I seen this before?

Caching

Have I done this before?
What was the answer last time?

Caching - Retrieving values

my %cache;

sub retrieve {
 my ($self, $id) = @_;
 return $cache{$id} if exists $cache{$id};
 return $cache{$id} = $self->_hard_retrieve($id);
} Mind the cache doesn’t get full!

Cache::Cache handles all this
See also Memoize.pm

Searching - linear
my $index;
for $index (0..@chambers) {
 last if $chambers[$index] eq $bullet;
}
print "Found at index $index"
 if $index < @chambers;

...DogCharlieBakerAble

STOP!

Searching - binary
my ($lower, $upper) = (0, $#names);
while ($lower <= $upper) {
 my $index = ($lower + $upper) / 2;
 if ($names[$index] lt $target) {
 $lower = $index + 1;
 } elsif ($names[$index] gt $target) {
 $upper = $index - 1;
 } else { return $index }
}
Not found!

ZebraYoke...Mike..BakerAble

I’ll name that tune in none, Lionel...

my %search = map {
 $names[$_] => $_
 } 0..$#names;

print $search{"George"};

More To Discover...

Config files
Dispatch tables
More besides
http://simon-cozens.org/programmer/
articles/hashes.pod

Thank you!

