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[14, 16], they were quickly popularized by Wadler andothers as a technique for structuring functional pro-grams [32, 18]. It is not hard to see the reason for thispopularity: monads promise access to state, control op-erators, I/O, etc., while retaining the strong reasoningprinciples valid for pure functional languages. Brie
y,restricting programs to so-called \monadic style" (verysimilar in spirit and appearance to continuation-passingstyle) sets up a uniform infrastructure for represent-ing and manipulating computations with e�ects as �rst-class objects.It is somewhat remarkable that monads have had nocomparable impact on \impure" functional program-ming. Perhaps the main reason is that { as clearly ob-served by Moggi, but perhaps not as widely appreciatedin the \purely functional" community { the monadicframework is already built into the semantic core ofeager functional languages with e�ects, and need notbe expressed explicitly. \Impure" constructs, both lin-guistic (e.g., updatable state, exceptions, or �rst-classcontinuations) and external to the language (I/O, OSinterface, etc.), all obey a monadic discipline. The onlyaspect that would seem missing is the ability for pro-grammers to use their own, application-speci�c monadicabstractions { such as nondeterminism or parsers [31] {with the same ease and naturality as built-in e�ects.Actually, many of the useful monadic e�ects that arenot already included can be de�ned in terms of existingconcepts in typical eager functional languages. For ex-ample, backtracking can be expressed with call=cc andan updatable stack of backtracking points [5]. Still, suchimplementations appear ad-hoc, require a thorough un-derstanding of the imperative features used, and haveno clear connection to the \pure" monadic abstractionsthey implement. And although all of the usual monadsseem to yield to this approach, it is far from obviousthat they must all do so.In the following, we will show that in fact anymonadic e�ect whose de�nition is itself expressible ina functional language can be synthesized from just two\impure" constructs: �rst-class continuations and a446



storage cell. In other words, a language like Scheme[2], or ML with �rst-class continuations [5], is already\monadically complete" in the sense that any programexpressible in the somewhat contorted monadic stylecan also can be written in direct style. Moreover, alluses of computational e�ects in the de�nition can be en-capsulated into an abstraction customarily called com-posable, functional, or partial continuations, and the re-maining program contains no explicit references to ei-ther escapes or state.The rest of this section contains a very brief intro-duction to monads (a reader unfamiliar with the con-cept would be well advised to read one of the papersby Moggi or Wadler for a more complete presentation)and Moggi's convenient notation for monadic e�ects.The following sections then derive the representationresult as a succession of three steps, each of whichis potentially useful in its own right and directly ex-tends or supplements earlier work. First, we developa formal correspondence between \monadic style" andcontinuation-passing style. Using this, we show thatall non-standard manipulations of the continuation in\monadic CPS" can be expressed in terms of two opera-tors for composable continuations. Finally, we show howto de�ne these two operators using ordinary �rst-classcontinuations and a piece of state. To supplement theabstract development, section 5 presents the completeembedding as executable ML code and illustrates howsome common monadic e�ects can be uniformly repre-sented as instances of the construction. A comparisonwith related work and some conclusions complete thepaper.1.2 Monads and monadic re
ectionFor the purposes of \monadic functional programming",amonad consists of a type constructor T and operations(polymorphic functions)� : �! T� and �� : (�! T�)! T�! T�called unit and extension , respectively. (Wadler uses abinary in�x operator for the latter, writing m `bind`f orm?f for our f�m. His notation is probably superior forwriting actual programs in monadic style, but the vari-ant above seems preferable for the formalmanipulationswe will be performing.) The operations are required tosatisfy three monad laws:�� = idT�f� � � = f(f� � g)� = f� � g�Monads can be used to give a semantics of various\computational e�ects" (such as state, exceptions, orI/O) in applicative programming languages [14, 16].

In particular, our development is set in a simple call-by-value (CBV) functional language based on \Moggi'sprinciple":Computations of type � correspond to valuesof type T�.Informally, �a represents a \pure" (i.e., e�ect-free)computation yielding a, while f�t represents the com-putation consisting of t's e�ects followed by the resultof applying f to the value computed by t.As also noted by Moggi, the correspondence principlecan be embodied in an \introspective" language exten-sion which could be called monadic re
ection (by anal-ogy to computational re
ection [28, 34]), given by twooperators: � ` E : T�� ` �(E) : � and � ` E : �� ` [E] : T�For any E : T�, �(E) re
ects the value of E as an\e�ectful" computation of type �. Conversely, given ageneral computation E : �, [E] rei�es it as the corre-sponding \e�ect-free" value of type T�.For example, let T be the exception monad, de�nedas T� = �+ exn� = �a: inl af� = �t: case t of inl a! f a [] inr e! inr e(where exn is a type of exception names). Then �(E)expresses the value of E : �+ exn as a computation: weget an exception-raising construct byraise E def= �(inr E)(where E is an expression { typically just a value { oftype exn). Conversely, [E] turns a possibly exception-raising �-expression E into a value of type � + exn, sowe can de�ne an exception-handling construct like this:E1 handle e)E2def= case [E1] of inl a! a [] inr e!E2(i.e., if E1 raises an exception, the handler E2 is invokedwith e bound to the exception name; a general pattern-matching handle construct like SML's can easily beexpressed in terms of this one).Justifying the designation as a \correspondence prin-ciple", monadic rei�cation and re
ection are inverseson their respective domains. That is, for any expres-sion E : � (possibly with computational e�ects) andany value V : T�,�([E]) = E and [�(V )] = VThe more general notation �(E) can be seen as sim-ply shorthand for let v = E in �(v), so in practice �(�)447



would be provided as a function re
ect : T�! �. It isnot necessary to have [�] as a special form either: wecan exploit the usual bijection between computationsof type � and values of type 1! � to get a functionreify : (1!�)!T�, extracting the monadic representa-tion from a suspended computation. For the theoreticaldevelopment in sections 2{4, however, we will keep themore compact �(�)/[�]-notation.2 Monads and CPSAs the �rst step of our development, let us investigatethe formal connections between \monadic style" andcontinuation-passing style (CPS). As noted by Wadlerand others, the two appear closely related, but the ac-tual correspondence is quite involved and bene�ts froma more detailed analysis.In this section, we consider two translations (monadicand CPS) from a simply-typed CBV functional lan-guage with monadic re
ection and rei�cation operators(our object language) into a \purely functional" meta-language: a typed ���-calculus with monadic unit andextension functions.We then relate the two translations, generalizing theresults of Meyer and Wand [13] about the typed CPStransform: their method can be seen as covering the par-ticular case where T is the identity monad (i.e., T� = �,� = id , and f� = f ).2.1 The monadic translationThe monadic translation transforms an object-languageterm E with free variables x1; . . . ; xn,x1:�1; . . . ; xn:�n ` E : �into the meta-language termx1: [[�1]]T ; . . . ; xn: [[�n]]T ` [[E]]T : T [[�]]TThe translation on types is given by:[[�]]T = �[[�* �]]T = [[�]]T ! T [[�]]T[[T�]]T = T [[�]]THere � ranges over base types, and we use � * � forthe CBV function space to distinguish it from the un-derlying \pure" function space �! �. The extensionto structured types (products, sums, etc.) is straightfor-ward but omitted here for brevity. The term translationis given by [[x]]T = �x[[�x:E]]T = � (�x: [[E]]T )[[E1E2]]T = (�f: f� [[E2]]T )� [[E1]]T[[�(E)]]T = id� [[E]]T[[[E]]]T = � [[E]]T

(where the last two, perhaps less familiar-looking, equa-tions are taken from Moggi [14].) As an example ofmonadic reasoning, let us quickly check that the monadlaws verify the correspondence principle for [�] and �(�):[[�([E])]]T = id� [[[E]]]T = id� (� [[E]]T )= (id� � �) [[E]]T = id [[E]]T = [[E]]TConversely, taking x as a representative value (the othercases are analogous):[[[�(x)]]]T = � [[�(x)]]T = � (id� [[x]]T )= � (id� (�x)) = �x = [[x]]T2.2 The CPS translationLet us now consider the CBV CPS translation for thesame pair of languages, and in particular still with re-
ection and rei�cation operators for the monad T . Thetranslation on types looks similar:[[�]]K = �[[�* �]]K = [[�]]K !K[[�]]K[[T�]]K = T [[�]]Kwhere K
 = (
!To)!T o for a type o of �nal answers.(The key idea of making To the \new" answer type isdue to Wadler [32]). To get a simple relationship be-tween the two translations, we assume o to contain alldenotable values [22] (note that such an o does not haveto be a type expressible in the source language).1 Fur-ther, to avoid clutter in the term equations, we omitinjections into and projections from o.Now our source term E is translated intox1: [[�1]]K ; . . . ; xn: [[�n]]K ` [[E]]K : K [[�]]Kwhere the term translation is given by[[x]]K = �k: kx[[�x:E]]K = �k: k (�x: [[E]]K )[[E1E2]]K = �k: [[E1]]K (�f: [[E2]]K (�a: f ak))[[�(E)]]K = �k: [[E]]K k�[[[E]]]K = �k: k ([[E]]K �)The �rst three equations are the usual ones [19]. Wewill verify that the last two really are the correct CPSanalogs of their T -translation counterparts next.2.3 A relation between between monadic styleand CPSLet us �rst note that we can de�ne a type-indexed fam-ily of functions mediating between monadic and CPS1Alternatively, with a little more care, we can take K
 =8o:(
 ! To)! To; it is straightforward to check that both theterm translation and the operations de�ned in the following canin fact be typed according to this schema.448



types, �� : [[�]]T ! [[�]]K and  � : [[�]]K ! [[�]]T :�� = �i: i��*� = �f: �x:�k: (k � ��)� (f ( �x))�T� = T (��) = (� � ��)� � = �i: i �*� = �g: �y: g (��y) (� �  �) T� = T ( �) = (� �  �)�(Meyer and Wand use the names i and j for functionsanalogous to � and  , but the de�nition of  given aboveis slightly more convenient when T is not necessarily theidentity.)It is straightforward to verify that h�
 ;  
i form aretraction pair, i.e., that for any source-type 
, 
 � �
 = id [[
 ]]Tin the metalanguage. For 
 = �, the result is immediate;for 
 = �*�: �*� � ��*�= �f: �*� (��!� f)= �f: �*� (�x: �k: (k � ��)� (f ( �x)))= �f:�y: [�x:�k: (k � ��)� (f ( �x))](��y)(� �  �)= �f:�y: (� �  � � ��)� (f ( � (��y)))ih= �f:�y: �� (f y)= idand for 
 = T�: T� � �T� = (� �  �)� � (� � ��)�= ((� �  �)� � � � ��)� = (� � � � ��)� ih= �� = idThus the type translations faithfully embed the T -translation of a source-language type in the correspond-ing K-translated type. But to properly relate the twotranslations, we want the stronger property that the T -meaning of any source term can always be recoveredfrom its K-meaning, i.e., that the CPS-translation re-ally captures all the subtleties of the monadic one.The proof of this property is more complicated thanmight be expected: in particular, an attempt to prove itby induction on the term structure alone will not work.To get a feeling for what goes wrong, consider the un-typed variants of the translations with T as simply theidentity monad (so in particular, the �(�) and [�] oper-ations have no e�ect). Now let U be any atomic value,and consider the termE = (�d: U )((�x: xx) (�x:xx))Then [[E]]T = E = U (remember that we have full � inour metalanguage, even though [[�]]T is nominally a CBV

translation), but since [[�]]K still speci�es a CBV CPStransformation, [[E]]K (�x: x) 6= U , and in fact there isno functional way to \extract" U from [[E]]K .More abstractly, the problem is that we have actu-ally introduced an e�ect (nontermination) in the sourcelanguage without a corresponding modi�cation of themonadic structure to encompass partiality. To rule outsuch surprises, we need to make explicit use of the typestructure.Speci�cally, for any source type �, we isolate a set of\T -compatible" CPS values V� � [[�]]K and computa-tions C� � K[[�]]K , de�ned as follows:V� = fm 2 � j truegV�*� = fm 2 [[�]]K !K[[�]]K j 8n 2 V�:mn 2 C�^ ( �*�m) ( �n) = mn (� �  �)gVT� = fm 2 T [[�]]K j �c: c�m 2 C�gC� = ft 2 K[[�]]K j �c: c� (t�jV�) = tg(where �jV� is the restriction of � to V�; the equation inC� means that the left-hand side is de�ned and equal tothe right-hand side). Part of the result we are aimingfor states that the K-meanings of all object-languagevalues and expressions are in fact T -compatible in thissense.The motivation for all the speci�c conditions is fairlytechnical, but we can try to give some intuition. Mostimportantly, if t 2 C� thenk� (tf ) = k� ([�c: c� (t�jV�)]f ) = k� (f� (t�jV�))= (k� � f )� (t�jV�) = t (k� � f )and hence in particulartk = k� (t�jV�) = k� (t (� � idV�))= t(k� � � � idV�) = t(k � idV�) = tkjV�(i.e., a C�-term t only invokes its continuation with aV�-term, so that if k and k0 agree on V� then t k =t k0). The �rst condition for functions and the one forT� ensure that \latent" computations involving onlyV-terms (in particular, arguments of continuations) arewell-behaved when activated; note that the translationof �(E) can be written as[[�(E)]]K = �k: [[E]]K (�m: [�c: c�m]k)Finally, the second condition for functions expands tom (�� ( �n))(� �  �) = mn(� �  �)which states that a \well-behaved" function m can-not itself depend on more information about its argu-ment n than what is preserved by conversion back toT -translated types.449



It is easy to check by induction on types that��v 2 V� for any v 2 [[�]]T(so in particular if w = �� ( �w) then w 2 V�). Butnot every element of V� is of this form. For example, letT again be the identity monad and consider the sourcevalues �f:�x: x and �f: �x: (�d:x) (f x)Their T -meanings are equal, but their K-meanings arenot, so only one of the latter can be in the image of �.For a substitution �, let us write Mf�g (to avoidyet another overloading of brackets) for the capture-avoiding application of � to a meta-language term M ,and Mf� � �g for (Mf�g)f�g. We can then state a keyresult relating CPS and monadic style.Theorem Let x1:�1; . . . ; xn:�n ` E : �, and let � bea substitution assigning a V�i -term to each xi. Then([[E]]K )f�g 2 C�and [[E]]T f �� � �g = [[E]]Kf�g(� �  �)(where  �� is the substitution mapping xi to  �ixi for1 � i � n).The proof is by somewhat tedious structural inductionon E (Meyer and Wand's shortcut of only analyzing SK-combinators does not appear as useful in the generalcase). As a direct consequence, we get:[[E]]T = [[E]]T f �� � ���g = [[E]]Kf���g (� �  �)In particular, if E is closed of base type (so  � is theidentity), we have the simple equality [[E]]T = [[E]]K �.More generally, using the above and the �rst half of thetheorem, we get a monadic congruence result:k� [[E]]T = [[E]]Kf���g (k �  �)For example, in the case of the partiality monad [16],T� = �]f?g, with k� as the strict extension of k (i.e.,k� a = ka for a 2 �; k�? = ?), we recover the usualrestriction [25] that the continuation be strict to geta congruence; the monadic characterization generalizesthis requirement to other computational e�ects.Finally, we can check explicitly that the re
ectionprinciple is satis�ed when all free variables denote V-terms:[[�([E])]]K = �k: [[[E]]]K k� = �k: k� ([[E]]K �) = [[E]]Kand[[[�(x)]]]K = �k: k ([[�(x)]]K �) = �k: k ([[x]]K ��)= �k: k (��x) = �k: kx = [[x]]KArmed with a proof that the continuation-passingcharacterization of monadic re
ection and rei�cationfaithfully represents the original de�nitions, we can nowreturn to the embedding result.

3 Monadic Re
ection from ComposableContinuationsThe analysis in the previous section applies to an ar-bitrary monad T . But let us now make the naturalassumption that the meta-language monad functions �and�� can actually be de�ned in the \pure" (i.e., e�ect-free) functional sublanguage of our object language. Inother words, the de�nition of the monad must be suf-�ciently \algorithmic" that we can write a source pro-gram in monadic style in the �rst place! If this is thecase, we say that the monad T is expressible in our lan-guage.As we have seen, we can express all monadic e�ectsin CPS instead of in monadic style. A priori, this doesnot leave us not much better o�, however: to reach the\non-standard" CPS terms used to interpret �(�) and[�] for any particular monad T , we still seem to needa T -speci�c translation phase (performed either manu-ally, or by compilation, interpretation, partial evalua-tion, or some other automated technique). But givenobject-language terms for � and ��, it turns out thatwe can represent all the required CPS terms in directstyle extended with two �xed operators for manipulat-ing the continuation as a \composable" function. Thusevery expressible monad can be simulated by a single,\universal" e�ect which could be added to our objectlanguage once and for all.Speci�cally, we extend the source language of the CPStranslation with operators shift and reset, de�ned as fol-lows:[[SE]]K = ��: [[E]]K (�f: f [�v: ��0: �0 (�v)](�x:x))[[#E]]K = ��: � ([[E]]K (�x:x))shift captures (and erases) the evaluation context up tothe nearest dynamically enclosing reset (every programis run with an implicit all-enclosing reset), and passesthis context to its argument as an ordinary function.For example:1 +#(2� S (�k: k (k10)))= 1 + let k = �v:2� v in k (k10) = 41(For our purposes, reset coincides with Felleisen'sprompt [6], whose #-notation we have adopted here; butshift di�ers from prompt's original companion control (orF) in that the continuation � is not given control over�0 in the de�nition of S.) For more details on shift/resetand their relation to other notions of composable contin-uations, see [3, 4, 17, 33]. As with the monadic [�], theoperation #� would typically be provided as a functionon thunks rather than as a special form.By our assumption that the meta-language � can beincluded in the object language as a \pure" function oftype �* T�, we have[[�]]K = �k: k (�a: ��:� (�a))450
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)Figure 1: Meta-continuation semanticsSimilarly, extension is expressible as a function of type(�* T�)*T�*T� that preserves \purity":[[f�]]K = �k: k (�a:��: � ('� a))if [[f ]]K = �k: k (�a:��: � ('a))Now, in the CPS de�nition of[E]we want to evaluateE with a continuation �, and only then propagate theresult to the surrounding evaluation context. This is infact almost what #� does { we only need to add the �:[[#(�E)]]K= ��: �([[�E]]K (�x: x))= ��: �([[�]]K (�f: [[E]]K (�a: f a (�x:x))))= ��: �([[E]]K (�v: [�a:��: �(�a)]v (�x: x)))= ��: �([[E]]K (�v: (�x:x) (�v)))= ��: �([[E]]K �)= [[[E]]]KConversely, for �(E) we need to replace the currentcontinuation with its extended version, which again canbe directly expressed using S:[[S (�k: k�E)]]K= ��: [[�k: k�E]]K (�f: f (�v: ��0: �0 (�v)) (�x: x))= ��: [�k: [[k�E]]K ](�v: ��0: �0 (�v))(�x: x)= ��: [�k: [[k�]]K (�g: [[E]]K (�a: ga (�x:x)))](�v:��0: �0 (�v))= ��: [[E]]K (�a: [�v: ��0: �0 (�� v)]a(�x: x))= ��: [[E]]K (�a: (�x:x) (�� a))= ��: [[E]]K ��= [[�(E)]]K(where k 62 FV (E)). This means that for any express-ible � and ��, we can de�ne [E] and �(E) in terms ofthe composable-continuation primitives:[E] def= #(�E)�(E) def= S (�k: k�E)So if we only include shift and reset in our programminglanguage, we can write all \monadic" programs in directstyle.

4 Composable Continuations fromStorable ContinuationsIn the �nal step of our construction, we will see thatshift and reset can themselves be de�ned in terms of non-composable continuations and a single storage cell. Thetrick is to view the CPS translation with continuation-composing de�nitions of shift and reset as a direct-style speci�cation of a language (with � as just anotherhigher-order function), and obtain from it a proper con-tinuation semantics using a new \meta-continuation" 
,as detailed in [3].The result is displayed in Figure 1. (Here K is theusual call=cc-operator which invokes its argument on thecurrent continuation represented as an escaping func-tion, as seen by the discarded �0.) Note in particularhow the nested application �0 (�v) in the de�nition ofS is sequentialized into the usual �
 00: �v (�w: �0w
 00);likewise, the outer � in [[#E]]K is put onto the meta-continuation. On the other hand, all the underlined 
'scan actually be �-reduced away, so the metacontinua-tion only really comes into play in shift and reset. Themeaning of a complete program is nowE [[E]]�init (�x: �
: 
 x) 
initwhere 
init is the usual top-level continuation, typicallysimply the identity function.First, let us note that given K, #, and the simpleroperator A (\abort") with denotationE[[AE]]� = ��:�
: E[[E]]� (�v:�
 0: 
0 v)
[so AE is equivalent to S (�d:E), where d 62 FV (E)],we can express S asSE def= K(�k:A (E (�x:#(kx))))(informally, the A erases the context once it is capturedas k; and by wrapping a reset around kx, we ensure thatonly the identity continuation gets discarded when k isinvoked). Thus, we only need to de�ne A and #. (ThatK, A, and # together su�ce for de�ning all \pure" CPS451



terms in a domain-theoretic setting was already notedby Sitaram and Felleisen [27]).The second, key observation is that { except forthe de�nitions of A and # { the meta-continuation isthreaded through the meta-continuation semantics ex-actly like the global store in a Scheme-like language!This means that we we can simply designate a single,updatable location to hold 
 (represented as a procedurethat ignores both the continuation and the metacontin-uation passed to it), and only access it in A and #.Speci�cally, in a language with continuations andstate, we have operationsE [[mk :=E]]�= ��:��: E[[E]]� (�v: ��0: � () (�0[`mk 7!v]))�E [[!mk]]� = ��:��: �(� `mk)�(where � maps locations to values; `mk is the locationassigned to mk; mk := E evaluates E, stores the value,and returns (); and !mk returns the current contents ofthe cell without changing it). It is then easy to checkthat the following de�nitions give terms with the rightdenotations:AE def= let v = E in !mk v [= (�v: !mk v)E]#E def= K(�k: let m = !mkin (mk := (�r: (mk :=m; kr));AE))(where let and ; are the usual abbreviations). Notein particular that since k is an escaping function, the�-abstraction stored into mk in #E does denote a pro-cedure that when invoked uses neither its continuationnor the current contents of mk. We also need to ini-tialize mk to the initial continuation; the easiest way todo this is to simply wrap a reset around any top-levelexpression to be evaluated.This completes our embedding of any expressiblemonadic structure into a language with escapes andstate, a somewhat surprising result given the deceptivelygeneral-appearing monad laws. It should be stressedagain, though, that the construction only applies tomonads whose de�nitions can be captured as functionalprograms in the �rst place: more esoteric e�ects likeprobabilistic computations defy such a simple decom-position.Incidentally, the above de�nitions of shift and reset interms of call=cc and and state could well have practicalapplications unrelated to monads. For example, Lawalland Danvy are investigating applications of composablecontinuations for continuation-based partial evaluation[12]; preliminary results indicate that using the embed-ded shift/reset instead of an explicit CPS transforma-tion step can give signi�cant improvements in time andin space, when run under an e�cient implementation ofcall=cc [9].

5 Implementation and ExamplesIn this section we transcribe the abstract constructionpresented so far into runnable code. To emphasize thetyping issues involved, we use the New Jersey dialect ofStandard ML [1] as our concrete language, but the oper-ational content should translate straightforwardly intoScheme as well (though instantiation to di�erent mon-ads may be less convenient without a module facility).We also give several examples; the reader may want tocompare these with Wadler's presentation [32].5.1 Composable continuationsIn SML/NJ, �rst-class continuations have a type dis-tinct from the type of general procedures. Let us there-fore �rst set up a representation of such continuationsas Scheme-style non-returning functions (this is not es-sential but makes for a more direct correspondence withthe semantics in section 4):signature ESCAPE =sigtype voidval coerce : void -> 'aval escape : (('1a -> void) -> '1a) -> '1aend;structure Escape : ESCAPE =structdatatype void = VOID of voidfun coerce (VOID v) = coerce vfun escape f = callcc (fn k=>f (fn x=>throw k x))end;For example, we can writelet open Escapein 3 + escape (fn k=>6 + coerce (k 1)) end;(* val it = 4 : int *)(The use of void and coerce instead of an unconstrainedtype variable in escape permits storage of continuationsin ref-cells while staying within the ML type system [5].)Now we can de�ne a composable-continuations facil-ity, parameterized by the type of �nal answers:signature CONTROL =sigtype ansval reset : (unit -> ans) -> ansval shift : (('1a -> ans) -> ans) -> '1aend;functor Control (type ans) : CONTROL =structopen Escapeexception MissingResetval mk : (ans -> void) ref =ref (fn _=>raise MissingReset)fun abort x = coerce (!mk x)type ans = ansfun reset t = escape (fn k=>let val m = !mk inmk := (fn r=>(mk := m; k r));abort (t ()) end)fun shift h = escape (fn k=>abort (h (fn v=>reset (fn ()=>coerce (k v)))))end;452



For example,structure IntCtrl = Control (type ans = int);let open IntCtrlin 1 + reset (fn ()=>2 * shift (fn k=>k (k 10))) end;(* val it = 41 : int*)5.2 Monadic re
ectionBuilding on the composable-continuations package, weimplement the construction of Section 3. The signatureof a monad is simple:signature MONAD =sigtype 'a tval unit : 'a -> 'a tval ext : ('a -> 'b t) -> 'a t -> 'b tend;(the monad laws have to be veri�ed manually, though).Our goal is to de�ne re
ection and rei�cation operationsfor an arbitrary monad M to getsignature RMONAD =sigstructure M : MONADval reflect : '1a M.t -> '1aval reify : (unit -> 'a) -> 'a M.tend;Before we can proceed, however, there is one twist: ourconstruction needs a universal type (the o of section 2.2):signature UNIVERSAL =sigtype uval to_u : 'a -> uval from_u : u -> 'aend;such that from_u � to_u is the identity for any 'a.(Note that ensuring that the instances of 'a do in factmatch up dynamically now becomes our responsibility;the ML system is free to dump core on attempts to ex-ecute code like 1 + from_u (to_u "foo")). This sig-nature can be implemented in SML/NJ asstructure Universal : UNIVERSAL =structtype u = System.Unsafe.objectval to_u = System.Unsafe.castval from_u = System.Unsafe.castend;where cast behaves as an identity function, but hasthe general type 'a -> 'b.2 We can now complete theconstruction:2Even without a universal type, we still get a usable de�nitionif we pick a suitable concrete type of answers. Then rei�cationbecomes restricted to computations of that type, but re
ectionremains polymorphic; in many cases, e.g., in an interpreter whereall evaluations happen at a single type of denotable values, this issu�cient.

functor Represent (M : MONAD) : RMONAD =structstructure C = Control (type ans = Universal.u M.t)structure M = Mfun reflect m = C.shift (fn k=>M.ext k m)fun reify t = M.ext (M.unit o Universal.from_u)(C.reset (fn ()=>M.unit(Universal.to_u (t ()))))end;(Recall that operationally to_u and from_u are iden-tities, and so is M.ext M.unit. Also, it is worth stress-ing that only the implementation of Represent needs atyping loophole; its interface remains ML-typable andsafe.)5.3 Example: exceptionsThe example from the introduction becomes, in concretesyntax:structure ErrorMonad =structdatatype 'a t = SUC of 'a | ERR of stringval unit = SUCfun ext f (SUC a) = f a| ext f (ERR s) = (ERR s)end;structure ErrorRep = Represent (ErrorMonad);local open ErrorMonad ErrorRep infun myraise e = reflect (ERR e)fun myhandle t h = case reify t of SUC a => a| ERR s => h send;(* val myraise = fn : string -> '1aval myhandle = fn : (unit -> 'a) -> (string -> 'a)-> 'a *)fun show t =myhandle (fn ()=>"OK: " ^ makestring (t ():int))(fn s=>"Error: " ^ s);(* val show = fn : (unit -> int) -> string *)show (fn ()=>1 + 2);(* val it = "OK: 3" : string *)show (fn ()=>1 + myraise "oops");(* val it = "Error: oops" : string *)5.4 Example: stateThe state monad with Wadler's counting operations:functor StateMonad (type state) : MONAD =structtype 'a t = state -> 'a * statefun unit a = fn s0=>(a,s0)fun ext f m = fn s0=>let val (a,s1) = m s0in f a s1 endend;structure IntStateRep =Represent (StateMonad (type state = int));fun tick () = IntStateRep.reflect (fn s=>((),s+1))fun fetch () = IntStateRep.reflect (fn s=>(s,s))fun store n = IntStateRep.reflect (fn s=>((),n));(* val tick = fn : unit -> unitval fetch = fn : unit -> ?.<Parameter>.state(*= int*)val store = fn : int -> unit *)453



#1 (IntStateRep.reify (fn ()=>(store 5; tick ();2 * fetch ())) 0);(* val it = 12 : int *)5.5 Example: nondeterminismA nondeterministic computation can be represented asa list of answers:structure ListMonad : MONAD =structtype 'a t = 'a listfun unit x = [x]fun ext f [] = []| ext f (h::t) = f h @ ext f tend;structure ListRep = Represent (ListMonad);local open ListRep infun amb (x,y) = reflect (reify (fn ()=>x) @reify (fn ()=>y))fun fail () = reflect []end;(* val amb = fn : '1a * '1a -> '1aval fail = fn : unit -> '1a *)ListRep.reify (fn ()=>let val x = amb (3,4) * amb (5,7)in if x >= 20 then xelse fail () end);(* val it = [21,20,28] : int ListMonad.t *)More generally, we get Haskell-style list comprehensions\for free", in that the schema[E j x1 E1; . . . ; xn En](where each xi may be used in Ei+1; . . . ;En and in E)can be expressed directly as[let x1 = �(E1) in . . . let xn = �(En) in E]For example, we can compute the \cartesian product"of two lists aslet open ListRep inreify (fn ()=>let val x = reflect [3, 4, 5];val y = reflect ["foo", "bar"]in (x,y) end)end;(* val it = [(3,"foo"),(3,"bar"),(4,"foo"),(4,"bar"),(5,"foo"),(5,"bar")]: (int * string) list *)Of course, this is probably not the most e�cient way ofimplementing list comprehensions in ML. As observedby Wadler [31], however, list comprehensions can begeneralized to arbitrary monads; similarly we get gen-eral monad comprehensions in ML simply by supplyingthe appropriate [�] and �(�) operations.5.6 Example: continuationsFinally, let us consider the continuation monad (for anarbitrary but �xed answer type):

functor ContMonad (type answer) : MONAD =structtype 'a t = ('a -> answer) -> answerfun unit x = fn k=>k xfun ext f t = fn k=>t (fn v=>f v k)end;structure ContRep =Represent (ContMonad (type answer = string));local open ContRep infun myescape h =reflect (fn c=>let fun k a = reflect (fn c'=>c a)in reify (fn ()=>h k) c end)fun myshift h =reflect (fn c=>let fun k a = reflect (fn c'=>c' (c a))in reify (fn ()=>h k) (fn x=>x) end)fun myreset t = reflect (fn c=>c (reify t (fn x=>x)))end;(* val myescape = fn : (('1a -> '1b) -> '1a) -> '1aval myshift = fn : (('1a -> string) -> string) -> '1aval myreset = fn : (unit -> string) -> string *)ContRep.reify (fn ()=>3 + myescape (fn k=>6 + k 1))makestring;(* val it = "4" : string *)ContRep.reify (fn ()=>"a" ^ myreset (fn ()=>"b" ^ myshift (fn k=>k (k "c"))))(fn x=>x)(* val it = "abbc" : string *)6 Related WorkThe study of relationships between direct and contin-uation semantics has a long history. Early investiga-tions [22, 25, 30] were set in a domain-theoretic frame-work where the main di�culties concerned re
exive do-mains; as a result, these methods and results seemclosely tied to speci�c semantic models. On the otherhand, Meyer and Wand's more abstract approach ap-plies to all models of (typed) �-calculi, but does notencompass computational e�ects { not even nontermi-nation. The present extension of Meyer and Wand'sretraction theorem to monadic e�ects should partiallybridge this gap, and add another facet to our under-standing of CPS. It seems natural to expect other re-sults about continuation-passing vs. direct style to scaleup to monadic style as well; in particular, it should bepossible to extend the results presented here to lan-guages with re
exive types, perhaps by adapting oneof the semantics-based proofs mentioned above.A possible equivalence between monads and CPS wasconjectured by Danvy and Filinski [3] and partially
eshed out by Wadler [32], but even the latter wasquite informal { since the result generalizes Meyer andWand's, one would expect the proof to be at least ascomplicated. Another glimmer of the correspondencecan be seen in Sabry and Felleisen's result [24] that��-equivalence of CPS terms coincides with direct-styleequivalence in Moggi's computational �-calculus [14],which captures exactly the equivalences that hold in thepresence of arbitrary monadic e�ects. Peyton Jones and454



Wadler [18] probe the relationship between monads andCPS further, and Wadler [33] analyzes composable con-tinuations fromamonadic perspective, but in both casesthe restriction to Hindley-Milner typability obscures thedeeper connections.\Composable continuations" have also been studiedby a number of researchers [10, 8, 3]. Many of theseconstructs depend on explicit support from the com-piler or runtime system, such as the ability to markor splice together delimited stack segments. However,an encoding in standard Scheme of one variant was de-vised by Sitaram and Felleisen [26]. The embedding isfairly complex, relying on dynamically-allocated, muta-ble data structures, eq?-tests, and with no direct con-nection to a formal semantics of the constructs. Yet an-other Scheme-implementable notion of partial continu-ations was proposed by Queinnec and Serpette [20]; thecode required is perhaps even more intricate. (To befair, both of these constructs are apparently more gen-eral than shift/reset, though the practical utility of thisadditional power remains to be seen.) The much simplerconstruction presented in this paper uses only a singlecell holding a continuation, and is directly derived fromthe denotational de�nition of shift and reset.Finally, recent work by Riecke [23] on e�ect delimitersmay be somehow related to the present paper, as theyshare several concepts and techniques (speci�cally, mon-ads, prompts, and retractions). On closer inspection,though, the similarities become much less apparent (forexample, Riecke only considers a few speci�c monadsand attaches no special signi�cance to CPS); certainlythe speci�c goals of the two papers are quite di�erent,and the results obtained seem incomparable. Still, theremight be some deeper connections to uncover, and thesubject is probably worth exploring further.7 ConclusionsBy exploiting the correspondence between monadic andcontinuation-passing styles, we can embed any de�nablemonad into a language with a \composable continua-tions" construct. Further, such a construct can itself bedecomposed into ordinary �rst-class continuations anda storage cell. Thus, it is possible in principle to expressany de�nable monadic e�ect as a combination of con-trol and state. In practice, of course, many such e�ects{ including, obviously, call=cc and ref-cells themselves {can be more naturally expressed directly, without thedetour over composable continuations.However, the construction presented here should stillbe of some practical use in experiments with, and rapidprototyping of, more complicated monadic structures.The embedding approach does not incur the interpretiveoverhead of a \monadic interpreter" or the complexity ofan explicit source-to-source \monadic translation" step.

And perhaps even more importantly, it allows us to re-tain with no extra e�ort all the conveniences of the orig-inal language, including pattern-matching, static type-checking, and module system. The e�ciency of thegeneral embedding may not be quite as good as hand-coded monadic style specialized to a particular monad,especially since many compilers do not attempt to trackcontinuations across storage cells. On the other hand,if e�ects are rare, programs run at full speed withoutthe overhead of explicitly performing the administrativemanipulations speci�ed by � and ��, such as taggingand checking return values in the exception monad.The embedding result is also a strong argument forinclusion of �rst-class continuations in practical eagerlanguages, especially ones like ML that already havemutable cells: providing call=cc does not simply add \yetanother monadic e�ect" { it completes the language toall such e�ects! Moreover, a sophisticated module sys-tem like SML's lets us expose as little or as much ofthis underlying raw power as we need: by picking theappropriate monadic structure, we can introduce e�ectsranging from simple exceptions to full composable con-tinuations.But surely there is more to \functional programmingwith escapes and state" than monadic e�ects. Afterall, monads provide only the lowest-level framework forsequencing computations; in practical programs, we of-ten need tools for expressing higher-level, application-oriented abstractions. A strict monad-based partition-ing of e�ects may be adequate in many cases, but mon-ads cannot and should not take place of a proper modulefacility. In fact, it might be that the syntactic \noise"due to writing everything in monadic (or any other)style makes it harder to recognize and exploit orga-nizational units that do not conveniently �t into themonadic mold (for example, concurrency packages likeReppy's CML [21], or \imperative uni�cation" usingmutable data structures).The present work also sheds some light on the prob-lem of integrating individual monads to express com-posite e�ects. Brie
y, the complication is that a monadby itself is a closed package that contains too little infor-mation: we need instead to express the monadic dataas an increment to be layered on top of other possi-ble e�ects. How to do this uniformly is still not quiteclear; Moggi's monad constructors [15] and Steele'spseudomonads [29] are two possible techniques. In thecomposable-continuations characterization of monads,monad combination seems to correspond to also lettingthe target language of the de�ning translations con-tain monadic e�ects, leading to the hierarchy of con-trol operators and the associated metan-continuation-passing style introduced in [3] and further investigatedby Murthy [17].However, such approaches all lead to an inherently455



\vertical" or \hierarchical" notion of monad composi-tion, because in general we must answer such questionsas \should backtracking undo I/O?" or \should excep-tions undo state mutation?" (and perhaps also, \is thisreally the right way to think about supposedly func-tional programs?") Yet many monadic e�ects can infact be naturally combined in a \horizontal" or \inde-pendent" way, such as di�erent pieces of state, or stor-age and I/O; both the monadic and the (generalized)CPS formulation seem awkward in such cases, but indi-vidually mutable cells capture this situation directly.Much recent work on monads in \purely functional"languages vs. control and state in an \imperative func-tional" setting seems largely disjoint. Perhaps the con-nections outlined in this paper can lead to some cross-fertilization and help avoid duplication of e�ort. Forexample, \pure" functional programmers might bene�tfrom work on organizing and reasoning about �rst-classcontinuations and storage cells in the \imperative" set-ting (e.g., [7]); noting that these are monadic e�ectsis clearly not su�cient to actually reason about them.Conversely, results about algebraic properties of partic-ular monads (e.g., [11]) could be useful for recognizingand exploiting patterns of continuation and state usagein eager languages.AcknowledgmentsI want to thank John Reynolds for support, and OlivierDanvy, Matthias Felleisen, Julia Lawall, Greg Morrisett,Amr Sabry, Phil Wadler, and the reviewers for theirhelpful comments on various drafts of this paper.References[1] Andrew W. Appel and David B. MacQueen. Stan-dard ML of New Jersey. In Third InternationalSymposium on Programming Language Implemen-tation and Logic Programming, number 528 in Lec-ture Notes in Computer Science, pages 1{13, Pas-sau, Germany, August 1991.[2] William Clinger and Jonathan Rees. Revised4 re-port on the algorithmic language Scheme. LispPointers, 4(3):1{55, July 1991.[3] Olivier Danvy and Andrzej Filinski. Abstractingcontrol. In Proceedings of the 1990 ACM Confer-ence on Lisp and Functional Programming, pages151{160, Nice, France, June 1990.[4] Olivier Danvy and Andrzej Filinski. Representingcontrol: A study of the CPS transformation.Math-ematical Structures in Computer Science, 2(4):361{391, December 1992.
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