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Abstract

We show that any monad whose unit and extension
operations are expressible as purely functional terms
can be embedded in a call-by-value language with
“composable continuations”. As part of the develop-
ment, we extend Meyer and Wand’s characterization of
the relationship between continuation-passing and di-
rect style to one for continuation-passing vs. general
“monadic” style. We further show that the composable-
continuations construct can itself be represented using
ordinary, non-composable first-class continuations and
a single piece of state. Thus, in the presence of two
specific computational effects — storage and escapes —
any expressible monadic structure (e.g., nondetermin-
ism as represented by the list monad) can be added as a
purely definitional extension, without requiring a rein-
terpretation of the whole language. The paper includes
an implementation of the construction (in Standard ML
with some New Jersey extensions) and several examples.

1 Introduction

1.1 Background and overview

Over the last few years, monads have gained consid-
erable acceptance in the lazy functional programming
world. Originally proposed by Moggi as a convenient
framework for structuring the semantics of languages
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[14, 16], they were quickly popularized by Wadler and
others as a technique for structuring functional pro-
grams [32, 18]. Tt is not hard to see the reason for this
popularity: monads promise access to state, control op-
erators, 1/0, etc., while retaining the strong reasoning
principles valid for pure functional languages. Briefly,
restricting programs to so-called “monadic style” (very
similar in spirit and appearance to continuation-passing
style) sets up a uniform infrastructure for represent-
ing and manipulating computations with effects as first-
class objects.

It is somewhat remarkable that monads have had no
comparable impact on “impure” functional program-
ming. Perhaps the main reason is that — as clearly ob-
served by Moggi, but perhaps not as widely appreciated
in the “purely functional” community — the monadic
framework is already built into the semantic core of
eager functional languages with effects, and need not
be expressed explicitly. “Impure” constructs, both lin-
guistic (e.g., updatable state, exceptions, or first-class
continuations) and external to the language (I/O, OS
interface, etc.), all obey a monadic discipline. The only
aspect that would seem missing is the ability for pro-
grammers to use their own, application-specific monadic
abstractions — such as nondeterminism or parsers [31] —
with the same ease and naturality as built-in effects.

Actually, many of the useful monadic effects that are
not already included can be defined in terms of existing
concepts in typical eager functional languages. For ex-
ample, backtracking can be expressed with call/cc and
an updatable stack of backtracking points [5]. Still, such
implementations appear ad-hoc, require a thorough un-
derstanding of the imperative features used, and have
no clear connection to the “pure” monadic abstractions
they implement. And although all of the usual monads
seem to yield to this approach, it 1s far from obvious
that they must all do so.

In the following, we will show that in fact any
monadic effect whose definition is itself expressible in
a functional language can be synthesized from just two
“Impure” constructs: first-class continuations and a



storage cell. In other words, a language like Scheme
[2], or ML with first-class continuations [5], is already
“monadically complete” in the sense that any program
expressible in the somewhat contorted monadic style
can also can be written in direct style. Moreover, all
uses of computational effects in the definition can be en-
capsulated into an abstraction customarily called com-
posable, functional, or partial continuations, and the re-
maining program contains no explicit references to ei-
ther escapes or state.

The rest of this section contains a very brief intro-
duction to monads (a reader unfamiliar with the con-
cept would be well advised to read one of the papers
by Moggi or Wadler for a more complete presentation)
and Moggi’s convenient notation for monadic effects.
The following sections then derive the representation
result as a succession of three steps, each of which
is potentially useful in its own right and directly ex-
tends or supplements earlier work. First, we develop
a formal correspondence between “monadic style” and
continuation-passing style.  Using this, we show that
all non-standard manipulations of the continuation in
“monadic CPS” can be expressed in terms of two opera-
tors for composable continuations. Finally, we show how
to define these two operators using ordinary first-class
continuations and a piece of state. To supplement the
abstract development, section 5 presents the complete
embedding as executable ML code and illustrates how
some common monadic effects can be uniformly repre-
sented as instances of the construction. A comparison
with related work and some conclusions complete the

paper.

1.2 Monads and monadic reflection

For the purposes of “monadic functional programming”,
a monad consists of a type constructor 7' and operations
(polymorphic functions)

n:a—Ta and i (a=T8) —=Ta—T4

called unit and extension, respectively. (Wadler uses a
binary infix operator for the latter, writing m ‘bind’ f or
mx* f for our f*m. His notation is probably superior for
writing actual programs in monadic style, but the vari-
ant above seems preferable for the formal manipulations
we will be performing.) The operations are required to

satisfy three monad laws:

77* = dpq
Jron = f
(ffog)" = ffoyg

Monads can be used to give a semantics of various
“computational effects” (such as state, exceptions, or
I/O) in applicative programming languages [14, 16].
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In particular, our development is set in a simple call-
by-value (CBV) functional language based on “Moggi’s
principle”:

Computations of type o correspond to values
of type Tx.

Informally, na represents a “pure” (i.e., effect-free)
computation yielding a, while f*t represents the com-
putation consisting of ¢’s effects followed by the result
of applying f to the value computed by ¢.

As also noted by Moggi, the correspondence principle
can be embodied in an “introspective” language exten-
sion which could be called monadic reflection (by anal-
ogy to computational reflection [28, 34]), given by two
operators:

'EE: Ta
TFuE): «

I'FE:«
I't[F]: Ta

an

For any F : Ta, pu(FE) reflects the value of E as an
“effectful” computation of type a. Conversely, given a
general computation ¥ : «, [F] reifies it as the corre-
sponding “effect-free” value of type Tav.

For example, let T be the exception monad, defined
as

Ta = a+exn
n = Xa.inla
J* = M.caset ofinla— fa]inre —inre

(where exn is a type of exception names). Then u(FE)
expresses the value of E/ : o+ exn as a computation: we
get an exception-raising construct by

raise £ = pu(inr F)

(where F is an expression — typically just a value — of
type exn). Conversely, [E] turns a possibly exception-
raising a-expression F into a value of type a + exn, so
we can define an exception-handling construct like this:

F; handle e = F

def . .
= case [F1l ofinla—a]inre — E,

(i.e., if B, raises an exception, the handler Fs is invoked
with e bound to the exception name; a general pattern-
matching handle construct like SML’s can easily be
expressed in terms of this one).

Justifying the designation as a “correspondence prin-
ciple”, monadic reification and reflection are inverses
on their respective domains. That is, for any expres-
sion E : « (possibly with computational effects) and
any value V : Ta,

w([E1) = E and (V)1 =V

The more general notation p(E) can be seen as sim-
ply shorthand for let v = E in pu(v), so in practice p(-)



would be provided as a function reflect : Tev — . It 18
not necessary to have [-] as a special form either: we
can exploit the usual bijection between computations
of type a and values of type 1 — «a to get a function
reify : (1— o) — T, extracting the monadic representa-
tion from a suspended computation. For the theoretical
development in sections 2—4, however, we will keep the
more compact pu(-)/[-]-notation.

2 Monads and CPS

As the first step of our development, let us investigate
the formal connections between “monadic style” and
continuation-passing style (CPS). As noted by Wadler
and others, the two appear closely related, but the ac-
tual correspondence is quite involved and benefits from
a more detailed analysis.

In this section, we consider two translations (monadic
and CPS) from a simply-typed CBV functional lan-
guage with monadic reflection and reification operators
(our object language) into a “purely functional” meta-
language: a typed Agp-calculus with monadic unit and
extension functions.

We then relate the two translations, generalizing the
results of Meyer and Wand [13] about the typed CPS
transform: their method can be seen as covering the par-
ticular case where T is the identity monad (i.e., Tae = @,

n=rid,and f* = f).

2.1 The monadic translation

The monadic translation transforms an object-language

term F with free variables z1,...,z,,
X1, ..., Ty E BB

into the meta-language term

<y &n: [[an]]T + IIE]]T : Tllﬁ]]T

The translation on types is given by:

[~
[o — B]-
[T,

Here ¢ ranges over base types, and we use a — 3 for
the CBV function space to distinguish it from the un-
derlying “pure” function space a — 3. The extension
to structured types (products, sums, etc.) is straightfor-
ward but omitted here for brevity. The term translation
is given by

z1:[ed] s, -

= ¢

[l — TIA]-
Tla]-

[x]. = n=
[A\e. E]l, = n(A=.[E],)
[E1E2), = (Af fr[Ea]) [Ei,
[(E)], = id"[E],
[CET), = nlE],
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(where the last two, perhaps less familiar-looking, equa-
tions are taken from Moggi [14].) As an example of
monadic reasoning, let us quickly check that the monad
laws verify the correspondence principle for [-] and pu(-):

[W(CED], = id” [LET], = id” (n[E],)
= (id” o) [E], = «d[E], = [E],

Conversely, taking « as a representative value (the other
cases are analogous):

[Cp(2)1]y = nlp(x)ly = n(id" [=],)
=n(id" (nz)) = ne =[],

2.2 The CPS translation

Let us now consider the CBV CPS translation for the
same pair of languages, and in particular still with re-
flection and reification operators for the monad 7'. The
translation on types looks similar:

[ =
[o— Bl = [al — K[Al,
[Tal, = Tlal,

where Ky = (y—To)—To for a type o of final answers.
(The key idea of making To the “new” answer type is
due to Wadler [32]). To get a simple relationship be-
tween the two translations, we assume o to contain all
denotable values [22] (note that such an o does not have
to be a type expressible in the source language).! Fur-
ther, to avoid clutter in the term equations, we omit
injections into and projections from o.
Now our source term E' is translated into

Sntfan]e B IE],  K[O]

where the term translation is given by

[«]

oy o], -

Ak kx

. E], = M. k(M. [E],)

IIEl Ez]]K = Ak. [[El]]K (/\f [[Ez]]K (/\afak))
(B, = Ak.[E], b

[CE1] = Ak k([ED.n)

The first three equations are the usual ones [19]. We
will verify that the last two really are the correct CPS
analogs of their T-translation counterparts next.

2.3 A relation between between monadic style
and CPS

Let us first note that we can define a type-indexed fam-
ily of functions mediating between monadic and CPS

T Alternatively, with a little more care, we can take K~ =
Yo.(v — To) — To; it is straightforward to check that both the
term translation and the operations defined in the following can
in fact be typed according to this schema.



types, ¢ : [a]; —[olx and ¢ : o] c —[o],:

¢ = Aii
Sacp = A Ae Mk (kodp) (f (Yaz))
¢ra = T(da) = (N0 ¢a)”
Yo = Adi
Ya—p = Ag.AY.9(day) (0o ¥s)
Yra = T(a) = (nota)"

(Meyer and Wand use the names ¢ and j for functions
analogous to ¢ and ¥, but the definition of ¢ given above
is slightly more convenient when 7" is not necessarily the
identity.)

It is straightforward to verify that (¢.,,) form a
retraction pair, i.e., that for any source-type 7,

Uy 0 @y = idy,

in the metalanguage. For v = ¢, the result is immediate;
for y = a—4:

1/)a~ﬁ o ¢a~ﬁ

= A tamp(dampf)

Af Ya—p (Az. Ak (ko ¢ﬁ)* (f (Yax)))

Af Ay [Ax Ak (ko ¢5)" (f (Yo 2))](6ay) (0 ¥s)
Af Ay (noibp o dp) (f(Ya(day)))

Af Ay (fy)

= i

h

and for v = Ta:

Ura 010 = (N0%a)" 0 (0 ¢a) .
=((nota) onoda)” =(nothaoda) =" =id

Thus the type translations faithfully embed the T-
translation of a source-language type in the correspond-
ing K-translated type. But to properly relate the two
translations, we want the stronger property that the 7-
meaning of any source term can always be recovered
from i1ts K-meaning, i.e., that the CPS-translation re-
ally captures all the subtleties of the monadic one.

The proof of this property is more complicated than
might be expected: in particular, an attempt to prove it
by induction on the term structure alone will not work.
To get a feeling for what goes wrong, consider the un-
typed variants of the translations with 7' as simply the
identity monad (so in particular, the u(-) and [-] oper-
ations have no effect). Now let U be any atomic value,
and consider the term

E=AdU)(Az.zx)(Az.z2))

Then [E], = E = U (remember that we have full g in
our metalanguage, even though [-], is nominally a CBV
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translation), but since [], still specifies a CBV CPS
transformation, [E], (Az.2) # U, and in fact there is
no functional way to “extract” U from [F], .

More abstractly, the problem is that we have actu-
ally introduced an effect (nontermination) in the source
language without a corresponding modification of the
monadic structure to encompass partiality. To rule out
such surprises, we need to make explicit use of the type
structure.

Specifically, for any source type «, we isolate a set of
“T-compatible” CPS values V, C [«], and computa-
tions Co C K[«],, defined as follows:

V., = {mé€¢]|true}
Vaeg = {m€ o], — K[B], | Vn € Va.mn € Cp
A (Ya—pm)(Pan) =mn(novs)}
Vro = {meT[a], | Ac.c®m € Cyo}
Co = {t€K[a], | Ae.c"(tny,) =1}

(where gy is the restriction of 5 to V,; the equation in
C,, means that the left-hand side 1s defined and equal to
the right-hand side). Part of the result we are aiming
for states that the K-meanings of all object-language
values and expressions are in fact T-compatible in this
sense.

The motivation for all the specific conditions is fairly
technical, but we can try to give some intuition. Most
importantly, if ¢ € C, then

k2 f) = k= (e W)L f) = k(" (Env.)
= (k"o )" (tny,) =t (k" o f)

and hence in particular

th=Fk(tny,)=Fk(t(noidy,))
=t(k*onoidy,)=t(koidy,)="1tky,

(i.e., a Co-term t only invokes its continuation with a
V,-term, so that if & and &’ agree on V, then tk =
tk’). The first condition for functions and the one for
Ta ensure that “latent” computations involving only
V-terms (in particular, arguments of continuations) are
well-behaved when activated; note that the translation
of u(E) can be written as

(BN, = M. [E] . (Am. [Ac. ¢ m]k)
Finally, the second condition for functions expands to

m(¢a(Yan))(nots) =mn(ios)

which states that a “well-behaved” function m can-
not itself depend on more information about its argu-
ment n than what is preserved by conversion back to
T-translated types.



It is easy to check by induction on types that
dav €V, for any v € [o] .

(so in particular if w = ¢4 (¢ w) then w € V,). But
not every element of V,, is of this form. For example, let
T again be the identity monad and consider the source
values

A Aw. x and

Af Ax.(Md.x)(fx)

Their T-meanings are equal, but their K-meanings are
not, so only one of the latter can be in the image of ¢.

For a substitution o, let us write M{c} (to avoid
yet another overloading of brackets) for the capture-
avoiding application of ¢ to a meta-language term M,
and M{o o8} for (M{c}){6}. We can then state a key
result relating CPS and monadic style.

Theorem Let xy:q,..., 200, b E 3, and let o be
a substilution assigning a Vg, -term to each x;. Then

([E1x){o} €Cs
and
[El-{vacc} = [El{o}(novs)
(where g is the substitution mapping x; to Yo, z; for
1<i<n).

The proof is by somewhat tedious structural induction
on I (Meyer and Wand’s shortcut of only analyzing SK-
combinators does not appear as useful in the general
case). As a direct consequence, we get:

[£], = [E]: {va o ¢a} = [E]{¢a} (n o ¥p)
In particular, if E is closed of base type (so s is the
identity), we have the simple equality [E], = [E]. -
More generally, using the above and the first half of the
theorem, we get a monadic congruence result:

K IEL: = [Elc{da} (ko p)

For example, in the case of the partiality monad [16],
Ta = aW{—}, with £* as the strict extension of k (i.e.,
k*a = ka for a € a; k*— = —), we recover the usual
restriction [25] that the continuation be strict to get
a congruence; the monadic characterization generalizes
this requirement to other computational effects.

Finally, we can check explicitly that the reflection
principle is satisfied when all free variables denote V-
terms:

[W(CED], = Ak [LED] . k7 = Ak k™ ([E] . m) = [E] &
and

[Cu(@)1] = Ak k ([u(2)]cn) = Ak k([2] . n7)
=X k(nx) =X ke =[],

Armed with a proof that the continuation-passing
characterization of monadic reflection and reification
faithfully represents the original definitions, we can now
return to the embedding result.
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3 Monadic Reflection from Composable
Continuations

The analysis in the previous section applies to an ar-
bitrary monad 7. But let us now make the natural
assumption that the meta-language monad functions g
and —* can actually be defined in the “pure” (i.e., effect-
free) functional sublanguage of our object language. In
other words, the definition of the monad must be suf-
ficiently “algorithmic” that we can write a source pro-
gram in monadic style in the first place! If this is the
case, we say that the monad T is expressible in our lan-
guage.

As we have seen, we can express all monadic effects
in CPS instead of in monadic style. A priori, this does
not leave us not much better off, however: to reach the
“non-standard” CPS terms used to interpret gu(-) and
[-] for any particular monad T, we still seem to need
a T-specific translation phase (performed either manu-
ally, or by compilation, interpretation, partial evalua-
tion, or some other automated technique). But given
object-language terms for  and —*, it turns out that
we can represent all the required CPS terms in direct
style extended with two fized operators for manipulat-
ing the continuation as a “composable” function. Thus
every expressible monad can be simulated by a single,
“universal” effect which could be added to our object
language once and for all.

Specifically, we extend the source language of the CPS
translation with operators shift and reset, defined as fol-
lows:

[SE]
[#E£]
shift captures (and erases) the evaluation context up to
the nearest dynamically enclosing reset (every program
is run with an implicit all-enclosing reset), and passes

this context to its argument as an ordinary function.
For example:

14+ #(2 x S(Ak. k(k10)))
= 1l4let k=Xv.2 xvin k(k10) = 41

A [E], (A FAv AR K (kv)](Az. 2))
Ak K ([E], (Az.x))

(For our purposes, reset coincides with Felleisen’s
prompt [6], whose #-notation we have adopted here; but
shift differs from prompt’s original companion control (or
F) in that the continuation & is not given control over
£’ in the definition of 8.) For more details on shift/reset
and their relation to other notions of composable contin-
uations, see [3, 4, 17, 33]. As with the monadic [-], the
operation #- would typically be provided as a function
on thunks rather than as a special form.

By our assumption that the meta-language 1 can be
included in the object language as a “pure” function of
type o — T'ar, we have

[ = Ak k(Xa. Ak .k (na))



Elz]p AR Ay K (pr)y

palh k]
)y

Ay E[E]p(Af. /\'y T A Ay kv (Aw. /f_w_ Nz Ay x)'y_)l

Ex. Elp = A6 Ay 6 (A A" My E[E] (ple—v]) &'y )y
E[E1Es]p = Ak Ay E[E]p(Af.- Ay E[E2]p(Aa. Xy far
EIKE]p = A Ay E[E]p(Af M FAw A" X" kvy'']k
E[SE]p = Ak.
E[#E]p = A Ay .E[E]p(Az. MY v z)(Ar.kry)

Figure 1: Meta-continuation semantics

Similarly, extension is expressible as a function of type
(o« = TP) — Ta —Tf that preserves “purity”:
5] = A k(Aa. Ak (" a))
if [flx = Ak k(Aa.dk.k(pa))
Now, in the CPS definition of [E] we want to evaluate
E with a continuation 7, and only then propagate the

result to the surrounding evaluation context. This is in
fact almost what #- does — we only need to add the 5:

[[#(UE)]]A
= Aek([nEl, (Av. z))
ARk ([l (Af-TE] (Aa. fa(Az.x))))
Ak k([F], Qv [Aa. Ak k(na)]v(Az. z)))
(
(

Ak, k([F], v, (Az.2) (nv)))
Ak.k([E]xm)
= [[[E]]]K

Conversely, for y(E) we need to replace the current
continuation with its extended version, which again can
be directly expressed using S:

S0k £,
= A& [Ak k* ] (AF. F (v Ak K
Ak [Ak.[k* E] ] (Av. A" K (kv)
Ak Ak [k ] (Ag. [E]. (Aa.ga(
(Av. Ak’ & (k)
A6 [E], (Aa. [Av. Ak & (5 v)]a(Az. z))
Ak [E]x (Aa. (Az.z) (k" a))
Ak [E] .
= [u(B)],

(where k ¢ FV(FE)). This means that for any express-
ible n and —*, we can define [F] and p(F) in terms of
the composable-continuation primitives:

(k) (Az. x))
Y(Az. x)
Az.x)))]

def

[E] & #(yE)
a(E) = SOk E)
So if we only include shift and reset in our programming

language, we can write all “monadic” programs in direct
style.
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4 Composable Continuations from

Storable Continuations

In the final step of our construction, we will see that
shift and reset can themselves be defined in terms of non-
composable continuations and a single storage cell. The
trick is to view the CPS translation with continuation-
composing definitions of shift and reset as a direct-
style specification of a language (with « as just another
higher-order function), and obtain from it a proper con-
tinuation semantics using a new “meta-continuation” =,
as detailed in [3].

The result is displayed in Figure 1. (Here K is the
usual call/cc-operator which invokes its argument on the
current continuation represented as an escaping func-
tion, as seen by the discarded x’.) Note in particular
how the nested application &' (kv) in the definition of
S is sequentialized into the usual Ay". kv (Aw. & wy");
likewise, the outer x in [#FE], is put onto the meta-
continuation. On the other hand, all the underlined 7’s
can actually be n-reduced away, so the metacontinua-
tion only really comes into play in shift and reset. The
meaning of a complete program is now

ELE)pinit (Az. Ay. v &) Yinit

where 7, 18 the usual top-level continuation, typically
simply the identity function.

First, let us note that given K, #, and the simpler
operator A (“abort”) with denotation

E[AE]p = M. My E[E]p(Av. Ay .y v)y

[so AFE is equivalent to S(Ad. E), where d ¢ FV(E)],

Wwe can express S as

def

SE = K(Ak. A(E(Az.#(k2))))

(informally, the A erases the context once it is captured
as k; and by wrapping a reset around k x, we ensure that
only the identity continuation gets discarded when £k is
invoked). Thus, we only need to define A and #. (That
K, A, and # together suffice for defining all “pure” CPS



terms in a domain-theoretic setting was already noted
by Sitaram and Felleisen [27]).

The second, key observation is that — except for
the definitions of A4 and # — the meta-continuation is
threaded through the meta-continuation semantics ex-
actly like the global store in a Scheme-like language!
This means that we we can simply designate a single,
updatable location to hold ¥ (represented as a procedure
that ignores both the continuation and the metacontin-
uation passed to it), and only access it in A and #.

Specifically, in a language with continuations and
state, we have operations

Elmk:=E]p
= Ak A E[E]p(Av. Ad’ . k() (o' [l—0])) 0
Ellmk]p = Ak. Ao k(o b)) o

(where o maps locations to values; £, is the location
assigned to mk; mk := E evaluates E, stores the value,
and returns (); and !mk returns the current contents of
the cell without changing it). Tt is then easy to check
that the following definitions give terms with the right
denotations:

AE = let v=F in 'mk v [= (Av.!mk v) E]
#E = K(\k.let m = !mk
in (mk:= (Ar.(mk:=m;kr)); AE))

(where let and ; are the usual abbreviations). Note
in particular that since k is an escaping function, the
A-abstraction stored into mk in #F does denote a pro-
cedure that when invoked uses neither its continuation
nor the current contents of mk. We also need to ini-
tialize mk to the initial continuation; the easiest way to
do this is to simply wrap a reset around any top-level
expression to be evaluated.

This completes our embedding of any expressible
monadic structure into a language with escapes and
state, a somewhat surprising result given the deceptively
general-appearing monad laws. It should be stressed
again, though, that the construction only applies to
monads whose definitions can be captured as functional
programs in the first place: more esoteric effects like
probabilistic computations defy such a simple decom-
position.

Incidentally, the above definitions of shift and reset in
terms of call/cc and and state could well have practical
applications unrelated to monads. For example, Lawall
and Danvy are investigating applications of composable
continuations for continuation-based partial evaluation
[12]; preliminary results indicate that using the embed-
ded shift/reset instead of an explicit CPS transforma-
tion step can give significant improvements in time and
in space, when run under an efficient implementation of

call/ce [9].

5 Implementation and Examples

In this section we transcribe the abstract construction
presented so far into runnable code. To emphasize the
typing issues involved, we use the New Jersey dialect of
Standard ML [1] as our concrete language, but the oper-
ational content should translate straightforwardly into
Scheme as well (though instantiation to different mon-
ads may be less convenient without a module facility).
We also give several examples; the reader may want to
compare these with Wadler’s presentation [32].

5.1 Composable continuations

In SML/NJ, first-class continuations have a type dis-
tinct from the type of general procedures. Let us there-
fore first set up a representation of such continuations
as Scheme-style non-returning functions (this is not es-
sential but makes for a more direct correspondence with
the semantics in section 4):

signature ESCAPE =
sig
type void
val coerce
val escape
end;

void -> ’a
((’1a => void) -> ’1la) -> ’la

structure Escape : ESCAPE =

struct

datatype void = VOID of void

fun coerce (VOID v) = coerce v

fun escape f = callcc (fn k=>f (fn x=>throw k x))
end;

For example, we can write

let open Escape
in 3 + escape (fn k=>6 + coerce (k 1)) end;
(* val it = 4 : int *)

(The use of void and coerce instead of an unconstrained
type variable in escape permits storage of continuations
in ref-cells while staying within the ML type system [5].)

Now we can define a composable-continuations facil-
ity, parameterized by the type of final answers:

signature CONTROL =

sig

type ans

val reset : (unit -> ans) -> ans

val shift : ((’la -> ans) -> ans) -> ’la
end;

functor Control (type ans) : CONTROL =
struct
open Escape
exception MissingReset
val mk : (ans -> void) ref =
ref (fn _=>raise MissingReset)
fun abort x = coerce (!'mk x)

type ans = ans
fun reset t = escape (fn k=>let val m = !'mk in
mk := (fn r=>(mk := m; k r));
abort (t ()) end)
fun shift h = escape (fn k=>abort (h (fn v=>
reset (fn ()=>coerce (k v)))))
end;



For example,
structure IntCtrl = Control (type ans = int);
let open IntCtrl

in 1 + reset (fn ()=>2 * shift (fn k=>k (k 10))) end;
(* val it = 41 : int*)

5.2 Monadic reflection

Building on the composable-continuations package, we
implement the construction of Section 3. The signature
of a monad is simple:

signature MONAD =

sig

type ’a t

val unit : ’a -> ’a t

val ext (’a =>’>t) ->’at->"’bt
end;

(the monad laws have to be verified manually, though).
Our goal is to define reflection and reification operations
for an arbitrary monad M to get

signature RMONAD =
sig
structure M : MONAD
val reflect ’la M.t -> ’1la
val reify : (unit -> ’a) -> ’a M.t
end;

Before we can proceed, however, there is one twist: our
construction needs a universal type (the o of section 2.2):

signature UNIVERSAL =
sig
type u
val to_u : ’a ->u
val from_u : u -> ’a
end;

such that from_u o to_u is the identity for any ’a.
(Note that ensuring that the instances of *a do in fact
match up dynamically now becomes our responsibility;
the ML system is free to dump core on attempts to ex-
ecute code like 1 + from_u (to_u "foo")). This sig-
nature can be implemented in SML/NJ as

structure Universal : UNIVERSAL =
struct
type u = System.Unsafe.object
val to_u = System.Unsafe.cast
val from_u = System.Unsafe.cast

end;

where cast behaves as an identity function, but has

the general type ’a —> ’b.2 We can now complete the
construction:

?Even without a universal type, we still get a usable definition
if we pick a suitable concrete type of answers. Then reification
becomes restricted to computations of that type, but reflection
remains polymorphic; in many cases, e.g., in an interpreter where
all evaluations happen at a single type of denotable values, this is
sufficient.

functor Represent (M : MONAD) : RMONAD =
struct

structure C = Control (type ans = Universal.u M.t)

structure M
fun reflect

M
= C.shift (fn k=>M.ext k m)
fun reify t M

.ext (M.unit o Universal.from_u)
(C.reset (fn ()=>M.unit
(Universal.to_u (t ()))))

n =

end;

(Recall that operationally to_u and from_u are iden-
tities, and so 1s M.ext M.unit. Also, it is worth stress-
ing that only the implementation of Represent needs a
typing loophole; its interface remains ML-typable and
safe.)

5.3 Example: exceptions

The example from the introduction becomes, in concrete
syntax:

structure ErrorMonad =
struct
datatype ’a t = SUC of ’a | ERR of string
val unit = SUC
fun ext £ (SUC a) = f a
| ext £ (ERR s) = (ERR s)
end;

structure ErrorRep = Represent (ErrorMonad);

local open ErrorMonad ErrorRep in
fun myraise e = reflect (ERR e)
fun myhandle t h = case reify t of SUC a
| ERR s

i
v Vv
= o
2]

end;
(* val myraise = fn
val myhandle = fn

string -> ’la
(unit -> ’a) -> (string -> ’a)

-> 23 *)
fun show t =
myhandle (fn ()=>"0K: " ~ makestring (t ():int))
(fn s=>"Error: " ~ s);

(* val show = fn : (unit -> int) -> string *)
show (fn ()=>1 + 2);
(* val it = "0K: 3" : string *)

show (fn ()=>1 + myraise "oops");

(* val it = "Error: oops' : string *)

5.4 Example: state
The state monad with Wadler’s counting operations:
functor StateMonad (type state) : MONAD =
struct
type ’a t = state -> ’a * state
fun unit a = fn s0=>(a,s0)
fun ext £ m = fn s0=>let val (a,sl)
in f a s1 end

sO

[}
]

end;

structure IntStateRep =
Represent (StateMonad (type state = int));

fun tick () = IntStateRep.reflect (fn s=>((),s+1))

fun fetch () = IntStateRep.reflect (fn s=>(s,s))

fun store n = IntStateRep.reflect (fn s=>((),n));

(* val tick = fn : unit -> unit
val fetch = fn : unit -> 7.<Parameter>.state(*= intx*)
val store = fn : int -> unit *)



#1 (IntStateRep.reify (fn ()=>(store 5; tick ();
2 * fetch ())) 0);
12

(* val it = int *)

5.5 Example: nondeterminism

A nondeterministic computation can be represented as
a list of answers:

structure ListMonad : MONAD =
struct
type ’a t =’
fun unit x =
fun ext £ []
| ext £ (h
end;

t:t) =f h @ ext £t

structure ListRep = Represent (ListMonad);

local open ListRep in
fun amb (x,y) = reflect (reify (fn ()=>x) @
reify (fn ()=>y))
fun fail () = reflect []
end;
(* val amb = fn :
val fail = fn :

’la * ’la -> ’la
unit => ’la *)

ListRep.reify (fn ()=>let val x = amb (3,4) * amb (5,7)
in if x >= 20 then x

else fail () end);

int ListMonad.t *)

(* val it = [21,20,28] :

More generally, we get Haskell-style list comprehensions

“for free”, in that the schema
(B |2y — By oo an — By
(where each ®; may be used in Fj11,..., E, and in F)
can be expressed directly as
[let 1 = p(Fy) in ... let z, = p(E,) in F]

For example, we can compute the “cartesian product”

of two lists as

let open ListRep in
reify (fn ()=>let val x = reflect
val y = reflect
in (x,y) end)

[3, 4, 51;
["foo", "bar"]

end;

(* val it = [(3,"fo0"),(3,"bar"),(4,"fo0"),(4,"bar"),

(5,"fo0"),(5,"bar")]: (int * string) list *)

Of course, this is probably not the most efficient way of
implementing list comprehensions in ML. As observed
by Wadler [31], however, list comprehensions can be
generalized to arbitrary monads; similarly we get gen-
eral monad comprehensions in ML simply by supplying
the appropriate [-] and p(-) operations.

5.6 Example: continuations

Finally, let us consider the continuation monad (for an
arbitrary but fixed answer type):
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functor ContMonad (type answer) : MONAD =
struct
type ’a t = (’a -> answer) -> answer

fun unit x = fn k=>k x
fun ext £ t = fn k=>t (fn v=>f v k)
end;

structure ContRep =
Represent (ContMonad (type answer = string));
local open ContRep in
fun myescape h =
reflect (fn c=>let fun k a = reflect (fn c’=>c a)
in reify (fn ()=>h k) ¢ end)
fun myshift h =
reflect (fn c=>let fun k a = reflect (fn c’=>c’ (c a))
in reify (fn ()=>h k) (fn x=>x) end)
fun myreset t = reflect (fn c=>c (reify t (fn x=>x)))
end;

(* val myescape = fn : ((’1a -> ’1b) -> ’la) -> ’la
val myshift = fn : ((’la -> string) -> string) -> ’la
val myreset = fn : (unit -> string) -> string *)

ContRep.reify (fn ()=>3 + myescape (fn k=>6 + k 1))
makestring;

(* val it = "4" : string *)

ContRep.reify (fn ()=>"a" ~ myreset (fn (O=>
"b" ~ myshift (fn k=>
k (k "c"))))
(fn x=>x)

(# val it = "abbc" : string *)

6 Related Work

The study of relationships between direct and contin-
uation semantics has a long history. FEarly investiga-
tions [22, 25, 30] were set in a domain-theoretic frame-
work where the main difficulties concerned reflexive do-
mains; as a result, these methods and results seem
closely tied to specific semantic models. On the other
hand, Meyer and Wand’s more abstract approach ap-
plies to all models of (typed) A-calculi, but does not
encompass computational effects — not even nontermi-
nation. The present extension of Meyer and Wand’s
retraction theorem to monadic effects should partially
bridge this gap, and add another facet to our under-
standing of CPS. It seems natural to expect other re-
sults about continuation-passing vs. direct style to scale
up to monadic style as well; in particular, 1t should be
possible to extend the results presented here to lan-
guages with reflexive types, perhaps by adapting one
of the semantics-based proofs mentioned above.

A possible equivalence between monads and CPS was
conjectured by Danvy and Filinski [3] and partially
fleshed out by Wadler [32], but even the latter was
quite informal — since the result generalizes Meyer and
Wand’s, one would expect the proof to be at least as
complicated. Another glimmer of the correspondence
can be seen in Sabry and Felleisen’s result [24] that
On-equivalence of CPS terms coincides with direct-style
equivalence in Moggi’s computational A-calculus [14],
which captures exactly the equivalences that hold in the
presence of arbitrary monadic effects. Peyton Jones and



Wadler [18] probe the relationship between monads and
CPS further, and Wadler [33] analyzes composable con-
tinuations from a monadic perspective, but in both cases
the restriction to Hindley-Milner typability obscures the
deeper connections.

“Composable continuations” have also been studied
by a number of researchers [10, 8, 3]. Many of these
constructs depend on explicit support from the com-
piler or runtime system, such as the ability to mark
or splice together delimited stack segments. However,
an encoding in standard Scheme of one variant was de-
vised by Sitaram and Felleisen [26]. The embedding is
fairly complex, relying on dynamically-allocated, muta-
ble data structures, eq?-tests, and with no direct con-
nection to a formal semantics of the constructs. Yet an-
other Scheme-implementable notion of partial continu-
ations was proposed by Queinnec and Serpette [20]; the
code required is perhaps even more intricate. (To be
fair, both of these constructs are apparently more gen-
eral than shift/reset, though the practical utility of this
additional power remains to be seen.) The much simpler
construction presented in this paper uses only a single
cell holding a continuation, and is directly derived from
the denotational definition of shift and reset.

Finally, recent work by Riecke [23] on effect delimiters
may be somehow related to the present paper, as they
share several concepts and techniques (specifically, mon-
ads, prompts, and retractions). On closer inspection,
though, the similarities become much less apparent (for
example, Riecke only considers a few specific monads
and attaches no special significance to CPS); certainly
the specific goals of the two papers are quite different,
and the results obtained seem incomparable. Still, there
might be some deeper connections to uncover, and the
subject 1s probably worth exploring further.

7 Conclusions

By exploiting the correspondence between monadic and
continuation-passing styles, we can embed any definable
monad into a language with a “composable continua-
tions” construct. Further, such a construct can itself be
decomposed into ordinary first-class continuations and
a storage cell. Thus, it is possible in principle to express
any definable monadic effect as a combination of con-
trol and state. In practice, of course, many such effects
— including, obviously, call/cc and ref-cells themselves —
can be more naturally expressed directly, without the
detour over composable continuations.

However, the construction presented here should still
be of some practical use in experiments with, and rapid
prototyping of, more complicated monadic structures.
The embedding approach does not incur the interpretive
overhead of a “monadic interpreter” or the complexity of
an explicit source-to-source “monadic translation” step.
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And perhaps even more importantly, it allows us to re-
tain with no extra effort all the conveniences of the orig-
inal language, including pattern-matching, static type-
checking, and module system. The efficiency of the
general embedding may not be quite as good as hand-
coded monadic style specialized to a particular monad,
especially since many compilers do not attempt to track
continuations across storage cells. On the other hand,
if effects are rare, programs run at full speed without
the overhead of explicitly performing the administrative
manipulations specified by n and —*, such as tagging
and checking return values in the exception monad.

The embedding result is also a strong argument for
inclusion of first-class continuations in practical eager
languages, especially ones like ML that already have
mutable cells: providing call/cc does not simply add “yet
another monadic effect” — it completes the language to
all such effects! Moreover, a sophisticated module sys-
tem like SML’s lets us expose as little or as much of
this underlying raw power as we need: by picking the
appropriate monadic structure, we can introduce effects
ranging from simple exceptions to full composable con-
tinuations.

But surely there is more to “functional programming
with escapes and state” than monadic effects. After
all, monads provide only the lowest-level framework for
sequencing computations; in practical programs, we of-
ten need tools for expressing higher-level, application-
oriented abstractions. A strict monad-based partition-
ing of effects may be adequate in many cases, but mon-
ads cannot and should not take place of a proper module
facility. In fact, it might be that the syntactic “noise”
due to writing everything in monadic (or any other)
style makes it harder to recognize and exploit orga-
nizational units that do not conveniently fit into the
monadic mold (for example, concurrency packages like
Reppy’s CML [21], or “imperative unification” using
mutable data structures).

The present work also sheds some light on the prob-
lem of integrating individual monads to express com-
posite effects. Briefly, the complication is that a monad
by itself is a closed package that contains too little infor-
mation: we need instead to express the monadic data
as an increment to be layered on top of other possi-
ble effects. How to do this uniformly is still not quite
clear; Moggi’s monad constructors [15] and Steele’s
pseudomonads [29] are two possible techniques. In the
composable-continuations characterization of monads,
monad combination seems to correspond to also letting
the target language of the defining translations con-
tain monadic effects; leading to the hierarchy of con-
trol operators and the associated meta”-continuation-
passing style introduced in [3] and further investigated

by Murthy [17].

However, such approaches all lead to an inherently



“vertical” or “hierarchical” notion of monad composi-
tion, because in general we must answer such questions
as “should backtracking undo I/OT” or “should excep-
tions undo state mutationT” (and perhaps also, “is this
really the right way to think about supposedly func-
tional programsI”) Yet many monadic effects can in
fact be naturally combined in a “horizontal” or “inde-
pendent” way, such as different pieces of state, or stor-
age and I/0; both the monadic and the (generalized)
CPS formulation seem awkward in such cases, but indi-
vidually mutable cells capture this situation directly.

Much recent work on monads in “purely functional”
languages vs. control and state in an “imperative func-
tional” setting seems largely disjoint. Perhaps the con-
nections outlined in this paper can lead to some cross-
fertilization and help avoid duplication of effort. For
example, “pure” functional programmers might benefit
from work on organizing and reasoning about first-class
continuations and storage cells in the “imperative” set-
ting (e.g., [7]); noting that these are monadic effects
is clearly not sufficient to actually reason about them.
Conversely, results about algebraic properties of partic-
ular monads (e.g., [11]) could be useful for recognizing
and exploiting patterns of continuation and state usage
in eager languages.
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